
59Computing in Science & EngineeringPublished by the IEEE Computer SocietyApril-June 2025

Research software has been categorized in different contexts to serve different
goals. We start with a look at what research software is before we discuss
the purpose of research software categories. We propose a multidimensional
categorization of research software. We present a template for characterizing
such categories. As selected dimensions, we present our proposed role-based,
readiness-based, developer-based, and dissemination-based categories. Since our
work has been inspired by various previous efforts to categorize research software,
we discuss them as related works. We characterize all of these categories via the
previously introduced template to enable a systematic comparison. We report on
the multidimensional categorization of selected research software examples.

Research software is software that is designed
and developed to support research activities.
Research software is developed by researchers

themselves or by software engineers working closely
with researchers. Research software is typically devel-
oped to meet specific research needs, and often has

unique requirements that are different from standard
commercial software.1 However, research software is
gaining appreciation and endorsement for research
and as a research result itself.

Research software engineering (RSE) is a special-
ized field that applies software engineering principles
to address the unique challenges posed by developing
software for scientific and academic research, with
the goal of enhancing the efficiency, reproducibility,
and impact of research outcomes. Research software
engineers specialize in developing and maintaining
software for research purposes.

EDITORS: Jeffrey Carver, carver@cs.ua.edu
Karla Morris, knmorri@sandia.gov

SPECIAL TRACK: SOFTWARE ENGINEERING

Multidimensional Research Software
Categorization
Wilhelm Hasselbring , Kiel University, 24098, Kiel, Germany

Stephan Druskat , German Aerospace Center, 12489, Berlin, Germany

Jan Bernoth , University of Potsdam, 14476, Potsdam, Germany

Philine Betker , Helmholtz Centre for Infection Research, 38124, Brunswick, Germany

Michael Felderer , German Aerospace Center and University of Cologne, 51147, Cologne, Germany

Stephan Ferenz , Carl von Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany

Ben Hermann , Technical University Dortmund, 44227, Dortmund, Germany

Anna-Lena Lamprecht , University of Potsdam, 14476, Potsdam, Germany

Jan Linxweiler , Technical University Braunschweig, 38106, Braunschweig, Germany

Arnau Prat , German Aerospace Center, 38108, Braunschweig, Germany

Bernhard Rumpe , Rheinisch-Westfälische Technische Hochschule Aachen University, 52062, Aachen, Germany

Katrin Schöning-Stierand , University of Hamburg, 22761, Hamburg, Germany

Shinhyung Yang , Kiel University, 24098, Kiel, Germany

© 2025 The Authors. This work is licensed under a Creative
Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/
Digital Object Identifier 10.1109/MCSE.2025.3555023
Date of publication 27 March 2025; date of current version
24 July 2025.

https://orcid.org/0000-0001-6625-4335
https://orcid.org/0000-0003-4925-7248
https://orcid.org/0000-0002-4127-0053
https://orcid.org/0009-0003-5534-0010
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0000-0001-9523-7227
https://orcid.org/0000-0001-9848-2017
https://orcid.org/0000-0003-1953-5606
https://orcid.org/0000-0002-2755-5087
https://orcid.org/0000-0003-1169-4004
https://orcid.org/0000-0002-2147-1966
https://orcid.org/0000-0003-3248-8023
https://orcid.org/0000-0002-8997-9942

SOFTWARE ENGINEERING

60 Computing in Science & Engineering April-June 2025

In this article, we propose a multidimensional cate-
gorization of research software, along the dimensions
of roles, readiness, developer, and dissemination. We
start with a look at what research software is before we
discuss the purpose of research software categories.
We present a template for characterizing such catego-
ries. Subsequently, our proposed role-based, readiness-
based, developer-based, and dissemination-based cat-
egories are presented. Our work has been inspired by
various previous efforts to categorize research soft-
ware, which we discuss as related works. We charac-
terize all of these categories via a previously introduced
template and conclude with an outlook to future work.

RESEARCH SOFTWARE
For the purposes of this article, we follow the FAIR for
Research Software (FAIR4RS) Working Group in their
definition of research software, as software that was
created during the research process or for a research
purpose.2 This definition distinguishes “research soft-
ware” and “software in research,” which includes gen-
eral purpose software. The software components (e.g.,
operating systems, programming languages, libraries,
etc.) that are used for research but were not created
during research or with a clear research intent should
be considered “software in research” and not “research
software.” In the present article, we categorize re-
search software.

