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Abstract—We address the problem of frequency-domain seis-
mic imaging in a distributed manner within a network of seismic
receivers. This is particularly relevant for future planetary mis-
sions, where a multi-agent network is expected to autonomously
and cooperatively explore an unknown subsurface by leveraging
data exchange among connected agents. To achieve this, we
integrate the adapt-then-combine technique into full waveform
inversion (FWI) in the frequency domain. Our proposed method
enables distributed imaging by requiring connected receivers to
exchange both gradients and subsurface models. We evaluate its
performance using numerical experiments on synthetic subsur-
face models, including the Marmousi model. Our results demon-
strate that the proposed approach produces high-resolution,
accurate subsurface images across all receivers, regardless of
their sampling positions. Moreover, the reconstructed images
closely match those obtained from traditional, centralized FWI,
indicating that our method successfully replicates centralized
imaging performance across the receiver network through co-
operative data exchange.

Index Terms—Full waveform inversion, seismic imaging, multi-
agent seismic exploration, distributed imaging

I. INTRODUCTION

Future space missions will likely employ multiple robotic
agents for diverse exploration tasks. One such task is the
exploration of the shallow subsurface of a planet, e.g., Moon or
Mars, to find and image structures such as lava tubes or caves
[1], [2], [3]. Finding such structures is of high interest to the
space community since they usually provide an environment
with stable temperature and one that is shielded from radiation.
Thus, they are promising locations to store space equipment
or to even shelter astronauts.

In this respect, we envision the use of autonomous multi-
agent systems where each robotic agent is equipped with a
geophone to collect seismic measurements on the surface [4].
Furthermore, the agents are connected via wireless links to
each other building a communication network that enables
data exchange among the agents. In such an application,
measurement data are distributed over the agents and a central
processing entity might not be available since the system has
to conduct the exploration independently. Hence, to enable
autonomy of the system distributed data processing is required
that leverages communication among the agents. With respect
to the task of subsurface imaging, this means that the imaging
has to be performed in a distributed fashion, i.e., the agents
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exchange and process data such that each agent obtains an
estimate of the subsurface image locally. Based on the local
subsurface images an exploration strategy can be developed
that dictates where the agents should perform new measure-
ments to e.g., obtain an enhanced subsurface image.

In this work, we consider full waveform inversion (FWI) in
the frequency domain as the imaging technique that shall be
performed in a distributed fashion within a seismic network.
FWI is a high-resolution imaging technique that exploits wave
physics to image subsurface structures with respect to material
parameters such as wave velocity or density. It has been
applied to various other domains such as ultrasound, ground
penetrating radar (GPR) or electrical resistivity tomography
(ERT) [5], [6], [7]. However, in its traditional form it is a
centralized method, i.e., it requires all measurement data at a
central unit that performs the inversion.

In terms of decentralized imaging techniques in seismic
networks some works have been proposed, cf. [8], [9], [10].
However, all these works do not provide fully distributed
imaging since either they rely on sink nodes that acts as a
central data collector or require a full mesh topology. In con-
trast to enable fully distributed imaging, we proposed several
methods in the time domain that provide each agent/receiver
in a seismic network with a subsurface image via cooperation,
cf. [11]. To enhance the distributed imaging performance and
to allow for inversion of single frequencies, in this work we
derive a distributed FWI in the frequency domain. Although
our work focuses on seismic data, the FWI is versatile such
that our method can be easily transferred to other modalities
such as ultrasound imaging, GPR or ERT.

II. FULL WAVEFORM INVERSION IN FREQUENCY DOMAIN

In the following, we give a brief review of FWI in the
frequency domain. While in time domain the wave equation is
employed, in frequency domain the Helmholtz equation serves
as the corresponding forward operator. Solving the Helmholtz
equation provides us with a wavefield for a specific frequency
ω over spatial coordinate x. For a source function fs(ω,x)
the Helmholtz equation is given as

∆us(x, ω) + ω2m(x)us(x, ω) = fs(x, ω), (1)

where s indicates the respective source function and ∆ is
the Laplacian operator. The wavefield is denoted by us(x, ω)
over spatial coordinate x and angular frequency ω and m(x)
is the spatial distribution of squared slowness in the subsur-
face. The source function fs(x, ω) models external excitation,
e.g. strikes or explosions. We employ second-order Clayton-
Enquist absorbing boundaries in the spatial domain to reduce
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unwanted reflections from the domain boundaries [12]. Ap-
plying finite differences to the Helmholtz equation results in
a system of linear equations:

