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The recently developed implicit characteristic splitting (ICS) scheme has successfully been
used for the computation of thermoacoustic instabilities. These kind of problems are primarily
driven by the interaction of acoustic waves and the fluctuations in the heat release, possibly
leading to the appearance of high pressure amplitudes. Moreover, hydrodynamic structures
which can appear in the wake of a bluff body may significantly influence the establishment
of a thermoacoustic feedback loop. It is therefore important to be able to not only reliably
compute acoustic propagation in the linear and nonlinear regime but also successfully compute
other relevant flow features with great accuracy. The focal point of this work is to investigate
the ICS scheme’s performance towards isolated subproblems featuring distinct acoustic and
hydrodynamic aspects which need to be resolved in order to successfully compute thermoacoustic
instabilities. This includes the computation of simple test cases such as one-dimensional standing
wave problems, to get a better understanding of the scheme towards its dispersive and dissipative
error. Besides, more complex test cases such as the Aeolian tones and the acoustics of a ducted
double diaphragms flow are also considered to investigate the scheme’s performance towards
hydrodynamic instabilities and aeroacoustic feedback mechanisms.

I. Introduction
The reduction of pollutant emissions in modern gas turbines led to lean premixed combustion chamber concepts.

These systems are known to be prone to combustion instabilities [1]. Especially thermoacoustic instabilities may
inflict damage to the combustion device due to high pressure oscillations and the subsequent increased structural stress
and wear. As experimental evidence emphasizes an influence of hydrogen addition on thermoacoustic instabilities,
the recent trend to reduce fossil fuels in favor for hydrogen puts thermoacoustic instabilities further into focus. But,
despite being a common problem during the development of new fuel flexible combustor concepts for gas turbines, the
computation of thermoacoustic instabilities remains a complex and challenging task. The solution of the compressible,
reacting balance and transport equations by means of large eddy simulations (LES) provides an option to compute such
instabilities. Even though, as this approach obtains a solution to both, flow and acoustic fields in one computation, care
must be taken to correctly capture all relevant phenomena. This is due to the discrepancies in characteristic velocities
appearing between acoustic, vorticity, and entropy disturbances. While acoustic disturbances propagate with the speed
of sound, vorticity and entropy disturbances are propagated with the convective velocity. In the limit of incompressible
flow, at low Mach numbers, this causes a stiff system of equations where again, special care must be taken to preserve
an accurate, stable, and efficient scheme [2]. The recently developed implicit characteristic splitting (ICS) scheme
[3–6] has already proven its capability towards such compressible low Mach number flows. However, to efficiently and
reliably compute flows prone to thermoacoustic instabilities it is important to have a thorough understanding of the
scheme’s capabilities towards relevant factors of influences. Among others, these are the ability to propagate small and
large acoustic disturbances covering the linear as well as the non linear domain. Further, as hydrodynamic structures
appearing in the flow field may significantly influence the coupling between acoustic waves and heat release fluctuations
these are also relevant. Hence, the main focus of this work is to test the ICS scheme towards selected subproblems
isolating distinct acoustic and flow characteristics which are relevant for the computation of thermoacoustic instabilities.
These subproblems include one, two, and three-dimensional problems with increasing complexity. First, by means of a
standing wave test case, the acoustic propagation under combustion chamber conditions for small and high pressure
fluctuations is investigated. Next, the build up of coherent structures in the wake of the laminar flow past a cylinder is
computed. The results concerning the flow as well as the acoustic field are compared against analytic, numerical, and
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experimental reference data. Finally, the establishment of a complex aeroacoustic feedback loop resulting in tonal noise
for the ducted flow through a double diaphragm configuration is investigated. Experimental reference data is used to
assess the computed results.

II. Numerical Method
The balance equations for mass, momentum, energy, and the transport equations for species mass fractions are given

by (Einstein notation)

𝜕𝜌

𝜕𝑡
+ 𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0, (1)

𝜕𝜌𝑢𝑖

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗
−
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
+ 𝜕𝑝

𝜕𝑥𝑖
= 𝜌 𝑓𝑖 , (2)

𝜕𝜌𝐸

𝜕𝑡
+ 𝜕𝑢𝑖𝜌𝐸

𝜕𝑥𝑖
+ 𝜕𝑢𝑖 𝑝
𝜕𝑥𝑖

−
𝜕𝑢 𝑗𝜏𝑖 𝑗

𝜕𝑥𝑖
+ 𝜕𝑞𝑖
𝜕𝑥𝑖

= 𝜌𝑢𝑖 𝑓𝑖 + 𝑆𝑟 , (3)

𝜕𝜌𝑌𝛼

𝜕𝑡
+ 𝜕𝜌𝑢𝑖𝑌𝛼

𝜕𝑥𝑖
+ 𝜕 𝑗𝛼𝑖
𝜕𝑥𝑖

= 𝑆𝛼 . (4)

In Eqs. (1)-(4), 𝑥𝑖 are the spatial coordinates, 𝑡 the physical time, 𝜌 the density, 𝑢𝑖 is the velocity vector, 𝑝 the pressure,
𝐸 is the specific total energy and 𝑌𝛼 the species mass fraction for the component 𝛼. The viscous stress tensor is defined
through 𝜏𝑖 𝑗 , the vector of the heat flux is given by 𝑞𝑖 , and the diffusive mass flux is 𝑗𝛼𝑖 . Radiative and chemical sources
are given by 𝑆𝑟 and 𝑆𝛼 whereas volume forces are denoted by 𝑓𝑖 . The specific total energy is defined as the sum of the
specific internal energy and the specific kinetic energy. A mixture of thermally perfect gases is assumed where the state
equation for an ideal gas applies. Equations (1)-(4) are solved using the implicit characteristic splitting scheme (ICS) as
described in [3]. Applying the ICS scheme results in (Einstein notation)

