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A B S T R A C T

Concentrating Solar Power (CSP) plants play a crucial role in the global transition toward sustainable energy.
A key factor in ensuring the safe and efficient operation of CSP plants is the distribution of concentrated flux
density on the receiver. However, the non-ideal flux density generated by individual heliostats can undermine
the safety and efficiency of the power plant. The flux density from each heliostat is influenced by its precise
surface, which includes factors such as canting and mirror errors. Accurately measuring these surfaces for a
large number of heliostats in operation is a formidable challenge. Consequently, control systems often rely
on the assumption of ideal surface conditions, which compromises both safety and operational efficiency. In
this study, we introduce inverse Deep Learning Raytracing (iDLR), an innovative method designed to predict
heliostat surfaces based solely on target images obtained during heliostat calibration. Our simulation-based
investigation reveals that the flux density distribution of a single heliostat contains sufficient information to
enable deep learning models to accurately predict the underlying surface with deflectometry-like precision in
most cases, achieving a median Mean Absolute Error of approximately 0.14mm). When integrating the iDLR
surface predictions into a ray-tracing environment to compute flux densities, our method achieves an accuracy
of 92%, surpassing the performance of the ideal heliostat assumption by 25%. Additionally, we assess the
limitations of this method, particularly in relation to surface prediction accuracy and resultant flux density
predictions. Furthermore, we present an innovative and efficient heliostat surface model based on NURBS. This
approach achieves a highly compact representation, requiring only 256 parameters to define the surface—a
reduction of 99.97% in the amount of parameter and a 99.91% in memory usage. This efficient model enables
resource-effective deep learning for heliostat surface predictions, positioning it as a promising state-of-the-art
solution for heliostat surface parameterization. Our findings demonstrate that iDLR has significant potential to
optimize CSP plant operations, enhancing overall efficiency and increasing the energy output of power plants.
1. Introduction

In order to enhance the economic viability of solar tower power
plants, it is crucial to enhance their efficiency. A viable approach
for achieving this is through the optimization of the flux density
distribution on the receiver. In commercial plants this can be done by
optimal aim point control. e.g. using the ant-colony optimization meta-
heuristic [1,2] or deep learning models [3] to calculate a flux density
for each heliostat using raytracing and optimize in a next step the flux
density distribution on the receiver as a superposition of those. More-
over, using knowledge about each heliostat’s flux density distribution
and its position on the receiver, even higher efficiency gains can be
achieved. Even simple assumptions can increase the energy output by
up to 20% [4]. Commercial power plant control systems commonly use
the Vant–Hull Algorithm [5,6] for aim point optimization. However, in

∗ Corresponding author at: German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, D-51147 Köln, Germany.
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most cases, flux density predictions are made either through raytracing
of an ideal heliostat or by adopting simplified flux density assumptions.
This can be explained by the fact that exact information about the
heliostats’ surfaces is not easily accessible. Inherent mirror errors cause
the individuality of each heliostat’s flux density distribution.

The mirror error consists of roughness, slope, and canting errors.
The roughness arises from sub-micrometer flaws on the reflective sur-
face. Slope error measures the deviations of the mirror surface from
its ideal shape. Canting error, on the other hand, reflects misalignment
among mirror facets. Among these errors, slope and canting are partic-
ularly crucial for the flux density distribution [7–9]. A precise heliostat
representation, including its mirror error, can be loaded in a raytracing
environment to predict the flux density of the heliostat under certain
environmental conditions accurately [10–12].
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List of Abbreviations
CSP Concentrating Solar Power
STJ Solar Tower Jülich
DLR Deutsches Zentrum für Luft- und Raumfahrt
iDLR inverse Deep Learning Raytracing
GAN Generative Adversarial Network
GPU Graphics Processing Unit
NURBS Non-Uniform Rational B-Spline
MAE Mean Absolute Error
Q1/3 Quartile 1/3
IQR Interquartile Range
CAD Computer Aided Design
ACC Accuracy
SOTA State of the Art
CSR Circumsolar Ratio

The most prominent and state-of-the-art (SOTA) method for ob-
taining the surface shape of heliostats is the deflectometry measure-
ment [11,13]. This method involves capturing camera images of stripe
patterns with diverse frequencies projected onto a Lambertian target
nd subsequently reflected from the heliostat. However, this approach
aces obstacles in the heliostat field because of factors such as dew,
ind, and the fact that the measurement has to be conducted at
ight with long exposure times. Alternatively, some methods use a
aser [14,15], while others employ photogrammetry [16–20] or flux

mapping [21]. However, up for today these measurements are unre-
iable or cost intensive. For a complete review, the reader is referred
o [9].