A(ω,m)us(ω,m) = fs(ω) (2)

Matrix A(ω,m) encodes finite difference approximations of
the Helmholtz equation. It has a banded structure, is complex
and usually sparse. Assuming a total of NxNz grid cells after
discretization of the computational domain, matrix A(ω) has
dimensions NxNz×NxNz. The wavefield vector us(ω,m) and
the source vector fs(ω) contain wavefield samples and respec-
tive source function values over the complete computational
domain such that u(ω,m) ∈ CNxNz and fs(ω) ∈ CNxNz ,
respectively. To obtain correct source function values, the
time-series of the source function needs to be transformed
to the frequency domain via Fourier transform and the com-
plex source amplitude needs to be picked for the considered
frequency ω. To solve (2) with respect to us(ω), we use the
generalized minimal residual method (GMRES) which is an
efficient iterative sparse solver for linear equation systems.

In seismic imaging, we are interested in estimating the
squared slowness m(x) in the subsurface. To this end, an
inverse problem needs to be solved, in FWI a highly nonlinear
and non-convex one. This is achieved by minimizing a cost
functional with respect to the slowness vector m(x). The op-
timization problem in FWI for NS sources is then formulated
as follows:

min
m
J (m) =

1

2

∑
ω

NS∑
s=1

||PTus(ω,m)︸ ︷︷ ︸
dsyn

s (ω,m)

−dobs
s (ω)||22 (3a)

s.t. A(ω,m)us(ω,m) = fs(ω) (3b)

Problem (3a) is constrained by the Helmholtz equation (3b)
since synthesized data dsyn

s (ω,m) needs to adhere to it. Matrix
P ∈ RNxNz×NR is a sampling operator that extracts synthe-
sized/predicted data dsyn

s (ω,m) from the computed wavefield
us(ω,m) at the receiver positions. FWI employs gradient-
based optimization to find a solution for m(x). To obtain the
gradient of J (m) wrt. m the adjoint-state method is applied
[13]. This method allows the computation of the gradient of
a cost functional that is constrained by a PDE. Applying the
adjoint-state method results in the following computation of
the gradient:

∇mJ (m) = Re

{∑
ω

∑
s

ω2λ∗
s(ω,m)⊙ us(ω,m)

}
(4)

where ∗ denotes complex conjugate of the matrix entries, ⊙
denotes element-wise multiplication and λs(ω) ∈ CNxNz is
the discretized adjoint-state wavefield. To obtain λs(ω), the
following system of linear equations needs to be solved for
each source s:

AH(ω,m)λs(ω,m) = PTus(ω,m)− dobs
s (ω). (5)

In essence, (5) solves the Helmholtz equation again but for
an adapted forward operator and now with the data residuals
us(ω,m) − dobs

s (ω) placed at the receiver positions. These
residuals are now back-propagated through the subsurface

m(x) to give the adjoint wavefield. Now, using the gradient
∇mJ (m) we can update the slowness values m iteratively
e.g. by gradient-descent:

m[k+1] = m[k] + α[k]∇mJ (m)|m=m[k] . (6)

The update procedure can be conducted by other optimization
schemes such as nonlinear conjugate gradient or L-BFGS.

The cost in (3) has multiple local minima due to the
cycle-skipping problem of FWI [14]. Hence, during iterative
optimization FWI is prone to fall into a local minimum that
does not accurately describe the subsurface. To overcome this
issue, one common approach is to start the inversion with low
frequency data and then continually increase the considered
frequency. This strategy stems from the fact that the cost
J (m) is known to have less local minima in the low frequency
regime [15].

III. FREQUENCY DOMAIN ADAPT-THEN-COMBINE FULL
WAVEFORM INVERSION

In the following section we will introduce a distributed full
waveform inversion scheme that computes subsurface images
at each receiver via cooperation. We start by describing the
network model and then derive our proposed method.

