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Emerging infectious diseases and climate change are two of the major challenges in 21st
century. Although over the past decades, highly-resolved mathematical models have
contributed in understanding dynamics of infectious diseases and are of great aid when it
comes to finding suitable intervention measures, they may need substantial computational
effort and produce significant CO2 emissions. Two popular modeling approaches for
mitigating infectious disease dynamics are agent-based and population-based models.
Agent-based models (ABMs) offer a microscopic view and are thus able to capture het-
erogeneous human contact behavior and mobility patterns. However, insights on
individual-level dynamics come with high computational effort that scales with the
number of agents. On the other hand, population-based models (PBMs) using e.g. ordinary
differential equations (ODEs) are computationally efficient even for large populations due
to their complexity being independent of the population size. Yet, population-based
models are restricted in their granularity as they assume a (to some extent) homoge-
neous and well-mixed population. To manage the trade-off between computational
complexity and level of detail, we propose spatial- and temporal-hybrid models that use
ABMs only in an area or time frame of interest. To account for relevant influences to
disease dynamics, e.g., from outside, due to commuting activities, we use population-
based models, only adding moderate computational costs. Our hybridization approach
demonstrates significant reduction in computational effort by up to 98% e without losing
the required depth in information in the focus frame. The hybrid models used in our
numerical simulations are based on two recently proposed models, however, any suitable
combination of ABM and PBM could be used, too. Concluding, hybrid epidemiological
models can provide insights on the individual scale where necessary, using aggregated
models where possible, thereby making a contribution to green computing.
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1. Introduction

Two of themajor 21st century's challenges are accelerating climate change (Callaghan et al., 2010) and emerging infectious
diseases with an expected increase in frequency of epidemics and pandemics (Daszak et al., 2020). As these challenges are
driven by the same underlying causes, sets of proposed counteractions might go hand-in-hand (Daszak et al., 2020; Epstein,
2001). In order to assess counteractions and support decision-makers, mathematical models are viable tools that have been
used extensively in both domains. Models can help to understand the situation at hand and to analyze potential future
developments, which often cannot be conducted in classical experiments. The recent COVID-19 pandemic has demonstrated
the benefit of mathematical models to analyze ongoing infectious disease dynamics and to evaluate potential scenarios, see,
e.g., (Kerr et al., 2021; Koslow et al., 2022; Reiner et al., 2020). Extensive testing strategies maintaining mobility as a social
good, have, for instance, been studied in (Kühn et al., 2022). The set of mathematical models to address epidemiological
emergencies to provide guidance to decision makers is diverse. It ranges from classical statistical models such as generalized
regression models, through population-based (Medlock, 2004; Reiner et al., 2020), metapopulation (Kühn et al., 2021; Liu,
Ong, & Pang, 2022), and agent-based (Bershteyn et al., 2018; Bracher et al., 2021; Kerkmann et al., 2024; Kerr et al., 2021;
Müller et al., 2021) models to machine and deep learning models (Garnett, Cousens, Hallett, Steketee, & Walker, 2011;
Schmidt, Zunker, Heinlein, & Kühn, 2024; Wynants et al., 2020). Population-based models using sets of ordinary (Kühn et al.,
2021; Reiner et al., 2020) or integro-differential-equation-based models (Medlock, 2004; Wendler, Pl€otzke, Tritzschak, &
Kühn, 2024) are well established methods that have been used by hundreds of work groups worldwide to analyze infec-
tious disease dynamics. Their advantages are the ease of analysis, their well-understood character and the low computational
requirements which do not depend on the number of individuals in the population but on the number of different sub-
populations. However, their insight on the individual-level dynamics or on (singular) stochastic effects is limited and they also
fail in the beginning of an outbreak when the number of infected is small. Agent- or individual-based models (ABMs or IBMs),
on the other hand, allow the stochastic simulation of individual behavior and reaction to diseases, in a social and immu-
nological dimension, see, e.g., (Kerr et al., 2021; Müller, Paltra, Rehmann, Nagel, & Conrad, 2023). Though, this comes at the
cost of superlinear complexity. While the energy consumption corresponding to computational cost can be reduced through,
e.g., optimizations on the cache level (Willem et al., 2015) or the optimal use of heterogeneous hardware structures such as
SIMD registers (Kühn, Holke, et al., 2023), we here propose a complementary approach to directly avoid less impactful
computations through the development of well-designed hybridization concepts.

The authors of (Müller et al., 2021) demonstrated that the inclusion of disease import, i.e., infections caused by travelers
and commuters, is an important factor to explain disease dynamics. Via the metapopulation approach in (Kühn et al., 2022), it
was shown how large the effects of disease import can become if testing is not done properly. Using simple statistics for
disease import can be a suitable first step in improving model precision in a considered focus region. However, if disease
import is subject to change through interventions, disease dynamics in coupled regions are advised to also be modeled
dynamically.

In this work, wewill present a framework for spatial- and temporal-hybrid epidemiological modeling, combining any pair
of suitable fine-granular agent-based and coarse-granular population-based models. We will then suggest a particular
combination of two suitable models introduced recently in (Winkelmann, Zonker, Schütte, & Conrad, 2021) and present
results for three simplified examples thereby demonstrating potential areas of application and the benefit of the hybrid
models. In this context, we will simulate a COVID-19-like disease with parameters motivated by (Kühn et al., 2021). However,
as the scope of the current paper is the disease-agnostic introduction of novel hybrid models, no further parameter refine-
ment or real-world application for COVID-19 has been performed. Let us note that any other disease model can be put in our
framework. We will show that our hybrid modeling approach can account for individual developing disease dynamics,
otherwisemodeledwith pure ABMs, while drastically reducing computational effort.Wewill provide discussions, limitations,
and directions for future research before we eventually draw a conclusion.
2. Materials and methods

In this section, we first present related work on hybrid models. Then we present an agent-based and a metapopulation
model, and eventually we introduce our novel, hybrid modeling framework which is applied to the two models introduced
before.
2.1. Related work

The development of hybrid models is often driven by the intention to combine the advantages of two different modeling
approaches. In the context of infectious disease dynamics, several suggestions for hybrid modeling have been made. While
the authors of (Angione, Silverman,& Yaneske, 2022; Avegliano& Sichman, 2023; Robertson, Safta, Collier, Ozik,& Ray, 2024)
used ABMs together with ordinary differential equation (ODE)-based and machine learning models, respectively, to improve
parameter estimation, we focus on hybrid models where both model types are used in the simulation and prediction process.
However, also in this context, the term hybrid model is used for many different realizations.
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In (Banos, Corson, Gaudou, Laperri�ere, & Coyrehourcq, 2015; Kasereka, Kasoro, & Chokki, 2014; Bradhurst et al., 2015;
Marilleau, Lang, & Giraudoux, 2018; Yoneyama, Das,& Krishnamoorthy, 2012), the authors used metapopulation or network-
based models which are sometimes also denoted as hybrid models. These metapopulation models combined ODE-based
models for different considered regions while the mobility between regions was modeled with an agent-based modeling
principle. Similarly, although not coined hybrid, the PDMM of (Winkelmann et al., 2021) used ODE-based formulations for
single regions and a stochastic jump process tomodel mobility between the regions. In (Kühn et al., 2021; Zunker et al., 2024),
other examples of network-basedmetapopulationmodels were presented. There, ODE-basedmodels were used for particular
regions representing the nodes of a graph and deterministic mobility was realized through the edges of the graph. While also
using a metapopulation model combined with an ABM in our hybridization framework, our understanding of hybrid goes
beyond the aforementioned.

In (Bobashev, Goedecke, Yu, & Epstein, 2007; Hunter, Mac Namee, & Kelleher, 2020; Quang Nghi, Nguyen-Huu, Grignard,
Xuan Huynh, & Drogoul, 2016), hybrid models were implemented that used different model types, namely agent-based and
population-basedmodels, in different temporal regimes. The authors used ABMs for low-incidence regimes and upon passing
a threshold on the number of infected individuals, a switch to an ODE- or difference equation-based model was executed. We
call this temporal coupling of model types temporal hybridization.

The authors of (Sewall, Wilkie,& Lin, 2011) implemented a hybridmodel for simulating large-scale traffic. They coupled an
ABM and an population-based model and provided rules for spatial exchange when one region was modeled with the ABM
and a neighboring regionwith the population-based model. We call this method spatial hybridization. Similar to the temporal
hybridization, they also implemented the conversion of a whole region from one model to another, here not dependent on
time but on user input.

