
Article Type: Software Engineering Track

Multi-Dimensional Research Software
Categorization
Wilhelm Hasselbring, Software Engineering, Kiel University, Kiel, 24098, Germany

Stephan Druskat, German Aerospace Center (DLR), Berlin, 12489, Germany

Jan Bernoth, University of Potsdam, Potsdam, 14476, Germany

Philine Betker, Department for Epidemiology, Helmholtz Centre for Infection Research, Brunswick, Germany

Michael Felderer, German Aerospace Center (DLR) & University of Cologne, Cologne, 51147 , Germany

Stephan Ferenz, Department of Computer Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg

Ben Hermann, Secure Software Engineering Group, TU Dortmund, 44227 Dortmund

Anna-Lena Lamprecht, University of Potsdam, Potsdam, 14476, Germany

Jan Linxweiler, TU Braunschweig, Braunschweig, 38106, Germany

Arnau Prat, German Aerospace Center (DLR), Braunschweig, 38108, Germany

Bernhard Rumpe, Software Engineering, RWTH Aachen University, Germany

Katrin Schoening-Stierand, Hub of Computing and Data Science, University of Hamburg, 22761 Hamburg

Shinhyung Yang, Software Engineering, Kiel University, Kiel, 24098, Germany

Abstract—Research software has been categorized in different contexts to serve
different goals. We start with a look at what research software is, before we
discuss the purpose of research software categories. We propose a
multi-dimensional categorization of research software. We present a template for
characterizing such categories. As selected dimensions, we present our proposed
role-based, readiness-based, developer-based, and dissemination-based
categories. Since our work has been inspired by various previous efforts to
categorize research software, we discuss them as related works. We characterize
all these categories via the previously introduced template, to enable a systematic
comparison. We report on the multi-dimensional categorization of selected
research software examples.
Keywords: Research Software, Software Categorization, Technology Readiness
Level, Open Source Software

R esearch software is software that is designed
and developed to support research activi-
ties. Research software is developed by re-

searchers themselves or by software engineers work-
ing closely with researchers. Research software is typ-
ically developed to meet specific research needs, and
often has unique requirements that are different from
standard commercial software [1]. However, research

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

software is gaining appreciation and endorsement for
research and as a research result itself.

Research Software Engineering (RSE) is a special-
ized field that applies software engineering principles
to address the unique challenges posed by developing
software for scientific and academic research, with
the goal of enhancing the efficiency, reproducibility,
and impact of research outcomes. Research software
engineers specialize in developing and maintaining
software for research purposes.

In this paper, we propose a multi-dimensional cat-

Published by the IEEE Computer Society Computing in Science & Engineering 1

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

egorization of research software, along the dimen-
sions of roles, readiness, developer, and dissemina-
tion. We start with a look at what research software
is before we discuss the purpose of research soft-
ware categories. We present a template for charac-
terizing such categories. Subsequently, our proposed
role-based, readiness-based, developer-based, and
dissemination-based categories are presented. Our
work has been inspired by various previous efforts
to categorize research software, which we discuss as
related works. We characterize all these categories via
the previously introduced template, and conclude with
an outlook to future work.

Research Software
For the purposes of this paper, we follow the FAIR for
Research Software (FAIR4RS) Working Group in their
definition of research software, as software that was
created during the research process or for a research
purpose [2]. This definition distinguishes “research
software” and “software in research,” which includes
general purpose software. The software components
(e.g., operating systems, programming languages, li-
braries, etc.) that are used for research but were not
created during research or with a clear research intent
should be considered “software in research” and not
“research software.” In the present paper, we catego-
rize research software.

Purpose of Research Software
Categories

We envision the following benefits from using cate-
gories for research software, which may serve

› as a basis of institutional guidelines and checklists
for research software development;

› to better understand the different types of research
software and their specific quality requirements;

› to recommend appropriate software engineering
methods for the individual categories;

› to design appropriate teaching / education pro-
grams for the individual categories;

› to give stakeholders (especially research software
engineers and their management) a better under-
standing of what kind of software they develop;

› for a better assessment of existing software when
deciding to reuse it;

› for research funding agencies, to define appropri-
ate funding schemes;

› to define appropriate metadata labels for FAIR
research software;

› in RSE Research [3] to provide a framework for
classifying research software artifacts.

This list is not exhaustive.

Characterization of Research
Software Categories

Categorizations can be described through their scope,
purpose, context, properties, consequences for cre-
ation and use, and their inter-categorial relations. Ta-
ble 1 provides a template for systematically describing
the characteristics of research software categoriza-
tions, which we will use later to characterize some
individual categorizations in the subsequent sections.

