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Abstract—We investigate the age of information (AoI) in a
scenario where energy-harvesting devices send status updates to
a gateway following the slotted ALOHA protocol and receive no
feedback. We let the devices adjust the transmission probabilities
based on their current battery level. Using a Markovian approach,
we derive analytically the average AoI. We further provide
an approximate analysis for accurate and easy-to-compute
approximations of both the average AoI and the age-violation
probability (AVP), i.e., the probability that the AoI exceeds a given
threshold. We also analyze the average throughput. Via numerical
results, we investigate two baseline strategies: transmit a new
update whenever possible to exploit every opportunity to reduce
the AoI, and transmit only when sufficient energy is available to
increase the chance of successful decoding. The two strategies are
beneficial for low and high update-generation rates, respectively.
We show that an optimized policy that balances the two strategies
outperforms them significantly in terms of both AoI metrics and
throughput. Finally, we show the benefit of decoding multiple
packets in a slot using successive interference cancellation and
adapting the transmission probability based on both the current
battery level and the time elapsed since the last transmission.

Index Terms—Internet of Things, random access, slotted
ALOHA, age of information, energy harvesting

I. INTRODUCTION

In delay-sensitive Internet of Things (IoT) applications, such
as remote sensing, vehicular tracking, and industrial monitoring,
devices need to deliver fresh updates about the status of a
remote system to a central gateway. To measure the freshness
of status updates, the age of information (AoI) metric has been
introduced (see, e.g., [2], [3] and references therein). It captures
the time elapsed since the generation of the last update available
at the gateway. Early works on the AoI, such as [4], focus
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on a point-to-point link. More recent extensions to the multi-
sensor IoT settings consider instead random access protocols
based on (slotted) ALOHA [5], which are widely adopted in
commercial applications (e.g., in the satellite communication
system DVB-RCS2 [6] and the low-power wide-area network
protocols LoRaWAN [7] and Sigfox [8]). The AoI achieved
with these protocols has been characterized in, e.g., [9]–[14],
for the setting where the devices have a stable power supply.

In real-world scenarios, IoT devices are often designed for
prolonged low-power operation and sometimes deployed in
remote locations, where battery replacement is challenging. A
solution to this power supply challenge is energy harvesting,
which enables devices to capture and convert energy from the
environment, e.g., thermal, solar, vibration, and wireless radio
frequency sources, into electrical energy [15], [16]. Energy
harvesting introduces new factors that can significantly affect
information freshness, such as the level of energy at the devices
when a new update is available, and the time needed for the
devices to harvest enough energy.

Despite its relevance, the impact of energy harvesting on the
AoI in random-access protocols remains largely unexplored.
This paper addresses this gap by characterizing the AoI in a
slotted ALOHA system with energy-harvesting devices.

A. Related Works

1) AoI in Random-Access Networks: The authors of [9],
[11] characterize the average AoI of slotted ALOHA over the
collision channel. Feedback from the gateway can significantly
reduce the AoI by allowing each device to adapt its transmission
policy to the current AoI value [17]–[19]. The aforementioned
works reveal that, for slotted ALOHA, if devices transmit
only if a new update is available, the throughput-maximizing
protocol also minimizes the average AoI. On the contrary, [13]
shows that, if the devices also retransmit nonfresh updates,
the average AoI can be improved at the expense of the
throughput. The AoI of ALOHA has been analyzed for the
slot-asynchronous setup in [10] and the frame-asynchronous
setup in [20]. AoI analyses have also been conducted for more
advanced ALOHA-based protocols, such as irregular repetition
slotted ALOHA [11], [12] and frameless ALOHA [14], [21],
[22].

2) AoI with Energy Harvesting: Most works on the AoI
with energy harvesting consider a single source sending updates
through a point-to-point channel. If the channel is error-free,
the best-effort uniform (BEU) policy, in which a new update
is transmitted whenever the battery is not depleted, minimizes
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the average AoI for the case of infinite battery capacity [23].
For finite battery capacity, the optimal online policy has a
multi-threshold structure: a new update is transmitted only if
the AoI exceeds a threshold that decreases monotonically with
the available energy [24]. If the channel introduces erasures,
the battery capacity is infinite, and there is no feedback, [25]
shows that the BEU policy is still average-AoI optimal. On the
contrary, periodically retransmitting an update until success is
the optimal policy when feedback is available. If the battery
has unit capacity and there is no feedback, the optimal policy
consists of transmitting a new update if the time elapsed from
the last transmission exceeds a threshold that depends on the
erasure probability [26]. The aforementioned works assume that
the updates are generated at will and transmitted immediately.
For the case in which updates are not generated at will, [27]
and [28] address the setting in which the generated updates
are transmitted after a stochastic service delay and according
to a service rate, respectively. Beyond the single-source point-
to-point channel, [26], [29] consider the multi-source setting
with a common channel, [30] two-hop networks, [31] the two-
source multiple access channel, [32] the multi-source error-free
channel with request-based updates, and [33] the multi-device
setting with grant-based protocols. None of these works address
the massive random-access setup considered in this paper.

3) Random Access with Energy Harvesting: Most existing
analyses of ALOHA-based protocols with energy harvesting
focus on stability [34] and throughput [35]–[38]. The authors
of [39] addressed timely status updates with slotted ALOHA
and energy harvesting but analyze the fraction of updates
delivered within a deadline rather than the AoI. The authors
of [40] analyze the AoI in a random-access system but
consider multiple transmitter-receiver pairs and a different
energy harvesting model from our model.

B. Contribution

We analyze the AoI in a scenario where energy-harvesting
devices send status updates to a gateway following the slotted
ALOHA protocol.1 There is no feedback from the gateway. We
model energy harvesting as an independent Bernoulli process,
i.e., a device harvests an energy unit in a slot with a given
probability, called the energy harvesting rate. Each device
receives readings from a sensor, and thus cannot generate fresh
updates at will. Upon receiving a new reading, a device with b
available energy units transmits the update using bt energy
units with probability (w.p.) πb,bt . The transmitted update is
correctly decoded with a probability depending on the transmit
power and the level of interference from other devices. Our
contributions and main findings are summarized as follows.

• Using a Markovian analysis,2 we derive analytically the
average AoI; unfortunately, the numerical evaluation of this

1We focus on slotted ALOHA because even for this simple protocol, the
impact of energy harvesting is not well understood. More advanced protocols,
such as feedback-based threshold-ALOHA [17], [18], irregular repetition
slotted ALOHA [41], and frameless ALOHA [42] can lead to lower AoI.

2The finite-state Markov chain approach is widely used in AoI studies, such
as [10], [11], [13], [14], [17], [19], [20], [23], [27]–[29], [32], [34], [38], [39],
[43], and also well-suited for our problem.

quantity for parameters of interest is infeasible due to high
complexity.

• We derive accurate and easy-to-compute approximations of
the average AoI, the age-violation probability (AVP), i.e., the
probability that the AoI exceeds a given threshold, as well
as the probability mass function (PMF) of the (discretized)
AoI at the end of each slot and the peak AoI.

• We conduct numerical experiments where updates are sent
over an additive white Gaussian noise (AWGN) channel.
The receiver either decodes without capture, i.e., decodes
only in slots with a single update, or decodes with capture,
i.e., decodes in every slot using successive interference
cancellation (SIC). We consider two baseline strategies:
transmit a new update whenever possible (a.k.a. BEU [23],
[25]) to exploit every opportunity to reduce the AoI, and
transmit only with full battery (TFB) to increase the chance
of successful decoding. We show that an optimized strategy
significantly outperforms both baselines in terms of the AoI
metrics and throughput, for both decoding-with-capture and
decoding-without-capture cases. BEU is close to optimal for
low update generation rates but performs poorly for high
update generation rates. For the latter scenario, TFB is close
to optimal for the decoding-without-capture case. However,
TFB does not benefit from decoding with capture.

• Without capture, the benefit of transmitting with high power
vanishes as the power grows large because the successful
decoding probability becomes limited by collision. Therefore,
the devices should put aside some energy for later trans-
missions. On the contrary, with capture, the devices should
transmit with either high or moderate energy, because this
facilitates SIC. Decoding with capture outperforms decoding
without capture for the optimized strategy.

• The throughput-maximizing strategy entails a loss in the AoI
metrics, especially for high update generation rates.

• A high energy harvesting rate can increase the average AoI
and AVP. In this case, the devices often have enough energy
and transmit regardless of the obtainable AoI reduction,
leading to many transmissions that cause collisions and,
even if successful, result in a small AoI reduction. This issue
can be resolved by progressively increasing the transmission
probability after each transmission. This prioritizes updates
that reduce the AoI value considerably if successfully
delivered. As shown in [17], [18] for the case with feedback,
adapting the transmission probability to the current AoI
lowers the average AoI. Our results show that adapting the
transmission probability to the time elapsed since the last
transmission is beneficial also when there is no feedback.