𝜌∗ − 𝜌𝑛
𝛥𝑡

+ 𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

− 𝜌 𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (5)

𝜌𝑢∗
𝑖
− 𝜌𝑢𝑛

𝑖

𝛥𝑡
+
𝜕𝜌𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗
− 𝜌𝑢𝑖

𝜕𝑢 𝑗

𝜕𝑥 𝑗
−
𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
= 𝜌 𝑓𝑖 , (6)

𝜌𝐸∗ − 𝜌𝐸𝑛

𝛥𝑡
+ 𝜕𝜌𝑢𝑖𝐸

𝜕𝑥𝑖
− 𝜌𝐸 𝜕𝑢𝑖

𝜕𝑥𝑖
−
𝜕𝑢 𝑗𝜏𝑖 𝑗

𝜕𝑥𝑖
+ 𝜕𝑞𝑖
𝜕𝑥𝑖

= 𝜌𝑢𝑖 𝑓𝑖 + 𝑆𝑟 , (7)

𝜌𝑌 ∗
𝛼 − 𝜌𝑌𝑛

𝛼

𝛥𝑡
+ 𝜕𝜌𝑢𝑖𝑌𝛼

𝜕𝑥𝑖
− 𝜌𝑌𝛼

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜕 𝑗𝛼𝑖
𝜕𝑥𝑖

= 𝑆𝛼 (8)

for the advective and (Einstein notation)

𝜌𝑛+1 − 𝜌∗
𝛥𝑡

− 1
𝑐2
𝛿𝑝

𝛥𝑡
= 0, (9)

𝜌𝑢𝑛+1
𝑖

− 𝜌𝑢∗
𝑖

𝛥𝑡
− 𝑢𝑖

𝑐2
𝛿𝑝

𝛥𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝑝∗ + 𝑝𝑛+1

2

)
= 0, (10)

𝜌𝐸𝑛+1 − 𝜌𝐸∗

𝛥𝑡
− 𝐸

𝑐2
𝛿𝑝

𝛥𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝑢𝑖 𝑝

∗ + 𝑢𝑖 𝑝𝑛+1

2

)
= 0, (11)

𝜌𝑌𝑛+1
𝛼 − 𝜌𝑌 ∗

𝛼

𝛥𝑡
− 𝑌𝛼
𝑐2
𝛿𝑝

𝛥𝑡
= 0 (12)

for the acoustic subsystem. In Eqs. (5)-(12), 𝑐 is the speed of sound, 𝛥𝑡 denotes the discrete time step size whereas (·)𝑛,
(·)∗, and (·)𝑛+1 represent the current, intermediate, and next time levels. With 𝛿𝑝 = 𝑝𝑛+1 − 𝑝∗ a pressure correction is
introduced and a pressure correction equation given through (Einstein notation)

𝜕2

𝜕𝑥𝑖𝑥𝑖
𝛿𝑝 − 𝜕

𝜕𝑥𝑖

(
2𝑢𝑖
𝛥𝑡𝑐2 𝛿𝑝

)
− 4
𝑐2𝛥𝑡2

𝛿𝑝

= −2
𝜕2

𝜕𝑥𝑖𝑥𝑖
𝑝∗ + 4

𝛥𝑡

(
𝜌∗ + 𝜌𝑛

2
𝜕𝑢𝑛

𝑖

𝜕𝑥𝑖

)
(13)
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Fig. 1 Relative pressure over time for the standing wave for different dissipation settings: without dissipation,
with dissipation. a) case 1 standing wave amplitude of 50 Pa. b) case 2 standing wave amplitude of 5000 Pa.

is derived (cf. [3]). Further, numeric dissipation is introduced into the acoustic step to stabilize the solution and
maintain a monotonic scheme. The advective subsystem Eqs. (5)-(8) is discretized using a temporal second order
implicit Crank Nicolson scheme. Application of an implicit instead of an explicit discretization increases the stability
(which is especially beneficial for numerically stiff combustion problems) but leads to a nonlinear system of equations.
With the introduction of a linearization for the unknown flux and source vectors and the application of the Newton
Raphson scheme a fully implicit procedure for the advective subsystem is obtained. The pressure correction equation
(Eq. (13)) is also discretized in a fully implicit manner. For the pressure correction variable 𝛿𝑝, Dirichlet boundary
conditions are applied at inflows and outflows whereas at walls von Neumann boundaries are used. Subsequent to
solving the pressure correction equation the solution is advanced in an explicit manner using Eqs. (9)-(12) as well as
the known pressure correction variable 𝛿𝑝. The approach is implemented in the in-house code ThetaCOM [7] using a
cell-vertex [8] approach where based on a primary grid a median-dual mesh is constructed. A more detailed in-depth
description of the method is given in [3].