In this paper, we will introduce novel spatial-hybrid models for infectious disease dynamics which use an ABM in a focus
region andmacroscopic ODE-basedmodels in all connected regions. Furthermore, wewill extend the application of temporal-
hybrid models where switching takes place upon exceeding a threshold.
2.2. High-performance computing, carbon footprint, and green computing

High-performance computing (HPC) can enable breakthrough research results for ABMs (Collier & North, 2013) but
require great computing capability which naturally comes with high energy demands. The regularly updated Top500 list1 of
the 500most powerful commercially available computer systems known to the providers, lists the (peak) power consumption
for 199 out of the 500 supercomputers in November 2024. The total power consumptions for these 199 system sums up to
431,222.57 kW. Using an optimistic emission of 380g CO2 for the production of 1 kWh power, provided by the German Federal
Environment Agency for the 2023 German energy mix with 51.9% of renewable energy (Icha & Lauf, 2024), these systems
alone have a daily emission of 3932 tons of CO2. The author of (Portegies Zwart, 2020) situated the carbon footprint for the use
of one million compute cores between an 8-h air travel and a launch of a Falcon 9 rocket into space. On a broader scale, green
computing considers the entire product life cycle of technological devices from production through operation and recycling,
resulting in several challenges as highlighted by (Wang, 2008). While substantial progress has been made on the hardware
side to increase energy efficiency on the operational level, in particular through graphic processing units (Portegies Zwart,
2020; Rofouei, Stathopoulos, Ryffel, Kaiser, & Sarrafzadeh, 2008), carbon emission of HPC systems cannot be neglected.
The manufacturing or recycling processes targeted by green computing have to be considered on another level, nevertheless,
contributions to green computing can be made by scientists when designing large-scale (scientific) software with energy-
awareness. Aside from classical performance engineering and code optimization to speed-up algorithms or achieve more
efficient hardware usage, hybrid, multiscale, or adaptive frameworks can achieve substantial performance gains or energy
consumption reductions. Through the principle of computing on a finest level where necessary and aggregating information
where possible, green computing advancements can be made by scientists and software developers.
2.3. Explicit agent- and metapopulation-based models

In this section, wewill introduce an ODE-basedmetapopulationmodel and an ABM, originally introduced in (Winkelmann
et al., 2021). These models will be used in the applications of our hybrid modeling framework. We will extend the set of
infection states to allow for a- and presymptomatic transmission. The description of the transmission and course of the disease
model is provided in Section 2.3.3.

We start with the ABM, whose change over time is described by a so called master equation motivated by chemical re-
action systems, cf., e.g., (Gillespie, 1977). While this does impose some restriction onwhat the agents’ (inter)actions may be, it
allows us to derive a piecewise deterministic metapopulation model (PDMM) that shares parameters and behavior with the
ABM. The PDMM can be obtained by a model reduction of the presented ABM, see (Winkelmann et al., 2021). All models are
implemented in Cþþ, which is among the fastest and most efficient programming languages (Pereira et al., 2017; Portegies
Zwart, 2020), and within the MEmilio software (Kühn, Abele, et al., 2023) for modular epidemics simulations.
1 https://top500.org/lists/top500/list/2024/11/.
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2.3.1. A diffusion- and drift-based ABM
The nature of agent-based modeling is to capture more intuitively and to model in a direct manner individual (human)

properties and interactions. Corresponding models have already been explored before the availability of modern computers;
see, e.g., (Schelling, 1971). The authors of (Hunter, Mac Namee,& Kelleher, 2017) have set up a so far nonexisting taxonomy for
ABMs in infectious diseases and considered if particular ABMs includedmodules or submodels for society, transportation, and
environment.

According to our understanding, an ABM consists of a finite number of unique agents a1;…;ana and an environment in
which and to which an agent reacts. Furthermore,

� an agent is characterized by a finite number of features that determine its state,
� an agent interacts with other agents and their joint environment according to interaction rules,
� the state of an agent or the environment changes through interactions or with time.

The features of the used ABM are infection states given by the overall infection dynamics and agents' positions deter-
mined by agents’ movements. Hence, an agent is represented as a tuple ðx;zÞ2U� Z , where U3R2, the environment, is a
compact domain and Z ¼ ðz1; z2;…; znI Þ a set of infection states. Considering na agents, the system state is defined as a
vector YdðX;ZÞ2YdUna � Z na , where an agent a (with its two features, position and infection state) is represented by the
a-th component of the system state Ya ¼ (xa, za) ¼ (X,Z)a. The evolution of the system state over time is modeled as a
continuous-time Markov process (Y(t), t � 0). The evolution of the process is determined by the master equation, that
describes the relevant probability measure by the change of its probability density

vtpðX; Z; tÞ ¼ GpðX; Z; tÞ þ LpðX; Z; tÞ: (1)

The operator G defines the infection state adoptions and only acts on Z, while L defines location changes, only acting on X.
For the formal definition of G and L the reader is referred to (Winkelmann et al., 2021). Here, we will only describe the

realization of the operators used for the later applications. Starting with the infection state dynamics, let i/ j be an infection
state adoption, where i2Z is the current infection state, and j2Z yfig the infection state to adopt. For any particular agent,

we assume that the likelihood of this adoption to happen in a given amount of time is determined by some rate f ðaÞi;j ðYðtÞÞ
depending on the system state at the current time t. We call this rate (infection state) adoption rate. A suitable method to

realize this rate-dependent infection dynamic is using independent inhomogeneous Poisson processesP ðaÞ
i;j ðtÞdP f ðaÞi;j ðYðtÞÞ

for

infection state adoption i / j and agent a. As a natural extension of f ðaÞi;j , for j ¼ i, we define f ðaÞi;i ≡0. These rates should be

interpreted as rates to change the current state.
For a given infection state adoption, various compartments can influence the adoption rate. The influence of an adoption

i / j is defined as an index set Ji;j3Z yfig. We use these influences to differentiate between two types of adoptions.

1. First-order adoption: An adoption event that does not require interactions with other agents, i.e., spontaneous infection
state change, like recovery or death from the disease. Its adoption rate only depends on the compartment the agent is
currently in, thus Ji,j ¼ ∅.

2. Second-order adoption: An adoption based on pairwise interactions, i.e., infection via a contact with an infectious agent.
The rate depends on the compartment of origin of an agent as well as all influences in Ji,j s ∅.

Therefore, if there are no influences, the adoption event is of first-order, and of second-order if there are any.
The adoption rates are given by adoption rate functions fi;j : Y/½0;∞ Þna , which in general depend on the whole system

state. For each agent a, the a-th component of fi,j is given by the function f ðaÞi;j : Y/½0;∞ Þ, which depending on the order of the

adoption i / j is defined as

f ðaÞi;j ðX; ZÞ ¼ diðzaÞgi;jðxaÞ (2)

for first-order adoption events, or

f ðaÞi;j ðX; ZÞ ¼ diðzaÞ
X

t2Ji;j

Xna

b¼1

dt
�
zb
�
gi;j;t

�
xa; xb

�
(3)
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for second-order adoptions. Here di(za) is the Kronecker-delta, being one when agent a has infection state i and zero
otherwise. The functions gi,j: U/ [0,∞) and gi,j,t: U2/ [0,∞) give the magnitude of the adoption rate, only depending on an
agent's position. We choose

gi;jðxÞ ¼ ci;j and gi;j;tðx; yÞ ¼ ci;j;t1kx�ykU�r ; (4)

with a cutoff for second-order adoptions beyond the interaction radius r > 0. The radius determines how close two agents
have to be for being considered contacts, and we use rate constants ci,j � 0, ci,j,t � 0. We always set ci,i ¼ ci,i,t ¼ 0 as adoptions
from one state to itself are not possible. Note that rate constants ci,j and ci,j,t could also be time-varying ci,j(t) and ci,j,t(t).