PURPOSE OF RESEARCH
SOFTWARE CATEGORIES

We envision the following benefits from using catego-
ries for research software, which may serve:

	❯ as a basis of institutional guidelines and check-
lists for research software development

	❯ to better understand the different types of research
software and their specific quality requirements

	❯ to recommend appropriate software engineering
methods for the individual categories

	❯ to design appropriate teaching/education pro-
grams for the individual categories

	❯ to give stakeholders (especially research software
engineers and their management) a better under-
standing of what kind of software they develop

	❯ for a better assessment of existing software
when deciding to reuse it

	❯ for research funding agencies, to define appro-
priate funding schemes

	❯ to define appropriate metadata labels for FAIR
research software

	❯ in RSE research3 to provide a framework for clas-
sifying research software artifacts.

This list is not exhaustive.

CHARACTERIZATION OF
RESEARCH SOFTWARE
CATEGORIES

Categorizations can be described through their scope,
purpose, context, properties, consequences for cre-
ation and use, and their intercategorical relations.
Table 1 provides a template for systematically describ-
ing the characteristics of research software categori-
zations, which we will use later to characterize some
individual categorizations in the subsequent sections.

ROLE-BASED CATEGORIZATION
OF RESEARCH SOFTWARE

Research software can be used to collect, process, an-
alyze, and visualize data, as well as to model complex
phenomena and run sophisticated simulations. Research
software is also developed to control and monitor lab ex-
periments and environmental observations. In engineer-
ing research, research software constitutes a new para-
digm of scientific inquiry next to theory and experiment

TABLE 1.  Template for Describing Criteria of Research Software Categorizations.

Criterion Explanation

Scope What is the scope of the categorization?

Purpose What is the purpose of the categorization?

Context In which contexts are specific categories developed and used?

Properties What are specific properties of the different categories?

Consequences for Creation How is and should software of a specific category be developed?

Consequences for use How and why is software of a specific category used? What are the differences
between the categories in terms of use and reuse, including, e.g., in software
publication and citation?

Intercategorical relations What are the relations between different categories?

SOFTWARE ENGINEERING

Computing in Science & Engineering 61April-June 2025

and acts as a proof of concept to invent and evaluate new
technological artifacts, including algorithms, methods,
systems, tools, and other computer-based technologies.
Research software also provides the infrastructure to
manage, publish, and archive research data and software.

Thus, research software may take various roles in the
research process.4 This is similar to software engineer-
ing teams, which involve a range of roles that contribute
to the development, maintenance, and improvement of
software systems. Some common roles in software en-
gineering are software architect, programmer, and tes-
ter. Each role may be taken by several persons, and one
person may take several roles. These role assignments
may also change during a software project.

We propose a similar role-based categorization of
research software, with an emphasis on varying quality
requirements for the different roles that software may
take in research. Accordingly, a research software may
take several roles, which may also change during the
lifecycle of the software.

Research software mainly falls into one of the fol-
lowing three top-level role categories (and sometimes
combinations):

1)	 Modeling, simulation, and data analytics of, e.g.,
physical, chemical, social, linguistic, or biological
processes in spatiotemporal contexts.

2)	 Technology research software in science and en-
gineering research.

3)	 Research infrastructure software, such as re-
search data and software management systems.

The assignment of research software to categories
may evolve over time. For instance, software specifically
developed for a research question (usually categories 1
and 2) can later turn into infrastructure software (cate-
gory 3). In different contexts, a software may also be in
multiple categories at the same time.

We further refine category 1—research software for
modeling, simulation, and data analytics—with sever-
al subcategories:

1.1) � modeling and simulation (e.g., numerical mod-
eling, agent-based modeling)

1.2) � data analytics, on observation and simulation
data, with statistical analysis and machine
learning as methods

1.3) � software analytics (static, dynamic, evolution,
repository mining)

1.4) � integrative analysis (data assimilation and de-
cision analysis)

1.5) � scientific visualization.

Category 2 for technology research software is used
in structural sciences (mathematics and computer
science) and in engineering sciences (software, elec-
trical, mechanical, and civil engineering). Technology
research software may be related to target contexts:

2.1) � hardware (usually as embedded software)
2.2) � software (e.g., as part of an operating system)
2.3) � human (with a user interface)
2.4) � process (e.g., as part of a business, develop-

ment or production processes).

Again, one research software may be in multiple
categories. In the next section, we will additionally
relate this category to technology readiness levels
(TRLs) as secondary subroles.

