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Abstract: A continuous increase of Artificial Intelligence (AI) based functions can be expected 1

for future aviation systems, posing significant challenges to traditional development processes. 2

Established systems engineering frameworks, such as the V-model, are not adequately addressing 3

the novel challenges associated with AI-based systems. Consequently, the European Union Aviation 4

Safety Agency (EASA) introduced the W-shaped process as an advancement of the V-model to set a 5

regulatory framework for the novel challenges of AI Engineering. In contrast, the agile Development 6

Operations (DevOps) approach, widely adopted in software development, promotes a never-ending 7

iterative development process. This article proposes a novel concept that integrates aspects of 8

DevOps into the W-shaped process to create an AI Engineering framework suitable for aviation- 9

specific applications. Furthermore, it builds upon proven ideas and methods using AI Engineering 10

efforts from other domains. The proposed extension of the W-shaped process, compatible with 11

ongoing standardizations from the G34/WG-114 Standardization Working Group, a joint effort 12

between EUROCAE and SAE, addresses the need for a rigorous development process for AI-based 13

systems while acknowledging its limitations and potential for future advancements. The proposed 14

framework allows for a re-evaluation of the AI/ML constituent based on information from operations, 15

enabling improvement of the system’s capabilities in each iteration. 16

Keywords: AI Engineering; W-Shaped Process; DevOps; ConOps; OD; ODD; Model-Based Systems 17

Engineering; Aviation; AI Certification; Safety-by-Design 18

1. Introduction 19

Aviation, like any other industry, is profiting from current advances in Artificial 20

Intelligence (AI) and Machine Learning (ML). However, unlike some other industries, 21

aviation relies on numerous safety-critical systems, which are subject to strict certification 22

processes. As such, AI-based systems for aviation have to be certified according to the 23

same standards as traditional systems [1]. To ensure the certification of AI-based systems, a 24

transparent and structured development process is necessary. The current state-of-the-art 25

and industry standard in aviation is the well-established V-model process for verification 26

and validation (V&V) [2]. It is, however, not suitable for the development process of 27

AI-based systems, which cannot be understood as traditional software [3,4]. Typically, 28

the V-model focuses on executing tests in a predetermined order, which does not align 29

with the iterative and dynamic nature of the development of AI-based systems. Given 30

the long history and general success of the V-model, any new standard for these AI-based 31

systems should comply with the V-model to ease adoption. To address this issue, the 32

European Union Aviation Safety Agency (EASA) introduced processes for the development 33
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of AI-based systems, such as the W-shaped process [5,6]. The proposed W-shaped process 34

is executed parallel to the V-model [2], adding dedicated AI constituent requirements and 35

certain tasks for data management and model training. Furthermore, it ensures sufficient 36

generalization and robustness capabilities for AI-based systems. The W-shaped process 37

supports an iterative process during the implementation phase, allowing for feedback 38

loops in training and testing. Due to the iterative training, V&V, and testing, the W-shaped 39

process ensures that the AI-based system is continually assessed and improved, ultimately 40

leading to a more robust and trustworthy AI system [6]. Still, in its current setup, the 41

W-shaped process is only applicable for supervised learning, although including first ideas 42

from unsupervised and self-supervised; reinforcement learning is not yet addressed in the 43

W-shaped process [6]. Due to its ability to combine classical development methods with 44

novel requirements of AI-based systems, the W-shaped process has already been used in 45

domains other than aviation [7]. However, the EASA learning assurance process and thus 46

the whole structure of the W-shaped process and the proposed extended W-shaped process 47

are not without critique [8]. It has been noted by other works, that, although the general 48

process is indisputable, some objectives proposed by EASA can only be verified empirically 49

while others are outright impossible to verify. 50

Nevertheless, the W-shaped process is not the only process currently undergoing 51

standardization activities for the development of AI-based systems in aviation [9]. Another 52

proposed framework is currently being developed under the G34/WG-114 Standardization 53

Working Group, a joint effort between EUROCAE and SAE, for the Machine Learning 54

Development Lifecycle (MLDL) [10]. The MLDL process aims to ensure comprehensive 55

management and interoperability of model-based data throughout the development pro- 56

cess, supporting the certification/approval process of AI-based systems in aviation [10]. 57

Applying the Development Operations (DevOps) cycle, which merges development 58

and operations into a holistic process aiming for continuous improvement, is nowadays 59

the state of the art in software development. By adopting continuous integration and 60

continuous deployment (CI/CD) practices, DevOps enhances collaboration through rapid 61

feedback and is an agile approach. This characteristic fits well with the complexity in the 62

development of AI-based systems, which requires iterations early in the development phase 63

in contrast with linear processes [11]. Therefore, a process combining both the advantages 64

of the W-shaped process and the DevOps cycle promises to ease the development of AI- 65

based systems in aviation by streamlining the AI Engineering process. The possibility to 66

continuously deploy updated ML models even after the first deployment offers a more 67

flexible development framework. However, the increase in flexibility comes at the cost of a 68

non-fixed requirements list. While software-based components can be updated iteratively, 69

hardware components in aviation cannot. Thus, fully integrating DevOps in both software 70

and hardware into the standard aviation development process is still subject to current 71

research. In this work, several approaches for the development of AI-based systems, such 72

as the W-shaped process and the proposed framework by the G34/WG-114 Standardization 73

Working Group are investigated, and further advancements incorporating the DevOps 74

cycle are outlined. 75

To efficiently capture all requirements, a Concept of Operations (ConOps) is created. 76

The ConOps documentation outlines all stakeholder requirements based on their specific 77

needs and expectations, helping with the communication between stakeholders [12,13]. 78

Moreover, a fixed high-level requirements list is essential to ensure compatibility between 79

independently developed subsystems, where each subsystem could potentially be an 80

AI-based subsystem [14]. Each subsystem, however, must have its own detailed but 81

mutable requirements list, which can be updated throughout the development process. 82

The requirements list for a subsystem is currently being derived by combining the ConOps 83

documentation with more specific requirements derived from the W-shaped process’s 84

requirements process. As the development progresses along the W-shaped process, the 85

focus shifts to data gathering, analysis, and dataset preparation. In case of a required 86

re-evaluation of the requirements, the W-shaped process already allows for this procedure 87
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to happen in the aforementioned steps. Thus, allowing for the requirements list to be 88

updated iteratively. The AI Engineering framework presented here advances this process 89

structure and puts more emphasis on a potential re-evaluation of the whole architecture 90

based on monitoring feedback to enhance the AI-based (sub)system’s capabilities in each 91

iteration. This integration is achieved by further deepening the incorporation of certain 92

DevOps concepts into the W-shaped process-based framework. 93

As part of the ConOps, a clear definition of the expected operational environment is not 94

only helpful but required by EASA for all future AI applications in aviation. This idea has 95

been developed in the automotive domain, where methodologies for the development of 96

safety-critical AI-based systems are further advanced, and has since been standardized [15– 97

18]. Different terms describing different aspects of the environment have been defined. 98

Starting with the Operational Domain (OD), in the automotive domain it is defined as 99

the set of all possible operating conditions. Next, driven by the design of the Automated 100

Driving System (ADS), is the Operational Design Domain (ODD). It defines the operating 101

conditions for which the ADS has been designed. In the aviation domain, however, EASA 102

proposed slightly different definitions which will be used from here on [6]. What SAE and 103

ISO define as an ODD, EASA defines as an OD, the operating conditions for the full system. 104

The term ODD has been repurposed and under EASA definition describes the operating 105

conditions of only the AI/ML constituent, that part of the full system that contains the 106

artificial intelligence. It can be a subset, but also a superset of the OD and it might depend 107

on the parameter in question whether the OD or ODD covers a broader range of values. 108