Agents’ movement trajectories y (omitting a dependency on infection state i) are determined by independent diffusion
processes. They are given by stochastic differential equations of the form

dxðtÞ
dt

¼ bðt; xðtÞÞ þ sðt; xðtÞÞxðtÞ: (5)

Here, b : ½0; T � � R2/R2 is called drift coefficient or potential on the domain, and s : ½0; T � � R2/R2�m is called diffusion
coefficient or noise. The potential can be given by functions FðtÞ : U/R in which case b(t)d � VF(t). As b is assumed to be
deterministic, all random behavior is solely caused by the noise. The magnitude of the noise determines the influence of the
white noise process x : ½0; T �/Rm on the diffusion. Formally, it is defined as x ¼ dW

dt , the derivative of the Brownian motion in
Rm. The parameter m can be used to stratify agents' movement, for example with respect to infection state or region.

In practice, we use an agent's current position as initial value for Eq. (5), and only integrate a small time step, using the
Euler-Maruyama method, to get its new position.

2.3.2. The corresponding piecewise deterministic metapopulation model
The corresponding piecewise deterministic metapopulation model (PDMM) simplifies the ABM by using two approxi-

mations. In the following, we will shortly describe these approximations. The full derivation of the PDMM from the ABM
introduced above can be found in (Winkelmann et al., 2021).

First, computational effort is reduced by discretizing the domain. The domain is split into subregions U1;…;UnR with
U ¼ SnR

k¼1Uk and agents are aggregated to subpopulations in the subregions. Hence, an agent's position is now defined only
by its subregion index k2 {1,…, nR} instead of an exact position x2 U. Consequently, all agents in one subregion have the

same position. The system state is defined as the matrix N ¼ ðNðkÞ
i Þi2Z ;k¼1;…;nR

2RnI�nR
�0 , with NðkÞ

i the number of agents in

region Uk and infection state i. Let eðkÞi be the matrix where the entry for (i, k) is one and all others are zero. The movement

between subpopulations is modeled by Poisson processes L ðk;lÞ
i with rates lðk;lÞi for spatial transitions from subregion k to

l, k, l 2 {1, …, nR}. These rates depend on the transitioning agent's infection state i and are of the form N/Nþ eðlÞi � eðkÞi .
Formally, the spatial transition rates are given by the location change operator L through

l
ðk;lÞ
i d

Z
U
dUl

ðxÞLi
�
dUk

ðxÞ�dxZ
U
dUk

ðxÞdx
; (6)

but in practice they may be easier to sample than to calculate analytically. The space of all possible system states is given by

Mna ¼
(
N

�����XnI

i¼1

XnR

k¼1

NðkÞ
i ¼na

)
; (7)

where na is again the total number of agents in the model.
Secondly, model and computational cost is reduced by approximating the infection state adoption processes by a deter-

ministic system of equations. The underlying assumption is that the populations are large such that infection state adoptions
are relatively rapid and spatial transitions are comparatively rare. Using region-dependent adoption rate functionsbf ðkÞi;j : RnI

�0/R�0, the adoption dynamics are given by ODEs of the form

d
dt
NðkÞ
i ðtÞ ¼

X
j2Z isj

�bf ðkÞj;i

�
NðkÞðtÞ

�
�bf ðkÞi;j

�
NðkÞðtÞ

��
; (8)

without accounting for spatial transitions. The evolution of the system state N(t) over time is described by a continuous-time
Markov jump process. Writing ðNðtÞÞt�0 as a path, we obtain
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NðtÞ¼Nð0Þþ
XnR

k;l¼1
ksl

XnI

i¼1

L ðk;lÞ
i

	Z t

0
l
ðk;lÞ
i NðkÞ

i ðsÞds

�

eðlÞi � eðkÞi

�
þ

XnR

k¼1

XnI

i;j¼1

Z t

0

bf ðkÞi;j ðNðsÞÞds
�
eðkÞj � eðkÞi

�
: (9)

For the full derivation from the ABM through a stochastic metapopulation model to the PDMM using convergence results for
Markov processes, see again (Winkelmann et al., 2021).

2.3.3. Transmission and course of the disease
As course of the disease model, we use a Susceptible-Exposed-Carrier-Infected-Recovered-Dead model, thus

Z ¼ ðS; E;C; I;R;DÞ. Individuals in the Carrier compartment may be either pre- or asymptomatic, hence they do not show
symptomswhile the Infected compartment encompasses all individuals showing symptoms ranging frommild to severe. Both
compartments are infectious to Susceptibles. There is only one second-order adoption (see Fig. 1) which is S / E with in-
fluences JSE ¼ {C, I}. As there is no outflow from the R compartment, this model does not consider the possibility of
reinfection.

Given the courses of the disease defined here, the local equations giving the infection state dynamics in region Uk of the
PDMM from Section 2.3.2 write

d
dt
NðkÞ
S ¼ �

rðkÞ
�
x
ðkÞ
C NðkÞ

C þ x
ðkÞ
I NðkÞ

I

�
nka

NðkÞ
S ;

d
dt
NðkÞ
E ¼

rðkÞ
�
x
ðkÞ
C NðkÞ

C þ x
ðkÞ
I NðkÞ

I

�
nka

NðkÞ
S � g

ðkÞ
E;CN

ðkÞ
E ;

d
dt
NðkÞ
C ¼ g

ðkÞ
E;CN

ðkÞ
E �

�
g
ðkÞ
C;R þ g

ðkÞ
C;I

�
NðkÞ
C ;

d
dt
NðkÞ
I ¼ g

ðkÞ
C;IN

ðkÞ
C �

�
g
ðkÞ
I;R þ g

ðkÞ
I;D

�
NðkÞ
I ;

d
dt
NðkÞ
R ¼ g

ðkÞ
C;RN

ðkÞ
C þ g

ðkÞ
I;RN

ðkÞ
I ;

d
dt
NðkÞ
D ¼ g

ðkÞ
I;DN

ðkÞ
I :

(10)
2.4. A framework of hybrid modeling and its application

In this section, we introduce the general concept of two different types of hybrid epidemiological models: spatial-hybrid
and temporal-hybrid models. These approaches do not exclude each other so that also spatio-temporal-hybrid models can be
realized. Both hybridization approaches are shown in Fig. 2. For both approaches, we will provide explicit applications with
the models presented in the previous section.

Themotivation to use population-basedmodels combinedwith ABMs for disease dynamics is to reduce the computational
effort of individual-level models which scale with the number of considered agents or individuals. In particular, we here
provide the computational cost for the two explicit models introduced before. For both models, we need to consider
computational costs for spatial transitions or movements and infection state adoption dynamics. The movement of agents in
the ABM is given by a diffusion process that has to be evaluated for every agent. Assuming a constant time for the evaluation,
the cost to calculate movement dynamics in the ABM lies in O ðnaÞ. Furthermore, the infection state adoption rates have to be
evaluated in every iteration. As first order adoption rates are computed per agent, the complexity as well is in O ðnaÞ. For
second-order adoptions, pairwise comparison of agents is necessary, hence, we obtain a superlinear complexity and in the
worst case one iteration has computational cost in O ðn2aÞ. For the PDMM the cost for infection state adoption dynamics in one
Fig. 1. Flow chart of the infection state adoption model. The infection states are Susceptible (S), Exposed (E), Carrier (C), Infected (I), Recovered (R) and Dead
(D). The dotted lines shows the influences for the second-order adoption.
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Fig. 2. Design sketch of a spatial-hybrid model (a) and a temporal-hybrid model (b). Large gray disks represents (sub)regions, with possible population
exchanges indicated by arrows. The population is represented by small disks for agents and bar charts for ODE compartments. Red indicates infected agents or
population shares, gray indicates noninfected agents or population shares. The exchange in (a) only moves small parts of a local population to another region, the
exchange in (b) moves the entire population to the other model.
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iteration is given by integrating the system of differential equations, thus it is independent of na. Technically, the cost for
integration scales with the number of equations meaning the number of regions and compartments, but their size is
negligibly small compared to na. Therefore, the relevant complexity and runtime factor in the PDMM is given by the spatial
transition events. The frequency of the spatial transitions depends on the magnitude of the rates. As the transition rates are
multiplied with the corresponding subpopulation, see Eq. (9), the complexity of the spatial dynamics lies in O ðnaÞ. A sum-
mary of the model characteristics is given in Table 1.

