
© 2025 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses,

in any current or future media, including
reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Link to the published version of the paper:
https://doi.org/10.1109/AERO63441.2025.11068600

https://doi.org/10.1109/AERO63441.2025.11068600

System Architecture and Design Considerations for the
Humanoid Robot Rollin’ Justin in Context of the Surface

Avatar Mission
Adrian S. Bauer, Anne Köpken, Nesrine Batti, Jörg Butterfaß, Tristan Ehlert, Werner Friedl, Thomas Gumpert,

Florian S. Lay, Xiaozhou Luo, Ajithkumar N. Manaparampil, Luisa Mayershofer, Antonin Raffin,
Florian Schmidt, Daniel Seidel

German Aerospace Center (DLR), 82234 Weßling, Germany
adrian.bauer@dlr.de, {firstname.lastname}@dlr.de

Emiel den Exter, Rute Luz
European Space Agency (ESA)

2201AZ Noordwijk, Netherlands
emiel.den.exter@ext.esa.int, rute.luz@ext.esa.int

Annika Schmidt
German Aerospace Center (DLR), 82234 Weßling, Germany
Technical University of Munich, 85748 Garching, Germany

an.schmidt@tum.de
Peter Schmaus

German Aerospace Center (DLR)
82234 Weßling, Germany

peter.schmaus@dlr.de

Daniel Leidner
German Aerospace Center (DLR), 82234 Weßling, Germany

University Bremen, 28359 Bremen, Germany
daniel.leidner@dlr.de

Thomas Krüger
European Space Agency (ESA)

2201AZ Noordwijk, Netherlands
thomas.krueger@esa.int

Neal Y. Lii
German Aerospace Center (DLR)

82234 Weßling, Germany
neal.lii@dlr.de

Abstract—With continuous advancements in robotics, both in
hardware and in software, the feasibility to deploy robotic as-
sistants as co-workers for astronauts in real mission scenarios
is coming in sight. In the context of the Surface Avatar In-
ternational Space Station (ISS) telerobotic technology demon-
stration mission, we study the requirements in terms of user
interface (UI), robotic capabilities, and communication to en-
able efficient usage of robots as astronaut’s co-workers. Dur-
ing the experiments, astronauts onboard the ISS command a
team of heterogeneous robots at the German Aerospace Center
(DLR) in Oberpfaffenhofen, Germany, to perform experimental
tasks in a Mars analog environment. In order to complete
the tasks successfully, the astronauts have to select between
different robot command modalities, namely teleoperation and
supervised autonomy. While previous publications have mostly
focused on the UI, the interfaces between robots and the UI,
and the overall mission concept, this work sheds light on the
robotic back-end and provides a description of our reference
implementation. Utilizing the humanoid robot Rollin’ Justin
as our prime use case, we describe the modules that enable the
robotic capabilities that are offered to the astronauts as well as
their implementations. As a core aspect of Surface Avatar is the
ability to select from different command modes, i.e. supervised
autonomy and direct teleoperation, we put special focus on
the high-level modules that enable supervised autonomy, such
as knowledge representation, belief state representation, and
reasoning, as well as the teleoperation interfaces. The paper
also describes the integration of the aforementioned modules
into the overall system. In this work we share the decisions
and iteration processes that lead up to our current design, the
motivation behind the decisions, the limitations they imply on
the system, and the lessons learned during the process. This
work particular examines these modules in the context of the
Surface Avatar experiment session and describes, in particular,
the improvements that have been achieved in comparison to
previous versions. While the system continues to evolve to
support new features for upcoming experiment sessions, our
description covers the state of the robot during the first ISS
experiment sessions and the two following prime sessions of
Surface Avatar.

979-8-3503-5597-0/25/$31.00 ©2025 IEEE

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. RELATED WORK . 2
3. THE SURFACE AVATAR MISSION 2
4. SYSTEM DESCRIPTION . 4
5. REASONING FRAMEWORK FOR EFFICIENT

REMOTE OPERATION . 5
6. DISCUSSION . 9
7. CONCLUSION . 9
ACKNOWLEDGMENTS . 10
REFERENCES . 10
BIOGRAPHY . 12

1. INTRODUCTION
Driven by recent developments in robotics, particularly with
humanoid robots’ vast potential in mobility and dexterous
object handling, coupled with human curiosity and interest
in space, the deployment of robotic assistants as co-workers
for astronauts is on the horizon. As robots can be designed
to operate in hazardous environments, accomplish tasks in-
feasible for humans, and operate without breaks, they are
perfect companions for astronauts, supporting them in dirty,
dull, and dangerous jobs. As almost any task in space can
be considered dangerous, there is great potential for robots in
space.

Extensive previous work including METERON SUPVIS
Justin [1] and Analog-1 [2], have shown a multitude of
possibilities to command a robot as co-worker and as im-
mersive physical avatars on-site. We also ponder a future
of commanding teams of robots with different command
modalities and command abstractions [1]. It is with this
inspiration that we commenced the Surface Avatar Interna-
tional Space Station (ISS) telerobotic technology demonstra-
tion mission [3]. Surface Avatar, led by German Aerospace

1

Center (DLR) with partner European Space Agency (ESA),
studies the factors that enable astronauts to make efficient
use of robotic teams through different styles of command,
ranging from direct teleoperation to Supervised Autonomy
as co-workers. In this context we put special focus on the
design of an intuitive user interface (UI), understanding the
requirements of communication between astronaut and robot,
and the robot capabilities that enable efficient interaction.

While in the METERON experiments astronauts on the ISS
commanded one robot at a time, Surface Avatar extends this
approach to commanding a heterogeneous team of robots
located at DLR in Oberpfaffenhofen, Germany. So far, three
sessions have been carried out with a team of up to four
different robots with different form factors and functionali-
ties. The tasks that the astronauts were requested to solve,
ranged from maintenance tasks such as checking on assets
and interacting with them to solve malfunctions, to scientific
tasks like distributing seismometers in the environment or
selecting, picking, and analyzing rock samples.

To solve these tasks, the astronauts are supported by a user
interface on board the ISS consisting of a graphical user
interface (GUI), a joystick, and a Force Dimension sigma.71

haptic input device. They can issue task-level commands
to the robots via the GUI, which the robots execute au-
tonomously, or control the robots more directly, or immer-
sively via an open-loop joystick or the sigma.7 with multi-
Degree-of-Freedom (DoF) force-reflection.

While the UI for Surface Avatar has previously been de-
scribed in multiple publications [4], [5] this work sheds light
on the system architecture of DLR’s humanoid robot Rollin’
Justin [6] that enables the integration of complex robot into
the Surface Avatar operations. Core aspects we must realize
include the ability to enable the communication layer, as
well as the interfaces for switching between and linking
the different teleoperation modalities with the joystick and
sigma.7 devices.
The contribution of this paper is to give an overview of the
software system on Rollin’ Justin that was used throughout
six ISS-to-ground teleoperation experiments in the Surface
Avatar Mission.

In the following we link to related work in section 2, followed
by a description of Surface Avatar, including the requirements
and constraints it implies on the robot in section 3. Next,
we describe the Rollin’ Justin system in section 4 before
addressing the reasoning framework that enables efficient re-
mote operation in section 5. Finally we discuss the limitations
and the lessons learned of the architecture in section 6 before
concluding the paper in section 7.

2. RELATED WORK
Aside from the current Surface Avatar mission, there have
been previous studies on space-to-ground or ground-to-space
teleoperation of robots. ESA’s Haptics and Interact ex-
periments demonstrated the feasibility to command, from
the ISS, with force-reflection with a single-rotational DoF
joystick [7], [8], [9]. Haptics-1 primarily collected data
about psycho-motor performance in operating the 1 DoF
force-reflection joystick in microgravity. During Haptics-2,
a haptic joystick on ground was coupled with the joystick
on orbit, allowing for a teleoperated handshake between orbit

1https://www.forcedimension.com/products/sigma, last
accessed Oct. 4th 2024

and ground.

Telerobotics has played an important role in space, with the
Canadarms both being used in the construction and servicing
of the ISS for more than 20 years [10], [11]. To advance
human-robot collaboration, numerous studies have been car-
ried out to develop the technology necessary for orbit-surface
robot command. The vision is to enable a future with holistic,
Scalable Autonomy based command of robots in cislunar
space and beyond [12]. In ROKVISS and KONTUR-1 [13]
a 2 DoF robot mounted on the ISS was teleoperated from
ground. In the follow-up experiment KONTUR-2 [14], [15],
a 2 DoF force feedback joystick was upmassed and installed
on-board the ISS to teleoperate a 2 DoF robot on ground as
well as the humanoid SpaceJustin in a series of experiments.
They used a direct point-to-point communication via S-Band,
leading to low latency but putting an upper limit on the
experiment time at 8-10 minutes. The system architecture
of the KONTUR-2 mission is described in [16].

As discussed in section 1, different command abstraction lev-
els have been demonstrated in ISS-to-Earth experiments. Us-
ing Supervised Autonomy, astronauts were able to command
and manage a robot as an in-situ co-worker at the task level
in METERON SUPVIS Justin to perform various inspection,
maintenance, and assembly tasks [17], [18]. As the operator
on the ISS and the robot on ground were connected via the
Tracking and Data Relay Satellite System (TDRSS), there
were virtually no limits on the experiment duration at the
cost of a communication delay between operator and robot
of ≈ 800ms. On the other hand, the possibility to intervene
by taking over the robot directly in unknown situations and
environments remains necessary, especially in exploration
missions. The Analog-1 mission combines task-level com-
mands and teleoperation. They demonstrated the possibility
to stably command a robot dexterously with high-DoF input
and force reflection, under high time-delay conditions [19].