Role-Based Categorization of
Research Software

Research software can be used to collect, process,
analyze, and visualize data, as well as to model com-
plex phenomena and run sophisticated simulations.
Research software is also developed to control and
monitor lab experiments and environmental observa-
tions. In engineering research, research software con-
stitutes a new paradigm of scientific inquiry next to
theory and experiment and acts as a proof-of-concept
to invent and evaluate new technological artifacts, in-
cluding algorithms, methods, systems, tools, and other
computer-based technologies. Research software also
provides the infrastructure to manage, publish, and
archive research data and software.

Thus, research software may take various roles
in the research process [4]. This is similar to soft-
ware engineering teams, which involve a range of
roles that contribute to the development, maintenance,
and improvement of software systems. Some common
roles in software engineering are software architect,
programmer, and tester. Each role may be taken by
several persons, and one person may take several
roles. These role assignments may also change during
a software project.

We propose a similar role-based categorization of
research software, with an emphasis on varying quality
requirements for the different roles that software may
take in research. Accordingly, a research software may
take several roles, which may also change during the
life cycle of the software.

Research software mainly falls into one of the fol-
lowing three top-level role categories (and sometimes
combinations):

1) Modeling, Simulation, and Data Analytics of, e.g.,
physical, chemical, social, linguistic, or biological
processes in spatio-temporal contexts.

2 Multi-Dimensional Research Software Categorization 2024

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

Criterion Explanation

Scope What is the scope of the categorization?
Purpose What is the purpose of the categorization?
Context In which contexts are specific categories developed and used?
Properties What are specific properties of the different categories?
Consequences for Creation How is and should software of a specific category be developed?
Consequences for Use How and why is software of a specific category used? What are the differences between the

categories in terms of use and reuse, including, e.g., in software publication & citation?
Inter-categorial relations What are the relations between different categories?

TABLE 1. Template for describing criteria of research software categorizations.

2) Technology Research Software in science and
engineering research.

3) Research Infrastructure Software, such as re-
search data and software management systems.

The assignment of research software to categories
may evolve over time. For instance, software specifi-
cally developed for a research question (usually Cate-
gories 1 & 2) can later turn into infrastructure software
(Category 3). In different contexts, a software may also
be in multiple categories at the same time.

We further refine Category 1 research software for
modeling, simulation, and data analytics with several
subcategories:

1.1) Modeling and simulation (e.g., numerical mod-
eling, agent-based modeling)

1.2) Data analytics, on observation and simulation
data, with statistical analysis and machine learn-
ing as methods

1.3) Software analytics (static, dynamic, evolution,
repository mining)

1.4) Integrative analysis (data assimilation and deci-
sion analysis)

1.5) Scientific visualization

Category 2) for technology research software is used
in structural sciences (mathematics and computer sci-
ence) and in engineering sciences (software, elec-
trical, mechanical, and civil engineering). Technology
research software may be related to target contexts:

2.1) Hardware (usually as embedded software)
2.2) Software (e.g., as part of an operating system)
2.3) Human (with a user interface)
2.4) Process (e.g., as part of a business, develop-

ment or production processes)

Again, one research software may be in multiple cat-
egories. In the next section, we will additionally relate
this category to technology readiness levels as sec-
ondary sub roles.

We further refine Category 3 for research infras-
tructure software with several subcategories:

3.1) Control and monitoring software for complex
experiments and instruments. This includes em-

bedded control software, as well as native and
web-based monitoring software.

3.2) Data collection and generation (survey software,
sensor-based data collection, synthetic data gen-
eration, etc.).

3.3) Pipelines and tools.
3.4) Libraries, for instance for high performance

computing.
3.5) Laboratory notebooks.
3.6) Data management.
3.7) Software management.
3.8) Collaboration and publication.

These categories have varying requirements on their
software development. For instance, dedicated require-
ments engineering may be relevant for Category 3),
but not for Category 1). As another example, safety
analysis may be relevant for Category 3.1), but not for
Categories 1) and 2).

Figure 1, left, shows our resulting role-based cate-
gorization.

Table 2 characterizes our multi-dimensional
categorization in terms of the template in Table 1.
The readiness-based, developer-based, and
dissemination-based categorizations are introduced in
the following three sections, before we discuss some
related categorizations.