As a result, considerable efforts are made to extract additional
nformation about each heliostat from more readily available data
ources. Zhu et al. [4] have developed a post-installation calibration
rocedure to find four geometrical parameter per facet by optimiza-
ion, using only target images of the corresponding heliostat. Even
his simple heliostat model achieved the above mentioned efficiency
ains. These results underline the potential of including an accurate
lux density prediction in the aim point optimization. A key drawback
f this method is the simple and specific heliostat model, assuming
nly canting and focusing error. For example, the heliostats at Solar
ower Jülich (STJ), Germany are not focused and the important surface
eatures that influences the flux density besides the canting error, are
he waviness and the bending of the facets at the edges and corners.
hose surface features are not predictable by the approach of Zhu
t al. [4]. The latest method for enhancing the precision of flux density
redictions is pioneered by Martínez-Hernández et al. [21]. They have

devised a technique to reconstruct the surface of heliostats using focal
pots during daylight hours. However, this reconstruction capability de-

creases when the distance between the heliostat and target exceeds 6 m.
To address this limitation, additional measures such as implementing a
moving target are necessary.

Pargmann et al. [12,22] introduced a versatile approach for he-
liostat calibration and surface reconstruction using differentiable ray-
racing. This optimization-based method leverages target images for
oth tasks, providing a cost-effective and fully automated solution that

requires no additional hardware. However, the approach faces chal-
lenges in accurately predicting heliostat surfaces due to the inherently
underdetermined and ill-posed nature of the problem. This highlights
he need for a reliable and cost-effective method capable of predicting

heliostat surfaces during routine power plant operations.
In addition to their differentiable raytracing formulation, Pargmann

et al. [12] introduced a NURBS-based heliostat model. This model
enables the optimization of NURBS parameters directly from target
images, offering a more compact and efficient representation compared
2

to traditional normal vector point cloud representations [11]. The pri-
ary advantage of NURBS parameterization is its low dimensionality,
hich makes it particularly suitable for machine learning applications.
owever, their study did not involve fitting NURBS surfaces to normal
ectors derived from deflectometry measurements. Consequently, the
esulting NURBS surfaces often yielded suboptimal heliostat surface
redictions due to the previously discussed underdetermination. Un-
ortunately, the traditional normal vector point cloud representations,
hich can have up to one million parameters for heliostats at the
TJ, make deep learning methods exceedingly challenging due to their
ignificant computational demands and difficult trainability. Hence, it
s still desirable to find a way to effectively parameterize heliostat
urfaces with a low dimensional model, like a NURBS representation.

Generative deep learning models have emerged as a prominent area
f research within computer science in recent years, characterized by
roundbreaking advancements enabled by architectures such as Style-
AN [23], Large Language Models [24,25], and Diffusion Models [26].

The term ‘‘generative’’ refers to the capacity of these models to synthe-
size new instances that belong to the learned data domain. For instance,
he StyleGAN model proposed by Karras et al. [23] can produce highly

realistic synthetic images of human faces. In many scenarios, generating
ynthetic data necessitates the inclusion of additional input to control
he output of the model, a framework known as conditional generative
odeling. A famous example is the stable diffusion architecture [26],

which takes natural language as input to generate corresponding im-
ages. Generative models acquire domain-specific knowledge during
training, enabling them to give a good output even for underdetermined
tasks. This property is particularly advantageous in addressing Inverse
Problems. Solving an inverse problem involves deducing causal factors
rom observed effects, typically in the opposite direction of physics.
hese problems are inherently underdetermined and ill-posed. Deep

earning has been extensively applied to solve inverse problems in fields
uch as medicine [27,28], physics [29,30], and seismology [31,32],

owing to its ability to learn prior knowledge about the target domain.
or an in-depth review, see [33].