III. Results

A. Standing wave
First, during thermoacoustic instabilities an often encountered phenomenon are standing waves. Second, the

amplitudes of the pressure perturbations encountered in thermoacoustic problems may range from several hundred Pa
[9] up to the order of 105 Pa [10]. Considering acoustic perturbations of small amplitude, the assumptions for linear
acoustics hold and a propagation of the acoustic wave with insignificant attenuation is obtained. However, higher
amplitudes behave differently. In case of acoustic perturbations of high amplitude, nonlinear effects such as wave
steepening are observed (cf. [11, 12]). To test the ICS scheme, a one-dimensional standing wave problem with different
initial pressure amplitude perturbations is considered. Solving the inviscid flow equations, the evolution of the pressure
is computed over time. The one-dimensional domain has a length of 𝐿 = 0.189 m. With a temperature of 2100 K for the
gas (air, with a mass fraction for oxygen of 23% and nitrogen of 77%) at a pressure of one bar the isentropic speed
of sound results in 945 m/s. An acoustic perturbation with different pressure amplitudes is initialized. In case 1 the
pressure amplitudes is set to 𝑃𝐴 = 50 Pa while for case 2 𝑃𝐴 = 5000 Pa is chosen. To this end, an elongated cuboid
discretized with 320 hexahedral cells is used as the one-dimensional domain. The ends of the cuboid are fully reflecting
free slip walls. All remaining sides of the cuboid are set to a pair of symmetry and periodic plains. The time step size of
the computation is 𝛥𝑡 = 0.1 µs. In Fig. 1a and Fig. 1b results for the pressure near a reflecting side wall are shown for
the both considered cases. In each plot two results are given where additional dissipation at the correction step of the
ICS scheme is applied or is not applied. For case 1 a comparatively small amplitude of 𝑃𝐴 = 50 Pa is used. For this
case no wave steepening is observed and the pressure waves propagate without attenuation. As can be seen in Fig. 1a
the application of dissipation leads to a small attenuation of the pressure amplitude over time. For case 2 the amplitude
of the pressure perturbation is set to 𝑃𝐴 = 5000 Pa. In this case nonlinear effects are noticeable which lead to a wave
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𝑅

𝜃

Fig. 2 Schematic drawing of the flow past a cylinder.

steepening as observed in Fig. 1b. Further, the wave is no longer isentropic as the wave amplitude is attenuated due to
entropy production across the steep wave front. An additional observation is made in Fig. 1b as without additional
dissipation the scheme becomes unstable and the computed solution becomes incorrect. This behavior is related to a
dispersive error originated from the discretization of the pressure correction equation and needs to be accounted for in
complex thermoacoustic simulations, also.

B. Aeolian tones
In common combustion chambers the flame is often stabilized by a shear layer [13–15]. Such a shear layer may be

formed through a bluff body with vortices shed in its wake region. The vortices can interact with the flame, leading to
heat release fluctuation causing thermoacoustic instabilities. Hence, the computation of thermoacoustic instabilities
requires that the applied method is able to correctly compute such flow fields. A well studied case featuring vortex
shedding is the flow past a cylinder as schematically drawn in Fig. 2. The cylinder is fixed in the origin of the 𝑥1, 𝑥2-plane
and the 𝑅, 𝜃-plane, respectively. In this context, 𝑅 denotes the radial direction and 𝜃 is the central angle. The approaching
flow is uniform as indicated in Fig. 2 by the Mach number 𝑀𝑎 = 𝑈0/𝑐0 with 𝑈0 denoting the flow velocity and 𝑐0
the speed of sound at free stream conditions. Depending on the Reynolds number given through 𝑅𝑒 = 𝜌0𝑈0𝐷/𝜇0,
different vortex shedding modes and frequencies are possible. In this context, 𝜌0 denotes the free stream density and 𝜇0
the dynamic viscosity. Alongside the vortex shedding an acoustic disturbance emerges known as Aeolian tone. An
experimental study covering the range of 47 < 𝑅𝑒 < 2 · 105 is given in [16], where in the range of 47 < 𝑅𝑒 < 180
parallel shedding under laminar flow conditions is observed. For the two-dimensional, laminar numerical investigations
considered here, the Reynolds number is set to 𝑅𝑒 = 150 while air with a mass fraction for oxygen of 23% and nitrogen
of 77% at a temperature of 293 K is used. Further, due to the small Mach numbers the fluid properties are considered to
be constant where a Prandtl number of 0.75 is assumed. The inflow and outflows of the computational domain are
modelled using the NSCBC approach of [17] as described in [3]. As both, the vortex shedding and the emerging acoustic
perturbation are governed by the forces acting on the cylinder surface, a sufficient resolution and grid independence
of the computed solution is mandatory. To obtain grid independence the focus is set first on the required resolution
of the first layer height and the number of points used to resolve the cylinder. The domain size is set to 𝐷1 = 50𝐷0
with a cylinder diameter of 𝐷0 = 0.005 m and an approaching flow of 𝑀𝑎 = 0.2. In the first layer the cells are almost
quadratic in the 𝑥1, 𝑥2-plane and vary in edge length between the numerical grids. The cells adjacent to the first layer
are stretched in radial direction maintaining a constant cell to cell growth rate of 𝛽 = 1.025. A total of three grids are
generated using different edge lengths in the first cell layer around the cylinder. The mesh number, edge length, and the
resulting number of points in the primary grid are indicated in Tab. 1. Evaluated are the lift- and drag-coefficients acting
on the cylinder given by 𝐶𝐿 = 2𝐹𝐿/(𝑈0𝜌0𝐴0) respectively 𝐶𝐷 = 2𝐹𝐷/(𝑈0𝜌0𝐴0), where 𝐹𝐷 , 𝐹𝐿 denote the drag- or
lift-forces and 𝐴0 the reference area. These coefficients are plotted in Fig. 3a for the three considered edge lengths over
the dedimensionalized time. As a time scale 𝐷0/𝑈0 is used, as proposed by [18]. It is observed that depending on
the edge length of the first layer height the lift- and drag-coefficients slightly differ. Between mesh W1 and W2 the
largest discrepancies are observed in the temporal development of the force coefficients whereas almost no difference is
observed between mesh W2 and W3. Hence, for all following computations the edge length of the first layer height is set
to 𝑙e = 5 · 10−5 m corresponding to the resolution of mesh W2. Next, for this study the pressure fluctuations in the far
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Mesh 𝑙𝑒
Number of