Readiness-Based Categorization of
Research Software

Technology is the application of conceptual knowledge
for achieving practical goals, especially in a repro-
ducible way. The word technology can also mean the
products resulting from such efforts, including both tan-
gible tools such as utensils or machines, and intangible
ones such as software.

Technology readiness levels (TRLs) are a method
for estimating the maturity of technologies. TRLs en-
able consistent and uniform discussions of technical
maturity across different types of technology. Figure 1,
right, shows the resulting readiness-based categoriza-
tion with the titles of the European TRL 1 to TRL 9 [5].

2024 Multi-Dimensional Research Software Categorization 3

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

secondary sub role

Research Software
Category

Role in Research

Modeling, Simulation and Data Analytics

1

Modeling and Simulation

1.1

Data Analytics

1.2

Software Analytics

1.3

Integrative Analysis

1.4

Scientific Visualization

1.5

Technology Research Software

2

Hardware Related

2.1

Software Related

2.2

Human Related

2.3

Process Related

2.4

Research Infrastructure Software

3

Control and Monitoring Software

3.1

Data Collection and Generation

3.2

Pipelines and Tools

3.3

Libraries

3.4

Laboratory Notebooks

3.5

Data Management

3.6

Software Management

3.7

Collaboration and Publication

3.8

Technology Readiness Level

TRL 1 – Basic Principles Observed

TRL 2 – Technology Concept Formulated

TRL 3 – Experimental Proof of Concept

TRL 4 – Technology Validated in Lab

TRL 5 – Technology Validated in Relevant Environment

TRL 6 – Technology Demonstrated in Relevant Environment

TRL 7 – System Prototype Demonstration in Operational Environment

TRL 8 – System Complete and Qualified

TRL 9 – Actual System Proven in Operational Environment

Developer

Individual Researcher

Local Research Group

Project Group

Community

Contractor

Dissemination

Open Source

Closed Source

Software as a Service

FIGURE 1. Our multi-dimensional categorization of research software, along the dimensions of roles, readiness, developers,
and dissemination.

4 Multi-Dimensional Research Software Categorization 2024

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

Criterion Explanation

Scope This categorization covers the dimensions of roles, readiness, developers, and dissemination.
Purpose The categorization aims to enable a better understanding of the different types of research

software and their specific quality requirements.
Context The categorization has been produced in the context of a task force of the special interest

group on Research Software Engineering, within the German Association of Computer
Science (GI e.V.) and the German Society for Research Software (de-RSE e.V.). It is meant
to serve different purposes, in particular RSE research [3].

Properties The categories follow different relevant dimensions, and are defined collaboratively among
software engineering researchers and research software engineers.

Consequences for Creation Depending on its category, software is expected to meet different quality requirements and
follow different development processes.

Consequences for Use Perceive that there are many different types of research software, fulfilling many different roles
and functions.

Inter-categorial relations Individual research software may change its category within one or more dimensions.
TABLE 2. Characteristics of our multi-dimensional categorization for research software.

These TRLs may be applied to all types of re-
search software, thus, the category dimensions are
orthogonal : every research software may be classified
independently in each dimension.

In addition, for technology research software, these
TRL titles can be read as secondary sub roles. Exam-
ples are:

TRL 3 : The technology research software takes the
role as an "Experimental Proof of Concept" within
some research project.

TRL 4 : The technology research software takes the
role as a "Technology Validated in Lab" within
some research project.

Thus, the TRLs constitute sub roles of technology
research software.

One specific technology research software may
take several such sub roles over its lifecyle, with in-
creasing "readiness". It may also take several roles
at the same time, within different contexts: In one
project, it may serve as experimental proof of concept
(TRL 3); in another project, it may already serve as a
technology validated in a lab (TRL 4). Eventually, a
technology research software may even become an
"Actual System Proven in Operational Environment"
(TRL 9).

"Readiness" is top-level in the mindmap, thus it is
it own dimension. If we had put "Readiness" directly
below "Technology Research Software", it would not
be its own dimension, thus we added the cross-link
from "Technology Research Software" to illustrate the
additional, secondary sub-role relationship.

The difference between the categories "Modeling
and Simulation" and "Technology Research Software"
(without consideration of the TRL sub roles) may be
illustrated, for instance, with control engineering re-
search:

• As a control engineering researcher, you may build
a simulation of a control system.

• As a control engineering researcher, you may also
build an actual control system as a new software
system. In an automation lab, this researcher may
then experiment with this system (not with the
simulation of the system). If this system (which is
a technology research software) matures, it may
reach higher TRLs.