The ODD being a superset of the OD helps in improving the performance of the AI/ML 109

constituent by allowing a broader range of values and thus more variety, especially in the 110

border regions. A more complete introduction to ConOps, OD, and ODD will be given in 111

subsection 5.1. 112

The paper is structured as follows. First, in section 2, the current state of the art is 113

discussed, focusing on both the evolution from the V-model to EASA’s W-shaped process 114

as well as DevOps and traditional software development processes. For both topics, 115

prior research concerning the expansion towards the development of AI-based systems is 116

discussed. Based on those findings, the current challenges in AI Engineering focusing on the 117

aviation domain are discussed in section 3. Following, in section 4, the extension potential 118

of the W-shaped process is discussed. Here, the main focus is the missing operations phase 119

from the DevOps framework, which is crucial for the continuous improvement of AI-based 120

systems. Next, in section 5, a new framework is proposed that combines the strengths of 121

the W-shaped process with ideas from DevOps. Besides the aforementioned operations 122

phase, the new framework also starts earlier in the development process, with the creation 123

of a ConOps document, and thus also counties further than the W-shaped process. After 124

proposing this updated framework, a comparison to the Machine Learning Development 125

Lifecycle defined by the G34/WG-114 Standardization Working Group is made in section 6. 126

In this section, the focus is on the differences between the two frameworks and possible 127

conflicts that arise from these differences. Examples of how the framework applies to 128

specific AI-based systems are given. Finally, in section 7, the results of the paper are 129

discussed, and in section 8 conclusions are drawn. 130

2. State of the Art 131

Clearly defined engineering frameworks are the basis for a safe development process. 132

As such, they are crucial in the development and later certification in aviation, from small 133

subsystems and parts up to the full aircraft. Here, the V-model [19] is the current standard 134

in the development of aircraft. However, it is not suitable for the new challenges that arise 135

in the development of AI-based systems. Therefore, the W-shaped process [6] has been 136

developed while still being based on the same ideas and principles as the V-model. On 137

the contrary, in modern software engineering, DevOps is the current default for AI-based 138

systems as it offers shorter iterations and increased feedback. To better understand the 139
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history and reasoning of those two frameworks, the following section formally introduces 140

both frameworks and highlights their differences. 141

2.1. The W-Shaped Process for AI-Based Applications 142

In February of 2020, EASA issued their first version of the Artificial Intelligence 143

Roadmap for AI-based applications in aviation [20] followed by the publication of a concept 144

paper for level 1 machine learning applications [21]. Therein proposed is the novel concept 145

of learning assurance for providing means of compliance. To achieve compliance, learning 146

assurance is the assurance that all actions of the AI-based systems that could result in an 147

error have been identified and corrected [21]. To help with the learning assurance, EASA 148

proposed the W-shaped learning assurance process, covering dedicated AI/ML constituent 149

requirements throughout the process. This W-shaped process stands in the longstanding 150

line of different versions of the initial V-model. One of the first processes in the realm of 151

software development was the waterfall model [22,23] in which the development process 152

is divided into separate phases. Each phase needs to be finalized before the next phase 153

can be started. Years later the V-model was developed and, in its various types and 154

forms, became the standard process for safety-critical applications in aviation [24]. The 155

principal idea was to separate development and testing activities and track the required 156

steps on all system levels [25]. Later, the V-model was introduced to the verification 157

and validation of software [19]. However, the structure of the process allowed extensive 158

testing of the developed software only after it had been finalized. This issue led to the 159

development of a W-shaped adjustment of the classical V-model, the first mention of a 160

W-model, similar to the W-shaped process [25]. This model is also known as the VV- 161

model, Double-V-model, or Two-V-model [26,27]. Since in software development 30 % to 162

40 % of the activities are related to testing, launching testing activities early is crucial [25]. 163

Therefore, the idea was to bridge the gap between development and testing for software 164

applications by introducing an early testing phase which is illustrated by the second V- 165

model placed on top. Consequently, testing starts parallel to the development process 166

instead of after the finalization. It has also been mentioned, that models simplify reality 167

but their simplifications make them successful in their applications [25]. Aspects such as 168

resource allocation seem to be equal in the W-model, however, depending on the application 169

reality might be different. 170

Based on this early W-model, further adjustments to other applications took place. 171

Later, the W-model was adjusted to testing software product lines [28]. The left side of the 172

W covers the domain engineering while the right side covers application engineering. In 173

their work, several test procedures for variability and regression tests are addressed. Other 174

works adjusted the W-model towards component-based software development using two 175

conjoined V’s. One V is defined for the component development process while the other V 176

stands for the system development process [29]. By having a dedicated V-model for the 177

component life-cycle, component V&V can be executed and pre-verified components are 178

stored in the repository. 179

The most recent adjustment of the W-shaped process is EASA’s adaptation towards AI- 180

based systems for aviation applications [21]. Two years later, in 2023, the newly proposed 181

W-shaped process was first applied to a use case outside the aviation domain [7]. This 182

study outlined an approach for the implementation of a reliable resilience model based on 183

machine learning. Liquefied natural gas bunkering served as a use case to show, that the 184

system can learn from incomplete data and still give predictions on the latent states and 185

enhance system resilience. 186

Out of a joint project with EASA, Daedalean published two reports applying the 187

W-shaped process to visual landing guidance [30] and visual traffic detection [31]. Based 188

on both use cases, Daedalean went through the steps of the W-shaped process identifying 189

points of interest for future research activities, standard developments, and certification 190

exercises. The first report [30] focused on the theoretical aspects of learning assurance 191

only considering non-recurrent convolutional neural networks. Some of the main findings 192
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included that traditional development assurance frameworks are not adapted to machine 193

learning, a lack of standardized methods for evaluating the operational performance of the 194

ML applications, and the issue of bias and variance in ML applications. As an outlook for 195

future work, the risks associated with various types of training frameworks and inference 196

platforms were identified. However, the types of changes applied to a model after certifica- 197

tion were not discussed. The second report [31] aimed at software/hardware platforms for 198

implementing neural networks and other tools in the development and operational environ- 199

ments. Regarding the safety assessment, out-of-distribution detection, filtering and tracking 200

to handle time dependencies, and uncertainty prediction were investigated. Aspects, such 201

as changes after the type certificate, proportionality, and non-adaptive supervised learning, 202

were not covered by the report and remain topics for future investigation. 203

Initiated by EASA, the MLEAP project [32] aimed at investigating the challenges 204

and objectives of the W-shaped process and alleviating the remaining limitations on the 205

acceptance of ML applications in aviation. Three aeronautical AI-based use cases, namely 206

speech-to-text in air traffic control, drone collision avoidance (ACAS Xu), and vision-based 207

maintenance inspection were used. One goal of the project was to identify promising 208

methods and tools and preliminary testing them on toy use cases, followed by valida- 209

tion of those results on more complex aviation use cases. The report states that the OD 210

definition is challenging as estimating the completeness and representativeness requires 211

knowledge of the exact extent and distribution of certain phenomena. It further states that 212

the currently publicly available set of tools and methods for the development of AI-based 213

systems lack operationalizability. One of the main conclusions of the joint report is that 214

data is the centerpiece of the development process as it severely influences the model’s 215

performance [32]. 216

2.2. DevOps and Traditional Software Development 217

DevOps, a term combining the “development” and “operations” of a product, was 218

developed by the software development domain to enable continuous delivery and in- 219

tegration of products. In conventional heavyweight development methods, for example, 220

the waterfall model, the process often leads to longer development times and poor com- 221

munication between teams, resulting in delays and inefficiencies [33,34]. To address this 222

problem, the Manifesto for Agile Software Development has been written [35], promoting 223

transparency and improving communication within teams. Nevertheless, some problems 224

continued even after the introduction of Agile methods [36,37]. Conflicts arose between 225

the development and operations teams, particularly during the deployment of new fea- 226

tures [38]. Additionally, maintaining and updating software as needed was not always 227

straightforward [39]. To solve this, the development and operations teams needed to 228

collaborate more closely to streamline processes. As an extension of Agile methodology, 229