We extend a previous version of this work [1] by letting
the devices adapt their transmit power rather than always
transmitting with all available energy. We also derive the
distribution of the peak AoI and of the discretized AoI.
Furthermore, we provide an analysis of the case of always-full
battery, for which we propose an adaptive slotted ALOHA
protocol without feedback. Different from [1], where the
devices can only either transmit or harvest energy in a
slot, we assume that they can transmit and harvest energy
simultaneously. The former setting is relevant if the energy
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harvesting and radio-frequency transmission functionalities
share hardware components, while the latter is relevant if the
two functionalities operate independently. This new assumption
leads to a minor extension of the Markovian analysis.

C. Paper Outline and Notation

The remainder of the paper is organized as follows. In
Section II, we describe the system model and the AoI metrics.
In Section III, we present a Markovian analysis of the operation
of a device. We then provide an exact and an approximate AoI
analysis in Sections IV and V, respectively. In Section VII,
we present numerical results and discussions. We conclude the
paper in Section VIII. The appendix contains a discussion on the
system model, a proof, and some mathematical preliminaries.

We denote system parameters and constants by uppercase
nonitalic letters, e.g., U, or Greek letters. We denote scalar
random variables by uppercase italic letters, e.g., X , and their
realizations by lowercase italic letters, e.g., x. Vectors are
denoted likewise with boldface letters, e.g., a random vector XXX
and its realization xxx. All vectors are column vectors. We use
sans-serif, uppercase, and boldface letters, e.g., MMM, to denote
deterministic matrices. By IIIm, 0m, and 1m, we denote the
m×m identity matrix, m× 1 all-zero matrix, and m× 1 all-
one vector, respectively; the dimension is omitted if it is clear
from the context. The diagonal matrix with diagonal elements
(d1, . . . , dm) is denoted by diag(d1, . . . , dm). We denote by
1{·} the indicator function, [m : n] = {m,m + 1, . . . , n},
[n] = [1 : n], and x+ = max{0, x}. We denote the multinomial
distribution with n trials, k events, and event probabilities
{pi}ki=1 by Mul(n, k, {pi}ki=1), and the geometric distribution
with success probability p by Geo(p).

D. Reproducible Research

The Matlab code used to evaluate the numerical re-
sults is available at: https://github.com/khachoang1412/AoI_
slottedALOHA_energyHarvesting.

II. SYSTEM MODEL

We consider a system with U devices attempting to deliver
time-stamped status updates (also called packets throughout the
paper) to an IoT gateway through a shared channel. Each device
receives readings from a sensor, and thus cannot generate fresh
updates at will. Updates are generated independently across
sensors. Time is slotted and the devices are slot-synchronous.
Without loss of generality, we let the slot length be 1. Each
update transmission spans a slot. A device may only transmit if
it receives a new sensor reading, which occurs at the beginning
of each slot w.p. α > 0.

A. Energy Harvesting

Each device is equipped with a rechargeable battery with a
capacity of E energy units. The devices harvest energy from
the environment to recharge their batteries. As in [18], [32],
[34], [36], [39], we model energy harvesting as an independent
Bernoulli process. In each slot, one energy unit is harvested by
a device w.p. γ > 0, independently of the other slots and other

devices. If the battery is full, the device pauses harvesting.
We refer to γ as the energy harvesting rate. We denote by νb
(calculated in Section III-A) the steady-state probability that
the battery level of an arbitrary device is b ∈ [0 : E].

B. Medium Access Protocol

The devices access the medium following the slotted ALOHA
protocol. Specifically, consider a device with battery level b ≥ 0.
If it has a new update in a slot, it transmits this update using
bt ≥ 0 energy units w.p. πb,bt∈ [0, 1]. Otherwise, it stays silent.
Obviously, πb,bt = 0 if bt > b and πb,0 = 1 −

∑b
bt=1 πb,bt

is the probability that the device does not transmit despite
having a new update. For convenience, we use the convention
that πb,bt = 0 for bt < 0. We denote by ΠΠΠ∈ [0, 1]E×E the
matrix whose (i, j)-entry is πi,j for i ∈ [E] and j ∈ [E].
This lower-triangular matrix contains the design parameters
of the protocol. We denote the probability that a device with
battery level b transmits using bt energy units by ρb,bt =
απb,bt + (1 − α)1{bt = 0}. When bt = 0, the device stays
silent. We assume that no feedback is provided by the receiver.

Consider a device that transmits an update with bt energy
units in a slot. We let Li ∈ [U − 1] be the number of other
devices that have battery level i ∈ [0 : E], and refer to LLL =
(L0, L1, . . . , LE) as the battery profile of these devices. We
denote by ωbt,LLL the probability that the transmitted update
is correctly decoded.3 The functional dependency of ωbt,LLL

on (bt,LLL) captures the impact of the transmit power and the
interference from the other devices. All analytical results in
the paper hold for general ωbt,LLL. In the numerical experiments
in Section VII, we shall instantiate ωbt,LLL by considering a real-
valued AWGN channel. At steady state, the average successful-
decoding probability of the update is

ω̄bt = E[ωbt,LLL] , (1)

where the expectation is over the steady-state distribution
Mul(U − 1,E + 1, {νb}Eb=0) of LLL (see Lemma 1 in Sec-
tion III-B). The average throughput, i.e., the average number
of packets decoded per slot, is given by

T = αU

E∑
b=0

νb

b∑
bt=0

πb,bt ω̄bt . (2)

C. Age of Information

We define the AoI of a generic device at time t as
δ(t) = t− τ(t), where τ(t) is the generation time of the last
received update from this device as of time t. The corresponding
stochastic process is denoted as ∆(t). The AoI follows the
well-known saw-tooth profile illustrated in Fig. 1. It grows
linearly with time and is reset to 1 when a new update is
successfully decoded. Note that ∆(t) is a continuous-time
process that takes values in R. Many AoI metrics are defined
as a function F (∆) = lim

t̄→∞
1
t̄

∫ t̄

0
f(∆(t))dt of the process

3We consider a more general decoding model than the commonly-used
collision channel model, where a packet is successfully decoded if there is no
interference in the slot and all colliding packets are lost. The collision channel
is obtained from our model by setting ωbt,LLL =

∏E
i=0 ρ

Li
i,0.

https://github.com/khachoang1412/AoI_slottedALOHA_energyHarvesting
https://github.com/khachoang1412/AoI_slottedALOHA_energyHarvesting
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Fig. 1: Example of the AoI process. Here, Y is the time elapsed
between two AoI refreshes, and θ is an AoI threshold.

TABLE I: DESCRIPTIONS OF IMPORTANT SYMBOLS

Symbol Description
U number of devices

E battery capacity of each device

α probability that a device has a new update in a slot

γ probability that a device harvests an energy unit in a slot

B, b battery level of the device of interest

LLL, ℓℓℓ battery profile of the remaining U− 1 devices

πb,bt probability that a device transmits with bt energy units
given that it has a new update and has battery level b

ρb,bt probability that a device transmits with bt energy units
given that it has battery level b

ωbt,LLL successful decoding probability of an update transmitted
with bt energy units given the battery profile LLL of the
other devices

ω̄bt average probability that an update transmitted with bt
energy units is correctly decoded

T throughput

∆(t) current AoI

∆̂(s) discretized AoI

∆̃(i) peak AoI

∆̄ average AoI

ζ(θ) AVP

∆(t), where f is a given function. For example, the average
AoI ∆̄ and the AVP ζ(θ) are defined by setting f(∆(t)) = ∆(t)
and f(∆(t)) = 1{∆(t) > θ}, respectively. Other classes of
AoI metrics are obtained by replacing the process ∆(t) in
F (∆) by other AoI-related processes. Examples include the
(discrete) AoI value ∆̂(s) at the end of each slot s (before
decoding) [18], and the AoI value ∆̃(i) just before the ith
reset of the current AoI [44]. We refer to ∆̂(s) and ∆̃(i) as the
discretized AoI and peak AoI processes, respectively. These
two stochastic processes form ergodic Markov chains and thus
they can be characterized via their stationary PMF.

In this paper, we use the average AoI and AVP to assess the
AoI performance. Furthermore, we also derive the stationary
PMF of the discretized AoI and the peak AoI.

We summarize the relevant notation of the paper in Table I.

III. MARKOV ANALYSIS OF THE OPERATION OF A DEVICE

A. Battery Level Evolution of a Generic Device

The evolution of the battery level of a generic device is
captured by the Markov chain M1 shown in Fig. 2. Each state
represents a battery level. The transition probabilities between
the states can be readily computed. Specifically, a device in
state 0 cannot transmit, thus it either remains in this state if it
does not harvest energy (w.p. 1− γ) or moves to state 1 if an
energy unit arrives (w.p. γ). A device in state i ∈ [E] moves
to state j ∈ [0 : i + 1] if it transmits an update with i − j
energy units and does not harvest energy (w.p. ρi,i−j(1− γ)),
or transmits with i − j + 1 energy units and harvests one
energy unit (w.p. ρi,i−j+1γ). If the battery is full, i.e., i = E,
the device remains in state E if it does not transmit (w.p. ρE,0),
or transmits with 1 energy unit and harvests one energy unit
(w.p. ρE,1γ). To summarize, the transition probabilities are
given by

P[i → j] = ρi,i−j(1− γ1{(i, j) ̸= (E,E)})+ ρi,i−j+1γ, (3)

for i, j ∈ [0 : E]. Note that ρ0,0 = 1 and ρi,k = 0 for k < 0.
From these transition probabilities, we compute the steady-
state distribution {νb}Eb=0 by solving the balance equations [45,
Ch. V].