Here, both, the simulation and the actual control sys-
tem are research software.

Developer-Based Categorization of
Research Software

For the developer dimension, we see the following
stages for research software:

1) Individual Researcher, such as PhD student, Post-
Doc, or Research Software Engineer.

2) Local Research Group.
3) Project Group, in which several research groups

may collaborate.
4) Community on a specific research topic.
5) Contractor (professional software company devel-

oping the software on behalf of researchers).

Dissemination-Based Categorization
of Research Software

A community or contractor may develop the software
open-source, closed-source, or it may provide research
software as an online service.

Figure 1, bottom, shows our developer-based and
dissemination-based categorizations.

2024 Multi-Dimensional Research Software Categorization 5

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

Related Research Software
Categories

Research software has been categorized in different
contexts to serve different aims. Some of them are
discussed here as related works, as they a) represent
a good starting point for a discussion on research
software categorization, b) provided significant input to
our work, and c) may be used to compare and assess
our categorization. We characterize these categories
via the previously introduced template in the supporting
technical report [6].

Role-Based Categorization
Van Nieuwpoort and Katz [4] present a role-based
categorization. They categorize research software as
an integral component of instruments used in research,
as the instrument itself, for analyzing research data,
for presenting research results, for assembling or in-
tegrating existing components, as infrastructure or an
underlying tool, and for facilitating research-oriented
collaboration. This categorization inspired our work.
Based on discussions with the authors of the present
paper, van Nieuwpoort and Katz extended their cat-
egorization with our Technology Research Software
category [4]

Maturity-Based Categorization
In their National Agenda for Research Software [7],
the Australian Research Data Commons – an Aus-
tralian research data infrastructure facility – argue for
research software to be recognized as a first-class
output of research. They describe a three-level maturity
categorization of research software that is related to
our readiness dimension:

1) Research Data Processes captured as software.
The result is analysis code that captures research
processes and methodology: the steps taken for
tasks like data generation, preparation, analysis,
and visualization.

2) Novel Methods and Models captured as software.
The results are prototype tools that demonstrate
a new idea, method, or model for research.

3) Accepted Methods and Models captured as soft-
ware. The result can become research software
infrastructure that captures more broadly accepted
and used ideas, methods, and models for re-
search.

Each category faces specific challenges with regard to
recognition, from making research practice transpar-
ent, to creating impact through quality software and
safeguarding longer-term maintenance.

Application classes in institutional software
engineering guidelines
Institutional guidelines typically define so-called appli-
cation classes for research software, which require
appropriate quality properties, and, thus software en-
gineering methods [8]:

› For software in Application Class 0, the focus is on
personal use in conjunction with a small scope.

› For software in Application Class 1, it should be
possible, for those not involved in the develop-
ment, to use it to the extent specified and to
continue its development.

› For software in Application Class 2, it is intended
to ensure long-term development and maintain-
ability. It is the basis for a transition to product
status.

› For software in Application Class 3, it is essential
to avoid errors and to reduce risks. This applies in
particular to critical software.

The application classes relate to our readiness domain
and to some extent to our developer-based categoriza-
tion.

EOSC Research Software Lifecycle
The European Open Science Cloud (EOSC) aims to
create a virtual environment for sharing and accessing
research data across borders and scientific disciplines.
The SubGroup 1 “On the Software Lifecycle” of the
EOSC Task Force “Infrastructure for quality research
software” provides a categorization for software in the
research lifecycle [9]:

1) Individual creating research software for own use
(e.g. a PhD student).

2) A research team creating an application or work-
flow for use within the team.

3) A team / community developing (possibly broadly
applicable) open source research software.

4) A team or community creating a research service.

This categorization is covered by our developer-based
categorization.

Computational research in the earth system
sciences
Döll et al. [10] provide recommendations for sustain-
able research software for high-quality computational
research in the Earth System Sciences, and categorize
this research software as follows:

› Simulation of Earth system processes by Earth
system models.

› Design, processing and analysis of Earth obser-
vation and lab experiment data.

6 Multi-Dimensional Research Software Categorization 2024

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Software Engineering Track

› Integrative analysis of simulation models, large
data bases, and stakeholder knowledge.

These categories correspond to our role-based cate-
gories 1.1), 1.2), and 1.4), respectively.

Categorizing the Software Stack
Another dimension is the research software stack,
from non-scientific infrastructure, scientific infrastruc-
ture, discipline-specific software, up to project-specific
software [11]. This dimension could be the basis for
another branch in our multi-dimensional categorization.