We further refine category 3 for research infra-
structure software with several subcategories:

3.1) � control and monitoring software for complex
experiments and instruments (this includes
embedded control software, as well as native
and web-based monitoring software)

3.2) � data collection and generation (survey soft-
ware, sensor-based data collection, synthetic
data generation, etc.)

3.3) � pipelines and tools.
3.4) � libraries, for instance for high performance

computing
3.5) � laboratory notebooks
3.6) � data management
3.7) � software management
3.8) � collaboration and publication.

These categories have varying requirements on their
software development. For instance, dedicated require-
ments engineering may be relevant for category 3, but not
for category 1. As another example, safety analysis may be
relevant for category 3.1, but not for categories 1 and 2.

The left side of Figure 1 shows our resulting role-
based categorization.

Table 2 characterizes our multidimensional catego-
rization in terms of the template in Table 1. The readi-
ness-based, developer-based, and dissemination-based
categorizations are introduced in the following three sec-
tions, before we discuss some related categorizations.

READINESS-BASED
CATEGORIZATION OF
RESEARCH SOFTWARE

Technology is the application of conceptual knowl-
edge for achieving practical goals, especially in a re-
producible way. The word technology can also mean

SOFTWARE ENGINEERING

62 Computing in Science & Engineering April-June 2025

the products resulting from such efforts, including
both tangible tools, such as utensils or machines, and
intangible ones, such as software.

TRLs are a method for estimating the maturity of
technologies. TRLs enable consistent and uniform dis-
cussions of technical maturity across different types

FIGURE 1.  Our multidimensional categorization of research software, along the dimensions of roles, readiness, developers, and

dissemination.

SOFTWARE ENGINEERING

Computing in Science & Engineering 63April-June 2025

of technology. The right side of Figure 1 shows the re-
sulting readiness-based categorization with the titles
of the European TRL 1 to TRL 9.5

These TRLs may be applied to all types of research
software, and thus the category dimensions are or-
thogonal: Every research software may be classified
independently in each dimension.

In addition, for technology research software,
these TRL titles can be read as secondary subroles.
Examples are:

	❯ TRL 3: The technology research software takes
the role as an “experimental proof of concept”
within some research project.

	❯ TRL 4: The technology research software takes
the role as a “technology validated in lab” within
some research project.

Thus, the TRLs constitute subroles of technology
research software.

One specific technology research software may
take several such subroles over its lifecycle, with in-
creasing “readiness.” It may also take several roles at
the same time, within different contexts: In one proj-
ect, it may serve as experimental proof of concept
(TRL 3); in another project, it may already serve as
a technology validated in a lab (TRL 4). Eventually, a
technology research software may even become an
“actual system proven in operational environment”
(TRL 9).

“Readiness” is top level in the mindmap, thus it is
its own dimension. If we had put “readiness” directly
below “technology research software,” it would not be
its own dimension; thus, we added the cross-link from

“technology research software” to illustrate the addi-
tional, secondary subrole relationship.

The difference between the categories “modeling
and simulation” and “technology research software”
(without consideration of the TRL subroles) may be illus-
trated, for instance, with control engineering research:

	❯ As a control engineering researcher, you may
build a simulation of a control system.

	❯ As a control engineering researcher, you may
also build an actual control system as a new soft-
ware system. In an automation lab, this research-
er may then experiment with this system (not
with the simulation of the system). If this system
(which is a technology research software) ma-
tures, it may reach higher TRLs.

Here, both the simulation and the actual control
system are research software.

DEVELOPER-BASED
CATEGORIZATION OF
RESEARCH SOFTWARE

For the developer dimension, we see the following
stages for research software:

1)	 individual researcher, such as Ph.D. student,
Postdoc, or research software engineer

2)	 local research group
3)	 project group, in which several research groups

may collaborate
4)	 community on a specific research topic
5)	 contractor (professional software company de-

veloping the software on behalf of researchers).

TABLE 2.  Characteristics of Our Multidimensional Categorization for Research Software.

Criterion Explanation

Scope This categorization covers the dimensions of roles, readiness, developers, and dissemination.

Purpose The categorization aims to enable a better understanding of the different types of
research software and their specific quality requirements.

Context The categorization has been produced in the context of a task force of the special
interest group on Research Software Engineering, within the German Association of
Computer Science (GI e.V.) and the German Society for Research Software (de-RSE e.V.).
It is meant to serve different purposes, in particular RSE research.3

Properties The categories follow different relevant dimensions, and are defined collaboratively
among software engineering researchers and research software engineers.