points

W1 1.0 · 10−4 m 54080
W2 5.0 · 10−5 m 123872
W3 2.5 · 10−5 m 283136

Mesh 𝛽𝑅<100𝐷0 𝛽𝑅>100𝐷0
Number of
divisions

Number of
points

F1 1.050 1.05 142 90376
F2 1.030 1.05 213 135248
F3 1.010 1.05 501 317264
F4 1.005 1.05 837 529616

Table 1 Computational grid parameters for evaluation of the required resolution for the cylinder (left) and the
far field (right).
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Fig. 3 Comparison of the computed solution on different computational grid configurations. a) lift 𝑪𝑳 and
drag 𝑪𝑫 coefficients for the edge lengths 𝒍e = 1 · 10−4 m, 𝒍e = 5 · 10−5 m and 𝒍e = 2.5 · 10−5 m. b)
Fluctuating pressure 𝜟𝒑′ along 𝜽 = 90° for Mesh F1, Mesh F2, Mesh F3, Mesh F4.

field are of interest. In order to obtain an adequate resolution in radial direction four different configurations are tested.
Again, an approaching flow of 𝑀𝑎 = 0.2 is considered with a cylinder diameter of 𝐷0 = 0.005 m. The domain size
however is set to 𝐷1 = 200𝐷0. The cell to cell growth rate in radial direction for 𝑅 < 100𝐷0 is modified as indicated
in Tab. 1. Further, the growth rate for 𝑅 > 100𝐷0 alongside the number of divisions in radial direction and the total
number of cells are given. The fluctuation pressure 𝛥𝑝′ = (𝑝 − 𝑝)/𝑝0 along the positive y-direction is plotted in Fig. 3b.
Here, 𝑝 denotes the time average of the relative pressure 𝑝. Further, the ambient pressure is set to 𝑝0 = 101325 Pa and
the 𝑥2-direction is dedimensionalized by 𝐷0. It is seen that to obtain a sufficient resolution of the pressure in the far
field mesh F3 with a cell to cell growth rate of 𝛽𝑅<100𝐷0 = 1.01 is required. Therewith, all following computations are
conducted on mesh F3. Now, analogous to [18], the Mach numbers 𝑀𝑎 = 0.1, 0.2 and 0.3 are considered. According
to direct numerical simulations conducted in [18], the pressure (𝐶𝑝) and lift (𝐶𝐿) coefficients are not affected in the
considered Mach number range (Here, the pressure coefficient is evaluated as 𝐶𝑝 = 2𝑝/(𝜌0𝑈

2
0 )). Indeed, by comparing

the results for 𝐶𝑝 plotted along the central angle 𝜃 in Fig. 4a and 𝐶𝐿 over the dedimensionalized time in Fig. 4b the
results of [18] are reproduced. Also, the qualitative increase of 𝐶𝐷 with increasing Mach number is in accordance with
the results obtained by [18]. In Tab. 2 quantitative results for the Strouhal number denoted by 𝑆𝑡 = 𝑓 𝐷0/𝑈0 with 𝑓

being the shedding frequencey are given. Alongside the Strouhal number the values for the temporal average of the drag
coefficient 𝐶𝐷 together with the amplitudes for the lift and drag coefficients are noted. The amplitudes for the lift and
drag coefficients are expressed by 𝐶 ′

𝐷
and 𝐶 ′

𝐿
, respectively. Comparing the obtained results given in Tab. 2 with values

found in literature a very good agreement is observed. Concerning the Strouhal number the experimental investigations
of [19] found a value of 0.1852 at 𝑅𝑒 = 155. In [16] a correlation based on experimental data is derived where for
𝑅𝑒 = 150 a Strouhal number of 0.1838 is obtained. Also computational studies find similar values. Examples are the
incompressible flow solutions given in [20] where 𝑆𝑡 = 0.181 and 𝑆𝑡 = 0.187 are obtained for 𝑅𝑒 = 140 and 𝑅𝑒 = 160.
Further, the incompressible study of [21] results in 𝑆𝑡 = 0.185 at 𝑅𝑒 = 150. Finally, the compressible computation of
[18] resulted in 𝑆𝑡 = 0.183 for 𝑅𝑒 = 150. Concerning the lift and drag coefficients, at 𝑅𝑒 = 160 and 𝑀𝑎 = 0.1 the
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Fig. 4 Force and pressure coefficients for the Mach numbers 𝑴𝒂 = 0.1, 𝑴𝒂 = 0.2, 𝑴𝒂 = 0.3. a)
pressure coefficient 𝑪𝒑 . b) lift 𝑪𝑳 and drag 𝑪𝑫 coefficients.