A requirement to the two models used is that we can define a mapping between them. In its simplest form, the coarse-
granular model may be obtained by projection from the fine model. In a more elaborated setting, we need to map fine-
granular, continuous features like viral load to a discrete, coarse-granular definition. Naturally, going from fine-to-coarse is
easier as information gets reduced. Going from coarse-to-fine either needs sampling or the replication of retained infor-
mation to realize a realistic model over the whole simulation horizon (spatial or temporal). While in the current paper we
only needed to sample a corresponding position in a 2D plane, more sophisticated sampling (based on retained information
on travelers) will be necessary for more realistic ABMs. The corresponding sampling then could include information on
households or workplaces and agents' immune histories. In general, the coarse (and hybrid) results should approximate the
fine result. One condition for this would be that the models’mean results converge. In addition, both models should match in
the sense that there is a projection from the fine to the coarse model population, with a suitable mapping from coarse to fine
such that the information lost when retrieving the fine model population from the coarse model, does not exceed the
approximation error. Nevertheless, to determinewhether the results of a particular hybridmodel will be accepted depends on
individual evaluation of the trade-off between approximation error and speed-up.

2.4.1. Spatial hybridization
The idea of a spatial-hybrid model originates from research questions on fine-granular infection spread, like household or

workplace transmission in a particular region. To consider only this (focus) region would neglect the influence of connected
regions on infection dynamics through, e.g., commuting activities. However, the use of fine-granular models for all connected
regions might be prohibitively expensive or individual-level data is either exclusively available in the focus region, or sub-
stantially costly to collect for outside regions.

Consequently, we model only the focus region by a fine-granular model and use coarse-granular models in any connected
region.With this approachwe get results with the desired resolution in the focus regionwhile considering the dynamic, time-
dependent influence of the connected regions in a runtime efficient manner. In the following, wewill denote this approach as
spatial hybridization and will refer to hybrid models with higher granularity in a focus region as spatial-hybrid models.

For the spatial hybridization, we require a disjoint partition of the modeled domain into at least two subregions. The
exchange of populations between the different regions can be realized with different mobility models, however, sending
agents to a coarser model does cause loss of information (e.g. sending an agent to a simple ODE-based model will only retain
its infection state and lose all spatial information). To the best of our knowledge, there is only little theory on this exchange
problem and the exchange is highly dependent on the concrete models used. Some discussions and suggested models can be
found in (Hunter et al., 2020; Sewall et al., 2011; Bradhurst et al., 2015). While a particular goal is that the hybridization
approaches the ABM outcome, for instance, ODE-based models are not able to let a virus go completely extinct while ABMs
can simulate this extinction. This does not mean that a spatial-hybrid of ODE-ABM cannot be used if infection numbers are
small in a regionwhere the potential of extinction is real. This only means that the results may differ from the results of a fully
fine-resolved (stochastic) model and hence that this limitation and its impact needs to be considered when evaluating
simulation results. For further discussion on this effect, see e.g. (Schaller & Meyer-Hermann, 2006; Shnerb, Louzoun,
Bettelheim, & Solomon, 2000). More suitable combinations could use stochastic differential equation-based models or a
mixed spatial-temporal-hybrid (in combination with the next section).
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Table 1
Model comparison of ABM and PDMM. The term O ðnaÞ* describes the runtime scaling due to spatial transition rates
and can be replaced by O ðnrnIÞ, with nrnI ≪ na, under the assumption that spatial transitions are several orders of
magnitude lower than infection state adoptions.

ABM PDMM

Complexity superlinear, up to O ðn2aÞ O ðnaÞ*
Spatial domain continuous discrete
Adoption dynamics stochastic deterministic
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Two ways to obtain compatible models are to fit the two models against each other, or to derive the coarse model (pa-
rameters) from the fine one. However, in both cases it is important to understand themodel behavior very well to be aware of
inter-dependencies. For instance, location and infection state changes may depend on each other and cannot always be fitted
separately. An interesting discussion can be found in (Niemann, Uram, Wolf, Djurdjevac Conrad, & Weiser, 2024).

In the following, we will provide some further details on the precise realization of the spatial hybridization for the ABM
and PDMM introduced in Section 2.3. Let U1 be the focus region. For the precise implementation, ABM and PDMM are set up
for thewhole domainwhile bothmodels have nomovement or infection state adoptions in the non-relevant regionsmeaning
the focus region for the PDMM and all regions outside the focus regions for the ABM, i.e., the corresponding rates are zero.
Then, both models are run independently from each other as long as no agents are leaving or entering the focus region. On
time points for population exchange, models will be synchronized. As mentioned before, the exchange of agents and pop-
ulations between the models is a crucial aspect of the hybridization. As the mobility process of the PDMM is also based on
agents and not on shares of the whole population and as we set the adoption rates in the PDMM in the focus region to zero, it

holds Nð1Þ
i 2N for i2Z . The exchange between the models is done as follows.

� ABM / PDMM: Let t be the time point of the last exchange and Y�(t, t0) ⊆ Y(t0) be the set of agents that need to be
exchanged fromABM to PDMM, i.e., agents with positions x;U1, at time point t0 > t. As we switch from fine-granular to the
corresponding coarse-granular model, the exchange can be done by a trivial projection. Agents in Y�(t, t0) are just added to
the subpopulation NðfðxÞÞ

i ðt0Þ in the PDMM according to their infection state i2Z and a projection f: U / {2, …, nR} with
f(x) ¼ k for x 2 Uk. Subsequently, this agent is removed from the ABM.

� PDMM / ABM: The exchange from coarse-granular to fine-granular model is not as trivial, since the PDMM only has
spatial information aggregated to subregions and, hence, misses concrete positions inside the subregions. For the ex-
change at time point t0,

P
i2Z Nð1Þ

i ðt0Þ new agent tuples are created and added to the ABM system state Y(t0). The infection
state z2Z of a newly created agent is directly given by the PDMM subpopulation index. Its position x 2 U1 is sampled
from a distribution P which depends in general on the ABM movement operator L, see Eq. (1). As we use a diffusion
process in our applications, P depends on the potential b, see Eq. (5), and will be precisely defined in Section 3.1 for the
two examples provided there.

To get the initial populations for the spatial-hybrid model, we first only add agents to the ABM and then make one ex-
change step to set the initial system state N(0) in the PDMM. With this, all agents outside U1 are removed from the ABM, and
in the PDMM the population in U1 is set to 0.

The implementation of the spatial hybridization is shown in Algorithm 1.

Algorithm1. Spatial hybridization

1 Create ABM and PDMM for U ¼ SnR

k¼1Uk and t¼ t0;
2 Set and restrict rates and populations, see Section 2.4.1;
3 ABM for U1;

4 PDMM for U2;…;UnR ;
5 While t2 [t0, tmax] do;
6 Define next synchronization point t0;
7 Advance ABM and PDMM from t to t0;
8 /* Exchange agents between models */
9 Foreach a2 Y�(t, t0);
10 Set NðfðxaÞÞ

za ðt0Þþ ¼ 1;
11 Remove a from Y(t0);
12 Foreach i2Z ;
13 While Nð1Þ

i ðt0Þ>0 do;
14 Sample position x � P ;
15 Add agent (x, i) to Y(t0);
16 Set Nð1Þ

i ðt0Þ � ¼ 1;
17 Set t¼ t0;
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2.4.2. Temporal hybridization
The idea of temporal-hybrid models is based on the assumption that the lower the case numbers, the higher is the impact of

stochastic events to the (simulation) outcome. On the other hand, if case numbers are high, individual behavior and stochastic
events become less influential. This means that single simulation results of stochastic models come closer to averaged
outcomes and hence mean-field models deliver a suitable approximation also for individual simulations.

The temporal hybridization is based on the same requirements as the spatial-hybrid model, except that we only use one
model for the whole domain and switch between coarse- and fine-granular model during the course of the simulation. Then,
instead of exchanging agents or populations on spatial transitions, we exchange the entiremodel at certain time points. These
time points depend on the current system state and are thus selected dynamically. As a consequence, we need fine granular
data for the whole domain.

In Section 3.2, we use an ABM to model disease spread when the number of infected individuals is below a predefined
threshold and switch to a coarser, hence ODE-based or metapopulation model, as soon as the number of infected individuals
exceeds the threshold. We denote hybrid models that switch between fine and coarse model using a predefined, time-
dependent criterion as temporal-hybrid models. In literature this kind of hybrid model is also referred to as stage-based
hybrid model, see e.g. (Bradhurst et al., 2015) and (Bobashev et al., 2007). In case of the virus-extinction example from
above, we could change from an ODE-based or metapopulation model to an ABM whenever the number of virus carriers
drops below a threshold that would realistically allow an extinction to occur and switch back whenever the virus will, with
some certainty or probability, spread to a larger population. Note that this approach needs careful evaluation of the switching
condition.