Consequences for creation Depending on its category, software is expected to meet different quality requirements
and follow different development processes.

Consequences for use Perceive that there are many different types of research software, fulfilling many
different roles and functions.

Intercategorical relations Individual research software may change its category within one or more dimensions.

SOFTWARE ENGINEERING

64 Computing in Science & Engineering April-June 2025

DISSEMINATION-BASED
CATEGORIZATION OF
RESEARCH SOFTWARE

A community or contractor may develop the software
open source, closed source, or it may provide research
software as an online service.

The bottom of Figure 1 shows our developer-based
and dissemination-based categorizations.

RELATED RESEARCH
SOFTWARE CATEGORIES

Research software has been categorized in different
contexts to serve different aims. Some of them are dis-
cussed here as related works, as they 1) represent a good
starting point for a discussion on research software cat-
egorization, 2) provided significant input to our work, and
3) may be used to compare and assess our categoriza-
tion. We characterize these categories via the previously
introduced template in the supporting technical report.6

Role-Based Categorization
Van Nieuwpoort and Katz4 present a role-based cat-
egorization. They categorize research software as an
integral component of instruments used in research,
as the instrument itself, for analyzing research data, for
presenting research results, for assembling or integrat-
ing existing components, as infrastructure or an under-
lying tool, and for facilitating research-oriented collab-
oration. This categorization inspired our work. Based
on discussions with the authors of the present article,
van Nieuwpoort and Katz extended their categoriza-
tion with our “technology research software” category.4

Maturity-Based Categorization
In their National Agenda for Research Software,7 the
Australian Research Data Commons—an Australian
research data infrastructure facility—argue for re-
search software to be recognized as a first-class out-
put of research. They describe a three-level maturity
categorization of research software that is related to
our readiness dimension:

	❯ Research data processes captured as software.
The result is analysis code that captures re-
search processes and methodology: the steps
taken for tasks like data generation, preparation,
analysis, and visualization.

	❯ Novel methods and models captured as software.
The results are prototype tools that demonstrate
a new idea, method, or model for research.

	❯ Accepted methods and models captured as soft-
ware. The result can become research software

infrastructure that captures more broadly accepted
and used ideas, methods, and models for research.

Each category faces specific challenges with
regard to recognition, from making research prac-
tice transparent, to creating impact through quality
software and safeguarding longer-term maintenance.

Application Classes in Institutional
Software Engineering Guidelines
Institutional guidelines typically define so-called ap-
plication classes for research software, which require
appropriate quality properties, and thus software engi-
neering methods8:

	❯ For software in application class 0, the focus is on
personal use in conjunction with a small scope.

	❯ For software in application class 1, it should be
possible, for those not involved in the develop-
ment, to use it to the extent specified and to con-
tinue its development.

	❯ For software in application class 2, it is intended
to ensure long-term development and maintain-
ability. It is the basis for a transition to product
status.

	❯ For software in application class 3, it is essential
to avoid errors and to reduce risks. This applies in
particular to critical software.

The application classes relate to our readiness
domain and to some extent to our developer-based
categorization.

European Open Science Cloud
Research Software Lifecycle
The European Open Science Cloud (EOSC) aims to cre-
ate a virtual environment for sharing and accessing re-
search data across borders and scientific disciplines.
The SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for Quality Research
Software” provides a categorization for software in the
research lifecycle9:

1)	 an individual creating research software for own
use (e.g., a Ph.D. student)

2)	 a research team creating an application or work-
flow for use within the team

3)	 a team/community developing (possibly broadly
applicable) open source research software

4)	 a team or community creating a research service.

This categorization is covered by our developer-
based categorization.

SOFTWARE ENGINEERING

Computing in Science & Engineering 65April-June 2025

Computational Research in Earth
System Sciences
Döll et al.10 provide recommendations for sustainable
research software for high-quality computational re-
search in Earth system sciences, and categorize this
research software as follows:

	❯ simulation of Earth system processes by Earth
system models

	❯ design, processing and analysis of Earth observa-
tion and lab experiment data

	❯ integrative analysis of simulation models, large
data bases, and stakeholder knowledge.

These categories correspond to our role-based cat-
egories 1.1, 1.2, and 1.4, respectively.

Categorizing the Software Stack
Another dimension is the research software stack,
from nonscientific infrastructure, scientific infra-
structure, discipline-specific software, up to proj-
ect-specific software.11 This dimension could be the
basis for another branch in our multidimensional
categorization.