Qualitative Evaluation
As a pre-review study, we conducted a multi-
dimensional categorization of selected research soft-
ware examples, to check whether we can categorize
selected research software in multiple dimensions. The
selection is mainly based on in-depth knowledge of the
respective research software by the authors, such that
we are able to confidently categorize these research
software examples, in particular the readiness level.
In Table 3, we categorize the Hexatomic framework
for multi-layer linguistic annotation of corpora (https:
//corpus-tools.org/hexatomic/), the Kieker observability
and monitoring framework (https://kieker-monitoring.
net/), the MontiCore framework for the development of
software languages (http://monticore.github.io/), the
Prospective Monitoring and Management App - PIA
(https://info-pia.de/), and a quantum optics control
software. Due to length limits, we refer to the extended
version of this magazine article for further details [6].

Our qualitative evaluation shows that it is possible
to categorize different research software along multiple
categories. In particular, it shows that our categoriza-
tion is applicable to research software independently of
a single dimension: we successfully categorized soft-
ware at different maturity levels, developed by different
actors, and disseminated through different means. We
expect that our categorization can significantly con-
tribute to categorizing research software. It increases
coverage over existing approaches to categorization by
adding the dissemination category and integrating:

• role-based categorization [4], [10] in our role cat-
egories;

• maturity-based categorization [7], [8] in our readi-
ness categories;

• lifecycle-based categorization [9] in our developer
categories;

In our evaluation, example research software has been
categorized with 1–5 roles. This shows a high precision
to cover different roles research software can take

in different contexts, while manifesting that research
software roles are not exclusive. While PIA, for exam-
ple, serves a single purpose within a single context,
Hexatomic can be used for different subtasks in differ-
ent data-centric application contexts. As infrastructure
software that can be used to integrate tools into a
pipeline, Hexatomic combines research-related tasks
such as data generation and integration with research
tasks such as data editing and analysis. Simultane-
ously, it is technology research software whose target
system is an existing ecosystem of software tools for
linguistic research. The Hexatomic example reveals a
property of research software that is central to our
argument, i.e., that different contexts and perspectives
put software into different roles, which makes a multi-
dimensional categorization necessary.

As future work, we intend to conduct more in-depth
quantitative research into our categorization to assess
and improve its granularity and precision. Based on
this, we intend to analyze relations and correlations be-
tween categorical dimensions. We also plan to widen
the corpus of categorized research software by asking
more members of the RSE community to categorize
their own research software. In particular, the as-
sessment of the readiness levels requires a profound
knowledge of the software and its use. To quantita-
tively evaluate our categorization scheme, we intend
to apply more systematic and replicable research via
a systematic literature review of published research
software [12].

Additional research into providing methodological
guidance for researchers to consistently replicate our
classifications, especially for more subjective aspects
like technology readiness levels, could offer clear de-
cision criteria and documentation protocols to support
the application of our framework.

Conclusion
We categorize research software along various di-
mensions, contributing to fostering effective develop-
ment, recognition, and utilization of research software
within the research community. One essential use
case of this categorization is its incorporation into
forthcoming guidelines for research software devel-
opment. As we classify research software, we en-
able tailoring guidelines to specific classes, offering
developers a structured framework that aligns with
each category’s unique requirements and challenges.
The multi-dimensional categorization of selected re-
search software examples stimulated the refinement
and strengthening of our categorization.

Moreover, the categorization is intended to be a

2024 Multi-Dimensional Research Software Categorization 7

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://corpus-tools.org/hexatomic/
https://corpus-tools.org/hexatomic/
https://kieker-monitoring.net/
https://kieker-monitoring.net/
http://monticore.github.io/
https://info-pia.de/


Software Engineering Track

Software Role Readiness Developer Dissemination

Hexatomic 1.2 Data Analytics
1.4 Integrative Analysis
2.2 Software Related
3.2 Data Collection and Generation
3.3 Pipelines and Tools

TRL 4 Local
Research
Group

Open Source

Kieker 1.3 Software Analytics
2.2 Software Related

TRL 4,
TRL 5,
TRL 6

Community Open Source

MontiCore 1.1 Modeling and simulation
2.2 Software Related
3.3 Pipelines and Tools

TRL 4 –
TRL 8

Community Open Source,
Software as a Service

PIA 3.2 Data Collection and Generation TRL 9 Contractor Open Source

Quantum Optics
Control Software

2.2 Software Related
3.1 Control and Monitoring Software
3.2 Data Collection and Generation

TRL 9 Project
Group

Closed Source

TABLE 3. Exemplary multi-dimensional categorization of research software, further details in [6].

valuable tool for stakeholders, especially research soft-
ware engineers and their group, chair, department,
or institute leaders. The categorization may provide
these individuals with a better understanding of the
software they are developing, offering insights into its
nature, purpose, and potential impact. This knowledge
is essential for informed decision-making, adequate
resource allocation, and strategic planning within re-
search institutions.

