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 A B S T R A C T

We use the local curvature derived from velocity vector fields or particle tracks as a surrogate for structure 
size to compute curvature-based energy spectra. An application to homogeneous isotropic turbulence shows 
that these spectra replicate certain features of classical energy spectra such as the slope of the inertial 
range extending towards the equivalent curvature of the Taylor microscale. As this curvature-based analysis 
framework is sampling based, it also allows further statistical analyses of the time evolution of the kinetic 
energies and curvatures considered. The main findings of these analyses are that the slope for the inertial 
range also appears as a salient point in the probability density distribution of the angle of the vector comprising 
the two time evolution components. This density distribution further exhibits changing features of its shape 
depending on the Rayleigh number. This Rayleigh number evolution allows to observe a change in the flow 
regime between the Rayleigh numbers 106 and 107. Insight into this regime change is gathered by conditionally 
sampling the salient time evolution behaviours and projecting them back into physical space. Concretely, the 
regime change is manifested by a change in the spatial distribution for the different time evolution behaviours. 
Finally, we show that this analysis can be applied to measured Lagrangian particle tracks.
1. Introduction

The energy spectrum is one of the classic tools for analysing tur-
bulent flows, as it reveals the energy cascade described by Richardson 
[1] and allows to observe the extent of scaling laws, such as the one for 
the inertial range introduced by Kolmogorov [2]. Typically, a Fourier 
transform is used to compute the relevant relationship of kinetic energy 
to certain wave numbers. However, the inherently periodic nature of 
the Fourier transform leads to artefacts when applied to flows in non-
periodic domains such as the cubic Rayleigh–Bénard convection cell 
studied in this paper. For this reason, there are a number of mitigation 
approaches for spectral solvers that rely on the Fourier transform. 
Examples include windowing methods [3] or Fourier continuation tech-
niques [4]. In contrast to the use of extensions to the Fourier transform, 
we pursue an approach for our analysis which completely circumvents 
these problems as it is based on local samples. In more detail, we 
sample the kinetic energy and (path line) curvature throughout the 
investigated domain, which enables us to calculate a spectrum of mean 
kinetic energies for each curvature. Unlike the wavenumber, the curva-
ture is a local property, which allows the statistical analysis without the 
implicit requirement of a complete, periodic flow domain. Regarding 
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the calculation of the curvature of the velocity vector field, Theisel 
[5] gives a definition of the curvature of stationary vector fields. A 
definition regarding the unsteady nature of flows can be found in 
the work of Braun et al. [6] for Lagrangian particle tracks, which 
is transferable to an Eulerian definition of the flow domain. Braun 
et al. [6] also describe a trend towards higher curvatures with higher 
Reynolds numbers, a feature expected for a quantity acting as a mea-
sure of structure size. This curvature measure has been subject of a 
number of studies, see e.g. [7–9]. While Perven et al. [8] investigate 
the distribution of mean curvatures with a boundary layer, Alards et al. 
[7] show that the scaling coefficients of the probability density function 
of curvature in Rayleigh–Bénard convection (RBC) are the same as for 
homogeneous isotropic turbulence (HIT) as long as the boundary layers 
are excluded. Hengster et al. [9] confirm this and reveal an anisotropic 
behaviour of the Cartesian curvature components associated with the 
anisotropic nature of the RBC flow.

Here, we use the curvature in conjunction with the kinetic energy 
to study RBC flows. Specifically, we investigate how a change in flow 
regime manifests itself for the proposed analysis methods in order to 
shed more light on the characteristics of the regimes. RBC flows can be 
https://doi.org/10.1016/j.euromechflu.2025.204343
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classified into flow regimes depending on their main control parame-
ters, the Rayleigh number Ra and the Prandtl number Pr. Because of 
the importance for flows occurring at large scales in nature, a recent 
focus of investigation has been on the transition from the so-called 
classical regime to the ultimate regime, which is characterised by strong 
forcing (Ra ≳ 1011) and enhanced heat transfer due to fully turbulent 
boundary layers. A summary of these efforts is given by Lohse and 
Shishkina [10]. However, since these Rayleigh numbers are difficult 
to access both numerically and experimentally, we consider a regime 
transition within the classical regime for the present study. Specifically, 
we consider a Rayleigh number range 5 × 105 ≤ Ra ≤ 109 at a Prandtl 
number of 0.7. This range was chosen because it covers the transition 
from boundary layer dominated to bulk dominated thermal dissipation 
according to the Grossmann–Lohse theory [11,12] within the classical 
regime. It also coincides  with the expected transition between soft and 
hard turbulence observed by Heslot et al. [13] and Castaing et al. [14]. 
Although this accessible range of control parameters has already been 
extensively studied, the recent study by Castaing et al. [15] shows the 
potential to refine existing theories of regime transitions.

The methodology for investigating the described parameter range 
is introduced in Section 2.1. First, we use a generic flow pattern (Sec-
tion 2.2) and a HIT dataset provided by the Johns Hopkins Turbulence 
Databases (JHTDB) (Section 2.3) to explore its capabilities. The method 
is then applied to RBC cases with different Ra in Section 3.1. In addition 
to discussing the Rayleigh number range 5 × 105 ≤ Ra ≤ 109, we also 
apply the analysis framework to Lagrangian particle tracking (LPT) 
data for Ra = 2.5 × 109 and Pr = 7 to investigate its suitability for 
experimental data in Section 3.2.

2. Methodology

This section aims to introduce the basics of curvature-based spec-
tra and to explore their characteristics for a segment of the JHTDB 
HIT dataset (Re𝜆 = 433), on which the more extensive analyses are 
introduced.