Like for the spatial-hybrid model the exchange of information between models is crucial and dependent on the concrete
models used. A benefit of a temporal-hybrid model is that it can effectively save computational cost in periods of diffusive
spread while maintaining the required level of detail in highly stochastic periods.

The setup for the temporal-hybrid model is similar to the implementation of the spatial hybridization described in Section
2.4.1, in so far as both models are setup with matching parameters. Instead of restricting the models to spatial regions, both
are used on the whole domain. However, only onemodel runs at a time. To decide whichmodel that is, we define a function G
that returns, based on time, the system state at t and predefined criteria, a model {ABM, PDMM}, i.e., G is a function that
determines with which model to continue from a given time point. In the application presented in Section 3.2, the model
choice depends on the number of infectious agents, whichmakes most sense as infectious disease dynamics are driven by the
stochasticity in the behavior of infectious agents. The procedure of the temporal hybridization is shown in Algorithm 2.

Algorithm2. Temporal hybridization

1 Create ABM and PDMM for U at t¼ t0;
2 Select one model as mcurrent2 {ABM, PDMM};
3 Initialize population only for mcurrent;
4 Define time step Dt;
5 While t2 [t0, tmax] do;
6 mnext¼G(mcurrent, t);
7 If mcurrent s mnext;
8 Move the population from mcurrent to mnext;

9 mcurrent¼mnext;
10 Set t¼ t + Dt;
11 Advance mcurrent to t;
Moving the population between both models follows the same principle as the agent exchange described in Section 2.4.1,
applied to all agents in all regions at once, i.e., for changing from ABM to PDMM agents are just aggregated to subpopulations
according to their position and infection state and for the change from PDMM to ABM, agents’ concrete positions on the
domain are sampled from a distributionP while their infection state is given by the subpopulation index. The distribution P
we used for our examples will be defined in Section 3.2.

3. Results

In this section, we provide simulation results for the agent-based and the metapopulation model presented in Section 2.3.
Wewill compare these results against our spatial- and temporal-hybridmodels. The parameters related to infection dynamics
are motivated by wild-type COVID-19 and based on (Kühn et al., 2021) for all examples (see Table D.4) e apart from the
transmission rate r(k) from Susceptible to Exposed, which varies between the examples and also between regions of one
example. The chosen values for the transmission rate r(k) are within the range presented in (Kühn et al., 2021) and lead to
initial reproduction numbers R0 between 0.8 and 5, roughly corresponding to estimates for the effective reproduction number
for wild-type COVID-19 in different German Federal states between March and August 2020, see (Khailaie et al., 2021).
However, the examples presented use simplifiedmodels as the scope of the current paper is the disease-agnostic introduction
of novel hybridmodels. Therefore no further parameter refinement for COVID-19 and comparison to real-world data has been
done. All models are simulated using a temporal Gillespie algorithm, allowing us to obtain stochastically exact results without
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sampling the distribution (Djurdjevac Conrad, Helfmann, Zonker,Winkelmann,& Schütte, 2018; Vestergaard&G�enois, 2015).
We will highlight differences and similarities in the particular model outcomes and compare model runtimes as a proxy
indicator for computational effort. All simulations were conducted on a Intel Xeon ”Skylake” Gold 6132 (2.60 GHz) with four
nodes with 14 CPU cores each and 384 GB DDR4 memory, using separate cores to conduct Monte Carlo runs in parallel.

3.1. Spatial hybridization

In the following, we present the results for two applications of the spatial hybridization. The first application naturally
extends the theoretical setting of (Winkelmann et al., 2021) by using four instead of two potential wells (i.e., local minima of
the potential) and significantly more agents. In the second application, we consider a potential depicting the city of Munich
and its surrounding counties. For both applications, we performed a sensitivity analysis to determine the most influential
parameters, see Appendix A. Additionally, the implicit influence of parameters on the runtime of ABM, PDMM, and spatial-
hybrid model was analyzed in Appendix B.

3.1.1. Application 1 - A mathematical quadwell example
In our first application, we use a functionwith four minima - a quadwell potential - and a constant noise term s2R for the

diffusion process modeling agent movement in the ABM, see Eq. (5). The quadwell potential is constant in time and given by

Fðx; yÞ ¼
�
x2 � 1

�2 þ �
y2 � 1

�2
; (11)

see Fig. 3. This function naturally defines four subregions for the PDMM that are given by the potential wells as
U1 ¼ (�∞, 0)� (0,∞), U2 ¼ (0,∞)� (0,∞),U3 ¼ (�∞, 0)� (�∞, 0) and U4 ¼ (0,∞)� (�∞, 0). This corresponds to numbering
the wells in Fig. 3b from 1 to 4 starting with the upper left and ending with the lower right well, numbered line by line. The
magnitude of the noise term determines the number of transitions between metaregions, see Fig. E.1. As the infection dy-
namics in the focus region should be influenced by the dynamics in the other regions, we dowant spatial transitions between
the metaregions, which do not occur for s ¼ 0.3 (Fig.E.1a) and only very few for s ¼ 0.5 (Fig.E.1b). However, the spatial
transitions should not happen as frequent as for s¼ 0.6 (Fig.E.1c) as the assumption for the runtime advantage of the PDMM is
that spatial transitions are rare compared to infection state adoptions (see Table 1). Therefore, we chose s ¼ 0.55 for our
application, see Fig. 4.

Given the ABM noise term s, the spatial transition rates for the PDMM can be sampled by calculating the average number
of transitions in a unit-time step relative to the population in the subregion.We chose r(k)¼ 0.1 for k¼ 1, 3, 4 corresponding to
R0 ¼ 0.8 in region U1, U3 and U4 and r(2) ¼ 0.3 corresponding to R0 ¼ 2.4 in region U2. The parameters used for the quadwell
potential are summarized in Table D.4 and Table D.5. The system state at four different time points for one ABM realization
with 1000 agents in Fig. E.15 shows that, due to the higher transmission rate, the infection spreads much faster in U2
compared to the other regions. We define U1 as the focus region for the spatial-hybrid model and simulate the ABM, the
PDMM and the spatial-hybrid model for tmax ¼ 150 days. When agents transition to the focus region in the spatial-hybrid
model, their exact position has to be sampled from a distribution P , see Algorithm 1. For this application we use a normal
distribution whose parameters, i.e., mean and variance depend on the region an agent transitions from. The mean and
variance were calculated from the transitions of 2850 agents shown in Fig. E.16. Denoting the region the transitioning agent

came from as UðoldÞ
a , this yields for the new position xðnewÞ

a 2U1 of agent a, xðnewÞ
a � P a with

P a ¼

8>>>>><>>>>>:

�
N

�
�0:1;0:032

�
;N

�
0:94;0:192

��
; if UðoldÞ

a ¼ U2�
N

�
�0:94; 0:192

�
;N

�
0:1;0:032

��
; if UðoldÞ

a ¼ U3�
N

�
�0:1;0:032

�
;N

�
0:1; 0:032

��
; if UðoldÞ

a ¼ U4

(12)
We chose na ¼ 8000 agents with 1% of the population being initially infected in every well (0.2% Exposed, 0.3% Carrier and
0.5% Infected). The results of 500 simulations are shown in Fig. 5. We consider the ABM - the detailed model - as ground truth
and calculate the Mean Absolute Percentage Error (MAPE), the Mean Absolute Error (MAE) and the Mean Squared Error (MSE)
between the ABM mean and the mean of PDMM and spatial-hybrid model. Comparing Fig. 5b and Fig. 5c, it can be seen that
region 2 is themain driver of the infection dynamics i.e., most infectious agents are inU2. Fig. 5a shows that in the focus region
the spatial-hybrid model approximates the ABM outcomes much better than the PDMM as the percentiles of the hybrid
model - in contrast to the PDMM percentiles - almost completely overlap the ABM percentiles. Furthermore, all error metrics
calculated on the mean of simulation outcomes are smaller for the spatial-hybrid model. As U2 is not the focus region, this
region is modeled with the PDMM in the spatial-hybrid model. Therefore the PDMM and hybrid model curves for U2,
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especially the percentiles, have a similar shape, however the hybrid model has smaller errors than the PDMM, see Fig. 5c. For
the sake of completeness, the results for region 3 and region 4 are shown in Fig. E.17.