B. Battery Profile Evolution of the Other U− 1 Devices

The battery profile LLL of the other devices takes value in
L =

{
(ℓ0, . . . , ℓE) :

∑E
i=0 ℓi =U−1, ℓi ∈ [0 : U−1], i ∈ [0 :

E]
}
], with |L| =

(
U+E−1

E

)
. We now describe the evolution

of LLL across slots. Let ℓℓℓ′ = (ℓ′0, . . . , ℓ
′
E) and ℓℓℓ = (ℓ0, . . . , ℓE)

be the battery profiles at the end of two successive slots. Let
also uj,k be the number of devices whose battery level goes
from j to k. We have that

uj,k ∈ [0 : min{ℓ′j , ℓk}], j, k ∈ [0 : E], (4)

ℓ′j =
∑min{j+1,E}

i=0 uj,i, j ∈ [0 : E], (5)

ℓk =
∑E

i=(k−1)+ ui,k, k ∈ [0 : E]. (6)

The Markov chain LLL is the composition of U− 1 independent
chains [46], each being identical to M1. We analyze this chain
in the next lemma.

Lemma 1 (Battery profile evolution of U− 1 devices): The
transition probabilities of LLL are given by

P
[
ℓℓℓ′ → ℓℓℓ

]
=

∑
{uj,k} : (4)–(6) hold

( ∏
j,k∈[0 : E]

P[j → k]
uj,k

)

·
E∏

j=0

min{j,E−1}∏
k=1

(
ℓ′j
uj,0

)(
ℓ′j −

∑k−1
q=0 uj,q

uj,k

)
, (7)

Furthermore, the steady-state distribution of LLL is Mul(U −
1,E + 1, {νi}Ei=0).

Proof: To obtain (7), we first multiply the probability that
uj,k devices go from battery level j to k for j, k ∈ [0 : E],
with the number of possible partitions of ℓ′j users with battery
level j into sets of uj,0, uj,1, . . . , uj,min{j+1,E} users that go
from battery level j to battery levels 0, 1, . . . ,min{j + 1,E},
respectively, for j ∈ [0 : E]. We then sum the products over all
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0 1 . . . E−1 E

1−γ ρ1,0(1−γ) + ρ1,1γ ρE−1,0(1−γ) + ρE−1,1γ
γ ρ1,0γ ρE−1,0γ

ρE,0 + ρE,1γ

ρ1,1(1− γ)

ρE−1,E−1(1−γ)

ρE−1,E−2(1−γ)
+ρE−1,E−1γ

ρE,E(1− γ)

ρE,E−1(1−γ) + ρE,Eγ

ρE,1(1−γ) + ρE,2γ

Fig. 2: Markov chain M1 describing the slot-wise evolution of the battery level of a device.

possible realizations of {uj,k}. The steady-state distribution of
LLL follows from [46, Prop. 1].

C. Markov Chain Describing the Operation of a Generic
Device

We track both the battery level and the AoI refresh of a
generic device, as well as the battery profile of the other
devices. We denote by B(s) ∈ [0 : E] the battery level
of the device of interest at the end of slot s. We also let
X(s) ∈ {S,F}, where S and F stand for success and failure,
respectively, represent the AoI refresh status of the device
of interest. Specifically, X(s) = S means that the device
refreshes its AoI value by successfully delivering a new update
in slot s, and X(s) = F otherwise. Furthermore, we denote
the battery profile of the remaining U− 1 devices at the end
of slot s by LLL(s) = (L

(s)
0 , . . . , L

(s)
E ) ∈ L. The Markov chain

G(s) = (X(s), B(s),LLL(s)) fully characterizes the operation of
the device across slots. The transition probability from state
(x′, b′, ℓℓℓ′) to state (x, b, ℓℓℓ) of the chain G(s) is given by

P
[
(x′, b′, ℓℓℓ′) → (x, b, ℓℓℓ)

]
= P

[
x, b′ → b | ℓℓℓ′

]
P
[
ℓℓℓ′ → ℓℓℓ

]
. (8)

Here, P
[
x, b′→b | ℓℓℓ′

]
is a shorthand for

P
[
X(s)=x,B(s)=b | B(s−1)=b′,LLL(s−1)=ℓℓℓ′

]
. It is

computed as follows. First, note that P
[
S, b′→b | ℓℓℓ′

]
is

the probability that, given that the other devices have battery
profile ℓℓℓ′, the tracked device successfully delivers an update
and goes from battery level b′ to b, i.e.,

P
[
S, b′ → b | ℓℓℓ′

]
= ωb′−b,ℓℓℓ′ρb′,b′−b(1− γ1{(b′, b) ̸= (E,E)})
+ ωb′−b+1,ℓℓℓ′ρb′,b′−b+1γ. (9)

Next, P
[
F, b′ → b | ℓℓℓ′

]
is the probability that, given that the

other devices have battery profile ℓℓℓ′, the tracked device fails
to deliver an update and goes from battery level b′ to b, i.e.,

P
[
F, b′ → b | ℓℓℓ′

]
= (1− ωb′−b,ℓℓℓ′)ρb′,b′−b

· (1− γ1{(b′, b) ̸= (E,E)})
+ (1− ωb′−b+1,ℓℓℓ′)ρb′,b′−b+1γ. (10)

That is, by accounting for the success/failure probabil-
ity of update decoding, we replace ρb′,bt with ωbt,ℓℓℓ

′ρb′,bt
and (1 − ωbt,ℓℓℓ

′)ρb′,bt in P[b′ → b] given by (3) to obtain
P
[
S, b′ → b | ℓℓℓ′

]
and P

[
F, b′ → b | ℓℓℓ′

]
, respectively.

IV. AOI ANALYSIS

A. AoI Analysis via the Inter-Refresh Time

We denote by Y the inter-refresh time, i.e., the number of
slots that elapse between two successive AoI refreshes for the
device of interest (see Fig. 1). After a refresh, the current AoI
is set to 1 as a packet generated at the start of the current slot
is received. The average AoI can be obtained via geometrical
arguments as in [3, Sec. II-A], [43, Th. 3]. The discretized AoI,
peak AoI, and AVP have also been studied in different settings
in the literature, such as [18], [44], and [11], respectively. We
formally express these quantities in terms of Y in the following
theorem, and provide a proof in Appendix B for completeness.

Theorem 1 (AoI metrics in terms of the inter-refresh time
distribution): The discretized AoI ∆̂(s) and peak AoI ∆̃(i)
have stationary PMF given by

P
[
∆̂ = δ

]
=

P[Y > δ − 2]

E[Y ]
, δ = 2, 3, . . . (11)

P
[
∆̃ = δ

]
= P[Y = δ − 1] , δ = 2, 3, . . . (12)

An AoI metric of the form F (∆) = limt̄→∞
1
t̄

∫ t̄

0
f(∆(t))dt

can be computed as F (∆) = 1
E[Y ]E

[∫ Y+1

1
f(t)dt

]
. In particu-

lar, the average AoI ∆̄ and AVP ζ(θ) are given by

∆̄ = 1 +
E
[
Y 2
]

2E[Y ]
, (13)

ζ(θ) = 1− 1

E[Y ]

( θ−1∑
y=1

yP[Y = y] + (θ−1)P[Y > θ − 1]

)
,

θ = 1, 2, . . . (14)

B. Average AoI

The AoI metrics can be derived explicitly. However, as we
will explain, their exact computation has high complexity. Due
to space limitations, we present only the derivation of the
average AoI in the following. As implied by (13), this entails
deriving the moments of Y .

1) Derivation of E[Y ]: Without loss of generality, we assign
index 1 to the first slot contributing to the current inter-refresh
time. We expand E[Y ] as

E[Y ] =
∑

x∈{F,S}

∑
b∈[0:E]

∑
ℓℓℓ∈L

E
[
Y |G(1) = (x, b, ℓℓℓ)

]
· P
[
G(1) = (x, b, ℓℓℓ)

]
. (15)
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Noting that the state in a slot with AoI refresh is of the form
(S, b′, ℓℓℓ′), we have that

P
[
G(1) = (x, b, ℓℓℓ)

]
=∑

b′∈[0:E],ℓℓℓ′∈L P[(S, b′, ℓℓℓ′) → (x, b, ℓℓℓ)]∑
g0∈{S,F}×[0:E]×L

∑
b′∈[0:E],ℓℓℓ′∈L P[(S, b′, ℓℓℓ′) → g0]

. (16)

If the AoI is refreshed again in slot 1, i.e., X(1) = S, the
inter-refresh time is 1. Thus, in this case,

E
[
Y |G(1) = (S, b, ℓℓℓ)

]
= 1, ∀b ∈ [0 : E], ℓℓℓ ∈ L. (17)

The conditional expectation E
[
Y |G(1) = (F, b, ℓℓℓ)