Ma 𝑆𝑡 𝐶𝐷 𝐶 ′
𝐷

𝐶 ′
𝐿

0.1 0.181 1.32 0.025 0.509
0.2 0.181 1.35 0.025 0.514
0.3 0.180 1.40 0.025 0.525

Table 2 Resulting characteristics and coefficients for the cases: 𝑴𝒂 = 0.1, 0.2 and 0.3.

incompressible computation of [20] found a time averaged drag coefficient of 𝐶𝐷 = 1.32. This coincides with [18]
where the same 𝐶𝐷 is computed except for 𝑅𝑒 = 150. Further, in [18] the amplitudes of the lift and drag coefficients
result in 𝐶 ′

𝐷
= 0.026 and 𝐶 ′

𝐿
= 0.52. In the following, results are concerned with the far field pressure of the 𝑀𝑎 = 0.2

computation. According to [22] the amplitude of a cylindrical sound pressure wave decays at large distances according
to 𝑝′ ∝ 1/

√
𝑅, where 𝑝′ is the pressure amplitude and 𝑅 is the radius. This is demonstrated to be valid for the here

considered case of an overflown cylinder by [18] using the computed fluctuating pressure 𝛥𝑝′ at 𝑀𝑎 = 0.2. In Fig. 5a
the computed fluctuating pressure 𝛥𝑝′ is plotted in the same manner, along the positive 𝑥2-direction at 𝜃 = 90° for
three distinct time steps. It shows that the local minima and maxima decay with increasing radial distance. In Fig. 5b
only the local maxima and minima of several discrete time steps are plotted over the radial distance 𝑅. Alongside the
computed results the scaling law of [22] is plotted. The plot shows that the computed results follow the theoretical
prediction confirming a correct pressure decay with increasing radial distance. By looking at Tab. 2 it can be seen that
the amplitude 𝐶 ′

𝐿
of the lift coefficient is much larger than the amplitude of the drag coefficient 𝐶 ′

𝐷
. This indicates

that the emerging tones are dominated by the generated lift forces acting mainly along the 𝑥2-axis and hence, should
display a dipole characteristic as shown among others in [18, 23]. For the case of 𝑀𝑎 = 0.2 the root mean square of the
computed fluctuating pressure is plotted along a circle with the non dimensional radius 𝑅 = 75 in Fig. 6. It is readily
seen that the emitted computed fluctuating pressure shows the expected dipole characteristic representing two lobes
extending in the negative and positive 𝑥2-direction.

C. Double diaphragms
Another mechanism that may establish an aeroacoustic or thermoacoustic feedback loop is the generation of acoustic

disturbances following the impingement of vortical structures at structural parts. These acoustic disturbances may
travel upstream and interact either with the generation of the vortical structures or the oxidizer and fuel mass flows
leading to heat release fluctuations, thus generating a feedback loop. In the aeroacoustic case, such mechanisms are
often encountered. Examples are the self sustaining oscillations of flows over cavities [24, 25] and the flow through
two ducted diaphragms [26–31]. Since thermoacoustic instabilities occur usually in confined flows the latter case is of
more interest here. At the Ecole Centrale de Lyon (France) such a case has been experimentally studied providing wall
pressure as well as velocity data by means of microphone and Laser Doppler Anemometry (LDA) measurements. A
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Fig. 5 Fluctuating pressure along 𝜽 = 90° for 𝑴𝒂 = 0.2. a) fluctuating pressure 𝜟𝒑′ at 𝒕 = 10250,
𝒕 = 10255, 𝒕 = 10260. b) absolute values of the computed ( ) local minimal and maximal fluctuating

pressure |𝜟𝒑′| together with the analytic scaling law ( ).
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0.0002

Fig. 6 Root mean square of the fluctuating pressure 𝜟𝒑′RMS along a circle with the non dimensional radius
𝑹 = 75 at 𝑴𝒂 = 0.2.

schematic view of the configuration used in the measurements is given in Fig. 7 where the flow direction is from left
to right. An important aspect of this case is that depending on the distance of the two diaphragms, a feedback loop
between vortex creation at the first diaphragm and vortex impingement at the second diaphragm connected through an
upstream travelling acoustic disturbance establishes. This feedback loop results in an acoustic resonance recognized
as a tone at a distinct frequency. In the measurement campaign two diaphragm distances are investigated. For case 1
𝐿 = 2𝑅 is applied where acoustic resonance is observed. No resonance is obtained for case 2 with 𝐿 = 4𝑅 where 𝑅
denotes the duct radius. The inflow velocity measured far upstream of the diaphragms is𝑈 = 5.4 m/s and is considered
to be fully developed. In order to reduce acoustic ambient noise and undesired reflection the inflow and outflow were
treated accordingly. The resulting wall pressure is measured at five and the velocity profiles at eleven different locations
upstream, between, and downstream of the two diaphragms. For further details considering the experimental setup,
the studies in [31] may be consulted. Additionally, in [31] numerical investigations by means of LES are presented.
Analogous to [31] both cases are investigated here by means of LES applying the ICS scheme. To this end the system of
equations presented in Sec. II is solved in its Favre filtered form. The arising subgrid-scale stress tensor is closed using
the wall-adapting local eddy-viscosity (WALE) model of [32]. If not noted otherwise, the WALE constant is set to
𝐶𝑊 = 0.2. To close the subgrid-scale energy fluxes a gradient diffusion approach is used relating the fluxes to the Favre
filtered temperature gradient. Considering the computational domain, in both configurations, case 1 (𝐿 = 2𝑅) and case
2 (𝐿 = 4𝑅), the inflow and outflow is located 14𝑅 away from the upstream respectively downstream diaphragm. Such a
large domain is chosen to minimize possible residuary disturbances due to inaccuracies emerging at the inflow and
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𝑅 𝑟

𝐿
ℎ

A

A

𝑒

𝐸

𝛼𝐿/2

𝑥2

𝑥1

Parameter Value

𝑅 25.00 mm
𝑟 14.00 mm
ℎ 11.00 mm
𝐸 1.98 mm
𝑒 0.90 mm
𝛼 17.90°
𝐿 2𝑅 / 4𝑅

Fig. 7 Schematic drawing of double diaphragm test case.