The runtime of the spatial-hybrid model for the chosen setup is dominated by the ABM, but is still one order of magnitude
smaller than the ABM runtime for 400 agents and even two orders of magnitude for 16, 000 agents, see Fig. 6a. For 40, 000
agents, the runtime for the described scenario can be reduced by 98% using the spatial-hybrid model.

In addition to the scaling behavior dependent on the number of agents, we consider the runtime scaling with respect to
the number of initially infected and the value of the transmission rate r(2) in region 2 with, otherwise, the same setup as
above. The runtime of ABM and spatial-hybrid model increases with an increasing proportion of initially infected while the
runtime of the PDMM is independent of the proportion of initially infected, see Fig. 7a. Themean time of the ABM increases by
30% when increasing the initially infected from 0.1% to 1% and by nearly 50% when increasing from 0.1% to 10% initially
infected. The mean time of the spatial-hybrid model increases by 7% and 42% when increasing the initial number of infected
from 0.1% to 1 and 10%, respectively. For an increasing value of r(2), a similar behavior can be observed; see Fig. 7b. The mean
runtime of the ABM rises by 175% when increasing r(2) from 0.1 to 0.2 and by 38% when increasing r(2) from 0.2 to 0.4. The
decreasing gradient can be explained by the increasing number of recovered and dead agents when choosing r(2) ¼ 0.4. For
recovered and dead agents, no infection state adoptions - needing computations and thus runtime - happen any more. The
same behavior can be observed for the spatial-hybrid model with an even earlier saturation. The PDMM runtime is again not
influenced by a varying value of r(2).

3.1.2. Application 2 - A potential for Munich and its surrounding counties
Secondly, we consider a less theoretical example, in particular a potential for the city of Munich, defined as our focus

region U1, and its surrounding counties.
To realize a difference between intercounty and intracounty mobility patterns, we define a potential on the political map

of the considered region. We apply a Gaussian curve on the discretized county borders (in pixels) to define a potential F(x).
More precisely, F(x)¼ h if x2R is on a border, FðxÞ2ð0;hÞmodeled through a Gaussian curve if x is in a given distance from the
border and F(x) ¼ 0 otherwise, i.e., x inside a county. The resulting potential directly determines eight regions for the PDMM,
aligning with the eight counties considered. Fig. 8 shows the potential with a zoomed in snipped to the gradient on the
border.The noise term s and the border height h determine the number of agents crossing a border. A drawback of modeling
agent movements with potential and diffusion process is the limited control on (intercounty) mobility and, in particular, that
mostly agents next to the borders transition to neighboring regions in an appropriate time. However, in reality individuals
that are further away from the borders should also transition to neighboring counties in a moderate time, e.g., on a daily basis
caused by commuting activities. To that end, we modify the agents' movements. For short-distance travel, we use the
diffusion process given by Eq. (5), where we set the border height h for the potential F to 10 and additionally prevent crossing
borders through randomwalks. For long-distance travel, we introduce two normally distributed random variables Ta

d and Ta
r

as additional attributes for agent a. Samples of these variables are only used when a is a commuter on the current day PtR. We

use the randomvariable Ta
d � N

�
md; s

2
d

�
as the time point an agent a leaves its home county on day PtR and Tar � N

�
mr ; s

2
r
�
as

the time point an agent a returns on day PtRe ignoring and resampling values beyond three standard deviations to ensure that
samples are in [0,1].We introduce a commuting term K(t), which is added onto L from Eq. (1), allowing us to better control the
desired number of border crossings. Let Ka(t) be the a-th component of K(t). This entry is zero if agent a is not a commuter on
day PtR. If a is a commuter, Ka(t) is given by

KaðtÞ ¼
(
pðxaÞ � xa; if tad þ PtR2ðt; t þ dt�∨tar þ PtR2ðt; t þ dt�
0; else

; (13)

where PtR marks the beginning of the day and tad and tar are realizations of Ta
d and Tar . Furthermore, p: U / U is a random

variable on the domain using the probability function
Fig. 3. Quadwell potential Eq. (11) used for the diffusion process in the ABM. The four metaregions are separated by the axes x ¼ 0 and y ¼ 0. The figure shows
an (a) isometric view and (b) a contour plot of the potential.
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Fig. 4. Position distribution for a simulation of 800 agents for 50 days in the quadwell scenario for noise term s ¼ 0.55. Agents are initialized with positions
having 0.3 distance from the axes x ¼ 0, ±2 and y ¼ 0, ±2.

Fig. 5. Spatial hybridization for the quadwell potential: Focus region, sum of all regions and Region 2. Number of infectious agents (compartments C and I)
for (a) the focus region U1 (b) the sum of all regions and (c) Region 2. The figures show the mean outcomes in solid lines with a partially transparent face between
the p25 and p75 percentiles from 500 runs. Additionally, MAPE, MAE, and MSE between the ABM mean and the mean of PDMM and spatial-hybrid model are
displayed.

Fig. 6. Log-scaled runtime (in seconds) for ABM, PDMM and spatial-hybrid model. Shown is the mean runtime of 56 runs (one compute node) for (a) the
quadwell example with the setup according to Table D.8, Table D.9 and (b) the Munich example with the setup according to Table D.8, Table D.10.
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PðpðxaÞ ¼ yÞ ¼ Pðyjxa 2Uk; y2UlÞ,lðk;lÞ ¼

8>>>>><>>>>>:
lðk;lÞ

nðUlÞ
; lsk

lðk;kÞ; l ¼ k∧xa ¼ y

0; l ¼ k∧xasy

; (14)

where lðk;lÞ is the relative number of commuters from region Uk to region Ul and n a counting measure on the discretized map
(see Fig. 8) ignoring border pixels. Hence, n(Ul) is the number of pixels inside region Ul. When using this adapted movement
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Fig. 7. Runtime distribution for ABM, PDMM and spatial-hybrid model for a varying proportion of initially infected and varying values of r(2). Shown are
the runtimes of 112 runs for (a) five different values for the proportion of initially infected with the corresponding proportion distributed equally to com-
partments E, C and I and (b) seven different values for the transmission rate in U2. In (a) r(2) ¼ 0.3 for all runs and in (b) 1% of the population (0.2% Exposed, 0.3%
Carrier and 0.5% Infected) is initially infected in all runs.
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for the ABM, we need to adapt the exchange of agents from PDMM to ABM for the spatial-hybrid model as well. When we

exchange an agent a from PDMM to ABM, we (uniformly) sample a new position xðnewÞ
a for it in the focus region U1, hence, P

has the probability function

P
�
xðnewÞ
a ¼ y2U1

�
¼ 1

nðU1Þ
: (15)

In addition to sampling the new position in the focus region, we decide whether the agent has started its commute or is
returning from it, depending on the current time t. In case of the former, i.e., if t � PtR þ md þ z99.5 , sd with z99.5 ¼ 2.5758 the
99.5% quantile of the standard normal distribution, a return time tar � N

�
mr ; s

2
r
�
is drawn.

We expect commuters to leave their home county on average at 9 a.m. with the 99.5% quantile between 5 a.m. and 1 p.m.,
resulting in md ¼ 9

24 and sd ¼ �13
24 � md

��
z99:5 ¼ 0:0647. Further, we expect commuters to return on average at 6 p.m. with the

99.5% quantile between 1 p.m. and 11 p.m., hence mr ¼ 18
24 and sd ¼ �23

24 � mr
��

z99:5 ¼ 0:0809. The spatial transition rates of the
PDMM are equal to the commute weights l(k,l), k, l ¼ 1,…, 8 used in Eq. (14). Their values are based on (Kühn et al., 2021) and
are given in Eq. (C.1). Fig. 9 shows that through the incorporation of the commuting term K, the number of daily transitions in
Munich City matches the static daily commuting data from (BMAS, 2020) used in (Kühn et al., 2021), and scaled according to
the number of agents na.