]
can be

derived via a first-step analysis [47, Sec. III-4]. Specifically, the
inter-refresh time can be computed as the sum of the number of
slots until the state X(s) becomes S. This can be conveniently
computed by conditioning on the outcome of the first transition
as follows. We first define the probability of having an AoI
refresh after a state s with X(s) = F, B(s) = b, and LLL(s) = ℓℓℓ
as r(b, ℓℓℓ) =

∑
b′′∈[0:E],ℓℓℓ′′∈L P

[
(F, b, ℓℓℓ)→(S, b′′, ℓℓℓ′′)

]
. We then

compute E
[
Y |G(1) = (F, b, ℓℓℓ)

]
as

E
[
Y |G(1)=(F, b, ℓℓℓ)

]
= 1 +

∑
g∈{F,S}×[0:E]×L

E
[
Y |G(1)=g

]
P[(F, b, ℓℓℓ)→g] (18)

= 1 + r(b, ℓℓℓ) +
∑

b′′∈[0:E],ℓℓℓ′′∈L

E
[
Y |G(1) = (F, b′′, ℓℓℓ′′)

]
· P
[
(F, b, ℓℓℓ) → (F, b′′, ℓℓℓ′′)

]
. (19)

In (18), the Markov property ensures that the average duration,
once the transition to state g has occurred, is equal to the
one that we would have by starting from such state. Let
eee and rrr be vectors that contain E

[
Y |G(1) = (F, b, ℓℓℓ)

]
and

r(b, ℓℓℓ), respectively, for all values of (b, ℓℓℓ). Let QQQ be a
matrix that contains P

[
(F, b, ℓℓℓ) → (F, b′′, ℓℓℓ′′)

]
for all (b, ℓℓℓ) and

(b′′, ℓℓℓ′′). The full-rank system of equations obtained from (19)
is compactly expressed as (III − QQQ)eee = 1 + rrr. Therefore,
eee = (III−QQQ)−1(1+rrr). This result, together with (16) and (17),
allows us to compute E[Y ] via (15).

2) Derivation of E
[
Y 2
]
: E
[
Y 2
]

can also be computed via
a first-step analysis. Specifically, we observe that

E
[
Y 2|G(1) = (S, b, ℓℓℓ)

]
= 1, ∀b ∈ [0 : E], ℓℓℓ ∈ L, (20)

and

E
[
Y 2|G(1) = (F, b, ℓℓℓ)

]
= 1 + 2

∑
g∈{F,S}×[0:E]×L

E
[
Y |G(1) = g

]
P[(F, b, ℓℓℓ)→g]

+
∑

g∈{F,S}×[0:E]×L

E
[
Y 2|Z(1) = g

]
P[(F, b, ℓℓℓ) → g]

= −1 + 2E
[
Y |Z(1)=(F, b, ℓℓℓ)

]
+ r(b, ℓℓℓ)

+
∑

b′′∈[0:E],ℓℓℓ′′∈L

E
[
Y 2|Z(1) = (F, b′′, ℓℓℓ′′)

]
· P
[
(F, b, ℓℓℓ) → (F, b′′, ℓℓℓ′′)

]
. (21)

Let now eee2 be the vector obtained by concatenating the
term E

[
Y 2|Z(1) = (F, b, ℓℓℓ)

]
for all values of (b, ℓℓℓ). We can

express (21) compactly as (III−QQQ)eee2 = −1+2eee+rrr. It follows
that eee2 = (III−QQQ)−1(−1+2eee+rrr). Using this, (16), and (20), we
compute E

[
Y 2
]

via an expansion analogous to (15). Finally, we
obtain the average AoI ∆̄ by inserting the computed moments
of Y into (13).

Remark 1 (Complexity Issue): The exact computation of E[Y ]
and E

[
Y 2
]

requires the evaluation of the transition probabilities
between the ns = 2(E + 1)

(
U+E−1

E

)
states of the chain G(s),

and to invert the (ns/2)×(ns/2) matrix III−QQQ. These operations
become prohibitive for large values of U and E. This issue
motivates us to propose an approximate and low-complexity
analysis in the next section.

V. APPROXIMATE AOI ANALYSIS

To avoid the complexity issue just highlighted, we ignore
the time dependency of the battery profile of the devices
whose performance is not tracked. Specifically, we assume
the following.

Simplification 1: Given a device of interest, the battery
profile LLL of the remaining U− 1 devices evolves according to
a stationary memoryless process across slots.

This simplification allows us to analyze the behavior of the
system for large U and E values, and, as we shall see, results
in tight approximations of the average AoI and AVP for all
scenarios explored in Section VII. Under this simplification, the
successful-decoding probability of an update transmitted with
bt energy units is given by the average of ωbt,LLL over LLL, i.e.,
by ω̄bt given in (1). This allows us to derive the distribution
of Y in closed form, as presented next.

A. Approximate Distribution of the Inter-Refresh Time Y

Under Simplification 1, the battery profile LLL in each slot
is drawn independently from the distribution Mul(U− 1,E +
1, {νb}Eb=0). We therefore only need to track the AoI refresh
status X(s) and battery level B(s) of the device of interest. The
Markov chain (X(s), B(s)) is obtained from the chain M1 in
Fig. 2 as follows. We split each battery state b in Fig. 2 into two
states: AoI refresh (S, b) and no AoI refresh (F, b). Specifically,
if the device has battery level b at the end of a slot, the chain
moves to state (S, b) if the AoI value is refreshed; otherwise, it
moves to state (F, b). The transition probabilities between the
states can be obtained by accounting for both the battery level
transition probabilities P[b′ → b] and the successful-decoding
probability ω̄bt . Specifically, for x′ ∈ {S,F}, we have that

P[(x′, b′) → (S, b)] = ω̄b′−bρb′,b′−b(1− γ1{(b′, b) ̸=(E,E)})
+ ω̄b′−b+1ρb′,b′−b+1γ, (22)

P[(x′, b′) → (F, b)] = (1− ω̄b′−b)ρb′,b′−b

· (1− γ1{(b′, b) ̸= (E,E)})
+ (1− ω̄b′−b+1)ρb′,b′−b+1γ. (23)

In Fig. 3, we illustrate (X(s), B(s)) for the case E = 2.
We can also obtain the chain (X(s), B(s)) by partition-

ing the state space of G(s) into disjoint subsets of the
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(F, 0) (F, 1) (F, 2)

(S, 0) (S, 1) (S, 2)

1−γ

γ

ρ1,0(1−γ) + ρ1,1(1− ω̄1)γ

ρ1,0γ

ρ1,1(1− ω̄1)(1− γ)

ρ 1
,1
ω̄
1
γ

ρ
1,1 ω̄

1 (1−
γ)

ρ2,0 + ρ2,1(1− ω̄1)γ

ρ2,2(1− ω̄2)(1− γ)

ρ2,1(1− ω̄1)(1− γ)
+ρ2,2(1− ω̄2)γ

ρ
2
,1
ω̄
1
γ

ρ
2,1 ω̄

1 (1−
γ)

+ρ
2,2 ω̄

2γ

ρ2,2ω̄2(1− γ)

1
−
γ

γ

ρ1,
1
(1
− ω̄1

)(1
− γ)

ρ1,1ω̄1γ

ρ
1
,0
(1
−
γ
)+

ρ
1
,1
(1

−
ω̄
1
)γ

ρ
1,0 γ

ρ1,1ω̄1(1− γ)

ρ2,2(
1− ω̄2)(1

− γ)

ρ2,1
(1
− ω̄1

)(1
− γ)

+ρ
2,2
(1
− ω̄2

)γ

ρ
2
,0
+
ρ
2
,1
(1

−
ω̄
1
)γ

ρ2,1ω̄1γ

ρ2,2ω̄2(1− γ)

ρ2,1ω̄1(1− γ)
+ρ2,2ω̄2γ

Fig. 3: An example of the chain (X(s), B(s)) for E = 2. This chain describes the slot-wise evolution of the AoI refresh status and battery
level of a device. The transitions that lead to an AoI refresh are depicted by red dashed lines.

form {(x, b, ℓℓℓ) : ℓℓℓ ∈ L}, and by identifying each sub-
set with a state (x, b) of (X(s), B(s)). We then com-
pute the transition probabilities as P[(x′, b′) → (x, b)] =
E
[∑

ℓℓℓ∈L P
[
(x′, b′,LLL′) → (x, b, ℓℓℓ)

]]
, where the expectation is

over the steady-state distribution of LLL′. This results in the same
formulas as in (22) and (23). Note that the chain G(s) is not
lumpable with respect to the considered partition.4 However,
as we shall see, this partition leads to accurate approximations
of the AoI metrics.

Next, we find the distribution of Y by analyzing the chain
(X(s), B(s)). To this end, it is convenient to further modify
this chain as follows. We split each state (S, b) into two
states: (S′, b) with only outgoing transitions from (S, b), and
(S′′, b) with only incoming transitions to (S, b). Furthermore,
we combine all states (S′′, b), b ∈ [0 : E], into a single state S′′

that represents an AoI refresh. In other words, we redirect all
transitions that lead to an AoI refresh into a new state S′′. We
refer to the resulting Markov chain as M2, which describes the
evolution of the battery level of a device from an AoI refresh
(i.e., one of the states (S′, b), b ∈ [0 : E]) to the next one (i.e.,
the state S′′). We depict M2 for the case E = 2 in Fig. 4.