2.1. Curvature-based energy spectra

For the proposed sampling-based investigation of the relationship 
between kinetic energy and curvature, both quantities must be calcu-
lated for each sampling point within the domain. In the case of the 
dimensionless kinetic energy 𝐸kin, this is a simple dependence on the 
velocity vector 𝒖: 

𝐸kin =
1
2
𝒖 ⋅ 𝒖. (1)

As mentioned in the introduction, the curvature 𝜅 [6] is used as a 
representation of the structure size: 

𝜅 = ‖𝜿‖ =
‖

‖

‖

‖

‖

‖

𝒖 × ( 𝜕𝒖𝜕𝑡 + (𝒖 ⋅ ∇)𝒖)

‖𝒖‖3

‖

‖

‖

‖

‖

‖
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In this definition, the curvature is the magnitude of a curvature 
vector 𝜿 based on the cross product of the velocity of a fluid parcel 
and its acceleration, i.e. the material time derivative of the velocity. 
The curvature vector is therefore perpendicular to the plane in which 
the fluid flow is curved and its magnitude is equivalent to the reciprocal 
value to the local radius of curvature. For the purposes of this study, 
the first step in analysing the relationship between 𝐸kin and 𝜅 is to 
determine their joint distribution based on the relative incidences. 
For this, the samples are collected in logarithmically spaced bins of 
curvature 𝐵𝜅

𝑖 = [𝜅𝑖−1, 𝜅𝑖[ and kinetic energy 𝐵𝐸
𝑗 = [𝐸kin 𝑗−1, 𝐸kin 𝑗[. The 

respective relative incidence 𝑓𝑖𝑗 is defined as 

𝑓𝑖𝑗 =

∑𝑁
𝑠=1 I(𝜅𝑠 ∈ 𝐵𝜅

𝑖 , 𝐸kin 𝑠 ∈ 𝐵𝐸
𝑗 )𝑉𝑠

∑𝑁 , (3)

𝑁 𝑠=1 𝑉𝑠

2 
Fig. 1. Generic planar flow representing a wavenumber of 𝑘 = 1. The 
respective curvatures 𝜅 are coded by colour.

where 𝑠 is the running index of the samples, 𝑁 is the total number 
of samples, 𝑉𝑠 is the volume each sample represents in the simulation 
domain used as weight, and I is the binary indicator function that 
returns 1 for samples that belong to the respective bin.

To derive a spectral function 𝐸kin(𝜅) from this joint distribution, 
weighted averages of 𝐸kin are calculated for each 𝜅 bin: 

𝐸kin(𝜅) = ⟨𝐸kin⟩𝐵𝜅
𝑖
=

∑𝑁
𝑠=1 𝐸kin 𝑠 I(𝜅𝑠 ∈ 𝐵𝜅

𝑖 )𝑉𝑠
∑𝑁

𝑠=1 I(𝜅𝑠 ∈ 𝐵𝜅
𝑖 )𝑉𝑠

. (4)

2.2. Wavenumber–curvature relation

The use of curvature as a measure of flow structure sizes naturally 
raises the question of how curvature is related to the traditionally 
used wavenumber of an FFT. For this reason we consider a generic, 
stationary velocity field
𝑢𝑥(𝑥, 𝑦) = sin(𝑦) (5)

𝑢𝑦(𝑥, 𝑦) = − sin(𝑥), (6)

that represents a wavenumber of 𝑘 = 1 in a planar,1 periodic domain 
with 𝑥 and 𝑦 ranging from 0 to 2𝜋. A streamline visualisation of the 
resulting vector field with the respective curvatures coded by colour is 
displayed in Fig.  1. It reveals the characteristic that a single wavenum-
ber is associated with a range of curvatures, including very large values 
in the centre of the circulation and at the stagnation points, as well as 
very small values at the interfaces between the synthetic circulations.

Fig.  2 shows the corresponding distribution of incidences of 𝜅 for 
spatially homogeneous sampling of this generic velocity vector field. 
It reveals relatively high constant values for small curvatures up to a 
curvature of exactly 𝜅 = 1, which is the distinct modal value of this 
distribution. The range from the modal value towards large curvatures 
shows an exponential decay with a slope of −3 which results from the 
geometry of the circular flow present in the centre of the circulation 
and near the stagnation points. The derivation of this slope is given 
in Appendix  A. Overall, these results indicate that a wavenumber of 
𝑘 = 1 is associated with a curvature of 𝜅 = 1 for a domain size of 2𝜋. 
However, this relationship does not imply equality, which means that 
the distribution of a single wavenumber over a range of curvatures must 
be taken into account for the subsequent analyses.

1 We consider a planar domain as sufficient for this investigation since each 
curvature vector describes a plane in which the rotation is considered.
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Fig. 2. Distribution of incidence of the curvatures for a synthetic planar 
velocity field with wavenumber k=1 displayed in Fig.  1.

2.3. Properties of curvature-based spectra for JHTDB HIT

Having established the relationship between wavenumber and cur-
vature, the next step is to explore the properties of the method for a 
periodic reference case. To do this, we applied the method described 
above to a case of forced homogeneous isotropic turbulence [16] 
provided by the JHTDB [17,18].

The information provided for this flow by the JHTDB includes the 
classical energy spectrum shown in Fig.  3(a), as well as the Taylor 
length scale of 𝜆 = 0.118 (represented by the dotted lines in Fig. 
3). In comparison, the curvature-based energy spectrum shown in Fig. 
3(b) was calculated using the method presented in Section 2.1 for a 
32 × 32 × 32 grid segment over 2000 time steps separated by 𝛿𝑡 = 0.002. 
All required gradients are calculated by second order accurate finite 
differences with a central scheme for interior points and a one-sided 
scheme at the boundaries [19].