QUALITATIVE EVALUATION
As a prereview study, we conducted a multidimen-
sional categorization of selected research software
examples to check whether we can categorize select-
ed research software in multiple dimensions. The se-
lection is mainly based on in-depth knowledge of the
respective research software by the authors, such that

we are able to confidently categorize these research
software examples, in particular the readiness level.
In Table 3 we categorize the Hexatomic framework for
multilayer linguistic annotation of corpora (https://
corpus-tools.org/hexatomic/), the Kieker observability
and monitoring framework (https://kieker-monitoring.
net/), the MontiCore framework for the development of
software languages (http://monticore.github.io/), the
Prospective Monitoring and Management App (PIA)
(https://info-pia.de/), and a quantum optics control
software. Due to length limits, we refer to the extend-
ed version of this magazine article for further details.6

Our qualitative evaluation shows that it is possi-
ble to categorize different research software along
multiple categories. In particular, it shows that our
categorization is applicable to research software in-
dependently of a single dimension: We successful-
ly categorized software at different maturity levels,
developed by different actors, and disseminated
through different means. We expect that our catego-
rization can significantly contribute to categorizing
research software. It increases coverage over existing
approaches to categorization by adding the dissemi-
nation category and integrating:

	❯ role-based categorization4,10 in our role categories
	❯ maturity-based categorization7,8 in our readiness

categories
	❯ lifecycle-based categorization9 in our developer

categories.

In our evaluation, example research software has
been categorized with one to five roles. This shows a

TABLE 3.  Exemplary Multidimensional Categorization of Research Software.

Software Role Readiness Developer Dissemination

Hexatomic 1.2 Data analytics
1.4 Integrative analysis
2.2 Software related
3.2 Data collection and generation
3.3 Pipelines and tools

TRL 4 Local research
Group

Open source

Kieker 1.3 Software analytics
2.2 Software related

TRL 4,
TRL 5,
TRL 6

Community Open source

MontiCore 1.1 Modeling and simulation
2.2 Software related
3.3 Pipelines and tools

TRL 4 –
TRL 8

Community Open source,
Software as a service

PIA 3.2 Data collection and generation TRL 9 Contractor Open source

Quantum optics
Control software

2.2 Software related
3.1 Control and monitoring software
3.2 Data collection and generation

TRL 9 Project group Closed source

Further details in Hasselbring et al.6

https://corpus-tools.org/hexatomic/
https://corpus-tools.org/hexatomic/
https://kieker-monitoring.net/
https://kieker-monitoring.net/
http://monticore.github.io/
https://info-pia.de/

SOFTWARE ENGINEERING

66 Computing in Science & Engineering April-June 2025

high precision to cover different roles research soft-
ware can take in different contexts, while manifesting
that research software roles are not exclusive. While
PIA, for example, serves a single purpose within a single
context, Hexatomic can be used for different subtasks
in different data-centric application contexts. As infra-
structure software that can be used to integrate tools
into a pipeline, Hexatomic combines research-related
tasks, such as data generation, and integration with re-
search tasks, such as data editing and analysis. Simul-
taneously, it is technology research software whose
target system is an existing ecosystem of software
tools for linguistic research. The Hexatomic example
reveals a property of research software that is cen-
tral to our argument, i.e., that different contexts and
perspectives put software into different roles, which
makes a multidimensional categorization necessary.

As future work, we intend to conduct more in-
depth quantitative research into our categorization
to assess and improve its granularity and precision.
Based on this, we intend to analyze relations and cor-
relations between categorical dimensions. We also
plan to widen the corpus of categorized research soft-
ware by asking more members of the RSE community
to categorize their own research software. In partic-
ular, the assessment of the readiness levels requires
a profound knowledge of the software and its use. To
quantitatively evaluate our categorization scheme,
we intend to apply more systematic and replicable re-
search via a systematic literature review of published
research software.12

Additional research into providing methodological
guidance for researchers to consistently replicate our
classifications, especially for more subjective aspects
like TRLs, could offer clear decision criteria and docu-
mentation protocols to support the application of our
framework.

CONCLUSION
We categorize research software along various dimen-
sions, contributing to fostering effective development,
recognition, and utilization of research software with-
in the research community. One essential use case of
this categorization is its incorporation into forthcom-
ing guidelines for research software development.
As we classify research software, we enable tailoring
guidelines to specific classes, offering developers a
structured framework that aligns with each category’s
unique requirements and challenges. The multidimen-
sional categorization of selected research software ex-
amples stimulated the refinement and strengthening
of our categorization.