DevOps was introduced to enhance collaboration and communication [40]. It emphasizes 230

continuous integration and delivery, ensuring more frequent software updates and im- 231

provements. Previous works [41] outline four key requirements for DevOps in the context 232

of software development within the automotive domain: deployability, modifiability, testa- 233

bility, and monitorability. These elements support the processes of continuous delivery, 234

integration, and deployment. The authors also suggest that to enhance the effectiveness of 235

DevOps, three additional principles should be considered: modularity, encapsulation, and 236

compositionality [41]. 237

Given its general success, DevOps has also been introduced into the aviation domain. 238

It has helped to enhance the airline booking system by streamlining interactions between 239

development and operations teams [42]. Moreover, in Industry 4.0, the collaborative prac- 240

tices used in DevOps have proven beneficial in addressing the gaps between traditional 241

industrial production environments and the requirements of Industry 4.0. As such, In- 242

dustrial DevOps led to the development of a modular platform designed to integrate and 243

monitor production systems [43]. Apart from industry applications, DevOps and Agile 244
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methods have also gained attention in the scientific community [44]. DevOps has been 245

shown to enhance collaboration among researchers throughout the development cycle [45]. 246

Despite, or maybe because, of its overall positive adaption into many domains, new 247

ideas for the DevOps cycle are still being developed. Integrating machine learning work- 248

flows into the DevOps cycle is also being considered to manage complex software compo- 249

nents that involve ML components. Some advantages of using DevOps include streamlined 250

ML artifact versioning, as well as support for testing and deploying ML models through 251

continuous integration. Moreover, combining DevOps and ML workflows can enhance 252

collaboration between data scientists and software engineers [46]. The research for using 253

DevOps in ML applications has also led to the development of the Machine Learning 254

Operations (MLOps) framework [47]. This DevOps derivate focuses on methodologies 255

and development approaches aimed at operationalizing machine learning products by 256

leveraging DevOps and adapting it for the specific needs of machine learning applica- 257

tions [48]. MLOps integrates machine learning, software engineering, and data engineering 258

to bridge the gap between development and operations [49]. Although DevOps practices 259

already provide continuous integration and delivery and enhance team collaboration, other 260

derivations of DevOps put the focus more on the safety of the system. Thus, SafeOps has 261

been developed, designed to improve the safety of autonomous systems through a model 262

of “continuous safety” inspired by DevOps principles [50]. SafeOps emphasizes contin- 263

uous monitoring, feedback loops, and integration across development and operational 264

phases, ensuring that autonomous systems remain compliant with safety standards during 265

operation. The three pillars of SafeOps are diagnosis, measurement, and modification, which 266

provide continuous safety assurance and faster deployment [50]. Similar to these safety 267

considerations, security aspects in the software development lifecycle are addressed by yet 268

another derivate, DevSecOps [51]. It focuses on integrating Development, Security, and 269

Operations. To ensure security, the team incorporates security-focused tools into the CI/CD 270

pipeline. For faster development cycles, DevSecOps relies on automated security tools. 271

2.3. Differences in Philosophy Between the W-shaped process and the DevOps Cycle 272

Both EASA’s W-shaped process and the DevOps cycle aim at achieving reliable soft- 273

ware and system development, but they approach the development lifecycle with different 274

philosophies and goals. Historically, the W-shaped process was defined for safety-critical 275

applications such as avionics and aircraft systems in the aviation sector, focusing on safety, 276

regulatory compliance, and rigorous testing. In contrast, the DevOps cycle is a widely 277

adopted approach for general software engineering. It is centered around continuous 278

integration, delivery, and deployment to accelerate development cycles while maintaining 279

high-quality output. Furthermore, it encourages collaboration between development and 280

operations teams. Considering the process structure, one apparent difference between both 281

methodologies is the sequential and structured phases of the W-shaped process compared 282

to the cyclical, iterative, and constantly looping phases of the DevOps cycle. The W-shaped 283

process progresses linearly from system requirements and moves through design and 284

development before finishing with a well-documented testing and V&V phase. On the 285

contrary, documentation during the DevOps cycle is kept to a required minimum focusing 286

on code and release comments. 287

In the context of testing, the W-shaped process heavily focuses on formal verification 288

and validation typical for safety-critical aviation applications. This includes exhaustive 289

documentation as well as testing at each stage, thus ensuring each step meets compliance 290

standards before moving to the next. Here, DevOps emphasizes the automation of tasks 291

through CI/CD, allowing for faster and more frequent updates and thus releases. Auto- 292

mated testing is integrated throughout the process to identify issues as early as possible. 293

Feedback loops are key to identifying issues early on in the development phase. The W- 294

shaped process emerged from the V-model to promote early feedback through predefined 295

feedback loops. It allows for iterations during both the model training and implementation. 296

On the contrary, the DevOps cycle features continuous feedback loops throughout the 297
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development. Arguably, this continuous feedback is one of the most important features of 298

the DevOps cycle and therefore one core difference in comparison to the W-shaped process. 299

Furthermore, both methodologies differ in terms of typical cycle length. The W-shaped 300

process defines the whole development process until the final product release after passing 301

the AI/ML constituents requirement verification. The DevOps cycle is theoretically an 302

ongoing, never-ending loop of continuous improvement and frequent deliveries compared 303

to the one delivery of the W-shaped process. Thus, one single iteration of the DevOps cycle 304

is shorter compared to the W-shaped process. 305

3. Current Challenges in AI Engineering for Aviation 306

AI Engineering is gaining significant attention due to the increase of AI-based functions 307

in safety-critical areas such as aviation, robotics, and the automotive sector. At its core, 308

AI Engineering focuses on systematically developing every aspect of an AI component 309

or function throughout its entire lifecycle. Thereby, the development and V&V processes 310

constitute a considerable amount of the entire challenge. In addition to the accompanying 311

processes, other aspects such as requirements engineering, data generation, monitoring, 312

and many others play a crucial role. 313

Specifically, the integration of AI in aviation systems poses a significant challenge 314

because of the inherent risk that comes with deploying passenger aircraft. Therefore, AI en- 315

gineers are required to be meticulous when using CI/CD processes. Updates, in particular, 316

need to be executed in a safe, reliable, and transparent manner. Additionally, there are many 317

aspects to consider due to the human-AI interaction in assistance systems that are devel- 318

oped right now. Ensuring applicable interactions between humans and AI-based systems 319

will require additional engineering work. Especially when AI-based systems are being used 320

as assistants, the interface between the human and the AI requires exhaustive investigation, 321

commonly explored through research in the field of Human-in-the-Loop (HTL) [52]. Here, 322

different approaches to how an AI-based system and humans can complement each other 323

prevail, from the strict separation of roles, e.g., human oversight performed by a human 324

supervisor, to collaborating as equal teammates in either a cooperative or collaborative 325

approach [5,53]. Thus, depending on the specific use case, different approaches may be 326

preferable. In addition to the different concepts of how the human-in-the-loop approach 327

is implemented in the individual use cases, there are also questions about human factors 328

that need to be taken into account. For instance, the issue of human trust is also relevant to 329

the safety of the overall system as overtrust or mistrust of the AI-based system can lead to 330

potential errors that could compromise the safe operation of said system [54]. 331