Furthermore the US National Aeronautics and Space Ad-
ministration (NASA) successfully landed the rovers So-
journer [20], Spirit [21], Opportunity [22], Curiosity [23],
and Perseverance [24] on Mars. Furthermore, the team
of Perseverance and the Ingenuity robotic helicopter [25]
marked the first time of robot collaboration on the Martian
surface. Due to the long round trip time between Earth
and Mars, the mode of teleoperating these rovers differs
fundamentally from our approaches, which deal with time
delays in the range of below a second instead of minutes
to hours. The systems engineering process of Curiosity is
described in [26], systems engineering the parameters of
Perseverance is described in [27].

NASA also deployed the Astrobee [28] on the ISS, an intra-
vehicular free-flying system that can be commanded from
ground through a GUI.

3. THE SURFACE AVATAR MISSION
The Surface Avatar mission [3] investigates how to efficiently
command a team of robots located on earth from aboard
the ISS. The insights gained during this project will support
developments for future missions where robots on the surface
of extraterrestrial celestial bodies are remotely commanded
by the crew of a nearby spacecraft.

Teleoperation from orbit faces multiple challenges, one of
them being the time delay introduced by the communication

2

https://www.forcedimension.com/products/sigma

2

1

3

4

Figure 1. The robots in the Surface Avatar experimental
Area, namely (1) Bert, (2) Interact, (3) Rollin’ Justin and (4)

TINA arm mounted to a lander.

infrastructure. In our setup, the operator and the robot
exchange their data through the Multi Purpose Computer
and Communication (MPCC) link [29], which connects the
ISS to ground over the TDRSS. While this allows near-
continuous coverage, it also introduces a round trip time delay
of ∼800ms. An additional challenge is the limited bandwidth
that is available for communication between operator and
robot. During our experiments, the bandwidth for both, up
and down-link, is 4 Mbit/s each.

One of the key features of Surface Avatar is that the astro-
naut commands a team of heterogeneous robots through a
consistent, robot-agnostic User Interface (UI). This not only
means that the user would not need a steep learning curve for
new robotic assets that are introduced to the team, but also
enhances the modularity to scale up the robotic team. Fig. 1
shows the heterogeneous robotic team, which consist of four
robots: Rollin’ Justin (3), Interact (2) [2], Bert (1) [30], and a
robotic TINA arm [31] mounted to a lander (4). Rollin’ Justin
is a humanoid robot with two four-fingered hands and is good
at dexterous manipulation tasks. The Interact rover consists
of an AMBOT platform with rubber wheels and two KUKA
light weight robot arms, one with a camera mounted at its
end-effector and one with a Robotiq gripper. It is well suited
for traversing long distances in rough terrains. Bert is a small
quadruped robot that is able to traverse narrow passages.
Finally, the lander mounted arm is used for sample stowage
handling or providing scientific instruments from within the
lander.

The Surface Avatar project consists of multiple experiment
sessions, with time between each session to integrate feed-
back and lessons learned from previous sessions. In addition
to this the size of the robot team grew between experiments.
While the first experiments in 2022 started with a single
robot (Rollin’ Justin), the experiments in 2023 and 2024 each
included three of the four robots.

The Robot Command Terminal (RCT) plays a central role
in the Surface Avatar environment. It allows the operator
to choose between two operation modalities, which are:
Teleoperation and task-level autonomy. Fig. 2 shows an
astronaut using the RCT during a Surface Avatar experiment
session. The RCT consists of a graphical user interface (GUI)
on a computer (1), a 3 DoF open-loop joystick (2), and 7-
DoF Force Dimension sigma.7 force-reflection input device
(sigma.7). The joystick and the sigma.7 are used to operate
the robot in teleoperation while the GUI is used to command
the robot via task-level autonomy.

The goal of the GUI is to give the astronaut insights into

2

1

3

Figure 2. NASA astronaut Jeanette Epps on board the ISS
in front of the Surface Avatar Experiment setup. The setup
consists of (1) a computer running the Surface Avatar GUI,

(2) a joystick, and (3) a sigma.7 haptic input device.
image credit: ESA/NASA

2

1

3

4

5

6

7

Figure 3. Screenshot of the GUI used during the Surface
Avatar experiments. The parts of the GUI are: (1) view of
the robot’s camera, (2) a map view, (3) a messenger panel,
(4) an avatar view of the robot, (5) the available task-level

commands, (6) teleoperation paneel, and (7) overlays
marking the believed position of objects known to the robot.

the robot’s belief state of the environment and allows them
to issue task-level commands to the robot. Fig. 3 shows a
screenshot of the GUI, which consists of six main elements:
The Main Camera View (1) shows the view of the robot’s
camera augmented with blue overlays (7) of objects known
to the robot. The overlays help to understand the robot’s
believe state. Upon selecting an object, the command view
(5) on the right hand side is populated with the actions
the robot can perform with the selected object. Two other
views that give insights into the robot’s believe state are the
Map View (2), which shows the robot’s believe state of the
world from a birds eye view and the Robot Avatar View
(4), which shows the robot’s current configuration in a 3D
viewer. The operators are always free to raise questions in a
conversation with ground control via the Messenger (3), and
receive experiment instructions.

If the operator decide to command the robot manually they

3

1
2

3

4

5

6

Figure 4. Image of Rollin’ Justin showing (1) Azure Kinect
camera, (2) the stereo camera setup, (3) the touchscreen, (4)
DLR Hand-II, (5) realsense cameras in the base, and (6) the

wheels.

can select the a teleoperation mode in the Teleoperation Panel
(6) on the lower right. After selecting a teleoperation mode,
the operator is able to move the robot manually by using the
joystick or the sigma.7 device. While the joystick is used
to teleoperate the robot’s head or base, the sigma.7 is used
to teleoperate the robot’s arm. As the operator engages in
teleoperation of the robot’s arm, the robot’s manipulator fol-
lows the motions that the operator commands to the sigma.7.
The sigma.7 combines three translational and three rotational
DoFs, allowing the user to move the manipulator in all six
spatial directions. An additional 7th DoF in the form of a
gripper is used to open and close the robot’s manipulator.
During teleoperation of the robot arm, external forces that
get applied to the end-effector are rendered on the sigma.7
to increase situation awareness of the operator. The force
feedback teleoperation with a round trip time delay of about
800ms is implemented with Time Domain Passivity Control
(TDPC)[19].

4. SYSTEM DESCRIPTION
Rollin’ Justin [6] is a humanoid robot that consists of a
wheeled base [32] and a humanoid upper body [33] as shown
in Fig. 4. In the following we will describe various aspects
of the robot that are related to hardware and communication,
including the Hardware Abstraction Layer (HAL).

Hardware

Rollin’ Justins upper body consists of a torso and two arms,
that are built from the DLR Light Weight Robot’s (LWRs)
joints [34], a head, and two of DLR’s Hand II [35] hands (4 in
Fig. 4). This adds up to 54 joints in the upper body as shown
in Tab. 1 of which 43 are actuated and actively controlled in
our experiments. The joints that are not actuated contain the
fourth torso joint as it is an underactuated mirror joint, one
joint per finger that is coupled with another finger joint, and
one joint in each hand that is used to reconfigure the hand,
a feature that we do not make use of in the Surface Avatar
experiments.

The mobile base of the robot contains the battery and the

PCs that are used to control Rollin’ Justin. It also contains
four legs (6 in Fig. 4), that each possess a lockable damper
mechanism, a mechanism to extend the legs to increase
stability of the platform, and a wheel. The wheels can be
steered and driven individually which gives the robot base a
holonomic behavior.

To sense its interactions with the environment, Rollin’ Justin
has torque sensors in the three actuated torso joints, in all arm
joints, and in the 12 finger joints. It also possesses multiple
cameras to sense the environment, namely four Realsense
d435i in the base (5 in Fig. 4), an Azure Kinect in the head (1
in Fig. 4), and a stereo camera setup consisting of two Alvium
1800 C-3192 cameras in the head (2 in Fig. 4). Regarding
sensors, Rollin’ Justin also contains an Inertial Measurement
Unit (IMU) in the base. Furthermore, Rollin’ Justin has a
touch screen mounted on its torso (3 in Fig. 4) which allows
to display information to and receive input from users. For
communication with its surroundings, Rollin’ Justin is also
equipped with a speaker in its head.

Rollin’ Justin was designed to be a self-sufficient unit which
means that all compute necessary to operate the robot is
on the robot itself. Thus, Rollin’ Justin contains two real-
time PCs, one application PC, and three NVIDIA® Jetsons®.
Except for one NVIDIA Jetson which is mounted at the head
of Rollin’ Justin, all computing resources are located in the
base. The application PC runs on an Intel® Core™ i7-
7820EQ with 32GB RAM and a NVIDIA® GeForce® GT
1030. Real-time PC 1 runs on a Intel® Core™2 Quad CPU
Q9000 with 4GB RAM and real-time PC 2 runs on an Intel®
Pentium®4 with 1GB RAM.