A. Seismic network model

For the seismic network we assume an array of NR seismic
receivers or geophones positioned in a line topology. Each
receiver r has a set of neighbors Nr that consists of those
receivers ℓ that can exchange data with receiver r and vice
versa including receiver r itself. Furthermore, we assume that
the topology graph is connected, i.e., there is a multi-hop
connection between any two receivers in the network and the
network graph is not separated.

B. Proposed method

Our goal in distributed subsurface imaging is to obtain
a subsurface image close to the centralized image at each
receiver locally via cooperation. This needs to be achieved via
data exchange among neighboring receivers only. To this end,
we adopt the adapt-then-combine (ATC) methodology from
distributed linear estimation in sensor networks [16]. First, we
separate the global cost in (3a) into NR local cost functions
over the receivers:

J (m) =
∑
r

Jr(m) (7)

with

Jr(m) =
1

2

∑
ω

∑
s

|pT
rus(ω,m)− dobss,r (ω)|2. (8)

Since each receiver will reconstruct its own subsurface image,
we assign individual subsurface models mr ∈ RNxNz to
each receiver r = 1, . . . , NR. This will affect the local cost
which now depends on the receiver-specific image mr, i.e.,
Jr(mr). It is important to note, that now each receiver needs
to solve the Helmholtz equation for its own subsurface model
mr which results in receiver-specific wavefields us,r(ω,mr)
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indicated by the subscript r. Based on its local cost Jr(mr)
each receiver r computes a local gradient using the adjoint-
state method:

δmr = Re

{∑
ω

∑
s

ω2λ∗
s,r(ω,mr)⊙ us,r(ω,mr)

}
. (9)

To compute δmr we need the receiver-specific adjoint wave-
field λs,r. To this end, each receiver solves the adjoint-state
equation using its local data residual analogous to (5):

AH(ω,mr)λs,r(ω,mr) = pT
rus,r(ω,mr)− dobss,r (ω) (10)

To apply the ATC technique to FWI each receiver needs
to exchange its gradient δmr and subsurface model mr

with neighboring receivers ℓ ∈ Nr. Then, per iteration k
the following computations need to be performed at each
receiver r:

(Adapt) m̃[k+1]
r = m[k]

r + α[k]
∑
ℓ∈Nr

aℓrδm
[k]
ℓ (11a)

(Combine) m[k+1]
r =

∑
ℓ∈Nr

bℓrm̃
[k+1]
ℓ (11b)

The coefficients aℓr and bℓr are used to weight contributions
of gradients and subsurface models within the neighborhood
set individually to guarantee convergence of all receivers to
a suitable subsurface model. For convergence of the ATC
method they need to satisfy certain criteria as described in [16].
In our case, we select them to be aℓr = bℓr = 1/|Nr|,∀ℓ ∈ Nr

which guarantees convergence to similar subsurface models
over all receivers in the network.

The first step (11a) is the so-called adapt step where each
receiver fuses gradients from its neighbors and performs a
gradient-descent update. After that, intermediate estimates
m̃

[k+1]
r are exchanged among the receivers and the combine

step (11b) is performed which fuses these estimates to give
an updated subsurface estimate. This process is repeated
iteratively and results in estimates that resemble the classical,
centralized FWI result for all receivers.

Remark: In (9) the gradient is computed as a superposition
over multiple frequencies ω. However, it is also possible to
iterate over single frequencies using FWI. It is common to start
inverting low frequencies first to obtain rough structures of the
subsurface and after that, higher frequencies which allow to
resolve finer details in the image [15]. Doing so, avoids FWI
to fall into a local minimum that does not resemble the true
subsurface model. In our work, we apply this strategy and
hence, we compute a single gradient for each frequency such
that no superposition over multiple frequencies is required.

IV. NUMERICAL RESULTS

For numerical evaluation we analyze imaging performance
of FD-ATCFWI to the centralized FWI for multiple receivers.
As performance measure we use the normalized mean square
error (NMSE) which is computed as an average over all grid
cells between the true model m⋆ and the estimated one m

[k]
r

per iteration k: NMSE[k] = 1
NxNz

·||m⋆−m[k]
r ||2/||m⋆||2. For

our evaluations we use a nonlinear conjugate gradient step in
the model updates (11a) and (6) instead of gradient descent
for a more stable convergence.