The chain M2 is a terminating Markov chain (see Ap-
pendix C) with an absorbing state S′′ and 2E + 2 transient
states

{
(S′, 0), . . . , (S′,E), (F, 0), . . . , (F,E)

}
. We denote the

transition probability matrix of M2 as
[
TTT aaa
0T 1

]
, where TTT

contains the probabilities of transitions between the transient

4A Markov chain M is lumpable with respect to a partition {Ai}i
of the states if and only if, for every subset pair Ai and Aj , and for
every pair of states m,m′ in Ai, it holds that

∑
n∈Aj

P[m → n] =∑
n∈Aj

P[m′ → n] = pi,j [45, Th. 6.3.2]. The lumped chain with state
space {Ai}i and transition probability P[Ai → Aj ] = pi,j preserves the
underlying probabilistic behavior of the original chain M . In our case, G(s)

is not lumpable with respect to the partition {(x, b, ℓℓℓ) : ℓℓℓ ∈ L}x,b because∑
ℓℓℓ∈L P

[
(x′, b′, ℓℓℓ′) → (x, b, ℓℓℓ)

]
is not constant over ℓℓℓ′ ∈ L.

states and aaa contains the probabilities of transitions from
the transient states to the absorbing state. We obtain TTT and
aaa using (22) and (23). Observe that Y is the absorption
time when starting from state (S, b) w.p. p(S,b)/

∑E
i=0 p(S,i),

b ∈ [0 : E], i.e., when the initial probability vector is
pppS =

(
(p(S,0) ... p(S,E))∑E

i=0 p(S,i)
,0E+1

)
. Here, p(S,b) is the steady-state

probability of the state (S, b) of the chain (X(s), B(s)). We
find p(S,b) by solving the balance equations obtained from the
transition probabilities in (22) and (23). As a consequence, Y
follows the discrete phase-type distribution characterized in
Lemma 3 in Appendix C. From this, we can readily obtain the
PMF, complementary cumulative distribution function (CCDF),
and moments of Y , as presented next.

Lemma 2 (Distribution of the inter-refresh time Y ): Under
Simplification 1, the PMF and CCDF of Y are given as

P[Y = y] = pppT

STTT
y−1aaa, y = 1, 2, . . . (24)

P[Y > y] = pppT

STTT
y12E+2, y = 1, 2, . . . . (25)

Furthermore, the first and second moments of Y are given by

E[Y ] = pppT

S(III2E+2 −TTT)−112E+2, (26)

E
[
Y 2
]
= 2pppT

S(III2E+2 −TTT)−212E+2 − E[Y ] . (27)

B. Approximate AoI Metrics

By substituting the PMF, CCDF, and moments of Y given
in Lemma 2 into the expressions of the discretized AoI PMF,
peak AoI PMF, average AoI, and AVP given in Theorem 1,
we obtain readily closed-form approximations for all of these
quantities, as shown in the next theorem.

Theorem 2 (Approximate AoI metrics): Under Simplifica-
tion 1, the discretized AoI PMF, peak AoI PMF, average AoI,
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(F, 0) (F, 1) (F, 2)

(S′, 0) (S′, 1) (S′, 2)

S′′

1−γ

γ

ρ1,0(1−γ) + ρ1,1(1− ω̄1)γ

ρ1,0γ

ρ1,1(1− ω̄1)(1− γ)

ρ2,0 + ρ2,1(1− ω̄1)γ

ρ2,2(1− ω̄2)(1− γ)

ρ2,1(1− ω̄1)(1− γ)
+ρ2,2(1− ω̄2)γ

1
−
γ

γ

ρ 1,
1
(1
− ω̄ 1

)(1
− γ)

ρ
1
,0
(1
−
γ
)+

ρ
1
,1
(1

−
ω̄
1
)γ

ρ
1,0 γ

ρ2,2(
1− ω̄2)(1

− γ)

ρ2,1
(1
− ω̄1

)(1
− γ)

+ρ
2,2
(1
− ω̄2

)γ

ρ
2
,0
+
ρ
2
,1
(1

−
ω̄
1
)γ

ρ
2,1 ω̄

1 + ρ
2,2 ω̄

2

ρ2,1
ω̄1

+ ρ2,2
ω̄2

ρ
1,1 ω̄

1

ρ 1,
1
ω̄ 1

Fig. 4: An example of the chain M2 for E = 2. This chain describes the slot-wise evolution of the battery level of a device from an AoI
refresh (state (S′, 0), (S′, 1), or (S′, 2)) to the next AoI refresh (state S′′). This chain is obtained from (X(s), B(s)) in Fig. 3 by redirecting
all transitions that lead to an AoI refresh into a new state S′′.

and AVP are given by

P
[
∆̂ = δ

]
=

pppT

STTT
δ−212E+2

pppT

S(III2E+2 −TTT)−112E+2
, δ = 2, 3, . . . , (28)

P
[
∆̃ = δ

]
= pppT

STTT
δ−2aaa, δ = 2, 3, . . . , (29)

∆̄ =
1

2
+

pppT

S(III2E+2 −TTT)−212E+2

pppT

S(III2E+2 −TTT)−112E+2
, (30)

ζ(θ) = 1−
∑θ−1

y=1 yppp
T

STTT
y−1aaa+ (θ − 1)pppT

STTT
θ−112E+2

pppT

S(III2E+2−TTT)−112E+2
,

θ = 1, 2 . . . (31)

VI. THE CASE OF ALWAYS-FULL BATTERY

We consider the special case where the batteries of the
devices are always full. This captures the scenario in which the
devices have access to stable energy sources but are subject
to a maximum transmit energy constraint E. This case also
captures the regime where α ≪ γ, which means that the time
for a device to fully charge is negligible compared to the time
for the device to have a new update.

A. Fixed Transmission Probability Across Slots

For the considered slotted ALOHA protocol, in the
case of always-full battery, the design parameter is πππ =
(πE,1, . . . , πE,E). For every device, the battery profile of the
other devices is fixed to ℓℓℓ0 = (0E,U − 1). An update trans-
mitted with bt energy units is successfully decoded w.p. ωbt,ℓℓℓ0 .
Let ωωω = (ω1,ℓℓℓ0 , . . . , ωE,ℓℓℓ0). In a slot, each device successfully
delivers a new update w.p. ξ = απππTωωω, independently across
slots. This implies that the inter-refresh time Y follows a
geometric distribution with success probability ξ.

We can also prove that Y follows a geometric distribution
using our terminating Markov chain analysis. We start by
observing that, in this setup, Simplification 1 holds. The

S Fξ

ξ

1− ξ

1− ξ

(a) The chain X(s) describes the transi-
tion between slots with an AoI refresh
(state S) and slots without one (state F).

S′ F

S′′
ξ ξ

1− ξ

1− ξ

(b) The chain M3 describes the evolu-
tion of the device from an AoI refresh
(state S′) to the next (state S′′).

Fig. 5: The Markov chains describing the AoI refresh of a generic
device in the case of always-full battery.

operation of a generic device is fully characterized by the
chain X(s) depicted in Fig. 5(a). Recall that X(s) = S if the
device successfully delivers an update in slot s, and X(s) = F
otherwise. We further split S into state S′ with only outgoing
transitions from S, and state S′′ with only incoming transitions
to S. This yields the chain M3 in Fig. 5(b). The inter-refresh
time Y is the absorption time of the terminating Markov
chain M3. It follows from Lemma 3 in Appendix C that
P[Y = y] = ξ(1− ξ)y−1.

Substituting the distribution of Y into Theorem 1, we obtain
the closed-form expressions for the discretized AoI PMF,
average AoI, and AVP stated in the next theorem.

Theorem 3 (AoI metrics with always-full battery): If the
batteries of the devices are always full, the discretized AoI
PMF, peak AoI PMF, average AoI, and AVP are given by

P
[
∆̂ = δ

]
= P

[
∆̃ = δ

]
= ξ(1− ξ)δ−2, δ = 2, 3, . . . , (32)

∆̄ =
1

2
+

1

ξ
=

1

2
+

U

T
, (33)

ζ(θ) = (1− ξ)θ−1 =

(
1− T

U

)θ−1

, θ ≥ 1. (34)

Theorem 3 holds for the general slotted ALOHA setup where
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a device delivers a new packet to the gateway in a slot w.p. ξ.
The special case of unit-sized battery and collision channel
is obtained by setting E = 1 and ξ = απ1(1 − απ1)

U−1.
Therefore, Theorem 3 generalizes the results for the collision
channel reported in [9], [11]. It follows from Theorem 3 that
the average AoI, AVP, and throughput are all optimized by the
transmission strategy that maximizes ξ.