As already mentioned, sufficient data to train and evaluate the model is essential in 332

providing safe AI-based systems. In that context, sufficient not only compels to cover all 333

relevant scenarios but also to provide them with the necessary quality. This challenging 334

task can only be solved by combining different approaches for data generation to cover all 335

requirements, for example by training only on virtual data and later fine-tuning using real 336

data [55]. To clearly define the system-under-test within the operational environment and 337

its current development stage, concepts from the automotive industry [56] were already 338

transferred to the aviation sector [57]. One potential starting point for the generation of 339

synthetic data are simulations as they are often cheap to perform in comparison to real 340

experiments and offer high availability. Simulation-Enabled Engineering is therefore the 341

basis for creating a data set for the learning process of Safety-by-Design AI-based systems. 342

Although simulations have great potential, the obtainable data quality is limited. Thus, 343

careful evaluation is required to identify the correct balance between the quantity of 344

simulation-based data and other more realistic and therefore higher quality but lower 345

quantity data, like hybrid or real data. To improve the quality of simulation-based data, 346

generative AI might also be able to enhance the realism of simulations or increase their 347

variation [58,59]. Altogether, a combination of approaches will provide the optimal balance 348

between quantity and quality of data, necessary to develop Safety-by-Design AI-based 349

applications. 350
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4. Extension Potential of the W-Shaped Process 351

The W-shaped process, designed to run in parallel to the V-model, is required for the 352

development assurance of AI/ML constituents [6], see Figure 1. As such, it brings some 353

important changes to the V-model to adapt it to the specific needs of the development of 354

AI-based systems. The W-shaped process emphasizes the importance of learning assurance 355

as well as having iterative feedback loops early on in the development process. Both are 356

crucial for the safe and secure development of AI-based systems allowing for a certification 357

later on. 358

In Daedalean’s reports on design assurance [30,31] the W-shaped process was investi- 359

gated. Based on the use case of visual landing and traffic detection, the general feasibility 360

of the W-shaped process for level 1 ML applications was largely confirmed. The report 361

found that future improvements are required, for example strengthening the link between 362

learning assurance and data, required for improved AI explainability. However, the report 363

was focused on the training phase and did not consider the implementation and infer- 364

ence phase verification. Therefore, this gap remains to be investigated. Especially with 365

increasing algorithm complexity and higher levels of autonomy, the W-shaped process 366

is potentially not as suitable for the development of AI-based systems as the also well- 367

established DevOps cycle, which can be, to some extent, thought of as iterating over the 368

W-shaped process multiple times [57]. However, simply enforcing a purely DevOps-based 369

approach in aviation is also not feasible, given the strict certification requirements. While it 370

is understandable that the W-shaped process is based upon the well-established V-model, 371

other, not less safety-critical domains, such as automotive, are already transitioning to 372

the DevOps cycle. It has been shown that it better fits the iterative development process 373

with which both traditional software and AI-based systems are developed [41,60]. As such, 374

the W-shaped process is a good first step towards a more agile development process for 375

AI-based systems in aviation. It lacks, however, some necessary elements from the DevOps 376

approach to fully utilize the advantages of an iterative development process. At least 377

some of those remaining extension potentials will be addressed in this section. The next 378

section, section 5, will propose a new framework that further combines the strengths of the 379

W-shaped process with the DevOps cycle. 380

A first and important constraint of the W-shaped process is that it is currently only 381

applicable for supervised learning and not for self-supervised/unsupervised and reinforce- 382

ment learning [6]. As the authors of the W-shaped process are already well aware of this 383

limitation, they plan to extend the guidance document to include these learning techniques 384

in the future [6]. Thus, it will not be part of the current discussion in this article.
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Figure 1. W-shaped process, based on [6]. The arrows within the model from right to left already
allow for an iterative approach during the development of an AI-based system.
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Compared to both the V- and W-shaped process, DevOps is characterized by a strong 386

connection between development and operations. This effective collaboration enhances 387

the agility of the software development process. Moreover, DevOps is separated into two 388

phases; the development phase consists of planning, coding, building, and testing, whereas 389

the operations phase consists of releasing, deploying, operating, and monitoring, as illustrated 390

in Figure 2.
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Figure 2. Matching the steps from DevOps to the W-shaped process. Here, the mapping from DevOps
to the W-shaped process is straightforward to see. Moreover, the missing Ops phase is also apparent.

391

As both the W-shaped process and DevOps have a similar goal in mind, streamlin- 392

ing a development process, a comparison is helpful to understand their differences and 393

similarities, see Figure 2 for a graphical representation of the following paragraph. During 394

the planning step of the DevOps cycle, stakeholders and developers identify new features 395

and fixes for the system but also quality criteria for each step [11,61]. Similarly, in the 396

W-shaped process, the planning step involves establishing system and subsystem require- 397

ments and design, leading to the extraction of AI/ML-specific requirements [6]. These 398

requirements are essential for understanding the necessary data and models for specific 399

applications, dividing them into AI/ML data and model requirements. In the DevOps 400

cycle, after planning, developers proceed to the coding step, writing code for each feature 401

or fix of the software. In contrast, the W-shaped process involves collecting, preparing, and 402

organizing data based on the requirements for training, testing, and V&V. This stage also 403

requires some coding activities, particularly for data generation, preprocessing, labeling, 404

and splitting the dataset. Apart from defining the ML model’s architecture, including 405

but not limited to the learning algorithms, activation functions, and hyperparameters, 406

the learning process management includes generating the training pipeline for the model 407

training. It also involves the verification of the learning process. During the building step 408

of DevOps, developers use special automated tools to ensure the code builds correctly for 409

the desired target platform, thus, preparing it for testing. In the W-shaped process, the 410

model is trained based on the preceding steps, especially the data management and the 411
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learning process management, after which the learning process is verified. Afterward, the 412

learning process is verified, allowing a loop back to earlier steps in case of failure. Next, in 413

the model implementation step, the trained ML model can be implemented on the target 414

platform for further V&V, analogous to the build step in DevOps. In the testing step of 415

DevOps, all software components undergo continuous testing using automated tools. Here, 416

the W-shaped process is more expressive as it clearly defines multiple levels of testing, one 417

for every abstraction layer in the scope of the full product, ensuring that all AI assurance 418

objectives are met at every layer. 419

The operations process in DevOps extends beyond the current scope W-shaped pro- 420

cess process. In DevOps, the operations step takes over after the development step to 421

initiate the release of the software. The deployment process is designed to be continuous, 422

utilizing deployment tools to facilitate easy software deployment for all stakeholders. This 423

approach increases productivity and accelerates the delivery of new software builds and 424

versions. The operations phase involves managing software in production, including in- 425

stallation, configuration, and resource management. Finally, during the monitoring phase, 426

the operations continuously monitor the software to ensure proper functionality [6,11,61]. 427

While the W-shaped process offers several advantages during the system development 428

process, for example, the more expressive description of required tests, it lacks certain 429

elements crucial for the continuous development of an AI-based system. Specifically, the 430

W-shaped process ends after the testing phase of the AI-based system. It does not extend 431

into the operational phase, as depicted in the DevOps cycle [6,11], see Figure 2. In real- 432

world applications, especially for safety-critical systems, it is essential to have mechanisms 433

for post-deployment monitoring and continuous evaluation of the deployed AI-based 434

system to ensure both the safety and security of a system even after the certification and 435

release. Moreover, ongoing supervision in the form of monitoring also ensures the system’s 436

reliability and performance throughout its operational lifecycle, detecting failures of the 437

AI-based system as soon as they occur [62]. 438

5. Improving Upon the W-Shaped Process 439

As seen in the previous chapter, the W-shaped process lacks some features required 440

for a continuous development process often used for AI-based systems in other domains. 441