When comparing the two spectra, it is important to note that the 
inherent dimensionality of the kinetic energy 𝐸kin(𝜅) does not include 
a length dimension stemming from integration, as is the case for 𝐸(𝑘). 
Therefore, the expected slope for the inertial range of the curvature 
spectrum can be derived by its sole dependence on 𝑘 or in this case 𝜅
and the turbulent dissipation 𝜖

𝐸kin ∝ 𝜖𝑖𝜅𝑗 , (7)

length2

time2
∝

(

length2

time3

)𝑖
(

1
length

)𝑗
, (8)

⇒ 𝑖 = 2∕3 ; 𝑗 = −2∕3, (9)

which gives an expected slope of −2∕3 for the inertial range of the 
energy cascade in a curvature-based energy spectrum.

Comparing the two types of energy spectra in Fig.  3 shows that the 
curvature spectrum (b) extends over a wider range of the respective 
abscissa, since the theoretical limits of the classical spectrum (a), 
namely the domain size and the Nyquist wavenumber, do not apply to 
the curvature. Accordingly, the curvature spectrum exhibits an asymp-
totic behaviour for 𝐸kin ≈ 1 for small curvatures. Together with the 
relationship between wavenumber and curvature displayed in Fig.  2, 
this results in a rather narrow 𝜅 range with the slope of −2∕3. However, 
the behaviour in conjunction with the Taylor microscale 𝜆 appears 
equal for both types of spectra. In fact, the wavenumbers or curvatures 
associated with 𝜆 (marked by dotted lines) indicate the structure size 
limit on which viscosity begins to play a significant role. Therefore, 
both types of spectra show steeper decays than for the inertial range 
3 
beyond this limit. Another difference emerges for very large wavenum-
bers or curvatures. While these are completely suppressed by viscosity 
for the classical case, the relationship presented in Fig.  2 shows, that 
energy for a certain wavenumber can be distributed to arbitrarily small 
curvatures. Consequently, the curvature spectrum extends towards very 
large curvatures.

This comparison showed that the curvature-based spectrum repli-
cates the characteristic effect of viscosity, namely a steeper decline 
associated with the Taylor microscale, of the classical spectrum. While 
there are also inherent differences, a sampling-based approach also 
has the advantage that the link to the original data persists and can 
be used for further analysis. An example of this is the consideration 
of the time evolution of individual fluid parcels within the 𝐸kin-𝜅
plane, in a visualisation approach similar to the one of Jiménez [20] 
for different projection variables. To find possible prevalent paths of 
this time evolution, we again rely on binning statistics. For this, we 
calculate the time evolution vector 

𝑼∗ =
[

𝐷𝜅∕𝐷𝑡
log𝑒(10) 𝜅

𝐷𝐸kin∕𝐷𝑡
log𝑒(10)𝐸kin

]⊤
(10)

where 𝐷𝜙∕𝐷𝑡 is the material derivative of an arbitrary scalar 𝜙. Note 
that the normalisation with the respective local values of 𝐸kin and 𝜅 as 
well as the natural logarithm of 10 results from considering the vector 
𝑼∗ in the double-logarithmic 𝐸kin-𝜅 plane2:

𝜙∗ = log10(𝜙), (11)
𝐷𝜙∗

𝐷𝑡
= 1

𝜙 log𝑒(10)
𝐷𝜙
𝐷𝑡

. (12)

Similar to Eqs. (3) and (4), we calculate the resulting vector field 
𝑼∗(𝜅, 𝐸kin) by means of bin averages 

𝑼∗(𝜅, 𝐸kin) = ⟨𝑼∗
⟩𝐵𝜅

𝑖 ,𝐵
𝐸
𝑗
=

∑𝑁
𝑠=1 𝑼

∗
𝑠 I(𝜅𝑠 ∈ 𝐵𝜅

𝑖 , 𝐸kin 𝑠 ∈ 𝐵𝐸
𝑗 )𝑉𝑠

∑𝑁
𝑠=1 I(𝜅𝑠 ∈ 𝐵𝜅

𝑖 , 𝐸kin 𝑠 ∈ 𝐵𝐸
𝑗 )𝑉𝑠

. (13)

Fig.  4 shows a streamline visualisation of the resulting vector field 
of 𝑼∗ in the 𝐸kin-𝜅 plane. Coherent patterns are particularly evident 
in regions of high relative incidence. However, due to the limited 
size of the analysed segment of the dataset, this plot is still state-
dependent rather than revealing a completely converged mean process. 
Nevertheless, the existence of coherent structures of 𝑼∗ raises the 
question of whether laws such as the −2∕3 slope are not only prevalent 
in a statistical sense, but also for the time evolution. To investigate this, 
we first define the angular direction 𝜃 of each vector 𝑼∗ by 
𝜃 = atan2(𝑈∗

𝐸kin
, 𝑈∗

𝜅 ). (14)

In a physical sense, the angle 𝜃 indicates whether a fluid parcel 
is experiencing a curving (𝜃 = 0) or straightening (𝜃 = ±𝜋) of its 
trajectory, whether it is accelerated (𝜃 = 𝜋∕2) or decelerated (𝜃 = −𝜋∕2) 
along its path, or combinations of both. Further, large magnitudes of 𝑼∗

represent fast state changes regarding 𝐸kin and 𝜅. As the same effective 
motion within the 𝐸kin-𝜅 plane is less likely to be sampled for large 
‖𝑼∗