B. Adaptive Transmission Probability Across Slots
We now consider a variant of slotted ALOHA where the

transmission probability πππ is chosen to be a function of the
time elapsed since the last transmission, and of the energy spent
in that transmission. We focus on the following multi-threshold
scheme. We fix a set of transmission probabilities πππ1, . . . ,πππE

and let πππ0 = 0E. Note that πππ = πππ0 means that the device stays
silent. Assume that the device transmits with b energy units
in the current slot. After this slot, the device sets πππ = πππE−b,
and generates random integers Q1, . . . , Qb independently from
the Geo(γ) distribution. Next, after Qi slots have elapsed, the
device set πππ to πππE−b+i, i ∈ [b], and reset the slot counter. This
procedure is repeated after each transmission. We refer to this
protocol as multi-threshold slotted ALOHA. The next theorem
relates its AoI performance and the performance of slotted
ALOHA with energy harvesting.

Theorem 4 (Multi-threshold slotted ALOHA): The AoI
processes in the two following scenarios are identical: 1) the
devices have always-full battery and follow the multi-threshold
slotted ALOHA protocol just described; 2) the devices harvest
energy with energy harvesting rate γ and follow the slotted
ALOHA protocol described in Section II-B with transmission
probabilities ΠΠΠ = [πππ1 . . .πππE].

Proof: In energy-harvesting slotted ALOHA, the transmis-
sion probability πππ is updated whenever the device changes its
battery level. Within a period with no transmission, the battery
level changes whenever the device harvests an energy unit. The
time duration between changes of πππ, when no transmissions
occur, is thus identical to the time required for the device
to harvest one energy unit. This duration is geometrically
distributed with parameter γ, i.e., identically distributed to
the thresholds in multi-threshold slotted ALOHA with always-
full battery. It is easy to verify that the updating rule of πππ
in the case of energy harvesting is identical to that in multi-
threshold slotted ALOHA. This implies that the statistics of the
packet transmission process are the same in the two scenarios.
Therefore, the AoI processes are identical.

For the case of unit-sized battery (E = 1), multi-threshold
slotted ALOHA imposes that each device stays silent after
each transmission for a duration of Q slots, and then attempts
transmission w.p. π1,1 whenever it has a new update. This
strategy was analyzed for the collision channel with feedback
in [17], [18], where the backoff Q is set based on the current
AoI value. There, this strategy was shown to achieve a lower
average AoI than slotted ALOHA with no backoff. This is
because the backoff strategy prioritizes updates that result in a
high reduction of AoI if successfully delivered. In the case of
no feedback considered in this paper, however, the devices are
not aware of their AoI. We therefore let the devices set the
backoff based on the time elapsed since their last transmission.

Theorem 4 implies that the AoI metrics of multi-threshold
slotted ALOHA with always-full battery can be approximated
as in Theorem 2.

VII. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we assume that the updates are transmitted
over a real-valued AWGN channel and derive the successful-
decoding probability ωb,ℓℓℓ.

A. Channel Model and Successful Delivery Probability

We assume that each slot comprises N uses of a real-valued
AWGN channel. This channel model is relevant, e.g., in a
time-division duplexing system where the gateway broadcasts
a downlink pilot signal, each device estimates its channel based
on the pilot signal, and active devices pre-equalize their uplink
signals based on the channel estimate [48], [49]. As in [49],
we assume that the channel estimation and pre-equalization
steps are perfect, which leads to a Gaussian channel with a
known signal-to-noise ratio. In a slot, active device i with
battery level b(i) transmits with b

(i)
t energy units a signal√

b
(i)
t

N XXX(i) ∈ RN, with ∥XXX(i)∥ = 1. The received signal in the

slot is YYY =
∑

i∈Uactive

√
b
(i)
t

N XXX(i) + ZZZ, where Uactive is the
set of active devices and ZZZ ∼ N (0, σ2IIIN) is the AWGN. The
devices transmit at rate R bit/channel use, i.e., XXX(i) belongs
to a codebook containing 2NR codewords. We consider shell
codes for which the codewords belong to the unit sphere. We
analyze two decoding scenarios.

1) Without capture: In this scenario, all colliding packets
are lost. Decoding is attempted only on packets transmitted in
singleton slots. This model allows us to revisit the collision
channel model commonly used in modern random-access
analyses, e.g. [11], [36], [41], and to further account for single-
user decoding errors due to finite-blocklength effects. Consider
an active device that transmits with bt energy units and assume
that the battery profile of the other devices is LLL = (L0, . . . , LE).
The successful-decoding probability of the device of interest is

ωbt,LLL = (1− ϵbt)
∏E

i=0 ρ
Li
i,0, (35)

where ϵbt is the error probability of decoding the device of
interest in a singleton slot. To compute ϵbt , we use that the
maximum achievable rate R∗ is [50, Th. 54]

R∗ = C(bt)−
√

V(bt)

N
Q−1(ϵbt) +O

(
lnN

N

)
, (36)

where C(bt) = 1
2 log2

(
1 + bt

Nσ2

)
, Q−1(·) is the inverse

of the Gaussian Q-function Q(z) = 1
2π

∫∞
z

e−t2/2dt, and

V(bt) =
bt

2

N2σ4 +2
bt

Nσ2

2(bt/(Nσ2)+1)2 log
2
2(e) is the channel dispersion.

For a fixed rate R, we use (36) to approximate ϵbt as
ϵbt ≈ Q

(√
N

V(bt)
(C(bt) − R)

)
, where we omitted the term

O( lnN
N ), which is negligible for large N.

2) With capture: In this case, the receiver attempts to
decode every packet transmitted in a slot. Consider an active
device that transmits with bt energy units and let the battery
profile of the remaining U− 1 devices be LLL = (L0, . . . , LE).
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Furthermore, assume that out of the other devices, L̄i devices
transmit with i energy units. It holds that L̄LL = (L̄0, . . . , L̄E),
which we refer to as transmit-energy profile, is the sum of E
random vectors where the bth vector follows a Mul(Lb,E +
1, {ρb,i}Ei=0) distribution, b ∈ [E]. Then the interference-to-
noise power ratio is P̃ = 1

Nσ2

∑E
i=0 iL̄i, and the signal-to-

interference-plus-noise ratio is P̄ = bt/(Nσ2)

P̃+1
. In this setup,

an achievable rate for the device of interest is given as
in (36) with C(bt) and V(bt) replaced by 1

2 log2(1 + P̄)

and V′(bt, L̄LL) =
bt

2

N2σ4 (1+2P̃+P̃2−P̆)+2
bt

Nσ2 (P̃+1)3

2(P̃+1)2(bt/(Nσ2)+P̃+1)2
log22 e, respec-

tively [51, Th. 2]. Here, P̆ = 1
N2σ4

∑E
i=0 i

2L̄i. Given L̄LL,
the error probability of the device can be approximated as
ϵbt,L̄LL ≈ Q

(√
N

V ′(bt,L̄LL)

(
1
2 log2(1+P̄)−R

))
.

We further assume that the receiver employs SIC. Specifi-
cally, it decodes all devices that transmit with E energy units,
removes the decoded packets, then decodes all devices that
transmit with E−1 energy units, and so on. We assume that the
decoding of a packet of energy j is attempted only if all higher-
energy packets have been correctly decoded and removed.
While decoding the energy-j packet, the transmit-energy profile
of the interfering devices becomes L̂LL

(j)
= [L̂

(j)
0 . . . L̂

(j)
E ], where

L̂
(bt)
i = L̄i1{i ≤ bt} and for j > bt, L̂

(j)
i takes value 0 if i > j,

value L̄i − 1 if i = j, value L̄i + 1 if i = bt, and value L̄i if
i < j, i ≤ bt. It follows that5

ωbt,LLL = EL̄LL

[(
1− ϵ

bt,L̂LL
(bt)

)∏
j>bt

(
1− ϵ

j,L̂LL
(j)

)L̄j
]
. (37)

Note that L̂LL
(bt)

is a function of (bt, L̄LL), and the distribution of
L̄LL is determined by that of LLL.

In the remainder of this section, we consider a slot length N
of 100 channel uses, transmission rate R of 0.8 bit/channel use,
and noise variance σ2 = −20 dB, unless mentioned otherwise.
The values of N and R are chosen to capture scenarios typical
of an IoT system [52]. We consider two baseline policies: 1)
BEU, where ΠΠΠ = IIIE, i.e., the devices transmit whenever they
have a new update, and 2) TFB, where ΠΠΠ = diag(0E−1, 1). In
both policies, the devices transmit with all available energy.

B. The Accuracy of the AoI Analysis

We first verify the accuracy of the exact and approximate
analytical AoI analysis by presenting a comparison with
simulation results obtained from an implementation of the
complete protocol operations over 107 slots. To enable the
computation of the exact average AoI, we consider a small
system with U = 30 and E = 2. We further set γ = 0.05 and
θ = 1000. In Fig. 6, we plot the average AoI ∆̄ (normalized
by U) and AVP ζ(θ) for the case of decoding with capture and
both BEU and TFB policies. We observe that the approximate
average AoI (30) matches well both the simulation results and
the exact analytical results. The approximate AVP (31) is also
in agreement with the simulation results.

5To obtain (37), we assume that the events of successfully decoding different
packets under interference from lower-energy packets are independent. This
results in an approximation because these events are not independent since
the packets are decoded under the same noise.
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Fig. 6: Average AoI and AVP vs. average total number of new updates
in a slot (Uα). Here, U = 30, γ = 0.05, E = 2, N = 100, R = 0.8,
θ = 1000, σ2 = −20 dB, and the decoding is with capture.