Most noteworthy is the missing operations phase, which is crucial for the continuous 442

improvement of AI-based systems. As such, a new framework is proposed that combines 443

the strengths of the W-shaped process with those of the DevOps method. Furthermore, 444

the proposed framework also starts earlier than the W-shaped process in the development 445

process, with the creation of a ConOps document [5,6,12]. The ConOps document is 446

crucial to capture the requirements, based on the qualitative and quantitative system 447

characteristics, of all stakeholders and define a common ground from which further work 448

can be derived [12,63,64]. From this ConOps document, the OD of the AI-based system 449

can be derived [12]. This OD captures the intended working environment of the AI- 450

based system, allowing for an ordered description effortlessly readable for humans but 451

also machine parsable. Later, the ODD can be derived from the previous steps, guiding 452

the development of the AI/ML constituent. Similar to the OD, the ODD is also a well- 453

structured document that helps to create a better understanding of the desired environment 454

the (sub)system is expected to handle. 455

The proposed changes are discussed in the following section, starting with the ConOps, 456

OD, and ODD in subsection 5.1 and afterward the addition of the operations phase in sub- 457

section 5.2. Lastly, the combined framework is introduced in subsection 5.3 and visualized 458

in Figure 3. 459

5.1. Concept of Operations, Operational Domain, and Operational Design Domain 460

A Concept of Operations is a concise user-oriented document agreed upon by all 461

stakeholders outlining the high-level system characteristics for a proposed system. It 462

describes the qualitative and quantitative characteristics of the system for all stakehold- 463
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ers [12,63,64]. As such, it is the primary interface between the customer and the developers. 464

However, although ConOps is defined at the beginning of a project and meant as a fixed 465

baseline for all stakeholders, it is not immutable but subject to change requests. Utilizing 466

the ConOps, all stakeholders can establish a common understanding of the system from 467

which the Operational Domain can be derived [12]. Here, it is important to clarify the 468

distinct definitions of the terms Operational Domain and Operational Design Domain. 469

As already stated in the introduction, see section 1, the definition of EASA differs from 470

the commonly accepted definitions proposed by the SAE and ISO [6,15,16]. The SAE and 471

ISO define the Operational Domain as “set of operating conditions, including, but not 472

limited to, environmental, geographical, and time-of-day restrictions, and/or the requi- 473

site presence or absence of certain traffic or roadway characteristics” and the Operational 474

Design Domain as “the operating conditions under which an ADS is designed to operate 475

safely” [16]. In comparison, EASA defines the OD as the “operating conditions under 476

which a given AI-based system is specifically designed to function as intended, in line 477

with the defined ConOps” and the ODD as the “[o]perating conditions under which a 478

given AI/ML constituent is specifically designed to function as intended, including but not 479

limited to environmental, geographical, and/or time-of-day restrictions” [6]. From these 480

definitions alone, it is apparent that EASA defines the OD as equivalent to SAE’s definition 481

of the ODD. Both are the operating conditions to be considered for the safe design of an 482

autonomous system, regardless of whether it is an ADS or AI-based system. What EASA 483

defines as the ODD, however, is similar to SAE’s definition of the OD only that the scope 484

is not the full AI-based system but the part of the environment relevant to the AI/ML 485

constituent. This can be both, a subset and a superset of the OD. 486

Based on the definitions from EASA, the OD, as derived from the ConOps, describes 487

the exact operating conditions under which a system is designed to function [6,65,66]. It is 488

already extensively used for autonomous vehicles in the automotive domain [66,67] and 489

the transfer to aviation is the subject of current research [13]. In the automotive domain, the 490

correspondence to the OD has been used for multiple years already, therefore, its content 491

and structure are well-defined. For the aviation domain, however, although required by 492

EASA for future AI-based systems [5,6], the structure of the OD is yet to be clarified [13]. 493

Nevertheless, defining the OD first and only afterward the AI/ML constituent requirements 494

together with the ODD is crucial for the development of AI-based systems in aviation. As 495

the ODD depends on the OD which in turn depends on the ConOps, any change request of 496

the ConOps most likely also influences both the OD and ODD, even if only to verify that 497

the previous OD and ODD are still valid. 498

Based on the previous discussion, the ConOps and OD are crucial for the development 499

of AI-based systems and the ODD for their corresponding AI/ML constituent. As such, 500

the definition of the ConOps and OD are part of the proposed framework, preceding the 501

Requirements Allocated to AI/ML Constituent step in the W-shaped process [6]. However, as 502

the (sub)system requirements will contain non-AI-related requirements, they will need 503

to be defined first, before the ODD can be derived and defined. Accordingly, three new 504

test steps will also be added, for the ODD, OD, and finally the ConOps. Those steps are 505

required to verify and validate the ODD, OD, and finally the ConOps. All those newly 506

proposed steps for the ConOps, OD, and ODD are visualized in Figure 3, and the individual 507

parts will be discussed in their corresponding subsections. 508

It is worth noting, however, that both the ConOps and the OD are mentioned as the 509

input for the Requirements Allocated to AI/ML Constituent step in the W-shaped process [6]. 510

Nevertheless, as they are mutable, the proposed framework explicitly includes these two 511

as they are part of the DevOps cycle. 512

5.2. Operations Phase 513

In the DevOps framework, releasing is often as easy as moving changes from the 514

development environment to the production environment. This is not possible in aviation 515

as the production environment oftentimes is the aircraft itself. In aviation, releasing an 516
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AI-based system almost always requires a certification process. In general, for aviation, 517

systems are categorized into different Development Assurance Levels (DALs) based on 518

their safety impact on the aircraft [68,69]. Here, the higher the DAL of a system, the more 519

stringent the certification process. The highest DAL, DAL A, is reserved for systems with a 520

catastrophic failure condition, while DAL E is reserved for systems with no safety effect 521

on the aircraft [69,70]. The different DALs are listed in Table 1, which also lists some more 522

information for each DAL, including but not limited to the accepted failure rate and the 523

effect on the aircraft and the passengers. In Table 1, however, the effect on the crew is not 524

explicitly listed, although relevant. Only for DAL E systems certification is not required 525

as those systems have no impact on the safety of the aircraft [69,70]. However, DAL was

DAL Failure Condition Failure Rate Effect on Aircraft Effect on Passengers

A Catastrophic <10−9 h−1 Normally hull loss Multiple fatalities

B Hazardous <10−7 h−1 Large reduction in
capabilities

Some fatalities

C Major <10−5 h−1 Significant reduction
in capabilities

Possibly injuries

D Minor <10−3 h−1 Slight reduction in
capabilities

Physical discomfort

E No Safety Effect N/A No effect Inconvenience

Table 1. Relationship between failure probability and severity of failure condition, based on [69,70].

526

never designed for AI-based systems and is thus not always applicable or sufficient for 527

AI-based systems. Out of the necessity to have a similar rating for AI-based systems, EASA 528

distinguishes between three levels for AI [5,9], see Table 2. The three levels are based on 529

the intended purpose of an AI-based system whether it is used for assistance only (level 530

1), for supporting a human in a human-AI teaming situation (level 2), or for advanced 531

automation up to non-overridable decisions (level 3) [5]. Future AI-based systems will 532

most likely be categorized in both ratings as an AI-based system always requires traditional 533

software components for interfacing with other components. Thus, systems with a high 534

DAL rating but low AI level or vice-versa can be thought of. For example, an AI-based 535

movie recommendation system for the In-Flight Entertainment (IFE) system will be a DAL E 536

system as it does not affect the safety and a level 1 application since it is only assisting 537

the passengers [69,70]. If the same system now includes a chatbot that interactively chats 538

with the passengers and they together find a fitting next movie or TV show, this system 539

is now a level 2 application. Still, such a system would most likely have no certification 540

requirements. Other AI-based systems in aviation already being researched are vision- 541

based landing systems [71,72]. While of clearly higher DAL ratings due to the inherent 542

safety implications, as long as such a system only assists the pilots and does not make a 543

decision, it will most likely be a level 1 application. However, due to the common problem 544

of adversarial attacks, even this supposedly level 1 application will have stronger safety 545

and security regulations than the aforementioned IFE recommendation system [73,74]. 546

Finally, as a third example, the next generation of collision avoidance, ACAS X, is currently 547

under development and part of current research [75–77]. For this system, although no 548

official AI level rating is available, first certification activities are already part of ongoing 549

research [78–83]. 550

While there are no official guidelines on how to design and certify an AI-based system, 551

special care has to be taken for current developments. For now, only the DAL rating can 552

be used for the certification process of new AI-based systems. Nevertheless, the three 553

levels for AI applications will be important for future regulations. As such, for AI-based 554

systems that can be classified as DAL A to DAL D, more care has to be taken in the 555

development process to reduce the risk of failing the certification process. Accordingly, 556
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Level Scope Sublevel Description

1 Assistance to Human A Human Augmentation

B Human Cognitive Assistance in Decision
and Action Selection

2 Human-AI Teaming A Human and AI-based System Coopera-
tion

B Human and AI-based System Collabora-
tion

3 Advanced Automation A The AI-based system makes decisions and
performs actions, safeguarded by the hu-
man.

B The AI-based system makes non-
supervised decisions and performs
non-supervised actions.