Communication and HAL

The computer on Rollin’ Justin are connected via Ethernet
and Fig. 5 shows the resulting network architecture. As
the Jetsons stream high-bandwidth video data that is only
required by the application PC, they operate in a separated
sub-net in order not to block the main network that connects
the real-time PCs and the application PC. Additionally, a
WiFi bridge is used to connect to Rollin’ Justin from an out-
side terminal PC to observe telemetry and send commands.
It is also used to connect Rollin’ Justin to the experiment
network, which also includes the RCT on ISS. The two
resulting subnetworks are interconnected exclusively via the
application PC, which functions as a relay point, allowing for
the forwarding of information between the two networks.

For inter-process communication we use the DLR devel-
oped middleware Links and Nodes (LN) [36] which supports
asynchronous communication via topics and synchronous
communication via services. As LN supports communication
via network, it connects the processes over all computers on
Rollin’ Justin. Furthermore, LN blends with the DLR devel-
oped driver layer, robotkernel [36], which we use as HAL.
The robotkernel handles communication with the hardware
on the robot, e.g. the robot joints, the steerings of the base,
and the wheels.

LN also comes with a configurable UI, the LN manager, that
can be used to start and stop processes among different hosts,
investigate their status, and check their output. It is also
possible to define dependencies between processes in the ln
manager which substantially eases starting of different setups

2https://www.alliedvision.com/en/products/
alvium-configurator/alvium-1800-c/319/, last accessed
Oct. 4th 2024

4

https://www.alliedvision.com/en/products/alvium-configurator/alvium-1800-c/319/
https://www.alliedvision.com/en/products/alvium-configurator/alvium-1800-c/319/

Table 1. Displaying the number of joints per body part of Rollin’ Justin and the number of joints that are actively controlled
in our experiments.

Body Part Torso Left Arm Right Arm Head Left Hand Right Hand Total
Number of Joints 4 7 7 2 17 17 54
Joints actively controlled
in Surface Avatar 3 7 7 2 12 12 43

real-�me PC 1 switch 2

WIFI

access point

switch 1

real-�me PC 2

jetson 1

jetson 2

jetson 3

applica�on PC

Figure 5. Network setup of the computers on Rollin’ Justin.
The two switches also represent two distinct sub-nets.

Switch 1 connects the real-time PCs, the application PC, and
a WIFI acces point allowing external connections. Switch 2
connects the application PC with the jetsons in a separate

network.

application PC

real-time PC 1

interpolator

high level

controller

robot kernel

real-time PC 2

hand

controller

torso/arm joints wheels

joint configs
joint config

joint cmd

joint cmd

joint cmd

hands

joint cmd

Figure 6. The path of creating joint commands for Rollin’
Justins actuators from a desired joint configuration.

that contain many processes while adhering to certain require-
ments of the startup order. Furthermore, the LN manager
allows to inspect data that is shared between processes in the
form of topics. Overall, the LN manager plays a central role
in our setup on Rollin’ Justin as it serves as a central hub
for all the information the team in the lab needs to monitor
the status of the robot. The automation of starting many
processes following predefined orders in combination with a
restart check-list reduced reboot time of our robot to complete
operability to approximately 4 minutes.

Given a program on the application PC commands a move-
ment to the robot, it starts by sending the desired joint
configurations to an interpolator on the first real-time PC.
In our setup, a quadratic-spline-via interpolator running at
1kHz generates an interpolated trajectory and commands it

to the high level robot controller running on the same real-
time PC. Based on the selected control strategy, the highlevel
controller generates joint commands for every joint of the
robot, split up into commands for the hands and commands
for all other joints. The joint commands, except for the
hands, are then sent to the robotkernel which distributes them
via SERCOS3 bus to the robot joints. If the commanded
trajectory includes movements of the wheels of the base, their
actuation commands are distributed by the robotkernel via
EtherCAT4 to the wheels. The commands for the hands, in
contrast, are sent from the high level controller to a hand
controller running on the second real-time host. The reason
for using a dedicated real-time host for the hands is to comply
with the special hardware requirements for communication
with the hands. This process is depicted in Fig. 6.

As we employ the Data Distribution Service (DDS) [37] for
communication between robotic assets in the experiment and
for communication with the astronaut on the ISS, we added
a LN-to-DDS bridge which serves as an adapter between the
DDS side of communication and the LN side. The LN-to-
DDS bridge allows forwarding topics and services from DDS
to LN or vice versa.

5. REASONING FRAMEWORK FOR EFFICIENT
REMOTE OPERATION

In order to be efficient co-workers for the astronauts, our
robots provide command modes on multiple levels of au-
tonomy, i.e. task-level Supervised Autonomy and teleoper-
ation [3]. In the following we will distinguish between these
command modes and the software modules that enable them.
This manifests in our setup through the fact that only one of
the command modes can be active at any time. When the
robot is commanded in Supervised Autonomy, it does not ac-
cept teleoperation commands until the commanded action is
finished. On the other hand, when the operator commands the
robot via teleoperation, they can issue a task-level command
at any given time, but it will lead to the teleoperation being
disabled. This switching behavior is realized in a top-level
module, that listens to all commands from the RCT and, thus,
serves as the sole entry point to the robot.

In general our system follows service-oriented software ar-
chitecture. As the requirements for a humanoid system are
complex and vary strongly between software components, a
monolithic software structure would not only be undesired
but also impossible. Our system stretches over multiple hosts,
some of them running real-time operating systems, others do
not. This also reflects in the programming languages used to
write different modules. Controllers are mostly implemented
as simulink models, other real-time critical modules such as
the HAL are written in C/C++, and reasoning modules are
mostly written in python. This is partially due to different

3https://www.sercos.org/, last accessed Oct. 4th. 2024
4https://www.ethercat.org, last accessed Oct. 4th 2024

5

https://www.sercos.org/
https://www.ethercat.org

space

ground

joint controller

motors

interpolator

and whole body

controller
q k

I k
command

cu
rr

en
t w

or
ld

 s
ta

te

cm
d m

ode

cmds

telemetry

high level architecture low level architecture

cm
ds

controller feedback

path

av
ai

la
bl

e
ta

sk
 c

m
ds teleopera�on

module

reasoning

framework

task cm
d

sigma.7

joys�ck

RCT

StationCtrl

GUI

DDS Bridge

MPCC

cm
ds

Figure 7. Overview depicting the relevant modules for commanding Rollin’ Justin from Space.

requirements concerning the efficiency of programs, on the
other hand an effort like building and maintaining a humanoid
robot spans multiple disciplines and communities where dif-
ferent preferences over programming languages are preva-
lent. This lead us to follow a service-oriented architecture.
In this architecture we also use an orchestrator that serves as
an entry point for external commands and orchestrates the
modules of the robot in such a way that they produce the
desired outcome.

In the following we describe the module that enable task-level
autonomy and teleoperation according to Fig. 7 and Fig. 8,
followed by some additional information on the orchestrator.
Fig. 7 depicts the overall setup with the space domain on top
and the ground domain below, both connected via MPCC.
The robot publishes the current world state and the available
task-level commands to the RCT. The operator at the RCT
selects to either send a task-level command (task cmd) to
the robot or to command it via sigma.7 or joystick (cmd).
The command mode (cmd mode) represents which of the two
command modalities is selected. Depending on the command
mode, either the teleoperation module or the reasoning frame-
work are activated. If the robot arm is teleoperated, the robot
also publishes controller feedback to the RCT.

Task-Level Autonomy

In order to allow for task-level autonomy, robots must an-
nounce their capabilities to the GUI. Capabilities represented
in the form of actions that the robots can execute and render
as task-level commands in the GUI. As the robot needs to be
able to execute the actions directly, they must be fully defined.
While there is no restriction on how to generate the actions
on the robot side, we generate them in an approach based on
hybrid planning with Action Templates [38], [39].

As the number of possible actions easily grows to an over-
whelming number and we aim to support the astronauts in the
selection of meaningful actions, we have a filtering pipeline
for the actions in place [40]. The core question our system
aims to answer is: “Given the current state of the environment
of the robot, what are reasonable actions for an orbiting crew

to choose?”. To answer this question, we use a two step
approach where the first step is to find out which actions are
possible given the current world state and the second step
filters the possible actions based on certain rules defined by
the Mission Control team [40]. In the following we will
describe the software modules that we employ to generate
and filter the actions on the robot before announcing them to
the astronauts. Fig. 8 shows an overview of these modules.

To extract the possible actions given an environment state,
we start with the concept of affordances[41] which relates
to the possibilities an object offers for interaction. Typical
examples for affordances are a chair offering the affordance
sit on or a mug offering the affordances fill with or
drink from. In our framework we represent the affor-
dances in terms of action templates that are bound to objects
or object classes.

Action Templates are defined in [38] and consist of two
parts: the symbolic header and the geometric body. The
symbolic header contains a symbolic description of the action
in Planning Domain Definition Language (PDDL) [42] in
terms of preconditions, parameters, and effects of the action.
The geometric body on the other hand consists of primitive,
robot agnostic operations that can be executed by the robot.
Given a goal state in PDDL representation, the robot employs
a method of integrated Task and Motion Planning (integrated
TAMP) coined the Hybrid Planner [39] to generate a so-
lution to reach the goal. Using the PDDL representations
of the actions, the robot generates a task plan using the
Fast Downward planner [43] which it then refines on the
geometric level through a motion plan that is generated via
openRAVE [44]. If the hybrid planner encounters a problem
during generating the motion plan, it employs backtracking
to find a suitable solution. This can mean that the planner
either selects an alternative parameter on the geometric level
(e.g. an alternative grasp) or that it triggers replanning on the
symbolic level to find a different plan.