‖, we correct this effect by adding ‖𝑼∗
‖ to the weighting for the 

densities 𝑝𝑖 of each angular bin 𝐵𝜃
𝑖 = [𝜃𝑖−1, 𝜃𝑖[ with widths 𝛥𝑖: 

𝑝𝑖 =
∑𝑁

𝑠=1 I(𝜃𝑠 ∈ 𝐵𝜃
𝑖 )𝑉𝑠 ‖𝑼

∗
𝑠‖

𝛥𝑖
∑𝑁

𝑠=1 𝑉𝑠 ‖𝑼
∗
𝑠‖

. (15)

The resulting polar density distribution is displayed in Fig.  5. It 
reveals a bimodal distribution with two peaks at the angles 0 and 
±𝜋, corresponding to an evolution of the curvature towards larger or 
smaller values, respectively, without significant changes in the kinetic 
energy. Thus, these peaks are associated with ideal inertial behaviour, 
where the curvature changes of the trajectory of a fluid parcel do not 
result in any acceleration or deceleration along its path. Both peaks 

2 Quantities 𝜙∗ with an asterisk indicate the representations of 𝜙 within a 
double-logarithmic plane with base 10.
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Fig. 3. (a) Classical energy spectrum for the JHTDB HIT flow provided by [18]. (b) Curvature-based energy spectrum (red line) based on Eq.  (4) for a segment 
of the JHTDB HIT dataset. Dashed lines indicate the respective slopes for the inertial range. The dotted lines mark the abscissa values associated with the Taylor 
microscale 𝜆. In the background, the relative incidences 𝑓𝑖𝑗 of the joint distribution from which it originates is displayed.
Fig. 4. Curvature-based energy spectrum for HIT from Fig.  3 extended by a 
streamline visualisation of the mean time evolution vector field ⟨𝑼 ∗

⟩𝐵𝜅
𝑖 ,𝐵

𝐸
𝑗
.

exhibit shoulders that characterise skews extending to the respective 
angles associated with the −2∕3 slope, which is marked by a dotted line. 
Beyond these angles, the densities decrease more rapidly. Especially 
remarkable in this regard is the almost perfect rotational symmetry 
of the distribution.3 For the flow being in an equilibrium, one would 
expect both sides, representing increasing (positive 𝜃) and decreasing 
(negative 𝜃) kinetic energy, to be balanced. However, this does not 
require this rotational symmetry. Its existence therefore indicates that 
the process under which a fluid parcel’s trajectory changes its curvature 
while subject to forcing is symmetric for acceleration and deceleration.

3. Rayleigh–Bénard data

3.1. Rayleigh number variation

Using the curvature spectrum analysis introduced for the case of 
HIT, we now turn to RBC in a cubic domain to study the evolution of 
its characteristics in the context of flow regime changes. To do this, we 
focus on the Rayleigh number dependence for a given Prandtl number 
of 𝑃𝑟 = 0.7. The data sets considered for this investigation are listed in 
Table  1. These data sets have been generated by a fourth-order DNS 

3 See also Figs.  9 and 13
4 
Fig. 5. Polar density distribution of the angle 𝜃 of the time evolution vector 
𝑼 ∗ for the JHTDB HIT flow case. The angle associated with the −2∕3 slope is 
marked by a dotted line.

solver that has been validated for a variety of flows. RBC examples 
include the studies of Shishkina and Wagner [21], Kaczorowski and 
Wagner [22],Kaczorowski and Xia [23]. The dimensionless time used 
for this, refers to units of free-fall time 𝑡f f =

√

𝐻∕(𝑎𝑔𝛥𝑇 ), where 𝐻
is the height of the cubic domain, 𝑎 the thermal diffusivity, 𝑔 the 
gravitational acceleration, and 𝛥𝑇  the temperature difference between 
the top and bottom faces of the domain. 

As the presented analysis of curvature spectra is based on sampling, 
we aimed to consider the same number of sampling points, specifically 
𝑁 ≈ 3.2 × 109, for each case, except for Ra = 109 which is also sampled 
with a smaller frame separation 𝛿𝑡 to ensure correct time derivatives 
(see Appendix  B). This results in a large variation of the considered 
time intervals between small and large Rayleigh numbers, which is 
addressed in Appendix  B to show that the discussed statistics are not 
time interval sensitive and sufficiently converged.
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Fig. 6. Exemplary fields of the temperature (colour-coded) and the in-plane velocity components (vectors) in a central vertical section of the domain. (a) 
Ra = 5 × 105 (b) Ra = 106 (c) Ra = 107 (d) Ra = 108 (e) Ra = 109.
Table 1
Overview over the investigated RBC cases. The number of available time 
frames 𝑁𝑡 with a separation of 𝛿𝑡 is adjusted, so that approximately 3.2 × 109

overall samples are considered for each case.
 Pr Ra 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝑁𝑡 𝛿𝑡  
 0.7 5 × 105 64 × 64 × 64 12096 0.01  
 0.7 106 96 × 96 × 96 3584 0.01  
 0.7 107 160 × 160 × 160 774 0.01  
 0.7 108 384 × 384 × 384 56 0.01  
 0.7 109 768 × 768 × 768 12 0.001 

As an overview of these cases, Fig.  6 displays exemplary, instan-
taneous fields of colour-coded temperatures within a vertical central 
section of the domain. They are complemented by randomly sampled 
vectors representing the in-plane velocity components. Overall, they 
show hot and cold structures, namely plumes, detaching from the 
bottom and top plate, respectively. As it is typical for RBC, these 
plumes contribute to a large-scale circulation (LSC), which is usually 
aligned along one of the vertical diagonal planes of the cubic domain. 
Besides the presence of LSCs, the series of flow visualisations displays 
the increase in intricacy, i.e. smaller structure sizes, with increasing 
Rayleigh number.