In this work, we propose a conditional generative deep learning
framework designed to predict heliostat surfaces from target images.
The model is trained on synthetic data generated using a raytrac-
ing simulation, solving the inverse problem of raytracing. Our re-
sults demonstrate that the deep learning model achieves surface pre-
dictions with accuracy comparable to deflectometry methods, while
offering significant cost advantages. Additionally, we decouple the
NURBS-based heliostat representation of Pargmann et al. [12] from the
differentiable raytracing process and introduce a new NURBS fitting
routine allowing us to parameterize all deflectometry measurements
efficiently as NURBS. The NURBS-based representation for heliostat
surfaces achieves a drastic reduction in parameters and in memory
usage compared to the conventional normal vector point cloud repre-
entation. These improvements establish the proposed representation

as a likely new SOTA for heliostat surface modeling in the digital twins
of CSP plants.

2. Workflow of inverse deep learning raytracing

The primary measurements executed at CSP plants are target images
mployed for calibration with the Camera-Target Method [34], offering

a direct observation of a heliostat’s flux density. The flux density
distribution is caused by the precise heliostat surface characteristics and
known parameters such as sun and heliostat positions, and hence the
flux density contains information about the surface. However, predict-
ing heliostat surfaces based on their flux density is highly challenging
because it is an underdetermined problem. Factors like canting of the
facets and the overlap of reflected and scattered rays on deformed
surfaces make it particularly challenging.

This study aims to use deep learning models to predict the heliostat
surface using the heliostat’s target images as input. This approach
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Fig. 1. Inverse Deep Learning raytracing (iDLR) embedded in the regular power plant operation. The heliostats are sequentially and fully automatically focused on a Lambertian
target and target images are taken for the calibration (Camera-Target Method). Those target images contain information about the heliostat surface. Leveraging a deep learning
model, this information is extracted and utilized to predict the heliostat surface, without the necessity of introducing new hardware or executing measurement which are not done
yet during regular power plant operation. Consequently, the existing power plant systems and software can now operate seamlessly with an improved heliostat digital twin. This
enhancement enables the power plant to operate more efficiently by achieving a more optimal flux density distribution (FDD) on the receiver.
is the inverse direction to physical raytracing and hence we term
the method inverse Deep Learning raytracing (iDLR). Fig. 1 shows the
integration of iDLR in the routine power plant operation. Deep learn-
ing models have the capability to learn typical surface deformations
constrained by material properties and mechanical construction of
the mirror surface. This unique ability enables them to predict he-
liostat surfaces even within the underdetermined regime, leveraging
the surface information learned during training. With this capability
iDLR should perform better in this underdetermined problem than
comparable physical algorithms like differentiable raytracing [12].

Before training a deep learning model, the question arises which
data can be used. A purely real data approach would involve collecting
real data pairs of heliostat surfaces and target images. However, there
are significant drawbacks to this approach. First, the high costs asso-
ciated with surface measurement for all existing methods. Second, the
method should be applicable to commercial power plants that do not
have a surface measurement setup. Finally, the substantial data demand
for training generative deep learning models may pose challenges due
to the limited number of heliostats in most fields.

To circumvent these limitations, our methodology aims to train
on a semi-artificial dataset. The first step is to gather real surface
measurements of the heliostat model used at the power plant where
it is intended to implement iDLR. These measurements can be taken
either at the power plant implementing iDLR or at any other power
plant utilizing the same heliostat model, or even at the manufacturer’s
facility. Subsequently, a model is trained using a dataset comprising
augmented real surface data and simulated flux density data obtained
through raytracing. This model is presented in this work.

In the subsequent phase, the simulated model can be applied to
real-world target images using deep learning sim-to-real transfer tech-
niques, to bridge the gap between simulated flux densities and target
images [35–38].

2.1. Comprehensive NURBS heliostat model

We employ a heliostat model proposed by Pargmann et al. [12], which
integrates a traditional geometric model with an innovative spline
approach to parameterize the reflecting surface of the heliostat. Current
SOTA methods represent heliostat surfaces as a point cloud of normal
vectors [11], providing precise representation but at the cost of a high
number of parameters. For instance, the deflectometry measurement
3

used at the Solar Tower Jülich measures approximately 80,000 normal
vectors per facet (1.6 m × 1.25 m; slope deviation with mean Root
Mean Square of 1.36 mr ad). This presents a challenge for training deep
learning models due to the high computational resource demands and
the potential decrease in model precision from the large number of free
parameters. Pargmann et al. [12] employ a differentiable Non-Uniform
Rational B-Spline (NURBS) within a differentiable raytracing routine
(code published at [39]) as a trainable parameter to fit a heliostat
surface to a given flux density. NURBS are the industrial standard to
represent complex geometries with few parameters in Computer-Aided
Design (CAD) [40]. A NURBS surface 𝐒(𝑢, 𝑣) is defined as:

𝐒(𝑢, 𝑣) =
∑𝑛

𝑖=0
∑𝑚

𝑗=0 𝑁𝑖,𝑝(𝑢)𝑀𝑗 ,𝑞(𝑣)𝑤𝑖,𝑗 𝐏𝑖,𝑗
∑𝑛

𝑖=0
∑𝑚

𝑗=0 𝑁𝑖,𝑝(𝑢)𝑀𝑗 ,𝑞(𝑣)𝑤𝑖,𝑗
, (1)

with:

• 𝑛 and 𝑚 are the number of control point in the 𝑢- and 𝑣-directions,
respectively.

• 𝐏𝑖,𝑗 are the control points that shape the surface.
• 𝑤𝑖,𝑗 are the weights associated with each control point.
• 𝑁𝑖,𝑝(𝑢) and 𝑀𝑗 ,𝑞(𝑣) are the B-spline basis functions of degree 𝑝 and
𝑞 in the 𝑢- and 𝑣-directions, respectively.

NURBS elegantly enable the smooth and continuous parameterization
of a wide range of geometries with minimal parameters, while pre-
serving high accuracy. This is accomplished through the weighted
superposition of piecewise-defined B-splines, which are constructed to
meet continuity requirements along their boundaries.

Before fitting the NURBS parameter against the normal vectors from
the deflectometry measurement through a gradient-based optimization
process we adapt the NURBS slightly. First, to each facet of the he-
liostat, one NURBS surface is assigned. Hence, the heliostat with four
facets is described by 4 NURBS. Then, the number of control points
(𝑛 and 𝑚) must be chosen. Since a network architecture benefits from
having the number of control points as a power of two, an investigation
was conducted to determine the smallest power of two that yields
sufficient results for surface parameterization. It was found that 8
control points are sufficient for the parameterization (𝑛 = 8 and 𝑚 =
8). Next, we reduce the number of NURBS parameters by fixing the
xy-position of each control point on a predefined grid:

𝑥 𝑦 𝑧 𝑥 𝑦
𝐏𝑖,𝑗 = (𝑃𝑖,𝑗 , 𝑃𝑖,𝑗 , 𝑃𝑖,𝑗 ), where 𝑃𝑖,𝑗 = constant, 𝑃𝑖,𝑗 = constant
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Fig. 2. Histograms representing the distribution of z-control point deviations in heliostat surface data, parameterized by NURBS. The left panel shows the overall distribution of
surface deviations across all z-control points from all measured heliostat surfaces. The middle panel displays the distribution of the strongest negative deviations (surface minima)
for each heliostat, while the right panel shows the strongest positive deviations (surface maxima). The views in the middle and right panel highlight outliers, providing clearer
insight into the extremes of the heliostat surfaces.
This results in 𝑃 𝑧
𝑖,𝑗 being the only control points that must be fitted.

Finally, the NURBS weights 𝑤𝑖,𝑗 are set to zero:

𝑤𝑖,𝑗 = 0, ∀ 𝑖, 𝑗
This leads to only 4 × 8 × 8 z-control points 𝑃 𝑧

𝑖,𝑗 as NURBS parameter
for the whole heliostat. The spline degree is set to three. The z-control
points are then fitted using the differentiable formulation of Pargmann
et al. [12] and gradient descent against the normal vector cloud of the
deflectometry measurement. The optimization is done for 3000 epochs,
by an Adam optimizer with betas of (0.9, 0.999), eps of 1e-8 and a
weight decay of 0.1. The learning rate is 1e-5, whereby an exponential
decay learning rate scheduler is used with gamma of 0.995. As a result,
the z-control points of the NURBS surface act as a comprehensive
representation of the heliostat surface, reducing the number of free
parameters from nearly 1 million to just 256—a reduction of 99.97%.
This significantly enhances the efficiency of training machine learning
models that involve heliostat surfaces. Furthermore, the NURBS rep-
resentation is drastically more memory and computationally efficient
than the normal point cloud. A single deflectometry measurement’s nor-
mal vectors occupy 8.6 MB, while the NURBS representation requires
only 7 KB, a reduction of 99.91%.