As mentioned above, Action Templates are bound to objects
or object categories. We store static information about

6

objects, such as Action Templates, in the Object Database
(ODB) [38]. As the ODB is designed to be extensible it can
hold any sort of static information about objects but it usually
contains the geometry in terms of a mesh, information about
PDDL predicates the object supports, and Action Templates.
It also supports inheritance of object properties as objects can
derive from “virtual objects” which are interpreted as object
classes. This allows to define an Action Template for a base
class and reusing it for all deriving objects.

In addition to the static object knowledge, the robot also
needs to be able to store runtime modifiable information
about its environment. In our system this is achieved through
the use of the World Representation (WSR) [38]. The WSR
holds instances of the objects defined in the ODB alongside
arbitrary runtime information about the objects, for example
their position relative to an absolute coordinate frame and
their PDDL states. Based on the information of the WSR,
the hybrid planner creates plans to reach a specified goal.

The approach described above is well suited when the robot
is commanded via desired goal states. For example the
robot could be tasked to reach the PDDL goal on table
apple and would find a sequence of actions that result in
the expected goal. However, as commanding goal states is
less intuitive than commanding actions, the GUI is designed
to command actions. In order to compile a list of possible
actions to announce to the GUI, we employ a module called
Mission Control [40]. First of all, the Mission Control
compiles a list of possible actions from the Action Templates
related to the objects in the current world state. As the
action descriptions in PDDL are very generic and, for runtime
reasons, there are no sanity checks at this level, this can result
in unreasonable actions. For example, by default every object
can be picked based on the generic Action Template pick
for the base object category, which can result in actions like
picking objects in the environment that are too large or too
heavy for the robot to pick. Thus, in a second step, these
actions are filtered by comparing them to an allowlist and
storing the result as available actions. In a third step, the
Mission Control triggers the Symbolic Planner to determine
the length of the shortest action sequence for every action in
the available actions, that reaches its preconditions. In the last
step, the Mission Control applies some user defined filters on
the remaining actions. Typical filters are for example whether
the list of the action sequence to reach the effects of an action
is longer than a predefined threshold or whether all objects
related to the action are within a maximum distance around
the robot. Both of the filters reduce the number of actions
announced to the GUI and improve relevance of these actions.

An overview of the modules that are involved in this process
and how they interact is depicted in Fig. 8.

Aside from announcing possible actions to the GUI, the robot
must also publish the position of the objects it knows of,
to the GUI such that they can be displayed with overlays.
As this information is also stored in the WSR, we added a
functionality to publish it to the GUI. The WSR is, however,
not solely used in the Surface Avatar context and is also
used by multiple teams at DLR which do not require this
functionality, thus, we integrated a plugin infrastructure into
the WSR. Through the use of a plugin infrastructure, we can
make sure not to deviate from the software used by other
teams and streamline development while still being able to
adapt the behavior of the software to our needs.

Another improvement we made to the original WSR is the

hybrid planner

symbolic
planner

geometric
planner

task cmd

world state AT

symbolic

geometric

AT

symbolic

geometric

AT

symbolic

geometric

ODB

telemetry

objects

pathactions

world state

mission
control

all commands

reasoning framework

available
task cmds

WSR

Figure 8. The reasoning framework employed on Rollin’
Justin in the Surface Avatar mission.

ability to represent object frames not only in terms of a shared
absolute origin, but with respect to other object’s origins.
This allows to create parent-child relations between objects
where the child object moves accordingly to the motion of
the parent object. Thus, when the frame of the parent object
is updated, for example through a perception update, the
frame of the child object is automatically updated as well.
For perceiving the position of the robot in its environment
the robot makes use of a Simultaneous Localization and
Mapping (SLAM) approach [45]. Objects and their positions
are perceived by the robot via AprilTag fiducial markers [46].

When adding more agents to the environment, it becomes
necessary to include information also from other agents into
the world representation. This concerns the positions of other
agents as well as information about environmental assets.
To allow for this, we added external sources to the world
representation which can be used, for example, to update the
pose of another agent based on its localization information.

Whenever an action is commanded from the operator to the
robot, the robot employs the Hybrid Planner to create a valid
motion plan for executing the action. During the process of
compiling the list of actions to be announced to the GUI,
we employ solely symbolic planning for determining the
action sequence length. This is to cope with high number of
action being checked. In comparison, symbolic planning is
significantly faster than motion planning. Thus it is possible
that actions that are presented to the operator can not be
executed. We accept this behavior as it reduces the time
needed for updating the list of actions which needs to be done
after every action execution of the robot due to changes in the
environment.

Teleoperation

Based on the approach of Scalable Autonomy as described
in [3], the operator is free to chose on which level of auton-
omy to control the robot. In addition to task-level autonomy,
the operator is able to command the robot via direct input
through the sigma.7 device or the joystick in our setup.
According to the classification of [47], this command mode
falls under Shared Control as the robot follows the continuous
input from the operator but augments it with its knowledge
about the environment. In the Surface Avatar framework
every robot can offer different Shared Control Capabilities.

7

On Rollin’ Justin we implemented a mode to drive the base
of the robot via the joystick, move the head via the joystick,
and move the right arm via the sigma.7 device.

Driving the robot base and moving the robot head via the
joystick are implemented in model mediated teleoperation.
This means that the robot does not directly follow the inputs
from the user at the remote side but instead follows a model
that is published at the remote side. The RCT laptop, there-
fore, creates a virtual model of the robot, which is directly
controlled via the operator input. The state of this model
is then streamed to and followed by the robot. For driving
the robot, the model of the robot becomes visible on the
GUI and directly follows the operator input. The operator
can, thus, command the position of the virtual model on the
GUI to the desired position of the robot without having to
deal with the delay between the robot and the command side.
Similarly, when the operator commands the robot to move its
head, they command a desired orientation of the head which
is then locally followed by the robot. When the operators
stop commanding the virtual model, as it reached the desired
configuration, the robot still finishes to move to the desired
configuration.

Another aspect in which the robot supports the operator
during teleoperated driving of the base is collision avoidance.
Due to the communication time of ≈ 800ms between robot
and remote side in our experiments, combined with the
restricted situation awareness because of the narrow field of
view of the robot, the risk of collisions with environment
assets of the robot becomes imminent. To cope with that
risk and avoid collisions between Rollin’ Justin and the envi-
ronment, Rollin’ Justin runs a collision avoidance algorithm
that makes use of the four cameras in the base. Collisions
are avoided by, firstly, creating a combined representation
of the environment of the robot in an octree [48]. Next, we
project the octree onto a two dimensional occupancy grid and
compute the minimal distance from the center of the robot
to the next obstacle in every direction. Given the minimum
distance, we scale the velocities according to [49].

For teleoperating the arm of the robot we employ the Time
Domain Passivity Approach (TDPA) [50], [19], which enables
passivity based teleoperation with force feedback under time
delays.

In the context of teleoperating the arm, it is also possible
for the operator to open and close the hand of the robot
via the gripper of the sigma.7 device. In our initial imple-
mentation, the position commanded from the gripper was
directly mapped to the 12 dimensional position of the fingers.
Therefore we defined an open grasp go and a closed grasp
gcl and calculated the commanded grasp gcmd using the
commanded gripper pose cmd ∈ [0, 1] as:

gcmd = (gcl − go) · cmd (1)

Using the approach from eq. (1) showed to have multiple
drawbacks. First of all, when enabling teleoperation the
approach lead to the robot’s hand jumping directly to the
position currently commanded by the operator. This is
problematic as it is hard for the operator to estimate how
far exactly to open the gripper to mirror the current hand
configuration of the robot and because it requires the operator
to focus on the hand when enabling teleoperation. Another
problem with this approach is that the robot acts, i.e. opens
or closes its hand, without a direct motion command from
the operator but simply because of the position of the gripper
when teleoperation is enabled.

x

y

go

gcl

gcmd gcmd

gcur

cur
Δ Δ

Figure 9. 2 dimensional representation of the approach to
update the commanded grasp given a positive (in blue) or a

negative ∆(in green). Intuitively the current grasp is
projected on the line connecting the open and closed grasp

definition, the ∆ is applied, and the resulting point is
projected back onto the line connecting either the open or

close grasp with the current grasp.

To cope with the initial jump of the hand we implemented
a carrier approach that keeps the hand static until the com-
manded grasp passes through the current grasp. Given the
current grasp gcur we compute a scalar cur that maps it to
the same input space as the scalar commanded gripper pose
according to eq. (2).

cur =
(gcur − go) · (gcl − go)

∥gcl − go∥2
(gcl − go) (2)

Using the current grasp, the hand starts to follow the com-
manded gripper pose when a change of the sign of ∆ =
cmd− cur is detected for the first time.