As a first step in the analysis, the line spectra of each case are calcu-
lated according to Eq.  (4). The required gradients are calculated with 
the same central (interior) and one-sided (boundaries) scheme [19] as 
for the HIT case.

The resulting line spectra are plotted in Fig.  7, where the scales 
associated with the domain size are marked by two dash-dotted lines 
referring to the curvatures of the spheres circumscribing and inscribing 
the cubic domain. The comparison between the cases reveals that they 
all exhibit a similar maximum energy of 𝐸kin ≈ 0.03 for curvatures just 
above those associated with the domain size. For smaller curvatures, 
they all display a constant behaviour with increasing 𝐸  values with 
kin

5 
increasing Rayleigh number. For curvatures associated with the domain 
size and higher values, all cases pass the −2∕3 slope of the inertial 
range before showing the bend towards a steeper slope with the onset 
of viscous effects. This turning point is – as expected – shifted towards 
larger curvatures for the more turbulent, high Ra cases, leading to 
higher kinetic energies contained in the larger curvatures of these cases.

To analyse this in more detail, Fig.  8 displays the logarithmic 
slopes for adjacent 𝜅 value pairs, in a comparable manner to a similar 
investigation of the second-order structure function by Barta et al. [24]. 
It shows a significant transition from the lowest Rayleigh numbers 
5 × 105 and 106, which just pass the slope of −2∕3 at 𝜅 ≈ 101, to the 
higher Rayleigh numbers, which exhibit a range starting at 𝜅 ≈ 101 in 
which the slopes stays at the value for the inertial range. It is further 
observable that this inertial range slightly shifts to higher curvatures 
with increasing Ra.

For even higher curvatures, all cases develop steeper slopes, which 
converge towards a value of −6∕5 especially for the high Rayleigh 
number cases. This is remarkable as this slope is associated with the 
Bolgiano–Obukhov scaling regime which expresses the influence of 
buoyancy onto the flow. This scaling is, however, expected to be 
prevalent at large structure sizes. While Alam et al. [25] show that 
this scaling can also be derived for small scales in stably-stratified 
turbulence, it is still unclear how this might be transferred to the 
present curvature-based investigation of RBC and more research is 
needed to complete understand the occurrence of the −6∕5 slope at high 
curvatures.

In order to gain a deeper insight into the time evolution of the 
turbulent structures of the different flow cases, the next step of the 
analysis is to consider the time evolution vector 𝑼∗ and to derive the 
respective polar density distributions of its slope angles 𝜃 with reference 
to Eqs. (10) to (15). For the sake of completeness, the streamline 
visualisations of 𝑼∗ within the 𝐸kin-𝜅 plane are recorded in Appendix 
C. The respective polar density distributions 𝑝 of the angle 𝜃 of the 
different Rayleigh numbers are collected in Fig.  9. Starting from the 
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Fig. 7. Curvature-based energy spectra for a Ra variation ranging from 5 × 105 to 109. Dash-dotted lines indicate the curvature values corresponding to the radii 
of the circumscribing and inscribing spheres of the cubic domain.
Fig. 8. Logarithmic slopes of the curvature-based spectra shown in Fig.  7.
most turbulent case Ra = 109, two pronounced modal values at 0 and 
±𝜋 can be observed, as was the case for HIT. However, in contrast 
to HIT, the shoulders at the angles associated with the −2∕3 slope 
are significantly more pronounced, which is emphasised by concave 
sections of 𝑝(𝜃).

Moving to smaller Rayleigh numbers, we are able to observe multi-
ple effects. First, the density decreases for the peaks on the horizontal, 
while it increases for the −2∕3 slope, even forming secondary peaks. 
The second one is that the sections between the horizontal and the 
−2∕3 slope is completely concave for Ra ≥ 107, while for smaller Ra, the 
secondary peaks form more towards the horizontals and create convex 
sections. These secondary peaks of Ra ≤ 106 even reach similar levels 
to the peak in the horizontal. This supports the findings of a significant 
change of the behaviour of the 𝐸kin(𝜅) slopes of the cases between 
Ra = 106 and 107. Here, this change is expressed by the formation 
of distinct shoulders occurring exactly at the angles 𝜃 representing the 
−2∕3 slope.

As discussed for the HIT case, the horizontal peaks represent perfect 
inertial behaviour of a fluid parcel. Therefore, the −2∕3 slope should 
not be viewed as a representation of the inertial range in the context of 
the time evolution vector 𝑼∗. Instead, we associate it with cascading 
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behaviour as it shows a simultaneous increase in curvature and de-
crease in kinetic energy, and vice versa. Two things are noteworthy in 
this context. First, that the predicted −2∕3 slope is not only statistically 
prevalent within the energy spectrum, but also plays a significant role 
in the time evolution experienced by a fluid parcel. Second, that the 
upward and downward cascading parts of the density distribution are 
largely rotationally symmetric, suggesting some sort of symmetry of the 
respective processes within the flow.

In terms of the change in flow regime, the range of Rayleigh num-
bers studied lies in the region of the transition between soft and hard 
turbulence described by Castaing et al. [14] and the transition between 
boundary layer dominated and bulk dominated thermal dissipation 
described by the Grossmann–Lohse-theory [11,12]. It is therefore af-
firming to observe a clear footprint of a transition, in the form of 
a convex–concave change of the section between the horizontal and 
the −2∕3 slope, associated with the inversion of the evolution of how 
pronounced the respective densities are.

