

#ArchitectingAviation

Life cycle assessment of an aircraft fuel cell system

Automated LCI Framework for Fuel Cell Systems in Regional Aircraft using AirFox Data: Enabling Flexible Data Input and Environmental Impact Analysis for Various Aircraft Sizes and Flight Missions.

Major Impact Contributors Catalyst and bipolar plates 1 FCS: German wind electricity for hydrogen production 1 pkm:

Simplified Impact Comparison

Lower impact of Fuel Cell Aircraft compared to eSAF Aircraft: Mostly due to lower electricity consumption during fuel production

Higher impacts in comparison to Fossil Kerosene:

HTC: Chromium and mercury emission from wind turbine production MRD: Longer supply chain

Simplified Impact Comparison (1 pkm) Fuel Cell Aircraft vs. eSAF Aircraft^[5] vs. Fossil Kerosene Aircraft

0.01						
	climate change (CC)	ecotoxicity: freshwater (FE)	energy resources: non- renewable (NRER)	human toxicity: carcinogenic (HTC)	material resources: metals/minerals (MRD)	ozone depletior (OD)

[1] Schröder et al. (2024), Optimal design of proton exchange membrane fuel cell systems for regional aircraft

[2] P Stack Datasheet, p-stack-v-221.pdf (powercellgroup.com)

[3] DLR Fuel Cell System Design Tool (AirFox) (<u>https://www.dlr.de/de/tt/forschung-transfer/forschungsinfrastruktur/modellierungswerkzeuge/airfox/airfox</u>)

[4] Mutel (2017), Brightway: An open source framework for Life Cycle Assessment

[5] Rojas-Michaga et al. (2023), Sustainable aviation fuel (SAF) production through power-to-liquid (PtL): A combined techno-economic and life cycle assessment

Contact Rahnuma Bhuiyan Evon Institute of Engineering Thermodynamics rahnuma.evon@dlr.de

Contact Julia Weyand Institute of Engineering Thermodynamics julia.weyand@dlr.de