In the endeavor of extending this approach to a variety of mis-
sion protocols, the need for supporting multiple grasps on the
robot emerged. As the operators were offered the possibility
to select a grasp among multiple predefined grasp sets, the
robot must support seamless transitioning between the grasp
sets. A grasp set consists of two points in a 12 dimensional
space that represent the open hand configuration and the
closed hand configuration. While moving the gripper at the
sigma.7, the robot hand moves along the line connecting both
hand configurations in the 12 dimensional space. Intuitively,
the approach is to project the current hand configuration onto
the line connecting open and closed hand configuration, move
on the line according to the commanded gripper position and
project the new position back onto the line connecting either
close or open configuration with the current configuration,
depending on the commanded directions. Fig. 9 visualizes
how a new grasp is computed in two dimensions and eq. (3)
displays the general equation where the grasps g can be of
arbitrary but consistent dimensionality.

gcmd =


gcur ∆ = 0
gcl +

∆
1−cur (gcur − gcl) ∆ > 0

go + cmd
cur (gcur − go) ∆ < 0

(3)

Another source of information that can be used to ease control
of the hand during teleoperation is whether the hand currently
grasps an object. When switching from task-level autonomy
to Shared Control, this knowledge is available and exploited

8

by our setup. In order to reduce the risk of dropping an
object while it being grasped we initially lock the hand when
switching to arm teleoperation while an object is grasped.
The operator then has to manually unlock the hand before
being able to open it. Unlocking the hand is implemented as
a robot-centric action available via the task command panel
and the state of the hand, locked versus unlocked, is stored in
the WSR.

Gluing Things Together

Shared Control and task-level autonomy, as described above,
both have unique requirements. The software modules deal-
ing with Shared Control have high requirements to speed, as
they deal with data that they receive at a rate of 166.6Hz.
The module implementing the TDPC [19] for teleoperating
the right arm of the robot even needs to run on a real-time
host in order to guarantee stability. Other teleoperation modes
like head or base teleoperation do not come with as strong
requirements, as they run on the application PC, but still need
to be able to handle the incoming data.

The requirements for the task-level autonomy modules, in
contrast, mostly concern maintainability and flexibility. They
run on the application PC as they do not have any real-time
requirements. As they often require maintenance to add new
features or improve their behavior, these modules are written
in python.

The orchestration of all these different modules is performed
in verbose, a DLR developed tool. Verbose allows to run
python scripts, connect them to state-flows, and edit them
at runtime. It also supports to run code in thread-based
parallelism and share global variables. We use verbose
as the single entry point for commands to the robot, for
orchestration of modules, and for rapid prototyping of new
functionalities. The approach for seamless switching between
grasps, as described in Fig. 9, for example, was initially
developed and tested in verbose before it was implemented
in the controller.

6. DISCUSSION
Across all six ISS-to-ground sessions, comprising four pre-
liminary and two primary sessions, the astronauts success-
fully completed all assigned tasks within our experiments.
While a comprehensive analysis of the telecommanding con-
cept will be presented in a forthcoming publication, these re-
sults preliminarily indicate that the robotic backend architec-
ture effectively supported the requisite features for seamless
UI-based command of Rollin’ Justin from the ISS.

The system described above is still work in progress as
throughout the experiments related to Surface Avatar, new
features are continuously being implemented. Thus, the
first and most important lesson we learned is to maximize
modularity. Given the complexity of software needed to
run a humanoid robot, it is of utmost importance to be able
to easily swap out parts without the risk to trigger side-
effects on other, seemingly unrelated, parts of the software.
We increase modularity by separating functionalities into
processes that use standardized interfaces in terms of Links
and Nodes Message Definitions [36]. For the same reason we
implemented a plugin infrastructure in the WSR as it sepa-
rates out a functionality in a small, easily understandable and
maintainable, package. The gold standard we are following
in modularizing our software is to achieve loose coupling and
high cohesion.

In order to deal with the increased complexity due to the
growing number of modules through modularization and
their interdependencies, we make use of DLR’s Continuous
Integration Software SYstem (CISSY) which combines a
build host, an artifact server, and a package manager. For
proper research rigor, and even more so for critical space
systems, tractability of development history and documenta-
tion is paramount. We therefore implemented code reviews
that check, among other code quality factors, for adequate
documentation.

As our robot consists of multiple interconnected hosts that run
software that interfaces with real hardware, it is challenging
to create perfect copy of the system to use it for developing
and testing. It prove, nevertheless, extremely important to
have isolated setups that allow at least for testing subsets
of the robots capability, as the availability of the robotic
hardware becomes a bottleneck when a team of developers
is working on it in parallel.

When employing a service based architecture as presented
here for Rollin’ Justin, the orchestrator and the glue code play
a vital role in proper execution. However, its main function
of connecting existing components is frequently less visible
than other modules. In layman’s term, it is a something that
is not noticed until it is broken, which could then be difficult,
or impossible, to recover from. As such, insufficient attention
and resources dedicated to the glue code and orchestrator can
later hinder the easy integration of new modules or could even
result in failure of a mission.

Having designed the robot as a stand-alone unit is of great
value in environment where wireless communication is chal-
lenging. This is particularly noticeable during the experiment
runs when all robotic assets are enabled and communicate
via Wi-Fi, reducing available bandwidth substantially. Addi-
tionally, the robots sometimes block another robots commu-
nication as they are moved in between the other robot and
the Wi-Fi access point that connects it to the central network.
In these situations it proves to be advantageous to require as
little communication bandwidth as possible between the robot
and the central experimental network.

So far the we use the described software stack as a proof of
concept implementation on an Earth-based robot. While we
take care to design the software architecture and components
in a way that does not impede potential deployment in a
space mission, the software is not yet space qualified. The
computing power required to run the presented software de-
pends highly on the implementation of all of its components.
However, by running all of the software locally onboard the
robot on the hardware described in section 4 and avoiding
cloud-based solutions, we pave the way to eventually deploy
this software on a flight-ready robot.

The system described in this paper was, and continues to be,
well suited for the experiments in the Surface Avatar Mission.
However, it is largely based on model-based knowledge in
terms of objects, the world representation, and action tem-
plates. With current trends such as learning and especially
foundation models, we will be tasked to redesign our system
to leverage the full potential of these new technologies.

7. CONCLUSION
The system described in this paper has successfully been used
in multiple astronaut trainings, two ISS-to-ground prime ses-

9

sions, and four preliminary ISS-to-ground sessions. Through-
out these sessions, it prove successful in enabling astronauts
onboard the ISS to command Rollin’ Justin on multiple levels
of autonomy. During that time the system underwent multiple
transformations and the features of the system kept growing
and still continue to do so.

We will continuously work on improving our software design
further to be able to offer ever more features for the upcoming
third Surface Avatar prime session in the first half of 2025
and the Axiom-4 session in the second half of 2025. Our
next steps in Surface Avatar for these sessions are mixed-
type command robot collaboration and supporting setups with
possibly multiple RCTs at different locations. We also aim
for the execution of longer task-sequences which requires
additional efforts in environment perception and modeling, as
well as detection of and reaction to unexpected events such as
failures.

Another upcoming effort will be to make use of the ex-
perience gained with our current system in designing an
architecture that is not only tailored for one robot but instead
supports a broader variety of robots.

ACKNOWLEDGMENTS
Realizing the Surface Avatar experiments would not have
been possible without the support of the German Space Op-
erations Center (GSOC), the Columbus Control Centre (Col-
CC), and the European Astronaut Training Centre (EAC). We
thank them for the support during experiment preparation,
testing, and astronaut training.

REFERENCES
[1] N. Y. Lii, C. Riecke, D. Leidner, S. Schätzle,

P. Schmaus, B. Weber, T. Krueger, M. Stelzer,
A. Wedler, and G. Grunwald, “The Robot as an Avatar
or Co-worker? An Investigation of the Different Tele-
operation Modalities through the KONTUR-2 and ME-
TERON SUPVIS Justin Space Telerobotic Missions,”
in Proc. Int. Astronaut. Congr. IAC, Bremen, Germany,
Oct. 2018.

[2] T. Krueger, E. Ferreira, A. Gherghescu, L. Hann, E. den
Exter, F. P. van der Hulst, L. Gerdes, A. Pereira,
H. Singh, and M. Panzirsch, “Designing and testing a
robotic avatar for space-to-ground teleoperation: The
developers’ insights,” in 71st Int. Astronaut. Congr. IAC
2020. International Astronautical Federation, 2020.

[3] N. Y. Lii, P. Schmaus, D. Leidner, T. Krueger,
J. Grenouilleau, A. Pereira, A. Giuliano, A. S. Bauer,
A. Köpken, F. S. Lay, M. Sewtz, N. Bechtel, S. Bus-
tamante Gomez, M. Denninger, W. Friedl, J. Butter-
fass, E. Ferreira, A. Gherghescu, T. Chupin, E. den
Exter, L. Gerdes, M. Panzirsch, H. Singh, R. Bal-
achandrand, T. Hulin, T. Gumpert, A. Schmidt, D. Sei-
del, M. Hermann, M. Maier, R. Burger, F. Schmidt,
B. Weber, R. Bayer, B. Pleintinger, R. Holderried, P. H.
Pavelski, A. Wedler, S. von Dombrowski, H. Mau-
rer, M. Görner, T. Wüsthoff, S. Bertone, T. Müller,
G. Söllner, C. Ehrhardt, L. Brunetti, L. Holl, M. Bévan,
R. Muehlbauer, G. Visentin, and A. Albu-Schäffer, “In-
troduction to Surface Avatar: The First Heterogeneous
Robotic Team to be Commanded with Scalable Auton-
omy from the ISS,” in Proc. Int. Astronaut. Congr. IAC,
vol. IAC-22. Paris, France: International Astronautical

Federation, IAF, Sep. 2022.
[4] P. Schmaus, A. S. Bauer, N. Bechtel, M. Denninger,

A. Köpken, F. S. Lay, F. Schmidt, M. Sewtz, T. Krüger,
D. Leidner, A. Pereira, and N. Y. Lii, “Extending the
Knowledge Driven Approach for Scalable Autonomy
Teleoperation of a Robotic Avatar,” in 2023 IEEE
Aerosp. Conf. AERO 2023. Big Sky, MT, USA: IEEE,
May 2023.