In order to better understand the effects observed for the density 
distribution 𝑝(𝜃), we take advantage of another benefit of the persistent 
link to the original data, namely the possibility of conditional sampling 
and back-projection. Specifically, we define regions of interest of ±0.1
radians around the salient angles of 𝑝(𝜃), which are marked in Fig.  9 as 
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Fig. 9. Polar density distributions of the angle 𝜃 of the time evolution vector 𝑼 ∗ for a Ra variation ranging from 5 × 105 to 109. The angles corresponding to the 
−2∕3 slope are marked by a dotted line. The coloured sectors refer to the regions for which, conditional sampling is executed for the back-projections displayed 
in Fig.  10.
follows: Yellow (𝜃 ≈ 0) indicates the inertial curving section opposite to 
the straightening section marked in orange (𝜃 ≈ ±𝜋). Similarly, the green 
section (𝜃 ≈ arctan(− 2

3 )) marks downward cascading behaviour, while 
the blue section (𝜃 ≈ 𝜋 + arctan(− 2

3 )) represents the opposite upward 
cascading behaviour. These segments were then used as conditions to 
select the samples of the data sets to be back-projected into the physical 
domain. To give an impression of where these samples are located, their 
summed densities, i.e. viewing direction-integrated and time-averaged 
locations, are plotted in Fig.  10 for the cases of Ra = 106 (left) and Ra =
109 (right). To account for the three-dimensional nature of the flow, 
both horizontal viewing directions, 𝑦 (left) and 𝑥 (right), are displayed 
for each case. For orientation, the first row provides instantaneous 
pseudo-shadowgraphs, i.e. fields of ⟨|∇2𝑇 |⟩𝑦 and ⟨|∇2𝑇 |⟩𝑥, as they also 
integrate along the viewing direction and provide information about 
the diagonal orientation of the LSC.

Examining the back-projections for the Ra = 106 case (left side 
of Fig.  10), it becomes apparent that the purely inertial processes of 
curving and straightening occur somewhat less frequently than their 
cascading counterparts. Pure curving appears to be relatively uniformly 
distributed, but with prominent maxima at the side walls, where plumes 
begin to curve before impacting the opposing horizontal plates. Minima 
for curving are visible for regions where the pure straightening has its 
maxima, namely the impact regions of the top and bottom plates as 
well as regions at the side walls associated with plume ejection. The 
minimum regions of the straightening process are mainly occupied by 
the two cascading processes. For downward cascading, i.e. curving with 
decreasing kinetic energy, the maxima can be found in the vicinity 
of the horizontal plates, close to the edges where the plumes detach. 
However, the minima for this process are located immediately adjacent 
to the maxima, at the side walls, where the detached plumes straighten. 
This is also where the maxima for the upward cascade are located, 
as the fluid is typically accelerated by buoyancy in these regions. In 
addition to the regions of these maxima, the samples with upward 
cascading behaviour tend to be found in the bulk region.
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On the other side, the Ra = 109 case exhibits density maps with 
much finer structures, which is due to the short averaging time interval 
of this case. Nevertheless, the regions where certain processes are 
concentrated, are already observable. Consistent with the results of 
the densities of 𝑝(𝜃) (see Fig.  9), the two purely inertial processes in 
this case have higher incidences compared to with the lower Ra. The 
maximum regions for the curving and straightening behaviour appear 
very similar and are located in the vicinity of all the walls, including 
the horizontal plates. Due to the finer structures, it is harder to observe 
whether the adjacent positioning of downward and upward cascading 
persists for the high Rayleigh number. Yet, the detaching regions of the 
plumes still exhibit slightly higher densities for downward cascading 
behaviour.

To provide a more quantitative view, the 𝑧-profiles of the discussed 
𝜃-sections are displayed in Fig.  11 for both cases. They reflect the 
already discussed trend of higher fractions of the pure curving and 
straightening behaviour for the higher Rayleigh number. Further, the 
Figure shows a transition from spatially concentrated occurrences at 
Ra = 106, e.g. for the downward cascading with peaks close to the 
top and bottom plates, to significantly more uniform distributions for 
the case of Ra = 109. With regard to the earlier described transition 
of the flow regime, the aspect of the change in vertical distribution of 
the downward cascading behaviour correlates well with the shift of the 
dominance of thermal dissipation from the boundary layer to the bulk 
as described by the Grossmann–Lohse-theory.

3.2. PTV data

To demonstrate the feasibility of applying the curvature-based anal-
ysis framework to measurement data, we introduce a Lagrangian par-
ticle tracking (LPT) dataset with Ra = 2.5 × 109 and Pr = 7. It is part 
of the study by Barta and Wagner [26] and was acquired using of the 
proPTV measurement framework [27]. Fig.  12 displays 500 exemplary 
tracks out of the total of 169428 tracks used for the analysis. These 
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Fig. 10. Comparison of the back-projections of the 𝜃 ranges marked in Fig.  9 into physical space for the Rayleigh numbers 106 (left) and 109 (right). The first row 
comprises instantaneous pseudo shadowgraphs (⟨|∇2𝑇 |⟩), with an arrow indicating the rotation of the diagonal LSC in this section. For each Ra, two horizontal 
viewing directions 𝑦-parallel (left) and 𝑥-parallel (right) are presented. Below, the incidence densities for the respective ranges of 𝜃 are displayed by integrating 
over the viewing direction and the respective time interval of the data set.
tracks fill an interval of approximately 253 free-fall time units and yield 
approximately 2.5 × 107 samples with a time resolution of 𝛿𝑡 ≈ 0.042. A 
Savitzky–Golay filter [28] with a polynomial degree of 3 and a window 
size of 30 time steps has been applied to eliminate measurement noise.