𝜎2 [kg/(s3mK)] 𝜎3,4 [1/s] 𝜎5 [kg/(m2s2)] 𝜎6 [1/s]

1.5 · 105 2.5 · 105 2.5 · 105 1.5 · 105

𝐿out [m] 𝑀𝑎out 𝜎out 𝑝out [Pa]

0.05 0.015 0.075 101325

Table 3 NSCBC parameters for inflow (left) and outflow (right) of the double diaphragms test case.

outflow boundaries which could impair the phenomenons generated by the diaphragms. The inflow respectively outflow
is modelled as partially reflective using the NSCBC approach of [17] as described in [3] where the parameters are listed
in Tab. 3. Here, the parameters 𝜎2−6 are case dependent constants defining the relaxation parameters associated with
a subsonic partially reflecting inflow as defined in [31]. Analogously, the outflow parameters are used to define the
subsonic partially reflecting outflow where the relation of [33] given by 𝐾 = 𝜎out (1 − 𝑀𝑎out)𝑐/𝐿out is used. Here, 𝐾
defines the relaxation parameter at the outflow boundary while 𝑀𝑎out, 𝜎out, and 𝐿out are the case dependent Mach
number, relaxation parameter, and characteristic length used to define the outflow boundary. In the experimental
investigations also the reflection coefficients of the test facilities inflow and outflow have been characterized. A direct
comparison of the reflection coefficients with the numerical setup for the longitudinal waves according to [3] is plotted
in Fig. 8. At the inflow a fully developed turbulent flow profile without turbulent fluctuations, following the one-seventh
power law with a maximal velocity of𝑈in = 5.4 m/s is assumed. As fluid, air with a mass fraction for oxygen of 23%
and nitrogen of 77% at the inflow temperature of 𝑇in = 290.65 K is applied. For the encountered phenomenon not only
the acoustic disturbances need to be well resolved but also a correct build up and transport of the vortical structures
is required. A hybrid meshing approach is used for this reason for the primary grid where the areas confined by the
diaphragms is meshed using hexahedral cells. Cell agglomeration is applied towards the mouths of the diaphragms.
Outside the area confined by the diaphragms, tetrahedral cells are applied with successive coarsening towards the inflow
and outflow of the computational domain to favor numerical dampening of inaccuracies due to unwanted reflections at
the inflow and outflow. To assure a sufficient resolution of both mechanisms three different numerical grids are tested
for case 1. For these meshes the number of control volumes in the median-dual mesh is varied between 1.7, 5.1, and
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102 103
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Fig. 8 Comparison of reflection factors for inflow (a)) and outflow (b)). computation, measurement.
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Fig. 9 Comparison of computational grids for case 1. a) averaged axial velocity at 𝒙1 = −20 mm, b) Power
spectral density of the wall pressure at 𝒙1 = 0 mm. coarse, medium, fine.

14.0 million for the coarse, medium, and fine grid. In Fig. 9 the computed averaged axial velocities as well as the power
spectral densities (PSD) for case 1 on the different numerical grids are plotted. Comparing the averaged axial velocity
profiles in Fig. 9a plotted at 𝑥1 = −20 mm it is seen that the differences between the three tested grid resolutions is small.
This indicates that concerning the averaged velocity field, a sufficient resolution is already obtained by the coarsest grid.
However, considering the acoustic pressure by looking at the PSD of the wall pressure at 𝑥1 = 0 mm given in Fig. 9b a
different behaviour is obtained. Starting with the coarse grid a first small peak is observed at a frequency of 𝑓 = 535 Hz.
Towards higher frequencies the spectrum decreases monotonically until 𝑓 = 4160 Hz where a second peak is observed.
The results concerning the PSD of the wall pressure on the medium and fine sized grids differ. Here, a first broad peak
is observed at around 𝑓 = 317 Hz followed by a pronounced peak at 𝑓 = 538 Hz and a smaller one at 𝑓 = 1075 Hz.
After that the spectrum monotonically decreases until 𝑓 = 4160 Hz where as compared to the coarse solution a fourth
peak appears. Comparing the amplitudes it is seen that the monotonic decrease towards heigh frequencies is largest for
the coarse grid and smallest for the fine grid. The medium sized grid lies in between. As all computational parameters
are kept constant, these discrepancies for the monotonic decrease are related to the different mesh resolutions and the
entailed differences in the numerical dissipation. Next, a closer look is taken on the peaks at frequencies 𝑓 = 538 Hz
and 𝑓 = 1075 Hz. These peaks are of most interest as they are associated with the acoustic modes occurring at case 1.
Only for the medium and fine sized grids significant amplitudes at these frequencies are observed where slightly higher
values are obtained for the fine grid. This results in the observation that, as compared to the averaged velocity field, the
obtained wall pressure is much more sensitive towards the resolution of the computational grid. Further, it requires at
least the medium sized grid to establish the aeroacoustic feedback loop between shedding, impinging, and upstream
traveling pressure wave. Due to the slightly higher wall pressure amplitudes, the solution on the fine grid is used for the
following analyses. Also, all further computations are computed on numerical grids using the fine grid settings.