Moreover, the categorization is intended to be a valu-
able tool for stakeholders, especially research software
engineers and their group, chair, department, or insti-
tute leaders. The categorization may provide these indi-
viduals with a better understanding of the software they
are developing, offering insights into its nature, purpose,
and potential impact. This knowledge is essential for in-
formed decision making, adequate resource allocation,
and strategic planning within research institutions.

Recognition for research software engineers is
another outcome we anticipate from categorizing re-
search software. By delineating different types of soft-
ware and acknowledging the diverse skill sets required
for their development and maintenance, our categori-
zation aims to contribute to elevating the status of re-
search software engineers. We hope this recognition
motivates individuals and fosters a culture that values
and appreciates the crucial role played by software in
advancing research efforts.

Categorizations may also help assess external
software when considering its use. We envision that
it contributes to a standardized framework for evalu-
ating software’s relevance, applicability, and quality,
facilitating informed decisions in adopting tools from
different sources.

The categorization may become particularly valu-
able in allocating project-based or permanent funding.
It can help researchers and developers clearly articu-
late their software’s significance in a funding proposal.
We envision this classification providing a framework
that helps researchers and funding agencies.

Additionally, the categorization may help to em-
phasize which software is critical, highlighting the
importance of its maintenance and continued devel-
opment for its continued functionality. By highlighting
this importance, we seek to contribute to an enhanced
awareness of the ongoing support and resources re-
quired to ensure the longevity and sustainability of re-
search software.

In the realm of RSE research,3 we hope that the
categorization provides a framework for classifying re-
search objects, supporting software corpus analyses,
and enhancing our understanding of the different types
of research software and their properties. This struc-
tured approach may aid in organizing and interpreting
the vast landscape of research software, contributing
to advancements in RSE methodologies and practices.

ACKNOWLEDGMENTS
The work of Philine Betker was supported as part of
a subproject of NAKO by the Federal Ministry of Edu-
cation and Research (BMBF, project funding reference

SOFTWARE ENGINEERING

Computing in Science & Engineering 67April-June 2025

no. 01ER2301/12) and the Helmholtz Association, with
additional financial support by the participating uni-
versities and the institutes of the Leibniz Association.
The work of Shinhyung Yang is supported by the Deut-
sche Forschungsgemeinschaft Grant 528713834.

REFERENCES
	 1.	 A. Johanson and W. Hasselbring, “Software

engineering for computational science: Past, present,
future,” Comput. Sci. Eng., vol. 20, no. 2, pp. 90–109,
Mar. 2018, doi: 10.1109/MCSE.2018.021651343.

	 2.	 M. Gruenpeter et al., “Defining research software:
A controversial discussion,” Zenodo, Genève,
Switzerland, Sep. 2021. [Online]. Available: https://doi.
org/10.5281/zenodo.5504016

	 3.	 M. Felderer, M. Goedicke, L. Grunske, W. Hasselbring,
A.-L. Lamprecht, and B. Rumpe, “Investigating
research software engineering: Toward RSE Research,”
Commun. ACM, vol. 68, no. 2, Feb. 2025, pp. 20–23, doi:
10.1145/3685265.

	 4.	 R. van Nieuwpoort and D. S. Katz. “Defining the roles of
research software (Version 2),” Upstream, Mar. 15, 2023.
[Online]. Available: https://vannieuwpoort.com/2023/03/15/
defining-the-roles-of-research-software/

	 5.	 A. D. Rose et al., “Technology readiness level: Guidance
principles for renewable energy technologies,”
European Commission, Directorate General for
Research and Innovation, Brussels, Belgium, Final Rep.
EUR 27988 EN, 2017, doi: 10.2777/577767.

	 6.	 W. Hasselbring et al., “Multi-dimensional
categorization of research software with examples,”
Zenodo, Genève, Switzerland, 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.14082553

	 7.	 Australian Research Data Commons, “A national
agenda for research software,” Zenodo, Genève,
Switzerland, Mar. 2022. [Online]. Available: https://doi.
org/10.5281/zenodo.6378082

	 8.	 T. Schlauch, M. Meinel, and C. Haupt, “DLR software
engineering guidelines,” Zenodo, Genève, Switzerland,
Aug. 2018. [Online]. Available: https://zenodo.org/
records/1344612

	 9.	 G. Courbebaisse, B. Flemisch, K. Graf, U. Konrad, J.
Maassen, and R. Ritz, “Research software lifecycle,”
Zenodo, Genève, Switzerland, Sep. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.8324828

	 10.	 P. Döll et al., “Sustainable research software
for high-quality computational research in the
Earth system sciences: Recommendations for
universities, funders and the scientific community
in Germany,” FID GEO, Feb. 2023. [Online].
Available: https://e-docs.geo-leo.de/entities/
publication/16dc752b-1c0f-42f2-b9fb-cf018b7cc335

	 11.	 K. Hinsen, “Dealing with software collapse,” Comput.
Sci. Eng., vol. 21, no. 3, pp. 104–108, May 2019. doi:
10.1109/MCSE.2019.2900945.

