

Hybrid metapopulation-agent-based epidemiological models for efficient insight on the individual scale: a contribution to green computing

Julia Bicker

Joint work with: René Schmieding, Michael Meyer-Herrmann, Martin Kühn

3 R D (INTER-) NATIONAL CONFERENCE ON INFECTIOUS DISEASE MODELING

26 – 28 FEBRUARY 2025 IN BERLIN

and Research

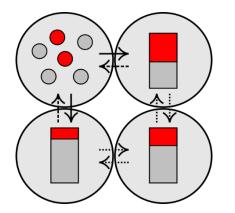
Motivation

Agent-based models (ABM)

- + Resolution on individual scale
- + Capture heterogenous contact behavior and mobility patterns
- Computational complexity is dependent on number on agents
- Many parameters and lots of data needed

Population-based models (PBM)

- Aggregated results on compartment level
- Homogeneous and well-mixed population
- + Runtime independent of population size
- + Low complexity and few parameters

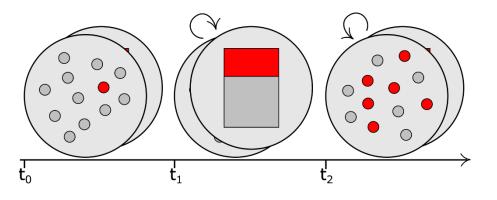

Hybridization framework – Spatial-hybrid model

Idea:

- Interest in infection spread in particular region
- Exclusive availability of data in specific region

Concept:

- Agent-based model in region of interest (focus region)
- Population-based model (ODE-based in our application) for surrounding regions
- **Detailed results** in focus region while considering **influence of connected regions** in \rightarrow runtime efficient manner


SPONSORED BY THE

Federal Minist of Education

Hybridization framework – Temporal-hybrid model

- Idea:
 - Low case numbers: High stochasticity and individual behavior is important
 - High case numbers: Individual behavior is less influential and single simulation outcomes are close to averaged results

- Concept:
 - Switch between agent-based and population-based model during the simulation according to a threshold value
- → Capture stochasticity and individual behavior when necessary for accurate outcomes while using runtime advantage when possible

SPONSORED BY TH

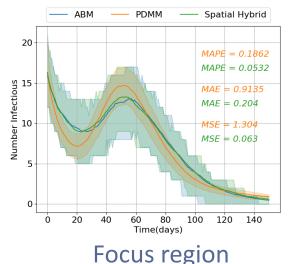
and Research

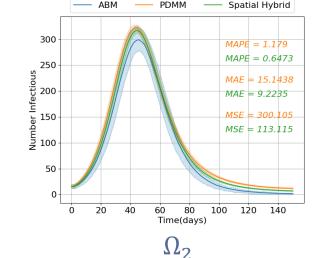
Proof of concept – Models¹

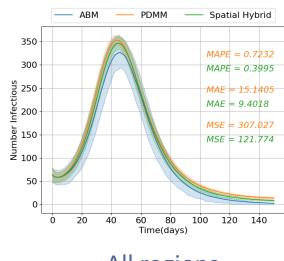
Agent-based model

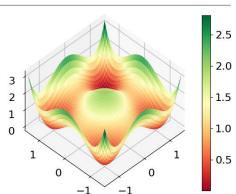
- Agent has position $x \in \mathbb{R}^2$ and infection state $z \in \{S, E, C, I, R, D\}$
- Infection state adoptions are modeled by stochastic jump processes
- Movement is modeled with independent diffusion processes

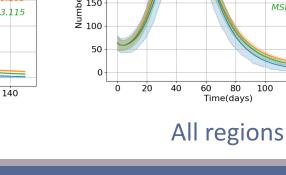
Metapopulation model

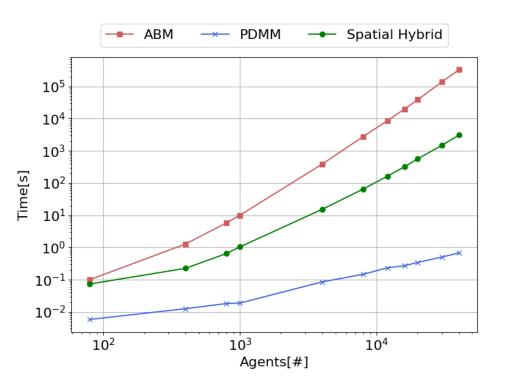

- Agents aggregated to subregions
- Infection state dynamics are given by ordinary differential equations (ODEs)
- Movement between subregions modeled with stochastic jump processes


¹Winkelmann, Zonker, Schütte, Conrad: Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Mathematical Biosciences 336, 108619 (2021), https://www.sciencedirect.com/science/article/pii/S0025556421000614