Algorithm 1 FD-ATCFWI for single frequency

1: Initialize starting models m
[0]
r , r = 1, . . . , NR

2: Select frequency ω, set k = 0
3: while iteration k < NFWI do
4: for all receivers r ← 1, NR do
5: Get wavefields {us,r}NS

s=1 with (2)
6: Get adjoint fields {λs,r}NS

s=1 with (10)
7: Get local gradient with (9)
8: Update model m̃[k+1]

r with (11a)
9: Fuse models to get m[k+1]

r with (11b)
10: end for
11: end while
12: return Subsurface images m

[NFWI]
r , r = 1, . . . NR

A. Two ellipses

As first subsurface model we consider two elliptic anomalies
with different velocities v1 = 1.8 km s−1 and v2 = 1.6 km s−1

in a spatial domain of 1.4 km× 0.5 km. These anomalies are
embedded into a background model with increasing velocity
over depth. The space is discretized with a grid spacing of
∆x = ∆z = 10m. We initialize both FWI and FD-ATCFWI
with that background model only. Furthermore, we employ
NR = 24 receivers and NS = 20 sources that are evenly
spread over the surface. Each receiver has a maximum of three
neighbors to its left- and its right-hand-side with whom it can
exchange gradients and slowness models. As source signal we
use a Ricker wavelet with dominant frequency fdom = 6Hz
and select frequencies to be in the range of 2 to 8Hz with
a frequency step of ∆f = 1Hz. For each single frequency
we perform NFWI = 50 iterations for both FWI and FD-
ATCFWI and use the obtained slowness model as initial model
for the next frequency. The step size starts at α[0] = 0.01
and is exponentially decreased over the iterations to enable
convergence of the estimated subsurface model.

Figure 1 depicts the imaging results obtained by FD-
ATCFWI as well as FWI. For FD-ATCFWI, we show the
imaging results at three different receivers. One can clearly
observe that FD-ATCFWI reconstructs the true model ac-
curately for different receivers. The reconstructed slowness
models share high similarity among each other demonstrating
convergence of each receiver to a similar subsurface model.
Compared to centralized FWI we observe high similarity as
well. This demonstrates that we are able to obtain accurate
imaging results in a purely distributed fashion without re-
lying on a central entity. Fig. 2 depicts the cost function
J (m) and NMSE over the iteration. For FD-ATCFWI we
also depicts performance for a full mesh topology. In terms
of the cost function, both FD-ATCFWI and FWI perform
close to each other with FWI achieving lower costs due to
centralized processing. Since every 50 iterations the respective
frequency is changed, a jump can be observed in the cost that
gradually decreases over the iterations indicating convergence
to a suitable subsurface model. Regarding NMSE performance,
we observe that FD-ATCFWI performs close to centralized
FWI with an NMSE gap of only 0.01 in the later iterations.
This gap is reduced for the case of a full mesh network
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Fig. 1: First row: True model, starting model and FWI result for two
ellipses. Second row: Results by FD-ATCFWI with respctive receiver
position ▼.
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Fig. 2: (a) Cost and (b) NMSE performance of FD-ATCFWI, FD-
ATCFWI with full mesh and FWI for two ellipses.

indicating that with higher connectivity imaging performance
of FD-ATCFWI is improved.

B. FD-ATCFWI with reduced data exchange

FD-ATCFWI requires data exchanges among neighboring
receivers in each iteration k. Since gradients and local es-
timates of subsurface models need to be exchanged each
receiver needs to transmit 2NxNz scalar numbers per iter-
ation k to its neighbors. This number depends on the size
of the spatial domain which is determined by the physical
domain and the selected cell sizes ∆x,∆z. For our exam-
ple of two ellipses we have Nx = 140, Nz = 50. Using
a float64 representation of the scalar numbers, we obtain
2NxNz8B/iteration = 112 kB/iteration for each receiver in
the network. If we allow one iteration, e.g., to take 0.2 s this
results in a data rate of 560 kB/s which is fairly low for an
uncompressed data transfer. However, if we require a higher
spatial resolution and/or lower time for data exchanges, this
number quickly increases. Furthermore, with a high number of
sampling nodes transmitting data, the communication network
can be overloaded by the amount of shared data.