Recognition for research software engineers is an-
other outcome we anticipate from categorizing re-
search software. By delineating different types of soft-
ware and acknowledging the diverse skill sets required
for their development and maintenance, our catego-
rization aims to contribute to elevating the status of
research software engineers. We hope this recognition
motivates individuals and fosters a culture that values
and appreciates the crucial role played by software in
advancing research efforts.

Categorizations may also help assess external soft-
ware when considering its use. We envision that it
contributes to a standardized framework for evaluating
software’s relevance, applicability, and quality, facilitat-
ing informed decisions in adopting tools from different
sources.

The categorization may become particularly valu-
able in allocating project-based or permanent funding.
It can help researchers and developers clearly articu-
late their software’s significance in a funding proposal.
We envision this classification providing a framework
that helps researchers and funding agencies.

Additionally, the categorization may help to empha-
size which software is critical, highlighting the impor-

tance of its maintenance and continued development
for its continued functionality. By highlighting this im-
portance, we seek to contribute to an enhanced aware-
ness of the ongoing support and resources required
to ensure the longevity and sustainability of research
software.

In the realm of Research Software Engineering
(RSE) research [3], we hope that the categorization
provides a framework for classifying research objects,
supporting software corpus analyses, and enhancing
our understanding of the different types of research
software and their properties. This structured approach
may aid in organizing and interpreting the vast land-
scape of research software, contributing to advance-
ments in RSE methodologies and practices.

REFERENCES
1. A. Johanson and W. Hasselbring, “Software engi-

neering for computational science: Past, present,
future,” Computing in Science & Engineering,
vol. 20, no. 2, pp. 90–109, Mar. 2018. doi:
10.1109/MCSE.2018.021651343

2. M. Gruenpeter, D. S. Katz, A.-L. Lamprecht, T. Hon-
eyman, D. Garijo, A. Struck et al., “Defining Research
Software: A controversial discussion,” Zenodo, Sep.
2021. doi: 10.5281/zenodo.5504016

3. M. Felderer, M. Goedicke, L. Grunske, W. Hassel-
bring, A.-L. Lamprecht, and B. Rumpe, “Investigat-
ing research software engineering: Toward RSE Re-
search,” Communications of the ACM, vol. 68, no. 2,
Feb. 2025. doi: https://doi.org/10.1145/3685265

4. R. van Nieuwpoort and D. S. Katz, “Defining the

8 Multi-Dimensional Research Software Categorization 2024

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.5281/zenodo.5504016
https://doi.org/https://doi.org/10.1145/3685265


Software Engineering Track

roles of research software (Version 2),” Upstream,
Jul. 2024. doi: 10.54900/xdh2x-kj281

5. A. D. Rose, M. Buna, C. Strazza, N. Olivieri,
T. Stevens, L. Peeters, and D. Tawil-Jamault, “Tech-
nology readiness level: guidance principles for re-
newable energy technologies,” European Commis-
sion, Directorate General for Research and Innova-
tion, 2017. doi: 10.2777/577767

6. W. Hasselbring, S. Druskat, J. Bernoth,
P. Betker, M. Felderer, S. Ferenz, B. Hermann,
A.-L. Lamprecht, J. Linxweiler, A. Prat,
B. Rumpe, K. Schoening-Stierand, and S. Yang,
“Multi-dimensional categorization of research
software with examples,” Zenodo, 2025. doi:
10.5281/zenodo.14082553

7. Australian Research Data Commons, “A National
Agenda for Research Software,” Zenodo, Mar. 2022.
doi: 10.5281/zenodo.6378082

8. T. Schlauch, M. Meinel, and C. Haupt, “DLR Software
Engineering Guidelines,” Zenodo, Aug. 2018. doi:
10.5281/zenodo.1344612

9. G. Courbebaisse, B. Flemisch, K. Graf, U. Kon-
rad, J. Maassen, and R. Ritz, “Research software
lifecycle,” Zenodo, Sep. 2023. doi: 10.5281/zen-
odo.8324828