Table 2. Classification of AI applications, based on [5].

the higher the classification level of an AI-based system is, the more future requirements 557

such a system will face for certification. Thus, as a compromise, the operations phase 558

can be executed multiple times before the final deployment, prior to starting with the 559

certification of the AI-based system. For example, the operations phase could be executed 560

in a flight simulator, where the AI-based system is tested in a controlled environment. After 561

multiple rounds of testing, the AI-based system can be deployed in the actual aircraft, 562

where the operations phase is executed again, now in the actual production environment. 563

This way, the development of AI-based systems can profit from the more dynamic and 564

iterative way of developing systems while still achieving the same standards as classical 565

components ensuring the safety and security of the whole airplane. Exact numbers on the 566

required amount of iterations cannot be given as this is highly dependent on the system 567

and consequently hard to estimate beforehand. 568

Next, the deployment step of the operations phase has to be executed. Again, given the 569

vastly different AI-based systems for aviation one can imagine, it is not possible to define a 570

general process for the deployment step. Some systems might be able to be deployed in a 571

secure over-the-air-like process, where a fleet of aircraft automatically downloads the new 572

software, similar to other domains [84]. This could be possible for systems with a DAL E 573

classification as the aforementioned AI-based IFE recommendation system [69,70]. Other 574

AI-based systems, however, might also need a hardware update which would require 575

grounding the aircraft and most likely many man-hours. These updates could happen 576

during the maintenance checks any aircraft has to undergo. 577

After deploying the AI-based system, the operating phase starts. For a successful 578

operation, it is crucial, that the previous steps have been conducted diligently. Furthermore, 579

a general recommendation is that neural networks should be static, often referred to as 580

frozen, during operations, as learning dynamically adds significant complexity not only 581

to the system design but also to certification [31,62]. Moreover, as AI-based systems often 582

exhibit a black-box-like behavior, explainability is crucial for systems to be accepted by 583

human operators [85]. For example, for the aforementioned next-generation collision 584

avoidance system it might not be enough to issue the correct advisory to the pilots, the 585

AI-based system should also briefly explain how it came to the advisory. Fortunately, this is 586

a field of active and ongoing research in which guidelines for explainable AI have already 587

been developed [86]. 588

Once an AI-based system is certified and deployed, monitoring it and its environment 589

is crucial for future improvement. Although monitoring a system and receiving feedback 590

from it in operation is often not part of aviation operations, it is decisive for the Safety- 591
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by-Design development and operations of AI-based systems. Thus, it shall be adopted 592

for future AI-based systems in aviation. Monitoring also does not necessarily mean an 593

invasion of privacy of either the passengers or the operating company. Here, developers 594

and operators have to work together to ensure the safety and security of the system while 595

also respecting the privacy of all stakeholders. However, only continuous monitoring can 596

ensure future improvements as without monitoring, no data from operations is available 597

for the developer to improve the system. One of the more important aspects to monitor 598

for all AI-based systems are the OD and ODD. Both the OD and the ODD are essential for 599

ensuring the safe and reliable operation of an AI-based system [13]. Runtime monitoring 600

confirms that the system stays within its predefined environmental boundaries. For auto- 601

mated systems, adhering to safety standards and regulations is essential, and one of the 602

fundamental principles is closely monitoring the OD to guarantee overall system safety. 603

Thus, continuous monitoring during the operational phase of DevOps plays a vital role 604

in maintaining safety by ensuring that the AI-based system operates only within its safe 605

operational parameters and can thus be trusted to provide accurate guidance. Approaches 606

like predictive OD monitoring, which can utilize tools such as temporal scene analysis, 607

can issue early warnings if the system is approaching the boundaries of its corresponding 608

OD [87,88]. 609

5.3. Proposition of the Novel Framework 610

Finally, bringing everything together, the proposed new framework is visualized in 611

Figure 3. The new framework is based on the W-shaped process by EASA [6] but includes 612

the ConOps and the OD early on in the development process, followed by the W-shaped 613

process augmented by a dedicated step for the ODD definition. Corresponding test steps are 614

also added to ensure correct V&V. After the test phase of the W-shaped process, elements 615

from the operations phase of the DevOps method are introduced, namely the release, 616

deploy, operate, and monitor steps. As explained earlier in subsection 5.2, the operations 617

phase is crucial for the continuous improvement of AI-based systems, especially in aviation. 618

Only a continuously developed system can overcome current problems with AI-based 619

systems, such as their black-box nature and the lack of transparency. However, with an 620

operations phase, and its corresponding steps, an AI-based system can be continuously 621

improved, leading to a more transparent and trustworthy system. In addition, through 622

iterative testing and feedback, the proposed frameworks’ structure supports investigating 623

the explainability of AI algorithms, crucial for any safety-related AI-based application. By 624

incorporating continuous testing and validation into the development workflow through 625

several feedback loops, input from end-users or domain experts can be used to identify 626

areas of insufficiencies or unexpected decisions. Also, this feedback structure supports the 627

development of resilient systems in terms of error detection, error correction, monitoring, 628

and logging. As with all AI-based systems, resilience, “the ability to recover quickly after 629

an upset” [89], is one of the main goals of the Safety-by-Design development process. 630

The new framework, combining the W-shaped process with ideas from DevOps, is a 631

promising approach for the development of AI-based systems in aviation. Its representation 632

is visualized in Figure 3. Here, the development process starts in the top-left corner with 633

a classical V-model in parallel for non-AI-based systems. Important to note, and already 634

part of the proposed W-shaped process by EASA [6], is the iterative approach in the 635

development process allowing for faster feedback and an easier improvement of the system. 636

These iterative steps allow for a more flexible development process and thus more ways to 637

react fast to later findings in the development of an AI-based system. 638

Developing a new AI-based system using the proposed framework would thus first 639

require the definition of the ConOps. For an exemplary use case of the next-generation 640

in collision avoidance for aircraft, ACAS X, the ConOps might contain high-level require- 641

ments such as the desired behavior, i.e., avoid near mid-air collisions, but also more specific 642

performance metrics, for example updating the advisory once per second [82,83,90–93]. 643

Based on the ConOps and the OD, and according to the W-shaped process, the (sub)system 644
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Figure 3. The proposed new framework, based upon the W-shaped process by [6]. It extends the
W-shaped process by the ConOps Definition, Operational Domain Definition and Operational Design
Domain Definition steps and their corresponding tests, Acceptance Test, Operational Domain Verification
and Operational Design Domain Verification. Moreover, it emphasizes the importance of the Operations
Phase from the DevOps cycle for a holistic design process.