2.2. Data acquisition and augmentation

The utilized dataset comprises stripe pattern deflectometry measure-
ments conducted at the STJ, encompassing a total of 458 heliostat
surfaces. A split into training data (428), validation (32) and testing
data (32) was made, ensuring the exclusion of surfaces from validation
and testing heliostats in the model training. For each heliostat, the z-
control points of the NURBS were computed as detailed in Section 2.1
and act as surface representation. As there is a constant unknown
offset for the surface of each facet, the mean value of the surface
from each facet was set to zero. Fig. 2 shows the statistics of the data
set. While the dataset comprises an unusually extensive collection of
deflectometry data, it remains relatively small for effectively training
a neural network. To address this limitation, two types of data aug-
mentation were applied. Firstly, the heliostat surface was rotated by
180 degrees. Secondly, the weighted average between two randomly
selected surfaces was calculated using 𝑧𝑎𝑢𝑔 𝑚 = 𝛼 ∗ 𝑧1 + (1 − 𝛼) ∗ 𝑧2
with 𝛼 ∈ (0, 1). This approach ensures training on a diverse artificial
dataset, avoiding the use of surfaces with unrealistic features given the
physical constraints of the material and mechanical construction. In
total, around 160,000 artificial heliostat surfaces were generated.

For testing and validation the 32 heliostats were placed in total
4544 times over the field, with a distance of up to 300 m to the tower
4

and with a maximum azimuth to the sides of 45 deg r ees (see Fig. 3) .
These heliostat positions were chosen as they match those at the STJ.
Subsequently, environmental parameters such as sun position, heliostat
aim point, and position were randomly drawn in accordance with the
geographical position and heliostat field of the STJ for every simulated
heliostat. For the flux density simulation, sun positions were uniformly
sampled from the sun positions under which a target image was taken
at the STJ for calibration (see Fig. 3). Whereby the sun shape of Buie
et al. [41] was used with a Circumsolar Ratio (CSR) value of 5%.
Finally, eight flux densities to different sun positions were simulated
for each heliostat surface using the ray tracer developed by Pargmann
et al. [12]. Those flux densities were centered around the center of
mass, cropped onto a size of 4 m x 4 m and finally normalized that the
sum of the discrete points of the flux density equals to 100.

Finally, the training, validation and test set are formed by the
simulated flux densities, the sun position and the heliostat position as
input parameter and the z-control points of the NURBS as the surface
representation the model will predict.

2.3. Model and training

The nature of the problem suggests the adoption of an Encoder–
Decoder architecture (see Fig. 4). The encoder is tasked with fusing
two distinct input data streams: the eight flux densities, parameterized
as an 8 × 64 × 64 tensor, and scalar data containing the corresponding
sun positions and the position of the heliostat in the field. The Encoder
comprises five identical blocks. Each block begins with a convolutional
layer that processes the output from the previous block or, in the case
of the first block, the input flux densities (eight in total). Additionally,
scalar input values are incorporated into the visual data stream using
an affine transformation (A) followed by weight demodulation, as de-
scribed by Karras et al. [42]. This process is repeated within the same
block, and before downsampling, a residual connection is applied. The
residual connection, based on the method introduced by He et al. [43],
adds the output of the first layer to the output of the second layer.
Throughout the encoder, the number of channels remains constant at
256. The final output of the encoder is a latent representation of the
heliostat surface with dimensions 3 × 32, using the extended w+ latent
space of the StyleGAN2 architecture, as proposed by Richardson et al.
[44]. For the Decoder, we utilize the StyleGAN2 Generator [42], which
has demonstrated exceptional success in generating domain-specific
data. The decoder begins with a starting block, which consists of a
trainable tensor, followed by a convolutional layer that receive inputs
through an affine transformation (A) and weight demodulation from the
w+ latent space. This is followed by three style blocks. Each style block