10. P. Döll, M. Sester, U. Feuerhake, H. Frahm,
B. Fritzsch, D. C. Hezel et al., “Sustainable re-
search software for high-quality computational re-
search in the Earth system sciences: Recommen-
dations for universities, funders and the scientific
community in Germany,” FID GEO, Feb. 2023. doi:
10.23689/fidgeo-5805

11. K. Hinsen, “Dealing With Software Collapse,”
Computing in Science Engineering, vol. 21,
no. 3, pp. 104–108, May 2019. doi:
10.1109/MCSE.2019.2900945

12. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, “Systematic literature
studies,” in Experimentation in Software Engineer-
ing, 2nd ed. Springer, 2024, pp. 51–63. doi:
10.1007/978-3-662-69306-3_4

Wilhelm Hasselbring is a professor of software en-
gineering at Kiel University, Germany, and an adjunct
professor at the University of Southampton, UK. His
research interests include software engineering, dis-
tributed systems, and open science. Hasselbring re-
ceived a PhD in computer science from the University of
Dortmund. He is a member of the ACM, IEEE Computer
Society, and the German Association for Computer
Science, at which he is vice chair of the special interest
group on research software engineering. Contact him
at hasselbring@email.uni-kiel.de.

Stephan Druskat is a software engineering re-
searcher at the German Aerospace Center (DLR), and
a Fellow of the Software Sustainability Institute (UK).
He co-founded, and served on the inaugural board of,
de-RSE – Society for Research Software. His research
interests include research software sustainability, soft-
ware citation and publication, and empirical research
software engineering. He is a member of the Society for
Research Software Engineering, the German Society
for Research Software, and the German Association for
Computer Science, where he co-founded the special in-
terest group on research software engineering. Contact
him at stephan.druskat@dlr.de.

Jan Bernoth is a researcher at the University of Pots-
dam, affiliated with the Chair of Complex Multimedia
Application Architectures. His main research focus is on
designing an architecture of the infrastructure to sup-
port Research Data and Software Management within
a National Research Data Infrastructure Germany con-
sortium NFDIxCS. Additionally, he investigates in his
PhD thesis the creation of a research environment
aimed at investigating analytical dashboards for sci-
ence communication. Contact him at jan.bernoth@uni-
potsdam.de.

Philine Betker is a researcher at the Helmholtz Cen-
tre for Infection Research, Brunswick, Germany. She
is funded as part of a subproject of NAKO by the
Federal Ministry of Education and Research (BMBF,
project funding reference number 01ER2301/12), and
the Helmholtz Association, with additional financial
support by the participating universities and the in-
stitutes of the Leibniz Association. Contact her at
philine.betker@helmholtz-hzi.de.

Michael Felderer is the director of the Institute
of Software Technology at German Aerospace Cen-
ter (DLR) and a full professor in the Department of
Computer Science at the University of Cologne. His
research interests include software quality and se-

2024 Multi-Dimensional Research Software Categorization 9

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.54900/xdh2x-kj281
https://doi.org/10.2777/577767
https://doi.org/10.5281/zenodo.14082553
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/zenodo.1344612
https://doi.org/10.5281/zenodo.8324828
https://doi.org/10.5281/zenodo.8324828
https://doi.org/10.23689/fidgeo-5805
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.1007/978-3-662-69306-3_4
mailto:hasselbring@email.uni-kiel.de
mailto:stephan.druskat@dlr.de
mailto:jan.bernoth@uni-potsdam.de
mailto:jan.bernoth@uni-potsdam.de
mailto:philine.betker@helmholtz-hzi.de


Software Engineering Track

curity, software engineering for AI, quantum comput-
ing and digital twin technologies as well as empirical
and research software engineering. Contact him at
michael.felderer@dlr.de.

Stephan Ferenz is a senior researcher at the Carl
von Ossietzky Universität Oldenburg, Germany. His
research interests are research data management, re-
search software engineering, research software meta-
data. He holds a Master’s degree in Electrical Engi-
neering from the Leibniz Universität Hannover, Ger-
many. Stephan Ferenz is a member of the German
Association for Computer Science. Contact him at
stephan.ferenz@uol.de.

Ben Hermann is a professor for secure software
engineering at TU Dortmund University. His research
is focused on static program analysis and metascience.
Especially, his work on research artifact evaluation (i.e.
peer review) have caught much attention. He received
his PhD in computer science from TU Darmstadt. Con-
tact him at ben.hermann@cs.tu-dortmund.de.