[5] P. Schmaus, N. Batti, A. S. Bauer, J. Beck, T. Chupin,
E. den Exter, N. Grabner, A. Köpken, F. S. Lay,
M. Sewtz, D. Leidner, T. Krüger, and N. Y. Lii, “To-
ward Multi User Knowledge Driven Teleoperation of a
Robotic Team with Scalable Autonomy,” in 2023 IEEE
Int. Conf. Syst. Man Cybern. SMC. Honolulu, Oahu,
HI, USA: IEEE, Jan. 2024.

[6] C. Borst, T. Wimbock, F. Schmidt, M. Fuchs, B. Brun-
ner, F. Zacharias, P. R. Giordano, R. Konietschke,
W. Sepp, S. Fuchs, C. Rink, A. Albu-Schaffer, and
G. Hirzinger, “Rollin’ Justin - Mobile platform with
variable base,” in Proc. 2009 IEEE Int. Conf. Robot.
Autom. ICRA. Kobe, Japan: IEEE, May 2009, pp.
1597–1598.

[7] A. Schiele, “Towards the interact space experiment:
Controlling an outdoor robot on earth’s surface from
space,” in Proc 13th Symp. Adv. Space Technol. Robot.
Autom. ASTRA, 2015.

[8] A. Schiele, M. Aiple, T. Krueger, F. van der Hulst,
S. Kimmer, J. Smisek, and E. den Exter, “Haptics-1:
Preliminary Results from the First Stiffness JND Identi-
fication Experiment in Space,” in Haptics Percept. De-
vices Control Appl., F. Bello, H. Kajimoto, and Y. Visell,
Eds. Cham: Springer International Publishing, 2016,
pp. 13–22.

[9] A. Schiele, T. Krüger, S. Kimmer, M. Aiple, J. Rebelo,
J. Smisek, E. den Exter, E. Mattheson, A. Hernandez,
and F. van der Hulst, “Haptics-2 — A system for
bilateral control experiments from space to ground via
geosynchronous satellites,” in 2016 IEEE Int. Conf.
Syst. Man Cybern. SMC, Oct. 2016, pp. 892–897.

[10] L. Oshinowo, R. Mukherji, C. Lyn, and A. Ogilvie,
“On the Application of Robotics to On-Orbit Spacecraft
Servicing-The Next Generation Canadarm Project,” in
Proc 11th Intl Symp. Artif. Intell. Robot. Autom. Space
ISAIRAS, 2012, pp. 3–7.

[11] M. Hiltz, C. Rice, K. Boyle, and R. Allison,
“CANADARM: 20 Years of Mission Success Through
Adaptation,” in International Symposium on Artificial
Intelligence, Robotics and Automation, Montreal, Jun.
2001.

[12] N. Y. Lii, T. Krüger, P. Schmaus, D. Leidner, S. Pa-
ternostro, A. S. Bauer, N. Batti, A. Köpken, F. S. Lay,
A. N. Manaprampil, L. Mayerhofer, R. Luz, and E. den
Exter et. Al., “Everything is awesome if you are part
of a (robotic) team: Preliminary insights from the first
ISS-to-surface multi-robot collaboration with scalable
autonomy teleoperation,” in Proc. 75rd Int. Astronaut.
Congr. IAC. International Astronautical Federation,
Oct. 2024.

[13] G. Hirzinger, K. Landzettel, D. Reintsema, C. Preusche,
A. Albu-Schaeffer, B. Rebele, and M. Turk, “ROKVISS
– ROBOTICS COMPONENT VERIFICATION ON
ISS,” in Proc 8th Int. Symp. Artifical Intell. Robot.
Autom. Space - ISAIRAS, Munich, Germany, Sep. 2005.

[14] C. Riecke, J. Artigas, R. Balachandran, R. Bayer,

10

A. Beyer, B. Brunner, J. Buchner, T. Gumpert, R. Gru-
ber, F. Hacker, K. Landzettel, G. Plank, S. Schätzle,
H.-J. Sedlmayr, N. Seitz, B.-M. Steinmetz, M. Stelzer,
J. Vogel, B. Weber, B. Willberg, and A. O. Albu-
Schäffer, “KONTUR-2 MISSION: THE DLR FORCE
FEEDBACK JOYSTICK FOR SPACE TELEMANIP-
ULATION FROM THE ISS,” in The International Sym-
posium on Artificial Intelligence, Robotics and Automa-
tion in Space (i-SAIRAS 2016), Beijing, China, Dec.
2016.

[15] J. Artigas, R. Balachandran, C. Riecke, M. Stelzer,
B. Weber, J. H. Ryu, and A. Albu-Schaeffer,
“KONTUR-2: Force-feedback teleoperation from the
international space station,” in Proc 2016 IEEE Int Conf
Robot. Autom. ICRA, Stockholm, Sweden, May 2016,
pp. 1166–1173.

[16] M. Stelzer, B.-M. Steinmetz, P. Birkenkampf, J. Vogel,
B. Brunner, and S. Kühne, “Software architecture and
design of the Kontur-2 mission,” in 2017 IEEE Aerosp.
Conf., Mar. 2017, pp. 1–17.

[17] P. Schmaus, D. Leidner, T. Krüger, A. Schiele,
B. Pleintinger, R. Bayer, and N. Y. Lii, “Preliminary
Insights From the METERON SUPVIS Justin Space-
Robotics Experiment,” IEEE Robot. Autom. Lett., vol. 3,
no. 4, pp. 3836–3843, Oct. 2018.

[18] P. Schmaus, D. Leidner, T. Krüger, R. Bayer,
B. Pleintinger, A. Schiele, and N. Y. Lii, “Knowl-
edge Driven Orbit-to-Ground Teleoperation of a Robot
Coworker,” IEEE Robot. Autom. Lett., vol. 5, no. 1, pp.
143–150, Jan. 2020.

[19] M. Panzirsch, A. Pereira, H. Singh, B. Weber, E. Fer-
reira, A. Gherghescu, L. Hann, E. den Exter, F. van der
Hulst, L. Gerdes, L. Cencetti, K. Wormnes, J. Grenouil-
leau, W. Carey, R. Balachandran, T. Hulin, C. Ott,
D. Leidner, A. Albu-Schäffer, N. Y. Lii, and T. Krüger,
“Exploring planet geology through force-feedback tele-
manipulation from orbit,” Sci. Robot., vol. 7, no. 65, p.
eabl6307, Apr. 2022.

[20] B. Wilcox and T. Nguyen, “Sojourner on Mars and
Lessons Learned for Future Planetary Rovers,” in In-
ternational Conference On Environmental Systems, Jul.
1998, p. 981695.

[21] R. E. Arvidson, S. W. Squyres, R. C. Anderson, J. F.
Bell III, D. Blaney, J. Brückner, N. A. Cabrol, W. M.
Calvin, M. H. Carr, P. R. Christensen, B. C. Clark,
L. Crumpler, D. J. Des Marais, P. A. de Souza Jr.,
C. d’Uston, T. Economou, J. Farmer, W. H. Farrand,
W. Folkner, M. Golombek, S. Gorevan, J. A. Grant,
R. Greeley, J. Grotzinger, E. Guinness, B. C. Hahn,
L. Haskin, K. E. Herkenhoff, J. A. Hurowitz, S. Hviid,
J. R. Johnson, G. Klingelhöfer, A. H. Knoll, G. Landis,
C. Leff, M. Lemmon, R. Li, M. B. Madsen, M. C.
Malin, S. M. McLennan, H. Y. McSween, D. W. Ming,
J. Moersch, R. V. Morris, T. Parker, J. W. Rice Jr.,
L. Richter, R. Rieder, D. S. Rodionov, C. Schröder,
M. Sims, M. Smith, P. Smith, L. A. Soderblom, R. Sulli-
van, S. D. Thompson, N. J. Tosca, A. Wang, H. Wänke,
J. Ward, T. Wdowiak, M. Wolff, and A. Yen, “Overview
of the Spirit Mars Exploration Rover Mission to Gusev
Crater: Landing site to Backstay Rock in the Columbia
Hills,” J. Geophys. Res. Planets, vol. 111, no. E2, 2006.