0 0.2 0.4 0.6 0.8 1

·104

10−6

10−5

10−4

10−3

y (slots)

P[
Y

=
y
]

simulation
approximation

(a) PMF of the inter-refresh time Y

0 0.2 0.4 0.6 0.8 1

·104

10−6

10−5

10−4

10−3

δ (slots)

P[
∆̂
(s
)
=

δ]

simulation
approximation

(b) PMF of the discretized AoI

Fig. 7: Distribution of the inter-refresh time Y and discretized AoI
∆̂(s) for U = 1000, γ = 0.005, E = 8, N= 100, R= 0.8, σ2 =
−20 dB, ΠΠΠ=diag(0, 0, 0, 0, 1, 1, 1, 1), and decoding with capture.

We next consider a larger system with U = 1000, E = 8,
and γ = 0.005. In Fig. 7, we compare the approximate PMF of
the inter-refresh time Y (24) and the discretized AoI (11) with
the empirical PMF obtained from a simulation over 108 slots
for ΠΠΠ = diag(0, 0, 0, 0, 1, 1, 1, 1). We see that the approximate
PMFs match closely the empirical values.

In further results reported in Figs. 11 and 12, we observe an
excellent agreement between our approximate AoI analysis and
the simulation results also for decoding without capture and for
other sets of parameters. This confirms that our approximation
provides an accurate prediction of the AoI metrics.

C. Optimization of Transmission Probabilities

Hereafter, we consider the setting of Fig. 7, i.e., U=1000,
E=8, γ=0.005, and we further consider the AoI threshold
θ = 104. We optimize the transmission probabilities ΠΠΠ to obtain
ΠΠΠ∗

∆̄
= argminΠΠΠ∈[0,1]E×E ∆̄, ΠΠΠ∗

ζ = argminΠΠΠ∈[0,1]E×E ζ(θ),
and ΠΠΠ∗

T = argmaxΠΠΠ∈[0,1]E×E T, where T was defined in (2).
We numerically solve these optimization problems using the
Nelder-Mead simplex algorithm [53], a commonly used search
method for multidimensional nonlinear optimization. This
heuristic method can converge to nonstationary points and is
sensitive to the initial values. To circumvent this issue, we run
the optimization 200 times, each with a different initialization.

In Fig. 8, we plot the minimized approximate average AoI,
minimized approximate AVP, and maximized throughput as
functions of Uα, and compare them with the corresponding
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Fig. 8: Approximate average AoI, approximate AVP, and throughput vs. average total number of new updates in a slot (Uα) for different
transmission probabilities ΠΠΠ. Here, U = 1000, γ = 0.005, E = 8, N = 100, R = 0.8, θ = 104, and σ2 = −20 dB. The red and blue curves
represent decoding with and without capture, respectively.

metrics achieved by the BEU and TFB policies. We consider
both decoding with and without capture.6 The optimized ΠΠΠ
leads to significant improvement in all three metrics. The BEU
strategy is close to optimal when Uα is small, especially with
capture. However, it becomes highly suboptimal when Uα
increases since it causes many collisions. In contrast, the TFB
policy performs closely to the optimal policy (without capture)
for large Uα. With capture, the minimized average AoI and
maximized throughput improve by about 11.7% and 12.4%,
respectively, for Uα = 2.5, compared to decoding without
capture.

In Figs. 9 and 10, we present the optimized transmission
probabilities for the setting in Fig. 8 for the case of decoding
without and with capture, respectively, for a high update
generation rate with αU = 2.5. The optimized transmission
probabilities differ across the selected metrics, although average-
AoI optimal and AVP optimal probabilities are similar. Without
capture, the optimized probabilities indicate that a device should
only transmit when it has enough energy, that is, when the
single-user decoding error probability is low. Furthermore, the
device should put aside some energy if its battery level is high,
so that it can transmit again if a new update arrives shortly
afterwards. On the contrary, with capture, the devices should
transmit with either high energy (using all 8 energy units if
they have a full battery) or moderate energy (i.e., using 3 or
4 energy units). The resulting variation in the energy of the
packets facilitates SIC. Note that the optimized transmission
probabilities for the AoI metrics are close to those of a strategy
in which the devices either remain silent or transmit with all
available energy, as considered in [1]. Indeed, comparing Fig. 8
and [1, Fig. 5], we see that the gains achievable by further
tuning the packet energy level are marginal.

D. Impact of Battery Capacity

In Fig. 11, we plot the average AoI, AVP, and throughput for
the optimal transmission strategy, as a function of the battery
capacity E. We consider a setting similar to Fig. 8, except

6In the considered setting, for TFB, the performance with capture coincides
with that without capture. Indeed, since all devices transmit with high power,
decoding under interference from other devices fails with high probability.

that we fix αU to 2 and vary E from 2 to 10. We observe
that, without capture, the AoI metrics and throughput do not
improve when E exceeds 4. Indeed, when E ≥ 4, the main
cause of error is packet collision and not transmission errors
due to noise. This can be seen by observing the performance
achieved for σ2 = 0 (i.e., for a collision channel), also depicted
in Fig. 11. Hence, further increasing E, which results in a larger
value for bt, is not helpful. On the contrary, with capture, the
AoI metrics and throughput keep on improving as the devices
can store more energy. This is because transmitting with a
higher energy bt facilitates SIC.

E. Impact of Energy Harvesting Rate

In Fig. 12, we plot the average AoI, AVP, and throughput
achieved with the optimal transmission strategy, as a function
of the energy harvesting rate γ. We consider a setting similar to
Fig. 8, except that we fix αU to 2 and vary γ from 10−3 to 1.
We also depict the performance achieved for σ2 = 0, which
shows that the impact of noise becomes apparent when γ is
small. As γ → 1, the AoI metrics and throughput approach the
performance for the case where the devices have always-full
battery, which we analyzed in Section VI-A. Remarkably, while
the throughput increases as the energy harvesting rate grows, the
average AoI and AVP are minimized at a value γ of around 0.01
and then increase with γ. This is explained as follows. For
a small γ, the lack of energy forces the devices to transmit
infrequent updates. For a large γ, the devices often have enough
energy and transmit regardless of the obtainable age reduction,
leading to many transmissions that cause collisions and, even
if successful, result in a small AoI reduction. A moderate γ
naturally sets appropriate thresholds such that updates with
higher age reduction are transmitted with higher probability.

Note that the observed detrimental effect of a high γ is due to
the considered slotted ALOHA protocol with fixed transmission
probabilities across slots. As pointed out in Section VI-B, if
the devices have always-full battery, the same performance as
energy-harvesting slotted ALOHA can be achieved for every
γ provided that a multi-threshold strategy is used, where the
thresholds are drawn independently from a Geo(γ) distribution.
This means that Fig. 12 also depicts the performance of multi-
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Fig. 9: The probability πb,bt (represented by colors) that a device transmits with bt energy units if it has battery level b and has a new update
for the strategies that minimize the average AoI, minimize the AVP, and maximize the throughput for the setting in Fig. 8 without capture
and with αU = 2.5.
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Fig. 10: Same as Fig. 9 but with capture.
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Fig. 11: The minimized average AoI, minimized AVP, and maximized throughput vs. the battery capacity E. Here, U = 1000, αU = 2,
γ = 0.005, N = 100, R = 0.8, θ = 104, and σ2 = −20 dB. The solid lines and cross markers represent approximation and simulation
results, respectively. The square markers represent the performance assuming no noise, i.e., σ2 = 0.

threshold slotted ALOHA, as a function of the thresholds’
parameter γ. This figure highlights the need to adapt the
transmission probability to the state of the devices in each slot.
In [17], [18] the benefits of this adaptation are demonstrated
for the case in which feedback from the receiver is available.
Fig. 12 demonstrates that this adaptation is beneficial also when
there is no feedback. To further highlight this benefit, in Fig 13,
we consider a collision channel and plot the normalized average
AoI ∆̄/U achieved with the nonadaptive scheme (Theorem 3),
our multi-threshold slotted ALOHA scheme with optimized
γ, and the adaptive strategies with feedback proposed in [17],

[18]. When U is large, the strategies in [17] and [18] achieve
a ∆̄/U of 1.4196 + 1/(Uα) and e/2 + 1/(Uα), respectively
(see [17, Sec. IV]). While our adaptive strategy has a clear
advantage over the nonadaptive one, the question of optimally
designing an adaptive strategy without feedback remains open.