	 12.	 C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.
Regnell, and A. Wesslén, “Systematic literature studies,”
in Experimentation Software Engineering, 2nd ed.,
Heidelberg, Germany: Springer-Verlag, 2024, pp. 51–63,
doi: 10.1007/978-3-662-69306-3_4.

WILHELM HASSELBRING is a professor of software engi

neering at Kiel University, 24098, Kiel, Germany, and an

adjunct professor at the University of Southampton, SO17

1BJ, Southampton, U.K. His research interests include

software engineering, distributed systems, and open science.

Hasselbring received his Ph.D. in computer science from the

University of Dortmund. He is a member of the Association for

Computing Machinery, IEEE Computer Society, and the German

Association for Computer Science, at which he is vice chair of

the special interest group on research software engineering.

Contact him at hasselbring@email.uni-kiel.de.

STEPHAN DRUSKAT is a software engineering researcher at the

German Aerospace Center, 12489, Berlin, Germany. His research

interests include research software sustainability, software

citation and publication, and empirical research software

engineering. He cofounded, and served on the inaugural board

of, de-RSE, the Society for Research Software, and is a member

of the Society for Research Software Engineering, the German

Society for Research Software, the German Association for

Computer Science, and a fellow of the Software Sustainability

Institute (U.K.). Druskat received an M.A. in English Philology from

Freie Universität. Berlin. Contact him at stephan.druskat@dlr.de.

JAN BERNOTH is a researcher at the University of Potsdam,

14476, Potsdam, Germany, and is working as the chair at

Complex Multimedia Application Architectures. His research

interests include designing an architecture of the infrastructure

to support research data and software management within a

National Research Data Infrastructure Germany consortium

NFDIxCS. Bernoth received his M.Sc. degree in computer

science from Freie Universität Berlin. He is currently pursuing

a Ph.D. degree on the creation of a research environment

aimed at investigating analytical dashboards for science

communication. Contact him at jan.bernoth@uni-potsdam.de.

PHILINE BETKER is a researcher at the Helmholtz Centre for

Infection Research, 38124, Brunswick, Germany. Her research

interests include cohort studies, the prevention of infectious

http://dx.doi.org/10.1109/MCSE.2018.021651343
http://dx.doi.org/10.1145/3685265
http://dx.doi.org/10.1109/MCSE.2019.2900945
mailto:hasselbring@email.uni-kiel.de
mailto:stephan.druskat@dlr.de
mailto:jan.bernoth@uni-potsdam.de
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.5504016
https://vannieuwpoort.com/2023/03/15/defining-the-roles-of-research-software/
https://vannieuwpoort.com/2023/03/15/defining-the-roles-of-research-software/
http://dx.doi.org/10.2777/577767
https://doi.org/10.5281/zenodo.14082553
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/zenodo.6378082
https://zenodo.org/records/1344612
https://zenodo.org/records/1344612
https://doi.org/10.5281/zenodo.8324828
https://e-docs.geo-leo.de/entities/publication/16dc752b-1c0f-42f2-b9fb-cf018b7cc335
https://e-docs.geo-leo.de/entities/publication/16dc752b-1c0f-42f2-b9fb-cf018b7cc335
http://dx.doi.org/10.1007/978-3-662-69306-3_4

SOFTWARE ENGINEERING

68 Computing in Science & Engineering April-June 2025

diseases, and the interface between health and the environment.

Betker received her M.Sc. degree in interdisciplinary biomedicine

(profile: health sciences) from the University of Bielefeld.

Contact her at philine.betker@helmholtz-hzi.de.

MICHAEL FELDERER is the director of the Institute of

Software Technology at the German Aerospace Center, and a

full professor in the Department of Computer Science at the

University of Cologne, 51147, Cologne, Germany. His research

interests include software quality and security, software

engineering for artificial intelligence, quantum computing, and

digital twin technologies, as well as empirical and research

software engineering. Felderer received his Ph.D. degree in

computer science from the University of Innsbruck, Austria.