requirements can be derived. Both are important to better guide the development of an 645

actual AI-based system in a safety-critical environment. The OD will contain information 646

about the scenery, e.g., airspace information, but also more general environmental informa- 647

tion like weather conditions [83,87]. Of utmost importance, at least in the aforementioned 648

use case, however, are dynamic elements, i.e., the intruders invading the airspace. As the 649

OD also contains parameter ranges for every element, later on, automated tests can be 650

directly derived from the ODD [57,94]. Based on the ConOps, the OD, and the (sub)system 651

requirements of the step before, an ODD can be derived, finally leading to the actual re- 652

quirements for the AI/ML constituent. From here follows the W-shaped process as defined 653

by EASA [6]. 654

As every step on the left-hand side of a V-model-inspired process requires correspond- 655

ing tests on the right-hand side, so do the proposed steps for the ODD, OD and ConOps, 656

ConOps Definition and Acceptance Test, Operational Domain Definition and Operational Domain 657

Verification, and Operational Design Domain Definition and Operational Design Domain Verifica- 658

tion. The Operational Design Domain Verification step, verifying the ODD, requires that the 659

system is shown to cover all aspects and areas of the hyper-dimensional parameter space of 660

the ODD. As all elements in the ODD have a corresponding parameter range, the creation 661

of automated tests is straightforward [94]. However, determining the actual coverage of the 662

ODD, especially for continuous parameter ranges, like altitude, is a complex problem. Still, 663

current research is looking into exactly this topic [95,96]. Once the system is shown to cover 664

the target ODD fully, testing can continue on the (sub)system level. Afterward, the tests 665

for the ODD have to be repeated, now with the system-level OD in the Operational Domain 666

Verification and Validation step. The final test, in line with most V-model representations, is 667

the acceptance test. On the one hand, it marks the final step in the certification of a system, 668

on the other hand, it is the first interface to the customer since all stakeholders defined the 669

ConOps. 670

After the W-shaped process is successfully passed, a system can go into certification 671

and then be deployed. However, in many cases, a single pass through the W-shaped process 672

might not be enough to develop a system that meets all certification requirements given 673

its designated DAL. The collision avoidance system, for example, with its DAL B rating 674
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has way more certification requirements than a DAL E system, for example, an AI-based 675

movie recommendation system for the IFE system. As the IFE is generally categorized as 676

DAL E, compared to Table 1, an AI-based system purely for the IFE will also be a DAL E 677

system. As such, it has no certification requirements. Such a system could, in theory, be 678

deployed regularly via an over-the-air update, similar to how most software updates for 679

smartphones and personal computers are rolled out. The aforementioned ACAS X, with 680

its higher DAL rating, cannot be rolled out and improved in multiple iterations in the 681

actual aircraft in operations. As errors in the collision avoidance system can easily lead 682

to tragic catastrophes, every new version of such an AI-based system has to go through 683

extensive certification efforts to ensure the safety of all lives on board an aircraft [82,97,98]. 684

Thus, it might be desired, to split the operations phase into two different cycles. First, a 685

faster cycle can be implemented only on the developer’s side to more quickly develop 686

improvements. And only once a certain maturity has been reached, the system can go into 687

certification and be deployed to the customers, in this case to actual aircraft. Still, even 688

such a system might require later updates to the underlying AI model. For that reason, 689

continuous improvement is still important, even for DAL B or higher systems. Therefore, 690

in the operations phase of the proposed framework, steps similar to DevOps have to be 691

undertaken. First, the developed AI-based system has to be released. In the case of aviation, 692

and for systems of DAL D or higher, this requires a certification process as described earlier. 693

Once this release process is finished, the developed system can be deployed to the target 694

platform. Depending on the target platform, this can be more or less complicated. For 695

some updates, especially those that might also require a new generation of hardware, 696

grounding of the aircraft will be necessary. Those deployment steps can take weeks to 697

years as it might be more efficient to deploy the changes when maintenance checks are 698

planned anyway. Other deployment steps, however, might be, as discussed earlier, a simple 699

over-the-air update, one that aircraft can automatically search for on a specific schedule, 700

for example once a week. Once the system is deployed, operations can begin. This step 701

is again strongly dependent on the developed AI-based system, but in general, this step 702

should be part of the normal operations. The last important step of the framework, also 703

derived from DevOps and somewhat parallel to the operating step, is the monitor step. As 704

many AI-based systems lack realistic data or the abundance thereof, constant monitoring 705

of the real operating conditions is required to continuously improve an AI-based system. 706

Only with feedback from the real system and real data, a realistic dataset for training can 707

be built. As such, this step is one of the most crucial steps in the proposed framework and 708

might take the most effort to implement. The monitoring step requires the data from the 709

actual system in operations to flow back to the developers, something not yet seen often 710

in aviation. However, only with an evergrowing dataset that is moreover also built on 711

real data, a continuous improvement and thus a safe AI-based system for aviation can be 712

developed. It is the basis for a new iteration of the proposed framework leading towards 713

safe and secure AI-based systems in aviation. 714

6. Compatibility to the Machine Learning Development Lifecycle 715

Besides EASA, other groups also work on similar standards for the development of 716

AI-based systems in aviation. One of these important standards is being developed by 717

the G34/WG-114 Standardization Working Group, a joint effort between EUROCAE and 718

SAE. Their standard, currently only published as a draft of chapter 6 of AS6983/ED-XXX, 719

focuses on the development of AI-based systems in aviation, specifically the Machine 720

Learning Development Lifecycle, currently only designed for offline applications [10]. As 721

it is still a draft, all the following results are preliminary only. Still, the goal of the MLDL, 722

as described in the draft, is to establish support for the certification and approval process 723

of AI-based systems in aviation. To achieve this, the MLDL aims to define and organize the 724

objectives and outputs of the systems in an easy to comprehend manner, suitable also for 725

non-experts in the field of AI and ML. These objectives are closely aligned with the DAL as 726

well as the Software Assurance Level [10]. However, compared to the W-shaped process 727
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developed by EASA [6], the MLDL does not require a specific development process but 728

rather provides a framework to support the development of AI-based systems in aviation 729

in general. Nevertheless, there are many similarities but also some differences between the 730

two frameworks worth exploring. 731

The MLDL is divided into development activities for both AI-based and traditional 732

(sub)systems and V&V activities for those (sub)systems. The architecture of a system in 733

the MLDL is segmented into two main parts, the System/subsystem Architecture and the 734

Item Architecture. The MLDL process starts with the execution of the requirements phase, 735

called System/Subsystem Requirements Process. This is similar to the proposed framework 736

with the primary difference that in the proposed framework requirements can be directly 737

derived from the ConOps, creating a continuous chain of trust. This chain of trust is 738

essential for clearly defining all requirements and their corresponding rationales. Thus, 739

ensuring that all relevant requirements of the system, its surrounding environment, and 740

operational conditions are captured. Since the ConOps serves as the primary interface with 741

the customer, all developments are based upon the requirements defined in it. Thus, it 742

plays a crucial role in the proposed framework, while not present in the MLDL. Based on 743

the results of this phase, the System/Subsystem Requirements Process, a set of (sub)system 744

requirements, including the OD and ODD, can be derived. 745

Following, the results from the System/subsystem Architecture phase are utilized to 746

define the ML Model Architecture in the MLDL, and correspondingly, in the proposed 747

framework, the Requirements Allocated to AI/ML Constituent are derived. At this stage, the ML 748

Requirements Process is divided into ML Data Requirements and ML Model Requirements. The 749

ML Data Requirements guide the ML data management, while the ML Model Requirements guide 750

the ML Model Design Process. In the W-shaped process, and thus also proposed framework, 751

these processes are referred to as Data Management and Learning Process Management, leading 752

to a similar output. This sets the stage for training and verifying the ML model, the ML 753

Model Design Process, and subsequently implementing the ML model on the designated 754

target platform, the ML Inference Model Design and Implementation Process and the Item 755