To reduce the amount of shared data within the network,
we can reduce the interval of data exchanges among the
receivers in FD-ATCFWI. Then, receivers are allowed to
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Fig. 3: Imaging results of FD-ATCFWI for varying no. of exchange
intervals with receiver position ▼ for two ellipses.
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Fig. 4: (a) Cost and (b) NMSE performance of FD-ATCFWI for
different no. of exchange intervals.

share data only, e.g., in every second, third, etc. iteration. To
still perform updates on the subsurface image, each receiver
uses the available gradients and subsurface models that were
exchanged in the last exchange phase. These outdated data
can still be sufficient to obtain suitable imaging results at the
receivers depending on the exchange interval.

Fig. 4 shows cost and NMSE curves for a varying no.
of exchange intervals. The higher the interval no. the less
data is exchanged in the network. As expected, we observe
that both cost and NMSE increase with a higher interval no.
However, the algorithm is still able to converge to a suitable
solution. This can be also seen in Fig. 3 which depicts imaging
results for different exchange intervals. For higher intervals
the contours of the anomalies are still clearly visible while
the amplitudes within the ellipses decrease. Nevertheless, with
intervals 2 or 3 we are still able to obtain good imaging results
while cutting down the data exchange effectively by 50% and
66%, respectively.

C. Marmousi model

As a further numerical result we test our proposed method
on the Marmousi model which is a well-known benchmark
model in seismic imaging [17]. We select a subdomain of
the Marmousi model and downscale the velocities to reduce
computational complexity in the forward modeling step. We
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Fig. 5: First row: True model, starting model and FWI result for Mar-
mousi model. Second row: Results by FD-ATCFWI with respective
receiver position ▼.

select a spacing of ∆x = ∆z = 10m which results in a
physical domain of 1.5 km × 0.6 km. For the inversion, we
employ NR = 30 receivers and NS = 20 sources evenly
distributed over the surface. Furthermore, we select the fre-
quencies to be in the range of 2 to 10Hz with a frequency step
of ∆f = 1Hz. For each frequency, we perform NFWI = 40
iterations. We select the steps size to be α[0] = 0.05 and
again exponentially decrease it over the iterations. To initialize
FWI and FD-ATCFWI, we use a simple velocity gradient that
increases with depth.

Fig. 5 depicts the starting model and the reconstructed
subsurface models using FD-ATCFWI and for reference FWI.
We can clearly observe that the complex structure of the sub-
surface model is recovered well by FD-ATCFWI. In particular,
over the displayed receivers the subsurface is equally well
recovered. Compared to the centralized solution, no notable
differences are visible in terms of imaging performance.
However, compared to the ground truth model fine details
and sharp contrasts present in the true subsurface are not
recovered. Such details are more likely to be obtained when
using regularizers such as the total variation norm that enables
sharper edges in an image, cf. [15], [14]. Fig. 6 shows the cost
as well as the NMSE over the iterations. It can be seen that
FD-ATCFWI performs similar to FWI. Using a full mesh it
achieves centralized performance.

V. CONCLUSION

We proposed a distributed full waveform inversion in the
frequency domain for application in seismic multi-agent net-
works. In essence, FWI gradients obtained by the adjoint-state
method and local subsurface estimates need to be exchanged
among neighboring receivers. In numerical experiments, we
demonstrated that centralized imaging performance is achieved
by FD-ATCFWI over all receivers in the network independent
of their position. Hence, with FD-ATCFWI we are able to
obtain global subsurface information locally at receivers that
would not be able to measure the required data at their
specific position. To reduce data exchange in FD-ATCFWI

(a)

0 100 200 300

0

0.5

1

·10−5

Iteration

C
os

t

FD-ATCFWI

FD-ATCFWI fm.

FWI

(b)

0 100 200 300

2

4

6

·10−2

Iteration

N
M

SE

FD-ATCFWI

FD-ATCFWI fm.

FWI

Fig. 6: (a) Cost and (b) NMSE performance of FD-ATCFWI, FD-
ATCFWI with full mesh and FWI for Marmousi model.

we proposed to exchange data at certain intervals. We showed
that FD-ATCFWI is still able to obtain high imaging quality
despite reductions of 50% and 66% in data exchanges.
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