The first step of the analysis is again the calculation of the spectrum 
𝐸kin(𝜅) according to Eq.  (4), which is displayed in Fig.  12(b). For this, 
we assume that the tracer particles are uniformly distributed, meaning 
that the volume weighting was not applied for this case. As for the 
DNS cases with a lower Pr, the spectrum shows a constant behaviour 
in the range of the smallest curvatures up to the curvatures associated 
with the domain size. From there on, a decrease in the kinetic energy 
with the −2∕3 slope is observed, which becomes steeper in the region 
10 ≲ 𝜅 ≲ 30. At 𝜅 ≈ 100, the spectrum bends towards less steep slopes 
again. As there is no viable physical explanation for this, we attribute 
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this behaviour to the inertia of the tracer particles, which also prevents 
measurements for very high curvatures (𝜅 ≳ 104).

The next key point of the curvature-based analysis framework is the 
density distribution 𝑝(𝜃) for the time evolution vector 𝑼∗ displayed in 
Fig.  13. As with the curvature spectrum, this polar density distribution 
plot of the LPT dataset displays features also seen for the DNS dataset 
of similar Rayleigh number and lower Prandtl number. Specifically, the 
dominant modal values at angles 0 and ±𝜋 with a concave segment 
extending up to the angles for the −2∕3 slope, where they form a 
pronounced shoulder, are replicated. Also taking into account possible 
time resolution effects discussed in Appendix  B, the only qualitative 
deviation from the DNS results is that the locations of the shoulders do 
not exactly match the angles of the −2∕3 slope. As these locations are 
slightly shifted towards the horizontal, which represents purely inertial 
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Fig. 11. 𝑧-profiles of the summed densities of the various behaviours curving, 
straightening, downward cascading, and upward cascading shown in Fig.  10.

behaviour, we also attribute this to the inertial effects of the tracer 
particles.

4. Conclusion and outlook

To avoid the spurious effects of an FFT in bounded domains, we 
introduced an analysis framework based on curvature as a measure 
of the flow structure size. Its application to homogeneous isotropic 
turbulence showed that curvature-based energy spectra are able to 
cover the main characteristics of the flow, such as the slope for the 
inertial range or the onset of viscous effects, while not being completely 
congruent with the results provided by classical energy spectra.

We further showed that the persistent link to the raw data is an ad-
vantage of this method, which can be exploited to learn about the tem-
poral evolution fluid parcels experience as well as – by means of back-
projection – the locations where certain behaviours predominantly 
occur.

These two features proved to be insightful for the application of the 
framework to a variety of cases of cubic Rayleigh–Bénard convection, 
with a Prandtl number of 0.7 and Rayleigh numbers ranging from 5×105
to 109. Within this range, the transition from soft to hard turbulence 
is expected, as well as a switch from boundary layer-dominated to 
bulk-dominated thermal dissipation, as described by the Grossmann–
Lohse-theory. Using the presented framework, we were able to show 
the following characteristics of this transition: The curvature-based 
energy spectra reflect the transition of the flow regime by exhibiting 
a distinct inertial range with a slope of −2∕3 for Ra ≥ 107 besides the 
expected effect of overall higher kinetic energies at higher curvatures 
towards larger Rayleigh numbers. For the polar distribution of the 
time evolution vectors, this transition appears as a smooth one, as 
it is described for the transition between soft and hard turbulence. 
Here, the smooth transition is characterised by an increase of the 
purely inertial curving and straightening behaviour of fluid parcels 
towards higher Rayleigh numbers with a corresponding decrease in the 
cascading behaviour. Nonetheless, at the transition point between Ra =
106 and 107 observed in the curvature-based energy spectra, the polar 
distributions start to exhibit distinct shoulders at angles associated to 
the −2∕3 slope. This means that this slope has not only a meaning in 
a purely statistical sense but also in the actual time development of 
individual fluid parcels.
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Subsequently, conditional sampling and back-projection of the var-
ious behaviours into the physical domain were conducted for the 
Rayleigh numbers 106 and 109. The respective spatial distribution 
and especially the associated 𝑧-profiles showed that the cascading 
behaviour shifts to a less localised and therefore more bulk-centred 
occurrence during the transition of the flow regime.

Finally, we showed that it is possible to apply this framework to 
Lagrangian particle tracking data sets, which yielded consistent and 
physically plausible results. This makes this method also appealing for 
the study of large-scale natural flows, which often have unclear bound-
aries and are difficult to fully resolve in numerical simulations. There-
fore, the observed deficiencies, caused by inertial effects of the tracer 
particles, need to be overcome to cover a wider range of curvatures. 
One possible solution would be to combine Lagrangian particle tracking 
with emerging data assimilation methods using physics-informed neu-
ral networks. For these, Mommert et al. [29] and Toscano et al. [30] 
showed successful applications to thermal convective flows and Zhou 
and Grauer [31] showed the possibility of extracting the inertial effects 
of tracer particles.
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Appendix A. Probability density of curvatures for an idealised 
circulation

We consider a synthetic, stationary, circular flow centred around an 
origin, with stream lines effectively forming a set of concentric circles. 
The radius of curvature of any one circle 𝑟𝑖 is equal to its distance from 
the origin 𝑅.