[22] S. W. Squyres, R. E. Arvidson, D. Bollen, J. F. Bell III,
J. Brückner, N. A. Cabrol, W. M. Calvin, M. H. Carr,
P. R. Christensen, B. C. Clark, L. Crumpler, D. J.
Des Marais, C. d’Uston, T. Economou, J. Farmer,

W. H. Farrand, W. Folkner, R. Gellert, T. D. Glotch,
M. Golombek, S. Gorevan, J. A. Grant, R. Greeley,
J. Grotzinger, K. E. Herkenhoff, S. Hviid, J. R. Johnson,
G. Klingelhöfer, A. H. Knoll, G. Landis, M. Lem-
mon, R. Li, M. B. Madsen, M. C. Malin, S. M.
McLennan, H. Y. McSween, D. W. Ming, J. Moersch,
R. V. Morris, T. Parker, J. W. Rice Jr., L. Richter,
R. Rieder, C. Schröder, M. Sims, M. Smith, P. Smith,
L. A. Soderblom, R. Sullivan, N. J. Tosca, H. Wänke,
T. Wdowiak, M. Wolff, and A. Yen, “Overview of
the Opportunity Mars Exploration Rover Mission to
Meridiani Planum: Eagle Crater to Purgatory Ripple,”
J. Geophys. Res. Planets, vol. 111, no. E12, 2006.

[23] A. R. Vasavada, “Mission Overview and Scientific Con-
tributions from the Mars Science Laboratory Curiosity
Rover After Eight Years of Surface Operations,” Space
Sci Rev, vol. 218, no. 3, p. 14, Apr. 2022.

[24] J. Balaram, M. Aung, and M. P. Golombek, “The Inge-
nuity Helicopter on the Perseverance Rover,” Space Sci
Rev, vol. 217, no. 4, p. 56, Jun. 2021.

[25] M. Golombek, N. Williams, H. Grip, T. Tzanetos,
J. Balaram, J. Maki, R. Deen, F. Ayoub, M. Mischna,
C. Brooks, E. Romashkova, M. Deahn, J. Tarnas, T. del
Sesto, L. Crumpler, and R. Sullivan, “The Mars Heli-
copter, Ingenuity: Operations and Initial Results,” 44th
COSPAR Sci. Assem., vol. 44, p. 362, Jul. 2022.

[26] R. Welch, D. Limonadi, and R. Manning, “Systems
engineering the Curiosity Rover: A retrospective,” in
2013 8th Int. Conf. Syst. Syst. Eng., Jun. 2013, pp. 70–
75.

[27] R. S. Siegfriedt, E. Bohannon, A. Girerd, I. Trettel,
and B. Roth, “Making or Breaking a Rover- Systems
Engineering Parameters On-Board the Mars 2020 Per-
severance Rover,” in 2022 IEEE Aerosp. Conf. AERO,
Mar. 2022, pp. 1–14.

[28] T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher,
H. Sanchez, and E. Smith, “Astrobee: A New Platform
for Free-Flying Robotics on the International Space
Station,” in International Symposium on Artificial Intel-
ligence, Robotics, and Automation in Space (i-SAIRAS),
Beijing, Jun. 2016.

[29] T. Müller, D. Burdulis, and C. Corsten, “MPCC and
Ku-IPS, New Ways to Control the Next Generation
of Columbus Payloads-Ground Segment Aspects,” in
Proc. Int. Astronaut. Congr. IAC, Adelaide, Australia,
Sep. 2017, pp. 1–11.

[30] D. Lakatos, K. Ploeger, F. Loeffl, D. Seidel, F. Schmidt,
T. Gumpert, F. John, T. Bertram, and A. Albu-Schaffer,
“Dynamic Locomotion Gaits of a Compliantly Actuated
Quadruped With SLIP-Like Articulated Legs Embodied
in the Mechanical Design,” IEEE Robot. Autom. Lett.,
vol. 3, no. 4, pp. 3908–3915, Oct. 2018.

[31] M. Maier, M. Chalon, M. Pfanne, R. Bayer, M. M.
Mascarenhas, H.-J. Sedlmayr, and A. L. Shu, “TINA:
Small torque controlled robotic arm for exploration and
small satellites,” in Proc. Int. Astronaut. Congr. IAC,
Washington D.C., 2019.

[32] M. Fuchs, P. R. Giordano, C. Borst, A. Baumann,
E. Kraemer, J. Langwald, R. Gruber, N. Seitz, G. Plank,
and K. Kunze, “Justin’s mobile platform: A workspace
extension for two-handed manipulation,” in Proc. ICRA,
2009.

[33] C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hil-
lenbrand, C. Borst, A. Albu-Schaffer, B. Brunner,

11

H. Hirschmuller, S. Kielhofer et al., “A humanoid two-
arm system for dexterous manipulation,” in Proc 6th
IEEE-RAS Int Conf Humanoid Robots 2006, Genova,
Italy, Dec. 2006, pp. 276–283.

[34] G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle,
R. Krenn, A. Pascucci, and M. Schedl, “DLR’s torque-
controlled light weight robot III-are we reaching the
technological limits now?” in Proc. 2002 IEEE Int.
Conf. Robot. Autom. Cat No02CH37292, vol. 2, May
2002, pp. 1710–1716 vol.2.

[35] J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger,
“DLR-Hand II: Next generation of a dextrous robot
hand,” in Proc. 2001 ICRA IEEE Int. Conf. Robot.
Autom. Cat No01CH37164, vol. 1, May 2001, pp. 109–
114 vol.1.

[36] F. Schmidt and R. Burger, “How we deal with soft-
ware complexity in robotics:‘Links and nodes’ and the
‘robotkernel’,” in 14th IEEE-RAS Int. Conf. Humanoid
Robots Humanoids, 2014.

[37] G. Pardo-Castellote, “OMG Data-Distribution Service:
Architectural overview,” in 23rd Int. Conf. Distrib.
Comput. Syst. Workshop 2003 Proc., May 2003, pp.
200–206.

[38] D. Leidner, C. Borst, and G. Hirzinger, “Things are
made for what they are: Solving manipulation tasks by
using functional object classes,” in Proc. 2012 IEEE-
RAS Int. Conf. Humanoid Robots, Nov. 2012, pp. 429–
435.

[39] D. S. Leidner, Cognitive Reasoning for Compliant
Robot Manipulation, 1st ed., ser. Springer Tracts in
Advanced Robotics. Cham: Springer International
Publishing, 2019, vol. 127.

[40] D. Leidner, P. Birkenkampf, and N. Y. Lii, “Context-
aware Mission Control for Astronaut-Robot Collabora-
tion,” in Proc 14th Symp Adv. Space Technol. Robot.
Autom. ASTRA. Leiden, The Netherlands: European
Space Agency (ESA), Jun. 2017.

[41] J. J. Gibson, “The theory of affordances,” in Perceiving,
Acting, and Knowing: Toward an Ecological Psychol-
ogy, J. B. Robert E Shaw, Ed. Hillsdale, N.J. :
Lawrence Erlbaum Associates, 1977, pp. pp.67–82.

[42] D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock,
A. Ram, M. Veloso, D. Weld, and D. Wilkins, “PDDL
- The Planning Domain Definition Language,” Yale
Center for Computational Vision and Control, Tech.
Rep. CVC TR-98-003/DCS TR-1165, 1998.

[43] M. Helmert, “The Fast Downward Planning System,” J.
Artif. Intell. Res., vol. 26, pp. 191–246, Jul. 2006.

[44] R. Diankov, “Automated Construction of Robotic Ma-
nipulation Programs,” Ph.D. dissertation, Carnegie Mel-
lon University, Robotics Institute, 2010.

[45] M. Sewtz, X. Luo, J. Landgraf, T. Bodenmüller, and
R. Triebel, “Robust Approaches for Localization on
Multi-camera Systems in Dynamic Environments,” in
2021 7th Int. Conf. Autom. Robot. Appl. ICARA, Feb.
2021, pp. 211–215.

[46] E. Olson, “AprilTag: A robust and flexible visual fidu-
cial system,” in Proc 2011 IEEE Int Conf Robot. Autom.
ICRA, Shanghai, China, May 2011, pp. 3400–3407.

[47] M. A. Goodrich, J. W. Crandall, and E. Barakova, “Tele-
operation and Beyond for Assistive Humanoid Robots,”
Reviews of Human Factors and Ergonomics, vol. 9,
no. 1, pp. 175–226, Nov. 2013.

[48] D. J. Meagher, “Octree encoding: A new technique for
the representation, manipulation and display of arbitrary
3-d objects by computer,” Electrical and Systems En-
gineering Department Rensseiaer Polytechnic Institute
Image Processing Laboratory, Techinal Report IPL-TR-
80-111, 1980.

[49] S. Haddadin, H. Urbanek, S. Parusel, D. Burschka,
J. Roßmann, A. Albu-Schäffer, and G. Hirzinger, “Real-
time reactive motion generation based on variable at-
tractor dynamics and shaped velocities,” in 2010 Int.
Conf. Intell. Robots Syst., Oct. 2010, pp. 3109–3116.

[50] J.-H. Ryu, D.-S. Kwon, and B. Hannaford, “Stable
Teleoperation With Time-Domain Passivity Control,”
IEEE Trans. Robot. Automat., vol. 20, no. 2, pp. 365–
373, Apr. 2004.

BIOGRAPHY[

Adrian S. Bauer received a Bache-
lor in Mechanical Engineering in 2012,
a Bachelor in Cognitive Sciences in
2015, and a master in Robotics, Cog-
nition, Intelligence from TU Munich in
2018. Currently he is pursuing a PhD in
robotics at the German Aerospace Cen-
ter. His interest is in enabling robotics
to generate meaningful symbolic plans
in presence of epistemic uncertainty.