Integration Process. Both approaches include feedback loops from model training back to 756

learning process management, data management, and AI/ML requirements, allowing for 757

iterative improvements during training and the learning assurance of the AI-based system. 758

However, only the proposed framework integrates continuous improvement of the trained 759

ML model, even after deployment. 760

Moving from implementation to testing, the AI-based system will be verified and 761

validated against the different levels of requirements as defined previously. This process 762

takes place on the right-hand side of the proposed framework and accordingly in the 763

second half of the MLDL. While for the proposed framework, and also the W-shaped 764

process it is based upon, this will again lead to a split after which traditional soft- and 765

hardware items will be tested against the V-model. The MLDL, however, incorporates both 766

the traditional and the AI-based (sub)system in one holistic process, allowing for a better 767

overview of the whole development process. Nevertheless, while the MLDL, similar to the 768

W-shaped process, stops at the System/Subsystem Requirements, the proposed framework 769

follows through until the Acceptance Test phase, serving as the interface to all stakeholders, 770

especially the customer, by verifying the ConOps. Moreover, the proposed framework 771

is designed for the continuous development of the AI-based system by integrating ideas 772

from DevOps. As such, compared to the MLDL, the development does not end with the 773

release of the AI-based system, but focuses also on the operations, ensuring continuous 774

improvement by utilizing feedback from the deployed system and real data. 775

The comparison between the W-shaped process from EASA [6], see Figure 1, the 776

MLDL process from the G34/WG-114 Standardization Working Group [10] and the newly 777

introduced framework, see Figure 3, enhances the understanding of safe AI system devel- 778

opment. Comparing this framework to the MLDL creates a common understanding for the 779

development of safe and secure AI-based systems. It emphasizes the high-level require- 780

ments derived from the ConOps, while the MLDL starts at a lower level of abstraction and 781
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thus later in the development of the full system. Additionally, the proposed framework 782

integrates the operations cycle to utilize feedback from operations, which is crucial to 783

evaluating and improving the system’s performance ensuring a safe and secure AI-based 784

system. Ultimately, it appears to be compatible with the MLDL although the latter is more 785

expressive at lower levels while the new framework is more oriented towards continuous 786

development of AI-based systems. 787

7. Discussion 788

This work showed that future AI-based systems need a rigorous development process 789

based on novel AI Engineering methodologies to ensure both the safety and security of 790

such systems. To combat this problem, the European Union Aviation Safety Agency (EASA) 791

has already provided the so-called W-shaped process, an advancement of the V-model, 792

meant for AI-based systems. It is intended to be used in parallel to the V-model-based 793

development of traditional soft- and hardware items in the development process of a 794

complete system. However, the EASA learning assurance process has received criticism for 795

its potential limitations as some of its objectives might be inherently unverifiable. Thus, 796

the W-shaped process still lacks important features to ensure the safety and security of an 797

AI-based system throughout its operational lifecycle. Moreover, the W-shaped process lacks 798

continuous verification and validation due to its sequential design. For AI-based systems, 799

this is, however, crucial to adhere to the dynamic nature of AI-driven requirements. The 800

processes required to achieve not only continuous updates but also continuous verification 801

and validation have already been manifested in other development processes, namely the 802

established DevOps process. A naive implementation of the DevOps cycle is, however, 803

also not suitable as it is not compatible with current aviation processes and certification 804

standards. As the DevOps process also sees a rise in adoption in other safety-critical 805

domains, such as automotive, the framework proposed in this work builds upon the W- 806

shaped process by integrating aspects from DevOps to further improve and extend the 807

W-shaped process. 808

The proposed novel process, an extension of the W-shaped process, aims to enforce 809

more feedback loops through its more holistic approach by starting at the initial definition 810

phase in which the Concept of Operations document is defined. Furthermore, the proposed 811

process adds dedicated steps for the creation of both the Operational Domain as well as the 812

Operational Design Domain and their corresponding verification steps, thus creating a more 813

accountable process. Finally, the novel process integrates even more ideas and processes 814

from DevOps into the W-shaped process by incorporating the operations phase firmly into 815

the process. Including the operations phase in the process ensures that information from 816

the operations of the developed AI-based system can flow back into the update of said 817

system. This is the fundamental idea of continuous development and is required for the 818

continuous verification and validation of any AI-based system, not only in aviation. It 819

is essential for the Safety-by-Design-process in the field of AI Engineering. Furthermore, 820

this work discusses how different Development Assurance Levels (DALs) lead to different 821

requirements for the operations phase of the DevOps. Given the stringent certification 822

requirements of systems with a high DAL, for these systems, it is recommended to go 823

through multiple rounds of the process before submitting a system to certification with the 824

subsequent release and deployment of updates to the AI/ML constituent of the AI-based 825

system. 826

Nevertheless, even the proposed framework is not yet fully suitable for widespread 827

adoption in aviation. Similar to the W-shaped process, as it is built upon it, it lacks compat- 828

ibility with both unsupervised learning and reinforcement learning methods. Moreover, 829

clear guidance on how the operations phase should be executed is still under investigation, 830

and how this phase can be integrated into the current aviation processes, especially the 831

certification process. Furthermore, some questions on the interaction of traditional soft- and 832

hardware with AI-based systems are still open. For example, how to handle the integration 833

and deployment of an updated AI-based system if this would require new hardware to 834
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also be deployed. Next, guidelines on the required amount of feedback from the operations 835

phase to the development phase are missing. As well as guidelines on how exactly this data 836

can be safely and securely transferred from the aircraft to the developers. Nevertheless, the 837

proposed framework was shown to be compatible with the Machine Learning Development 838

Lifecycle (MLDL) developed by the G34/WG-114 Standardization Working Group, a joint 839

effort between EUROCAE and SAE. It is the overall goal of this work to enhance the field 840

of AI Engineering for aviation leading to a safe and secure application of AI-based systems, 841

whether they were developed with the here proposed framework or any other framework, 842

as long as the focus shifts towards continuous development and integration to continuously 843

improve any AI-based system deployed. 844

8. Conclusions 845

In this paper, a more accountable and holistic development process for the Safety- 846

by-Design development of AI-based systems in safety-critical environments has been 847

proposed. It extends the W-shaped process introduced by EASA, incorporating ideas from 848

the DevOps approach. This novel process intends to ensure that the development follows a 849

Safety-by-Design approach from the high-level system down to the AI/ML constituent. By 850

following proven ideas from the field of AI Engineering, the proposed process allows for a 851

continuous improvement of the AI-based system and, thus, a continuous verification and 852

validation leading to a potentially certifiable AI-based system. 853

Future research will focus on the enhancement of the Safety- and Security-by-Design 854

methodology for safety-critical AI-based systems considering measurable quality criteria, 855

such as explainability, traceability, and robustness. Automating the methodology will 856

ensure the systematic and strategic development and improvement of the AI-based system 857

throughout the entire MLDL. Moreover, investigations on how the methodology can be 858

further enhanced through AI-driven feature engineering will be conducted. Ultimately, the 859

methodology will be applicable across different domains, such as space, transportation, 860

and robotics. 861
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ACAS Airborne Collision Avoidance System
ADS Automated Driving System
AI Artificial Intelligence
CI/CD Continuous Integration and Continuous Deployment
ConOps Concept of Operations
DAL Development Assurance Level
DevOps Development Operations
DevSecOps Development Security Operations
EASA European Union Aviation Safety Agency
EUROCAE European Organization for Civil Aviation Equipment
HTL Human-in-the-Loop
IFE In-Flight Entertainment
ISO International Organization for Standardization
ML Machine Learning
MLDL Machine Learning Development Lifecycle
MLOps Machine Learning Operations
OD Operational Domain
ODD Operational Design Domain
SAE Society of Automobile Engineers
SafeOps Safety Operations
V&V Verification and Validation
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