Contact him at michael.felderer@dlr.de.

STEPHAN FERENZ is a senior researcher at the Carl von

Ossietzky Universität Oldenburg, 26129, Oldenburg, Germany.

His research interests include research data management,

research software engineering, and research software metadata.

Ferenz received his M.S. degree in electrical engineering from

the Leibniz Universität Hannover, Germany. He is a member of

the German Association for Computer Science. Contact him at

stephan.ferenz@uol.de.

BEN HERMANN is a professor for secure software engineering

at Technical University Dortmund, 44227 Dortmund, Germany.

His research interests include static program analysis and

metascience. Hermann received his Ph.D. degree in computer

science from Technical University Darmstadt. Contact him at

ben.hermann@cs.tu-dortmund.de.

ANNA-LENA LAMPRECHT is professor of software engineering

at the University of Potsdam, 14476, Potsdam, Germany. Her

research interests include research software engineering and

she is particularly known for her work on the FAIR Principles for

Research Software (FAIR4RS) and on the automated composition

of scientific workflows. Lamprecht is chair of the new special

interest group on research software engineering that has recently

been installed as a joint endeavor of the German Association for

Computer Science and the German Association for Research

Software Engineering. Lamprecht received her Ph.D. degree in

computer science from the Technical University of Dortmund.

Contact her at anna-lena.lamprecht@uni-potsdam.de.

JAN LINXWEILER is the general manager of the Center for

Mechanics, Uncertainty, and Simulation in Engineering at

Technical University Braunschweig, 38106, Braunschweig,

Germany, and head of IT and Research Services at the

University library. His research interests include research

software engineering, high-performance computing, research

data management, and open science. Linxweiler received his

Ph.D. degree in engineering and is a founding member of the

German Association for Research Software Engineering, of

which he recently became chairman of the board. Contact him

at j.linxweiler@tu-braunschweig.de.

ARNAU PRAT is a researcher at the German Aerospace Center,

38108, Braunschweig, Germany, where he leads the Payload

Software research group. His research interests include model-

driven software engineering for space systems and the use of

novel programming languages for safety-critical systems, and

is currently involved in several space missions, ranging from

payloads on board the ISS to sounding rockets or satellites. Prat

received his M.S. degree in telecommunications engineering

from the Polytechnic University of Catalonia (UPC), Barcelona,

Spain. Contact him at arnau.pratisala@dlr.de.

BERNHARD RUMPE is the Software Engineering chair at

Rheinisch-Westfälische Technische Hochschule Aachen

University, 52062, Aachen, Germany. His research interests

include rigorous and practical software and system development

methods based on adequate modeling techniques. He is editor-

in-chief of the Software and Systems Modeling Journal. Rumpe

received his Ph.D. degree in computer science from Munich

University of Technology. Contact him at rumpe@se-rwth.de.

KATRIN SCHÖNING-STIERAND is a senior digital consultant

at the Hub for Computing and Data Science at the University

of Hamburg, 22761, Hamburg, Germany, with a focus is on

fostering interdisciplinary collaboration between different

fields of science. Her research interests are informatics in the

natural sciences and research software engineering. Schöning-

Stierand received her Ph.D. degree in cheminformatics from

the University of Hamburg. Contact her at katrin.schoening-

stierand@uni-hamburg.de.

SHINHYUNG YANG is a postdoctoral researcher in the

Software Engineering group at Kiel University, 24098, Kiel,

Germany, with the SustainKieker project, focusing on the

sustainability of research software. His research interests

include performance engineering of cloud-native, applications

with a special focus on Java virtual machines and native

applications in distributed and parallel architecture. Yang

received his Ph.D. degree from Yonsei University in South

Korea. Contact him at shinhyung.yang@email.uni-kiel.de.

mailto:philine.betker@helmholtz-hzi.de
mailto:michael.felderer@dlr.de
mailto:stephan.ferenz@uol.de
mailto:ben.hermann@cs.tu-dortmund.de
http://anna-lena.lamprecht@uni-potsdam.de
mailto:j.linxweiler@tu-braunschweig.de
mailto:arnau.pratisala@dlr.de
mailto:rumpe@se-rwth.de
http://katrin.schoening-stierand@uni-hamburg.de
http://katrin.schoening-stierand@uni-hamburg.de
mailto:shinhyung.yang@email.uni-kiel.de

	059_IE-MCSE250012