Anna-Lena Lamprecht is professor of software en-
gineering at the University of Potsdam, Germany. She
focuses on research software engineering (RSE) and is
particularly known for her work on the FAIR Principles
for Research Software (FAIR4RS) and on the auto-
mated composition of scientific workflows. Lamprecht is
chair of the new special interest group on RSE that has
recently been installed as a joint endeavour of the Ger-
man Association for Computer Science and the Ger-
man Association for Research Software Engineering.
Contact her at anna-lena.lamprecht@uni-potsdam.de.

Jan Linxweiler is the general manager of the Center
for Mechanics, Uncertainty and Simulation in Engineer-
ing (MUSEN) at TU Braunschweig and head of IT
and Research Services at the University library. His
research interests include Research Software Engi-
neering, High Performance Computing, Research Data
Management, and Open Science. Linxweiler holds a
PhD in Engineering and is a founding member of the
German RSE association of which he recently became
chairman of the board. Contact him at j.linxweiler@tu-
braunschweig.de.

Arnau Prat is a researcher at the German Aerospace
Center (DLR). He leads the Payload Software research
group. His current research interests include model-
driven software engineering for space systems and
the use of novel programming languages for safety-
critical systems. He is currently involved in several

space missions, ranging from payloads on board the
ISS to sounding rockets or satellites. Contact him at
arnau.pratisala@dlr.de.

Bernhard Rumpe is the Software Engineering chair
at RWTH Aachen University and Editor-In-Chief of the
SoSyM Journal. His main interests are rigorous and
practical software and system development methods
based on adequate modeling techniques. This includes
agile development methods and model-engineering
based on UML/SysML-like notations and domain spe-
cific languages. He also helps to apply modeling, e.g.,
to human brain simulation, contract digitalization, pro-
duction automation, or cloud. He is author books of sev-
eral like "Agile Modeling with the UML" and "Engineer-
ing Modeling Languages: Turning Domain Knowledge
into Tools". Contact him at rumpe@se-rwth.de.

Katrin Schoening-Stierand is a senior digital con-
sultant at the Hub for Computing and Data Science
(HCDS) at the University of Hamburg. Her focus is on
fostering interdisciplinary collaboration between differ-
ent fields of science. Her research interests are infor-
matics in the natural sciences and Research Software
Engineering. She is involved in teaching and offers a
course on Research Software Engineering. Contact her
at katrin.schoening-stierand@uni-hamburg.de.

Shinhyung Yang is a postdoctoral researcher in the
Software Engineering group at Kiel University with the
SustainKieker project, focusing on the sustainability
of research software. His research interests include
performance engineering of cloud-native applications
with a special focus on Java virtual machines and na-
tive applications in distributed and parallel architecture.
He received a PhD degree from Yonsei University in
South Korea, and his research is supported by the
Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation), grant no. 528713834. Contact
him at shinhyung.yang@email.uni-kiel.de.

10 Multi-Dimensional Research Software Categorization 2024

This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3555023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mailto:Michael.Felderer@dlr.de
mailto:stephan.ferenz@uol.de
mailto:ben.hermann@cs.tu-dortmund.de
mailto:anna-lena.lamprecht@uni-potsdam.de
mailto:j.linxweiler@tu-braunschweig.de
mailto:j.linxweiler@tu-braunschweig.de
mailto:arnau.pratisala@dlr.de
mailto:rumpe@se-rwth.de
mailto:katrin.schoening-stierand@uni-hamburg.de
mailto:shinhyung.yang@email.uni-kiel.de

	Research Software
	Purpose of Research Software Categories
	Characterization of Research Software Categories
	Role-Based Categorization of Research Software
	Readiness-Based Categorization of Research Software
	Developer-Based Categorization of Research Software
	Dissemination-Based Categorization of Research Software
	Related Research Software Categories
	Role-Based Categorization
	Maturity-Based Categorization
	Application classes in institutional software engineering guidelines
	EOSC Research Software Lifecycle
	Computational research in the earth system sciences
	Categorizing the Software Stack

	Qualitative Evaluation
	Conclusion
	REFERENCES
	REFERENCES
	Biographies
	Wilhelm Hasselbring
	Stephan Druskat
	Jan Bernoth
	Philine Betker
	Michael Felderer
	Stephan Ferenz
	Ben Hermann
	Anna-Lena Lamprecht
	Jan Linxweiler
	Arnau Prat
	Bernhard Rumpe
	Katrin Schoening-Stierand
	Shinhyung Yang