VIII. CONCLUSIONS

We studied the impact of energy harvesting on information
freshness in slotted ALOHA networks. Leaning on a Markovian
analysis, we provided an exact analysis of the average AoI, as
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Fig. 12: The minimized average AoI, minimized AVP, and maximized throughput vs. the energy harvesting rate γ. Here, U = 1000, αU = 2,
E = 8, N = 100, R = 0.8, θ = 104, and σ2 = −20 dB. The circle markers represent the performance assuming that the devices have
always-full battery. The solid lines and cross markers represent approximation and simulation results, respectively. The square markers
represent the performance assuming no noise, i.e., σ2 = 0.
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Fig. 13: The normalized average AoI ∆̄/U vs. average total number
of new updates in a slot Uα for the case of always-full unit-sized
battery. Here, U = 1000, σ2 = 0, and the decoding is without capture
(collision channel).

well as easy-to-compute and accurate approximations for both
the average AoI and the AVP. We showed that transmitting
a new update whenever possible is beneficial only for low
update generation rates, while waiting for sufficient energy
before transmitting is preferable for high update generation
rates. Significant gains with respect to these two baselines can
be achieved with an optimized strategy. The AVP-minimizing
strategy performs well also in terms of the average AoI and vice
versa. However, the throughput-maximizing strategy entails a
notable loss in terms of the AoI metrics when the update
generation rate is high. Decoding with capture significantly
outperforms decoding without capture. Our results also high-
light the benefit of adapting the transmission probability with
respect to both the battery level and the time elapsed since the
last transmission of a device.

APPENDIX

A. On the System Model

We provide below some remarks about our system model
and discuss possible extensions.

1) Energy Harvesting Model: The time-uncorrelated
Bernoulli model in the paper captures the randomness of energy

harvesting while allowing for tractable analysis. In practice, the
energy harvesting processes can be time-correlated, and models
for such case can be found in [16, Sec. II-B]. For example,
one can model the energy-harvesting process as a two-state
Markov chain consisting of a “good” state with a high energy-
harvesting rate and a “bad” state with a low energy-harvesting
rate [54]. These states represent periods with abundant and
scarce ambient energy, respectively. In such a scenario, the
devices can adapt the transmission probabilities to their energy
harvesting state. To do so, one would need to extend the Markov
chain G(s) in Section III-C to capture the energy harvesting
state of the devices and follow the same method in this paper
to analyze the AoI.

2) Homogeneous vs. Heterogeneous Settings: For simplicity,
we assume homogeneous devices with the same battery capacity
E, update generation rate α, energy harvesting rate γ, and
transmission probabilities {πb,bt}. Therefore, the devices are
stochastically equivalent, allowing us to focus on a generic
device. The analysis can be extended to heterogeneous devices
belonging to multiple classes with different parameters and
requirements, as considered in [12]. In this case, the AoI
refresh status X(s), battery level B(s), and battery profile LLL(s)

become class-dependent. The Markov chain G(s) should be
extended accordingly. The exact and approximate AoI analyses
follow the same mathematical machinery in Sections IV and V,
respectively. The accuracy of the approximation proposed in
Section V may deteriorate with increased heterogeneity.

3) Single vs. Multiple Transmission Attempts: We assume
a single transmission attempt per update. Our analysis can
be easily extended to the case where the devices retransmit
the latest update whenever they do not have a new one, as
considered in [13]. However, our experiments show no apparent
AoI reduction by retransmissions. Therefore, we focus only on
the case without retransmissions in this paper.

4) Battery Level Discretization: We allow a device with
battery level b to select transmit power only from the finite
set [0 : b]. This discretization enables finite-state Markovian
analysis and gives the devices a simple rule to adjust their
transmit power. Note that, in low-complexity IoT devices, three
power levels are typically considered (zero power, low power,
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and high power).
5) The Physical-Layer Channel Model: An extension to

more complicated channel models than the AWGN channel
considered in the paper is straightforward, provided that one
can compute the successful-decoding probability ωbt,LLL. This
entails replacing the normal approximation (36) with other
appropriate formulas. For example, normal approximations of
the achievable rate for the Rayleigh block fading channel can
be found in [55], [56]. Note that with fading, interference
cancellation requires accurate channel estimation. Therefore,
one may need to account for interference cancellation errors
and residual interference.

B. Proof of Theorem 1
Without loss of generality, we start tracking the process

(i.e., we set t = 0) right after the first AoI refresh, which
we index as the 0th refresh. Let ti be the time instant of the
ith AoI refresh and si be the slot corresponding to ti. Let
also yi = ti − ti−1 = si − si−1 be the duration of the ith
inter-refresh period. We establish (12) simply by noting that
the peak AoI is given by ∆̃(i) = yi +1. To compute the PMF
of the discretized AoI, we proceed as follows:

P
[
∆̂(s)=δ

]
= lim

n→∞

1

n

n∑
s=1

1{∆̂(s) = δ} (38)

= lim
m→∞

1∑m
i=1 yi

m∑
i=1

si∑
s=si−1+1

1{∆̂(s)=δ} (39)

= lim
m→∞

1∑m
i=1 yi

m∑
i=1

1{yi + 1 ≥ δ} (40)

= lim
m→∞

1
1
m

∑m
i=1 yi

|{i∈ [m] : yi ≥ δ−1}|
m

(41)

=
1

E[Y ]
P[Y ≥ δ − 1] . (42)

Here, (40) holds since within the ith inter-refresh period, ∆̂(s)
increases linearly from 2 to yi + 1, and thus there exists one
slot where the AoI value is δ if and only if yi + 1 ≥ δ; (42)
holds because 1

m

∑m
i=1 yi → E[Y ] and |{i∈[m] : yi≥δ−1}|

m →
P[Y ≥ δ − 1] as m → ∞.

The AoI metric F (∆) = lim
t̄→∞

1
t̄

∫ t̄

0
f(∆(t))dt is derived as

F (∆) = lim
m→∞

1∑m
i=1 yi

m∑
i=1

∫ ti

ti−1

f(∆(t))dt (43)

= lim
m→∞

1∑m
i=1 yi

m∑
i=1

∫ yi+1

1

f(t)dt (44)

= lim
m→∞

1
1
m

∑m
i=1 yi

∞∑
y=0

|{i∈ [m] : yi=y}|
m

∫ y+1

1

f(t)dt

=
1

E[Y ]
E

[∫ Y+1

1

f(t)dt

]
. (45)

Here, (44) follows by noting that within the ith inter-refresh
period, ∆(t) = t − ti−1 + 1 and by applying a change
of variable; (45) holds because 1

m

∑m
i=1 yi → E[Y ] and

|{i∈[m] : yi=y}|
m → P[Y = y] as m → ∞. For the average

AoI, f(t) = t, and we have that
∫ Y+1

1
f(t)dt = Y + Y 2

2 .
Substituting this into (45), we obtain (13). For the AVP, f(t) =
1{t > θ}, and we have that

∫ Y+1

1
f(t)dt = (Y − θ + 1)+.

Indeed, within an inter-refresh period of duration Y , the AoI
exceeds θ in the last (Y −θ+1)+ slots (see Fig. 1). Substituting
this into (45), we obtain

ζ(θ) =
1

E[Y ]

∞∑
y=0

P[Y = y] (y − θ + 1)+ (46)

=
1

E[Y ]

( ∞∑
y=θ

yP[Y = y]− (θ−1)

∞∑
y=θ

P[Y = y]

)
(47)

= 1− 1

E[Y ]

( θ−1∑
y=1

yP[Y = y]− (θ−1)P[Y ≥ θ]

)
. (48)

C. Terminating Markov Chain and Discrete Phase-Type Dis-
tribution

In a Markov chain, an absorbing state is a state that, once
entered, cannot be left. A Markov chain is called a terminating
Markov chain if there is one absorbing state and it is possible
to go from any non-absorbing state (called transient state) to
the absorbing state in a finite number of steps [45, Chap. III].
By reordering the states, the transition probability matrix of
a terminating Markov chain with m transient states can be

expressed as PPP =

[
TTT aaa
0T
m 1

]
, where TTT ∈ [0, 1]m×m contains

the probabilities of transitions between transient states and
aaa = (IIIm −TTT)1m contains the probabilities of transitions from
the transient states to the absorbing states. The matrix IIIm −TTT
is invertible for every terminating Markov chain [45, Th. 3.2.1].
The distribution of the absorption time, i.e., the number of
steps until absorption, of a terminating Markov chain is called
the discrete phase-type distribution and described next.

Lemma 3 (Discrete phase-type distribution): Consider a
terminating Markov chain with transition probability matrix

PPP =

[
TTT aaa
0T
m 1

]
. Let Y be the absorption time when starting

from the transient state i ∈ [m] w.p. τi, i.e., the initial proba-
bility vector of the transient states is τττ = (τ1, τ2, . . . , τm). The
PMF and CCDF of Y are given by P[Y = y] = τττ TTTTy−1aaa and
P[Y > y] = τττ TTTTy1m for y = 1, 2, . . . . The first- and second-
order moments of Y are given by E[Y ] = τττ T(IIIm −TTT)−11m

and E
[
Y 2
]
= 2τττ T(IIIm −TTT)−21m − E[Y ].

Proof: The PMF of Y is given in [57, Sec. 2.2]. The
CCDF of Y can be obtained from its PMF after some simple
manipulations. As shown in [57, Sec. 2.2], the factorial mo-
ments of Y are E

[∏y−1
i=0 (Y − i)

]
= y!τττ T(IIIm−TTT)−yTTTy−11m,

y = 1, 2, . . . By applying this result with y = 1 and y = 2,
we obtain the first- and second-order moments of Y .

The discrete phase-type distribution has been used to model
inter-arrival and service times in recent AoI analyses, e.g., [58],
[59].
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