Consequently, when sampling the curvatures at points uniformly 
and at random, the probability of the sample corresponding to a 
curvature radius between 𝑟 and 𝑟+d𝑟 is proportional to the area of the 
circular ring bounded by circles with radii 𝑟 and 𝑟+ d𝑟, respectively: 
𝑃 (𝑟, 𝑟 + d𝑟) ∝ 𝜋(𝑟 + d𝑟)2 − 𝜋𝑟2 = 2𝜋𝑟d𝑟 + (d𝑟2). (A.1)
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Fig. 12. (a) Visualisation of 500 exemplary particle tracks from the LPT data set. (b) Curvature-based energy spectrum of the LPT data set at Ra = 2.5 × 109 and 
Pr = 7.
Fig. 13. Polar density distribution of the angle 𝜃 of the time evolution vector 
𝑼 ∗ for the LPT data set at Ra = 2.5 × 109 and Pr = 7.

Given the definition of the curvature 𝜅 = 1∕𝑟, 
d𝑟
d𝜅

= − 1
𝜅2

⇒ d𝑟 = −𝜅−2 d𝜅. (A.2)

Substituting 𝑟 and d𝑟 in (A.1) yields the probability density function for 
the curvature 

𝑓 (𝜅) ∝ 2𝜋𝜅−3. (A.3)

This shows that the exponential decay of the relative incidences 
towards high curvatures for the synthetic flow representing a wave-
number of 1 shown in Fig.  1 is a purely geometric one.
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Appendix B. Considerations on temporal convergence

The varying number of time frames 𝑁𝑡 considered naturally raises 
questions about the convergence of the analyses presented.

The first question concerns whether short time intervals 𝑁𝑡×𝛿𝑡 affect 
the shape of the polar density distributions 𝑝(𝜃) of the angle of the time 
evolution vector 𝑼∗. To address this Fig.  B.14 plots 𝑝(𝜃) for a varying 
number of frames considered 𝑁𝑡. It shows that even for the smallest 
number of frames number investigated, 𝑁𝑡 = 7, the deviations from the 
distribution for 𝑁𝑡 = 3584 (black) are minimal and lower 𝑁𝑡 are mainly 
characterised by more pronounced noise. Therefore, the shape of 𝑝(𝜃)
appears to be independent of the time interval considered.

To investigate the influence of the time resolution 𝛿𝑡 of the provided 
frames, we regard the cases of Ra = 108 and Ra = 109 as they are the 
most demanding cases regarding the respective 𝛿𝑡. The corresponding 
variation in 𝛿𝑡 for Ra = 108 is shown in Fig.  B.15. It reveals that a low 
time resolution results in more pronounced modal values at the angles 
of 0 and ±𝜋 and less pronounced shoulders or secondary peaks at the 
angles of the −2∕3 slope. However, since 𝛿𝑡 = 0.02 and 𝛿𝑡 = 0.01 are 
almost congruent, we do not expect significant changes in the shape of 
𝑝(𝜃) for higher time resolutions.

Fig.  B.16 shows the respective plot for Ra = 109. It displays the same 
effects of low time resolution as for Ra = 108. The used frame separation 
of 𝛿𝑡 = 0.001 is also considered as sufficient, as its statistics are barely 
distinguishable from the one calculated with 𝛿𝑡 = 0.002.

For the sake of completeness, Fig.  B.17 displays the curvature-based 
energy spectra for the sensitivity studies discussed. As these do not rely 
on the additional time derivative introduced by 𝑼∗, they are even more 
robust. Therefore, the only significant deviations visible in these plots 
are those due to the noise of the inadequate statistics at very low sample 
counts.

Appendix C. Streamline visualisations of 𝑼∗

Due to the pursued equal number of samples, the widely varying 
time intervals (see 𝑁𝑡 in Table  1) prohibit a comparison of the pre-
vailing structures of 𝑼∗ within the 𝐸kin-𝜅 plane. Nevertheless, they 
are displayed in Fig.  C.18 for the sake of completeness. The existence 
of the displayed coherent structures implies a statistical dependence 
between the energy and curvature evolution of a fluid parcel and its 
current state. In this respect, the circulations close to the maximum 
of the relative incidence for all cases except Ra = 109 are noteworthy. 
However, their interpretation in terms of the Rayleigh number requires 
further studies with equal time intervals for each case.



M. Mommert et al.

Fig. B.14. Polar density distribution of the angle 𝜃 of the time evolution vector 𝑼 ∗ for Ra = 106 and varying numbers of frames 𝑁𝑡 ∈ {3584; 1133; 358; 113; 36; 11; 7}
considered.

Fig. B.15. Polar density distribution of the angle 𝜃 of the time evolution vector 𝑼 ∗ for Ra = 108 and varying frame separations 𝛿𝑡 ∈ {0.01; 0.02; 0.03; 0.04; 0.05; 0.1}
considered.
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Fig. B.16. Polar density distribution of the angle 𝜃 of the time evolution vector 𝑼 ∗ for Ra = 109 and varying frame separations 𝛿𝑡 ∈ {0.001; 0.002; 0.003; 0.004; 0.005}
considered.

Fig. B.17. Curvature-based energy spectra for the sensitivity studies discussed above: (a) 𝑁𝑡 variation for Ra = 106 (b) 𝛿𝑡 variation for Ra = 108 (c) 𝛿𝑡 variation 
for Ra = 109.
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Fig. C.18. Streamline visualisations for the time evolution vector 𝑼 ∗ for various Ra numbers. The coloured backgrounds refer to the relative incidence, see Fig. 
4. (a) Ra = 5 × 105 (b) Ra = 106 (c) Ra = 107 (d) Ra = 108 (e) Ra = 109.
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Data availability

Data will be made available on request.
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