D. Case 1
A comparison between the computationally and experimentally achieved results for case 1 is given in Fig. 10.

Compared are the average axial velocity as well as the root mean squares of the velocity fluctuations at different locations
along the streamwise direction 𝑥1. The positions of the profiles are indicated in the figure. Further, a comparison of the
resulting power spectral densities of the computational and experimental findings at 𝑥1 = −82 mm, 𝑥1 = 0 mm, and
𝑥1 = 82 mm is given. Relating the averaged axial velocity profiles overall a very good agreement is obtained. Only slight
deviations are observed directly downstream of the first diaphragm where the flow accelerates as a result of the provoked
flow restriction. This is best visible at 𝑥1 = −20 mm. Here, the computed result obtains slightly higher flow velocities
between −10 mm < 𝑦 < 10 mm as compared to the measurements. This is a direct result due to mass conservation. The
small misalignment of the slopes at 𝑥2 = ±12 mm lead to a narrower cross section in the computational results causing
higher axial flow velocities. The increased velocities in the core flow persist between the two diaphragms up until
𝑥1 = 30 mm. Further downstream, the deviation in the core flow velocities reduces and the computed and experimental
values are in an excellent agreement. Similar observations are made for the RMS of the velocity fluctuations. Here,
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Fig. 10 Comparison of the experimentally and numerically (𝑪𝑾 = 0.2) obtained averaged velocity, the root
mean square of the velocity fluctuations as well as power spectral density of the wall pressure for case 1. Position
of microphones are: pos. 1 𝒙1 = −82 mm, pos. 2 𝒙1 = 0 mm, and pos. 3 𝒙1 = 82 mm. numerical, and
experimental.

upstream the first diaphragm at 𝑥1 = −40 mm and 𝑥1 = −30 mm differences between the computed and measured values
only exist towards the duct walls where higher fluctuations are obtained in the experimental results. As a smooth
profile without turbulent fluctuations is imposed for the simulation, this deviations are expected. At 𝑥1 = −20 mm two
distinct peaks are visible in the RMS velocity fluctuation profile at 𝑥2 = ±12 mm. The position and the magnitude
slightly deviate between computation and experiment. For the magnitude, the simulation obtains lower values whereas
the deviation in position fits the misalignment of the slopes in the averaged velocity profile at the same location.
Further downstream, at 𝑥1 = −10 mm up to 𝑥1 = 20 mm, the numerical solution compares well with the experimental
measurements in terms of qualitative and quantitative agreement. Downstream the second diaphragm beginning with
𝑥1 = 30 mm, the computed solution obtains larger fluctuations in the core flow region for −13 mm < 𝑦 < 13 mm as
compared to the experimental values. Referring to the acoustic pressure, wall pressure measurements upstream, between
and downstream the diaphragm section are available and compared against the numerical results, also. A very good
agreement in terms of frequency and amplitude of the occurring peaks at 𝑓 = 325 Hz and 𝑓 = 1048 Hz is achieved at all
three positions. However, slight differences exist. First, the frequency of the first peak for the computational result
is 12 Hz higher as compared to the measurements. Consequently, also an increased frequency in the computational
results is observed in the second peak, being the higher harmonic of the first peak. One reason may be a deviation
in the geometrical setup, as the experiment is prone to manufacturing tolerances. Another uncertainty adding to a
deviation in frequency could be a slightly different speed of sound due to differences in fluid properties as compared
to the experiment. Aside of the frequencies, in the simulation, the amplitudes are somewhat lower as compared to
the experimental findings. This is more pronounced for the higher harmonic ( 𝑓 = 1048 Hz) at position one and three.
The small increase in deviation of the amplitudes is related to an increased dampening caused by the larger numerical
dissipation following the coarser grid settings upstream and downstream the diaphragms. Comparing the decrease in the
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Fig. 11 Comparison of the experimentally and numerically (𝑪𝑾 = 0.6) obtained averaged velocity, the root
mean square of the velocity fluctuations as well as power spectral density of the wall pressure for case 1. Position
of microphones are: pos. 1 𝒙1 = −82 mm, pos. 2 𝒙1 = 0 mm, and pos. 3 𝒙1 = 82 mm. numerical, and
experimental.