Spatial hybridization - Quadwell potential

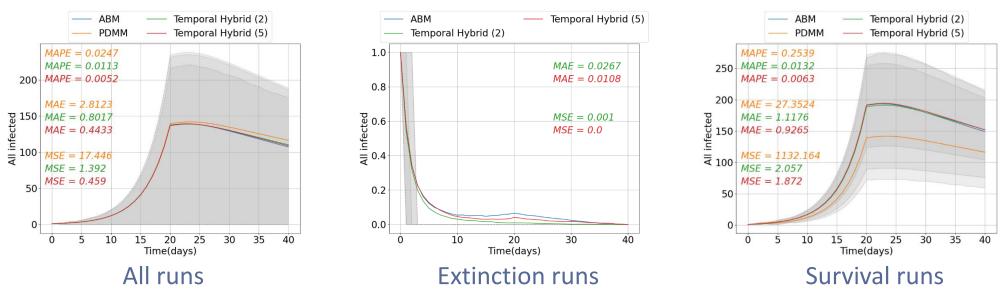

- Setup: 8000 agents, 1% of population initially infected
- Focus region: $\Omega_1 = (-\infty, 0) \times (0, \infty)$
- Transmission rate in $\Omega_2 = (0, \infty) \times (0, \infty)$ corresponding to $R_0 = 2.4$
- Transmission rate in other regions corresponding to $R_0 = 0.8$

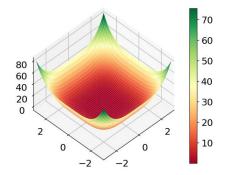

SPONSORED BY THE

Federal Ministry of Education and Research

Quadwell potential – Runtime scaling

- Spatial-hybrid has same scaling behavior like ABM
- For 400 agents: Runtime of spatial-hybrid 1
 order of magnitude lower than for ABM
- For 40,000 agents: Spatial-hybrid reduces runtime by 98%




SPONSORED BY THE

Temporal hybridization - Singlewell potential

- Setup: 10,000 agents, 1 agent initially infected, small contact radius
- Initial transmission rate corresponding to $R_0 = 4.8$
- Reduction of transmission rate by 80% after 20 days

27th February 2025

SPONSORED BY THE

Federal Ministry of Education and Research

Singlewell potential – Runtime

- Temporal-hybrid (5) is 8-times (extinction runs) to 22-times (survival runs) faster than ABM
- Temporal-hybrid (2) is 9-times (extinction runs) to 49-times (survival runs) faster than ABM

	All simulations			
Model	min	mean	max	
ABM	41.80	331.76	1835.93	
PDMM	0.00040	0.00047	0.01140	
Temporal-hybrid $s = 2$	0.5587	8.4082	92.6604	
Temporal-hybrid $s = 5$	0.5591	16.6405	104.497	

	Extinction simulations			Survival simulations		
Model	min	mean	max	min	mean	max
ABM	41.80	48.77	109.147	91.07	442.20	1835.93
PDMM	-	-	-	0.00040	0.00047	0.01140
Temporal-hybrid $s = 2$	0.5587	5.4414	85.2773	0.8115	9.5341	92.6604
Temporal-hybrid $s = 5$	0.5591	6.2384	99.2354	2.9843	20.7604	104.497

SPONSORED BY TH

CO_2 emissions²

- Spatial-hybrid models reduced CO₂ emissions by 70-98% compared to ABM
- Temporal-hybrid models reduced CO₂ emissions by at least 94.67% up to 97.28% compared to ABM

Model	Power[kWh]	CO2 emissions[g]	CO ₂ reduction
ABM quadwell	3.17889	1207.97915	-
Spatial-hybrid quadwell	0.07162	27.21423	97.75%
ABM Munich	4.15400	1578.51937	-
Spatial-hybrid Munich	1.20890	459.38063	70.90%
ABM single well	7.01801	2666.84380	-
Temporal-hybrid (5) single well	0.37380	142.04358	94.67%
Temporal-hybrid (2) single well	0.19095	72.56005	97.28%

²Icha, Lauf: Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1900-2023. (2024), https://www.umweltbundesamt.de/publikationen/entwicklung-der-spezifischen-treibhausgas-10

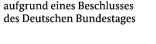
SPONSORED BY THE

Federal Ministry

of Education

and Research

Gefördert durch:


- PAPER: BICKER, SCHMIEDING, MEYER-HERMANN, KÜHN, 2025, HTTPS://DOI.ORG/10.1016/J.IDM.2024.12.015.
- SIMULATIONS:

HTTPS://GITHUB.COM/RENESCHM/MEMILIO/RELEASES/TAG

/HYBRID-PAPER-V2

• GITHUB:

HTTPS://GITHUB.COM/SCICOMPMOD/MEMILIO

Bundesministerium für Digitales und Verkehr

m	Fl	小	ID	

Н	EI	LM	Н	0	L1	Z
				-		-

Thank you for your attention!

MODELING NETWORK for Severe Infectious Diseases