For this application, we chose the same transmission rate for all regions with r(k) ¼ 0.2 corresponding to R0 ¼ 1.6. All
parameters used for the Munich potential are summarized in Table D.4 and Table D.6. We chose na ¼ 14,064 agents with
initially infected (0.05% Exposed, 0.05% Carrier, and 0.1% Infected) only in U5, see Fig. E.18. In all other regions, all agents are
susceptible at the beginning.We run 500 simulations of ABM, PDMM and spatial-hybridmodel for tmax¼ 100 days, see Fig.10.
We again consider MAPE, MAE, and MSE of the mean outcomes as error metrics. The MAPE is not defined for the focus region
because the ABMmean is zero on the first few days, see Fig. 10. In general, the spatial-hybrid model and PDMMhave both low
errors. In the focus region the MAE of the PDMM is even slightly lower than the one for the spatial-hybrid model. However,
the MSE of the spatial-hybrid model is lower and the percentiles also fit the ABM percentiles better than the PDMM per-
centiles. Yet, the p25 percentile of the ABM displays that in at least 25% of all runs, the virus dies out which is not captured by
neither spatial-hybridmodel nor PDMM. The reason for this is that ODE-basedmodels are not able to let a virus go completely
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Fig. 8. Potential defined for the ABM in and around Munich. Black areas have value zero and white parts value one. We obtain the potential F by discretizing
the map, resulting in a matrix P 2 [0,1]p�p and then interpolating between matrix entries.
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extinct and as the regionwith initially infected is not the focus region, it is modeled with the PDMM in the spatial-hybrid. To
capture this behavior, a temporal-hybrid model could be used, see Section 3.2.

The runtime gain for theMunich potential is smaller than for the quadwell potential but the spatial-hybridmodel is still 6-
times faster than the ABM for 40,000 agents, which is a runtime gain of more than 80%; see Fig. 6b. The reason for this reduced
effect is the very disadvantageous setup for the hybrid model with Munich City as focus region, whose population makes up
approximately 75% of all agents in the modeled counties. Consequently, in the spatial-hybrid model, the number of agents
modeled with the ABM is roughly 75% of na while in the quadwell potential it is only 25% of all agents. Secondly, the chosen
initialization also has a relevant influence on the runtime gain. As we have an overall low number of infectious agents in the
simulation (on average at most 1.5% of the total population compared to approximately 4% in the quadwell), there are fewer
infection state adoptions in the ABM per time step, which leads to less computational costs. One can observe that the runtime
for the spatial-hybrid model for Munich is even slightly higher than the ABM runtime for na < 700. Until that value, the
exchange of agents from PDMM to ABM - which is slightly more complex for the Munich potential compared to the quadwell
potential - produces overhead which only amortized for na > 700.

We furthermore considered the scaling behavior with respect to the number of initially infected in region 5, Munich Land,
and a changing value for r(k) with otherwise the same setup as above. The corresponding results are provided in Fig. E.20 and
align with the corresponding results from the quadwell potential.

3.2. Temporal hybridization

For the temporal hybridization we consider a single well potential given by

Fðx; yÞ ¼ x4 þ y4

2
; (16)

see Fig. 11. By design we only have one region and the PDMM reduces to a classical ODE-based model without spatial res-
olution. We use a constant noise s ¼ 0.5 for the diffusion process and a relatively small contact radius r ¼ 0.1, thus s has a
crucial influence on contacts between agents in the ABM and consequently on second-order adoptions. All parameters and
their values for the single well application are listed in Table D.4 and Table D.7.

We chose a scenario with exactly one initially infected agent in compartment I with an otherwise susceptible population.
The transmission rate r(1) ¼ 0.6 leading to R0 ¼ 4.8 is set such that in around 30% of all simulations, the virus dies out.
Otherwise, we get an epidemic outbreak and introduce a nonpharmaceutical intervention (NPI) which is implemented
through a reduction of r(1) by k ¼ 80% after tNPI ¼ 0.5(t0 þ tmax). This NPI then leads to a slow decline of infections over the
remaining simulation time.

Since we are considering only one region, the derived PDMM is a deterministic ODE-model in which the virus never dies
out. Obviously, we cannot use this PDMM to meaningfully simulate this specific scenario in its entirety. However, we can use
the PDMM to speed up calculation once an outbreak reaches a certain size or after the virus has become extinct. Therefore, the
temporal-hybrid model always starts with the ABM, and then switches to the PDMM once an extinction or an outbreak
reaches a certain size. Note that after extinction, we could even stop the simulation but we continue with the ODE-based
model until tmax. This is done for practical reasons of comparison and since the runtime of this model is negligible. The
switch is defined by a threshold s > 1 to be compared against the sum of agents in infection states E, C and I. If this number is
larger than s, we switch from ABM to PDMM, projecting the whole population of the ABM. A suitable value for the threshold s
depends on the specific setup, especially on the transmission rate r. It is not trivial to be determined, particularly for real-
world scenarios.
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Fig. 9. Daily commuting from and to Munich City for different surrounding counties. 5% and 95% percentiles of daily transitions in simulations shown as
colored area together with median as solid line. The static register data from Federal Agency of Work, scaled to number of simulated agents, is shown as dotted
lines.
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A second threshold 0 � s0 < s could be introduced to switch from PDMM to ABM as soon as the number of infected agents
falls below s0. This second threshold indicates a number of infected, where stochasticity is (again) important to determine the
development of the disease dynamics. This can be of particular importance if disease mitigation, e.g., through NPIs, had been
conducted successfully. When switching from PDMM to ABM, agents’ positions and infection states have to be sampled
according to the current PDMM system state. The infection state of an agent can be sampled according to the distribution

given by the PDMM subpopulations NðkÞ
i . The position is sampled from a distributionP which could for the considered single

well potential be a uniform distribution on [�1, 1] � [�1, 1], see Fig. E.21. In the presented scenario, we set s0 to zero.
Here, the model selection function G from Algorithm 2 returns the PDMM if the number of infected agents exceeds s, and

the ABM otherwise. We chose na ¼ 10,000, t0 ¼ 0, tmax ¼ 40, and a fixed step size of Dt ¼ 0.2 for this Algorithm. The single
initially infected agent is chosen randomly from the entire population. Fig. 12 shows the results of 10,000 simulations of ABM,
PDMM, and the temporal-hybrid model with s ¼ 2 and s ¼ 5.

The reduction of r(1) at tNPI ¼ 20 leads to a kink in the number of infected agents (compartments E, C and, I), see Fig. 12a.
Since in 30% of all ABM simulations the virus dies out, the 25th-percentile is almost entirely zero, except for right after the
initialization. We can also see that the percentiles as well as themeans of the temporal-hybridmodels with s¼ 2 and s¼ 5 are
close together and the errors of both hybrid models are lower than the errors of the PDMM. As expected, the temporal-hybrid
model with threshold s ¼ 5 has even lower errors than the one with threshold s ¼ 2. As the PDMM is deterministic, the
percentiles and means of it are all the same and have a MAPE of 0.0247 for all runs. While Fig. 12a shows the results for all
simulations, Fig. 12b shows the results for all simulations where the virus becomes extinct and Fig. 12c the corresponding
curves for all simulations where the virus survives, hence, an outbreak occurs. The PDMM is not shown in Fig. 12b as it is not
able to capture the extinction scenario. In Fig. 12c, both temporal-hybrid models and ABM curves have shifted upwards
compared to the results of all simulations in Fig. 12a. The PDMM result remains trivially the same and therefore un-
derestimates the mean number of infected in the survival scenarios. For completeness, we also provided the results for the
later compartment I, see Fig. E.22, where we see a rather smooth transition compared to the kink in Fig. 12.

Both switching thresholds seem to be a good choice as the resulting temporal-hybrid models are very close to the ABM
results, i.e., they have low errors - the mean as well as the percentiles. Note, however, that the low thresholds are due to a
large transmission rate r(1) and dense contact network realized through the diffusion-drift process. The temporal-hybrid
model with s ¼ 2 does not capture the increase of the ABM mean in the extinction runs until tNPI, see Fig. 12b while the
hybrid model with s ¼ 5 does.