pressure spectrum at high frequencies this assumption is encouraged, where the largest discrepancies are observed for
position two with the highest grid resolution. The inaccurate decrease in the wall pressure spectrum for high frequencies
especially visible at position two between the diaphragms may indicate that the dissipation of energy is not correctly
modelled in the computation. As mainly high frequencies are affected, this may be related with an erroneous dissipation
of kinetic energy related with the small turbulent scales. Using the WALE model, the dissipation of kinetic energy
on subgrid level is adjusted by the case dependent WALE constant 𝐶𝑊 . One way to increase the dissipation towards
smaller turbulent scales is to adjust this constant. For this reason a computation on the fine grid with 𝐶𝑊 = 0.6 is
conducted. The results for this computation in terms of averaged velocity profiles, the profiles for the RMS of the
velocity fluctuations, and the wall pressure spectra are given in Fig. 11. It is readily seen that as compared to the results
with 𝐶𝑊 = 0.2 the decrease in the wall pressure spectrum of position two and three towards high frequencies is better
matched for the results with 𝐶𝑊 = 0.6. At position three, the experimental fall off in the spectrum is almost achieved
whereas at position two a deviation compared to the experimental data is still well visible. The already very good
results at position one remain unchanged. Also, the frequencies of the acquired peaks are not influenced. However,
comparing the amplitudes of the peaks, slightly lower values are obtained for the computation with 𝐶𝑊 = 0.6. Further,
by comparing the averaged velocity profiles no significant differences are observed compared to the results obtained
with 𝐶𝑊 = 0.2 and the overall agreement with the experimental data is maintained. In contrast, for the RMS of the
velocity fluctuations small differences between the computation with 𝐶𝑊 = 0.2 and 𝐶𝑊 = 0.6 are observed. These
differences are obtained at 𝑥1 = −20 mm and downstream the second diaphragm at 𝑥1 = 40 mm to 𝑥1 = 60 mm. At
𝑥1 = −20 mm the magnitude of the two observed peaks at 𝑥2 = ±12 mm is getting smaller in the 𝐶𝑊 = 0.6 case. A
similar behaviour is seen in the core flow in the profiles at 𝑥1 = 40 mm to 𝑥1 = 60 mm where the overestimation of the
fluctuations compared to the experimental results is reduced.
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Fig. 12 Comparison of the experimentally and numerically (𝑪𝑾 = 0.6) obtained averaged velocity, the root
mean square of the velocity fluctuations as well as power spectral density of the wall pressure for case 2. Position
of microphones are: pos. 1 𝒙1 = −107 mm, pos. 2 𝒙1 = 0 mm, and pos. 3 𝒙1 = 107 mm. numerical, and

experimental.

E. Case 2
Next, case 2 is investigated. This case differs from case 1 by a doubled distance between the diaphragms. For

this case, no pronounced aeroacoustic resonance is measured in the experiments. The fine settings are used for the
computational model leading to a total number of control volumes in the median-dual grid of about 21 millions. The
WALE constant is set to 𝐶𝑊 = 0.6. Again, in Fig. 12 a comparison of the averaged axial velocities, the RMS of the
fluctuating velocities, and the PSD of the wall pressure is given. The positions along the streamwise direction for
the velocity profiles are indicated in the figure, whereas the wall pressure measurements are given at 𝑥1 = −107 mm,
0 mm, and 107 mm which are referred to as position one, two, and three. For the averaged axial velocities, as for case
1, an overall excellent agreement is obtained. Slight deviations only exist downstream the first diaphragm where the
velocities in the core flow are somewhat higher compared to the experimental findings. Again, this results from the
small mismatch in the location of the slopes best visible at 𝑥1 = −40 mm. Also the computed profiles for the RMS of
the fluctuating axial velocities are in a very good agreement with the measurements. As expected from the smooth
inflow profile without imposed turbulent fluctuations, far upstream at 𝑥1 = −80 mm and 𝑥1 = −60 mm small differences
are visible. At 𝑥1 = −40 mm the bulges are slightly shifted towards the centreline as compared to the experiment. This
follows the trend of the slight misalignment of the slopes observed in the averaged axial velocity profile at the same
position. Nevertheless, the amplitude of the bulges are well matched. Downstream the second diaphragm starting
at 𝑥1 = 60 mm the differences in axial velocity fluctuations between computed and measured solution are negligible.
Comparing the PSD of the computed and measured wall pressures at positions one, two, and three it is apparent, that
no aeroacoustic resonance is obtained in the computed data which is in agreement with the experimental findings.
Moreover the decay in the wall pressure spectrum is excellent at position one and only slightly overestimated at position
two and three indicating an overall correct behaviour of the computational model.
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IV. Summary and Conclusion
The complex mechanism leading to thermoacoustic interactions involves multiple different physical phenomenons

interacting with each other. This introduces difficulties understanding erroneous computational results not aligning
with experimental findings or numeric reference data. To get a reliable solution towards thermoacoustic instabilities it
is a minimal requirement to obtain reliable and accurate solutions to the contributing subproblems. For this reason,
contributing mechanisms are identified and investigated separately by means of three different test cases with increasing
complexity. First, due to the high pressure amplitudes frequently encountered in thermoacoustic problems the acoustic
waves are subject to nonlinear effects such as wave steepening. This wave steepening leads to entropy production and the
initiated sinusoidal wave degenerates to a damped saw tooth signal. Unless introducing additional numerical damping,
the solution computed with the ICS scheme becomes unstable introducing parasitic modes due to dispersive errors.
Second, the ICS scheme’s ability to compute coherent hydrodynamic structures in combination with the associated
acoustic fields is demonstrated. These flow structures are of great significance in the mechanisms driving thermoacoustic
instabilities. The flow past a cylinder shows that for the correct representation of the unsteady flow features a high spatial
resolution around the cylinder is required. Also, for a correct representation of the acoustic field a high spatial resolution
in the region of interest is necessary. Referring to common combustion chambers, this indicates that a sufficiently high
grid resolution not only in the combustion zone is required but also throughout the domain where reflected acoustic
waves may interfere with the flow features. A similar observation is made for the ducted double diaphragm test case,
where a resonant feedback cycle only occurs if all flow and acoustic features are sufficiently resolved. Again, referring
to combustion chambers, there is also a need for an adequate resolution which resolves downstream traveling coherent
structures without excessive dampening. Overall, if all requirements are met, the ICS scheme does show a very good
ability to compute problems primarily associated with aeroacoustic.
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