Anne Köpken received a Bachelor in
Electrical Engineering from TU Munich
in 2019, and a Master in Robotics, Cog-
nition, Intelligence from TU Munich in
2021. She spent one semester at the JSK
Laboratory at the University of Tokyo
in 2019/20. Currently she is pursu-
ing a PhD in robotics at the German
Aerospace Center in Oberpfaffenhofen
near Munich. She is interested in en-

abling robots to cope with unexpected situations and finding
ways to prevent and recover from failures.

Nesrine Batti received her ”Diplôme
d’Ingénieur” from the National Institute
of Applied Science and Technology, Uni-
versity of Carthage, Tunisia in 2022.
Since then she is pursuing a PhD in
robotics at the German Aerospace Cen-
ter in Oberpfaffenhofen, Germany. She
investigates how robots can learn from
past errors and transfer this acquired
experience to other robots to enhance

the collective performance.

Jörg Butterfaß received his diploma
degree from the Technical University of
Darmstadt in 1993 and his doctoral de-
gree in 1999 respectively. He joined
the German Aerospace Center (DLR)
Institute of Robotics and Mechatronics
in 1993 where he was involved in the
design of various robotic hands. A fur-
ther working field is the design of robotic
sensors for space applications.

12

Tristan Ehlert holds a B.Sc. in General
Engineering Science from the TUHH
and an M.Sc. in Robotics and Mecha-
tronics from the TU Munich. Since 2023
he works at the German Aerospace Cen-
ter (DLR), where he investigates and
develops elastic robots for efficient loco-
motion.

Emiel den Exter works as Industrial
Design and Human Factors Engineer
at the ESA Human Robot Interaction
Lab and ATG-Europe VirtualLab. He
is specialised in developing novel user
interfaces for Robotics and XR Engi-
neering solutions within the Space sec-
tor.

Werner Friedl received his Dipl.-
Ing.(FH) in Mechatronic at the Univer-
sity of Applied Sciences in Munich and
started at DLR in 2004. In 2006 he
developed the torso of DLR’s Humanoid
Justin. In the DLR Hand-Arm- project
he developed the forearm of the AWIWI
hand and AWIWI II. Since 2015 he is
responsible for the mechanical hand de-
velopment at DLR. His main research

focus includes variable stiffness actuation, tendon driven
hands and grasping.

Thomas Gumpert received his B.Eng.
in Mechatronics 2012 and in 2018 his
M.Sc. in Applied Research on Mecha-
tronic Systems from the University of
Applied Sciences Augsburg. He joined
the German Aerospace Center (DLR)
Institute of Robotics and Mechatronics
in 2008 with focus on electrical drives.
Since 2015 he is heading the Drive Tech-
nology Lab. As part of different teams

he was involved in the development of the lightweight robot
SARA and space qualified robotic arm CAESAR as well as the
space qualified force feedback joystick Kontur-2. Currently
he is responsible for the robotic hardware of the humanoid
robots Rollin and Agile Justin and he coordinates the devel-
opment of DLR’s quadruped robot bert with his main focus
on actuator and sensor electronics.

Florian S. Lay received his B.Sc. de-
gree in Engineering Science in 2018,
and his M.Sc. in ”Robotics, Cogni-
tion, Intelligence” in 2020 both from the
Technical University of Munich. Since
2020 he is pursuing a PhD in robotics
at the German Aerospace Center (DLR).
His interests range from symbol ground-
ing and emergence for task and motion
planning to multi-robot world represen-

tations.

Xiaozhou Luo received his B.Sc. in
Mechanical Engineering in 2019, and
his M.Sc. in Aerospace Engineering in
2023, both at the Technical University
of Munich. Following his graduation,
he started as a research fellow at the
Institute of Robotics and Mechatronics
of the German Aerospace Center (DLR).
His research focuses on SLAM and the
creation of semantic 3D maps for navi-

gation purposes in dynamic indoor environments.

Rute Luz received her BSc and MSc
degrees in aerospace engineering from
Instituto Superior Técnico, Lisbon, Por-
tugal, where she is currently pursuing
her PhD. Since 2018 she is a researcher
at the Institute for Systems and Robotics,
and at the Interactive Technologies In-
stitute. In 2024, she also integrated the
team at the Human Robot Interaction lab
at ESA. Her research interests involve

human-robot interaction, haptic interfaces, and robotics and
enabling more effective teleoperation.

Ajithkumar N. Manaparampil received
his B.E. in Mechanical Engineering from
the University of Pune, India and his
M.Sc. in ”Robotic Systems Engineer-
ing” from RWTH Aachen University. He
is a Research Associate at the Center
for Robotics and Mechatronics of the
German Aerospace Center (DLR) since
November 2023. His research interests
include teleoperation with a focus on

assistance in manipulation tasks.

Luisa Mayershofer received a B.Eng.
in Electrical Engineering from the Uni-
versity of Applied Sciences in Augsburg
and a M.Sc. in ”Robotics, Cognition,
Intelligence” from the Technical Univer-
sity of Munich. Since November 2023,
she is pursuing a PhD at the Center
for Robotics and Mechatronics of the
German Aerospace Center (DLR). Her
research interests lie in Human-Robot-

Interaction, with a focus on teleoperation and task model
estimation as well as multimodal user interfaces.

13

Antonin Raffin is a research engineer
in reinforcement learning (RL) at the
German Aerospace Center (DLR). He is
the lead developer of Stable-Baselines3,
an open source library that implements
deep RL algorithms. Raffin’s work fo-
cuses on improving the reproducibility of
RL and its applications in robotics. In
particular, he aims to learn directly on
real robots.

Annika Schmidt holds a B.S. degree
in Biomimikry and received her M.S. in
Mechanical Engineering from the Tech-
nical University of Delft. Since then she
has been working jointly at the Technical
University of Munich and the German
Aerospace Center to obtain her Ph.D.
in bioinspired control mechanisms for
robots. In this, she combines Neuro-
science elements with human user stud-

ies and control theory for soft robots.

Florian Schmidt received his Mas-
ter of Science degree from the Munich
University of Applied Sciences in 2007
(computer graphics and digital image
processing). Since then he is with the
German Aerospace Centers Institute of
Robotics and Mechatronics. In his mas-
ter thesis he developed a planning sys-
tem to solve the rubik’s cube with the
humanoid robot Justin. His research

interests include task and motion planning, real-time capable
software architectures and novel robot programming inter-
faces.

Daniel Seidel received his M.Sc. de-
gree in “Intelligent Systems” from Biele-
feld University, Germany, in 2014. Af-
terwards he joined the Chair for Sen-
sor Based Robotic Systems and Intelli-
gent Assistance Systems of Prof. Albu-
Schäffer at the Technical University of
Munich. Futhermore, he is an on-
going researcher at the Institute of
Robotics and Mechatronics at the Ger-

man Aerospace Center (DLR) where he is involved in the
development of the DLR quadruped robot Bert. His main
interests lie in motion generation and planning for elastically
actuated legged robots and machine learning on hardware
systems.

Peter Schmaus received his M.Sc. De-
gree in ”Robotics, Cognition, Intelli-
gence” from Technical University of Mu-
nich, Germany, in 2013. He joined
the German Aerospace Center (DLR)
Institute of Robotics and Mechatron-
ics in 2011 where he was involved in
the ISS-to-ground telerobotics projects
Kontur-2, METERON SUPVIS Justin,
and became Co-Investigator of the Sur-

face Avatar experiment suite. His main interests lie in Shared
Autonomy and effective Human-Robot Interaction.

Daniel Leidner Daniel Leidner received
his diploma degree in communications
engineering in 2010, and his M.Sc. de-
gree in information technology in 2011
with distinction from the Mannheim Uni-
versity of Applied Sciences, Mannheim,
Germany. In 2017 he received the
Ph.D. degree in artificial intelligence
from the University of Bremen, Bremen,
Germany. His dissertation was honored

with the Georges Giralt PhD Award as well as the Helmholtz
Doctoral Prize. He is a Professor at the Institute of Artifi-
cial Intelligence at the University of Bremen and leads the
department of Autonomy and Teleoperation at the Institute
of Robotics and Mechatronics, German Aerospace Center
(DLR), Wessling, Germany. As Co-Investigator of the Surface
Avatar experiments, he investigates artificial intelligence in
the context of astronaut-robot collaboration.

Thomas Krüger is head of the Human
Robot Interaction Lab at ESA. Involved
with ESA’s haptic experiments since the
beginning, Thomas headed the technol-
ogy development for the ANALOG-1 ex-
periments and is Co-Investigator on Sur-
face Avatar. He received his PhD in
Lab Automation from the University of
Rostock and worked on wind turbines
before joining ESA.

Neal Y. Lii is the domain head of
Space Robotic Assistance, and the co-
founding head of the Modular Dexter-
ous (Modex) Robotics Laboratory at the
German Aerospace Center (DLR). Neal
received his BS, MS, and PhD degrees
from Purdue University, Stanford Uni-
versity, and University of Cambridge,
respectively. He has served as the prin-
cipal investigator of the ISS-to-Earth

telerobotic experiments, Surface Avatar, and METERON
SUPVIS Justin. Neal is primarily interested in the use of
telerobotics in both space and terrestrial applications.

14

	Introduction
	Related Work
	The Surface Avatar Mission
	System Description
	Reasoning Framework for Efficient Remote Operation
	Discussion
	Conclusion
	Acknowledgments
	References
	Biography