The ABM runs significantly faster in extinction runs than in survival runs (see Table 3), as there are no pairwise interactions
to consider once there are no infected agents anymore. Furthermore, the PDMM is - as expected - multiple orders of
magnitude faster than the ABM, making it desirable to use it whenever possible. On average, the temporal-hybrid model for
s¼ 5 is 20-times and the one for s¼ 2 even 40-times faster than the ABM in the results for all simulations (see Table 2), 8-to 9-
times for the extinction simulations (see Table 3), and 22- (s ¼ 5) and 49-times (s ¼ 2) for the survival simulations (see Table
3). When comparing the total simulation time for the different switching thresholds, all simulations show a time gain when
using the lower threshold of s ¼ 2 while for the survival simulations the time gain is the greatest. For all stochastic models
(ABM and temporal-hybrid), the difference in minimum and maximum time to the mean time correlates with the large
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Fig. 10. Spatial hybridization for the Munich potential: Focus region and sum of all regions. Number of infectious agents (compartments C and I) for (a)
Munich City (focus region) and (b) the sum of all regions. The figures show the mean outcomes in solid lines with a partially transparent face between the p25
and p75 percentiles from 500 runs. If possible, MAPE, MAE, and MSE between the ABM mean and the mean of PDMM and spatial-hybrid model are displayed.
Since the number of infected agents in the focus region is zero at the beginning, the MAPE cannot be calculated for the left figure.

Fig. 11. Single well potential Eq. (16) used for the diffusion process in the ABM of the temporal-hybrid model.
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variation in simulation outcomes; see the percentiles in Fig. 12. For this application, we do not further examine the runtime
scaling behavior, as it does not behave significantly different to the results for the spatial-hybrid model, see Section 3.1 and
Fig. 6. The runtime of the temporal-hybrid model is dominated by the proportion of time (instead of population) inwhich the
ABM is used for the simulation.

3.3. Energy consumption

To quantify the effects of the proposed hybrid models on the estimated CO2 emissions, we measured the energy con-
sumption of the ABMs and the hybridmodels for the chosen setups in the quadwell application Section 3.1.1,Fig. 5, theMunich
application Section 3.1.2,Fig. 10 and the single well application Section 3.2,Fig. 12. We used LIKWID (Treibig, Hager, &Wellein,
2010) to measure the energy consumption in Joules for each model using 56 cores in parallel, see Table 4. According to ex-
trapolations from the German Federal Environment Agency (Icha & Lauf, 2024), 1 kWh power produced 380g CO2 emissions
in 2023. Using this extrapolation, we calculated the CO2 savings achieved for all applications by replacing a full ABM through a
hybrid ABM-ODE model. For the quadwell application, the spatial-hybrid model emitted 1180g CO2 less than the full ABM
which is a saving of 97.75%. For the Munich potential, the savings are - like the runtime saving - less than for the quadwell
potential, but we still reduced the CO2 emissions by a factor of roughly 3.4. The reductions of the temporal-hybrid models for
the single well application are nearly as high as of the spatial-hybrid model for the quadwell application with 94.67% (s ¼ 5)
and 97.28% (s ¼ 2) corresponding to a saving of 2524g CO2 and 2594g CO2, respectively.

4. Discussion and conclusion

While the number of research articles on hybrid models for infectious disease dynamics in the sense of our understanding
is very small, several authors have published pioneering works in (Bobashev et al., 2007; Hunter et al., 2020; Kasereka et al.,
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Fig. 12. Temporal hybridization for the single well example. Shown is the sum of compartments E, C and I for (a) all runs, (b) extinction runs with virus
extinction, and (c) survival runs without virus extinction for ABM, PDMM and temporal-hybrid models with s ¼ 2 and s ¼ 5. The figures show the mean outcomes
in solid lines with a partially transparent face between the p25 and p75 percentiles from 10,000 runs with 10,000 agents.
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2014; Bradhurst et al., 2015; Yoneyama et al., 2012) over the last two decades. The approaches coming closest to our works are
given in (Bobashev et al., 2007; Hunter et al., 2020). However, runtime and computational cost have, e.g., not been considered
in (Bobashev et al., 2007). In (Hunter et al., 2020) various interesting results have been published for a model running on a
laptop computer.

In this work, we formalized two hybridization approaches and introduced a general framework of spatial- and temporal-
hybrid models, combining agent-based and ODE- or metapopulation-based models. In particular, the temporal-hybrid model
with its dynamic model choice is also an adaptive model and future works may also consider adaptivity in time and space
through spatio-temporal-hybrid models.

We presented two suitable models recently introduced, which were adapted for our examples and combined in the
suggested manner. The examples provided show the application of the proposed hybridization framework in different
theoretical settings, thus demonstrating its runtime benefit while maintaining a high resolution in a specific area or time
frame. Although the parameters used in the examples aremotivated by COVID-19, the application is not limited to a particular
pathogen. Moreover, since this paper is intended to serve as a proof of concept, we did not consider a true real-world
application. The critical aspect of combining the two model types is the definition of exchange rules, an issue that has not
been discussed a lot yet, but which has an essential impact on the accuracy and the performance of the hybridization. Models
that are derived from one another in a theoretical way, like in (Schmidtchen, Tse,&Wackerle, 2018; Winkelmann et al., 2021)
offer a more direct way to implement exchanges. Nevertheless, nuances in projections or mappings can become important as
it has been observed in our simulations. With the presented random walk movement of agents, the same agent may cross
region boundaries multiple times in a short time, which might drastically change the hybrid model's outcome compared to
the outcome of the fine model if this effect is not accounted for in the coarse model.

The movement pattern of the ABM, given by a potential and a Brownian motion is a rather theoretical movement pattern
that delivered us two suitable models to be combined, but, especially when wanting to develop an actual real-world
application, a more realistic human mobility pattern or an ABM using contact networks should be considered. Addition-
ally, the transmission model of the ABM could be enhanced by incorporating more features such as an individual viral load. In
future work, we will investigate more complex ABMs realizing discrete locations such as households, schools, and work-
places. For these, more sophisticated methods for projection and, also, reconstruction of information will be needed. For
instance, human-to-human contact networks or contact tracing used to mitigate virus dynamics suffer from loss of infor-
mation when exchanging between models of different granularity.

As shown, hybrid models can combine the best of both worlds and deliver fine-granular insights through the use of ABMs,
using substantially reduced computational resources. Both hybridization approaches were able to capture disease dynamics
of the ABM better than the PDMM.

For the spatial hybridization, the runtime gain depends on the total number of agents in the focus region, relative to all
other regions modeled by metapopulations. Similarly, the temporal hybridization runtime gain depends mostly on the
proportion of simulation time that the ABM is used. From our simulations, we have seen that up to 98 % of the simulation time
Table 2
Summarized simulation timings (in sec) for ABM, PDMM and temporal-hybrid models for all 10,000 simulations.

Model All simulations

min mean max

ABM 41.80 331.76 1835.93
PDMM 0.00040 0.00047 0.01140
Temporal-hybrid s ¼ 2 0.5587 8.4082 92.6604
Temporal-hybrid s ¼ 5 0.5591 16.6405 104.497
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Table 3
Summarized simulation timings (in sec) for ABM, PDMM and temporal-hybrid models for simulations with and without virus extinction.

Model Extinction simulations Survival simulations

min mean max min mean max

ABM 41.80 48.77 109.147 91.07 442.20 1835.93
PDMM e e e 0.00040 0.00047 0.01140
Temporal-hybrid s ¼ 2 0.5587 5.4414 85.2773 0.8115 9.5341 92.6604
Temporal-hybrid s ¼ 5 0.5591 6.2384 99.2354 2.9843 20.7604 104.497

Table 4
Energy consumption of all models. The measurements for the quadwell potential represent 500 runs as in Section 3.1.1, the measurements for the Munich
potential represent 500 runs as in Section 3.1.2 and the measurements for the single well potential represent 10, 000 runs as in Section 3.2. Power in kilo-
Watt-hours (kWh) computed from measured energy and CO2 emissions[g] computed from (Icha & Lauf, 2024). Reduction (in percent) computed for hybrid
model compared to the full, reference ABM.

Model Power[kWh] CO2 emissions[g] CO2 reduction

ABM quadwell 3.17889 1207.97915 e

Spatial-hybrid quadwell 0.07162 27.21423 97.75%
ABM Munich 4.15400 1578.51937 e

Spatial-hybrid Munich 1.20890 459.38063 70.90%
ABM single well 7.01801 2666.84380 e

Temporal-hybrid (5) single well 0.37380 142.04358 94.67%
Temporal-hybrid (2) single well 0.19095 72.56005 97.28%
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can be saved by replacing an ABM by a spatial-hybrid model. Although this number depends highly on the chosenmodels and
the individual setting, a reduction of 90 % of the simulation time or a speedup of 10 can be achieved easily.
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