Solar Energy 289 (2025) 113312J. Lewen et al.
Fig. 3. Left Panel: Simulated heliostat field with black dots indicating training heliostat positions and red dots marking validation and testing heliostat positions. A total of 32
different heliostat surfaces were used for validation and testing and placed on every position marked by a red dot, resulting in a dataset of 4544 simulated heliostats. Right Panel:
Scatter plot of sun positions during target image captures used for flux density simulations. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 4. The employed model integrates up to 8 flux densities and their corresponding sun and heliostat positions as inputs. These scalar inputs are processed in each Encoder
Block, where they first undergo an affine transformation 𝐴, followed by weight demodulation, effectively mapping them into the image data stream. This stream is subsequently
refined through convolutional neural layers. The Encoder consists of 5 sequential Encoder Blocks, which output the latent space representation 𝑤+. This 𝑤+ latent space serves
as the input to the styleGAN2 generator. The generator begins with a trainable tensor in the Start Block and continues with 3 style Blocks. Each style Block receives inputs both
from the preceding block and the 𝑤+ latent space, transformed through an affine transformation and weight demodulation. These are then fed into convolutional layers, followed
by an upsampling step. The generator’s output is the Cartesian representation of the 𝑧-control points, which parameterize the heliostat surface.
takes input from the preceding block as well as from the w+ latent
space, again processed through an affine transformation (A) and weight
demodulation. Within each style block, a convolutional layer is applied
before an upsampling operation. The final style block in the decoder
generates a Cartesian representation of the heliostat surface’s z-control
points. Two additional operations are applied after every convolutional
layer and affine transformation in the network, though these are not
explicitly depicted in Fig. 4. First, a dropout layer is introduced with
a dropout probability of 0.2. Second, a rectified linear unit (ReLU)
with a negative slope of 0.1 is applied. The total number of trainable
parameters in the network is to 3.5 million.
5

The model underwent training utilizing the semi-artificial dataset
introduced in Chapter 2.2. By using also less than eight input flux
densities and sun positions during the training we ensure that the model
can predict surfaces for any number of input flux densities up to eight.
The objective of the training is the minimization of the mean absolute
error (MAE) between the predicted z-control points 𝑃 𝑧,𝑝𝑟𝑒𝑑

𝑖,𝑗 and those
from the training set 𝑃 𝑧,𝐺 𝑇

𝑖,𝑗 :

MAE = 1
𝑁

𝑛=8
∑

𝑖=1

𝑚=8
∑

𝑗=1

|

|

|

𝑃 𝑧,𝑝𝑟𝑒𝑑
𝑖,𝑗 − 𝑃 𝑧,𝐺 𝑇

𝑖,𝑗
|

|

|

(2)

Where:
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Fig. 5. Illustration of the NURBs fitting procedure for an individual heliostat. The left panel depicts the normal vectors resulting from the NURBS parameterization, while the
right panel displays cartesian representations of the surface.
• 𝑛 and 𝑚 are the number of control points.
• 𝑁 = 𝑛 × 𝑚 is the total number of control points.

The model is trained for a total of 50 epochs. Training is stopped at
this point as the validation loss has converged, indicating no further
improvements can be achieved with additional training.

3. NURBS for surface representation: Quality and computational
efficiency

To assess the quality of the NURBS parameterization, we compare
it to the deflectometry normal vector point cloud. Fig. 5 shows an ex-
ample heliostat surface represented using NURBS. On the left, Fig. 5(a)
compares the normal vectors from deflectometry measurements with
those from the NURBS surface, demonstrating minimal differences and
underscoring the accurate parameterization of the heliostats’ normal
vectors using the 4 × 8 × 8 NURBS z-control points. In Fig. 5(b), the
surface deviation of the heliostat from the ideal assumption is depicted,
with a conventional integration-based algorithm estimation on the left
and the NURBS parameterization on the right. The strong alignment
between both underscores the robust parameterization achieved with
the NURBS parameters. To quantify the quality of the NURBS param-
eterization, we calculate the angular deviation between the normal
vectors from the NURBS spline and the deflectometry measurements.
81% of the NURBS normal vectors have an angular deviation of zero
mrad from the original deflectometry normal vectors within machine
accuracy. The remaining 19% form an extremely skewed tail, with
the largest outlier being 3 mr ad. While the majority of the normal
vectors are fitted perfectly, the outliers have mainly three causes: the
NURBS normals must be smoother than the original, sharp edges in
the contour lines are rounded, and at the boundary of the facets,
the NURBS parameterization becomes slightly less accurate due to
boundary effects.

Next, we compare the flux density predictions based on the normal
vector cloud and the NURBS spline loaded into the ray tracer proposed
by Pargmann et al. [12]. Approximately 2.3 million rays are simulated
per heliostat, using the CSR sun shape model proposed by Buie et al.
[41], with a CSR value of 5%. Fig. 6 shows on the left (Fig. 6(a)), the
flux density prediction from deflectometry normals and NURBS for the
heliostat with the largest outlying normal vector deviation (10.2 mr ad)
and the smallest (2 mr ad). In both cases, the flux densities match
strongly with nearly no visible difference, highlighting the robust
surface parameterization of the NURBS. To quantify the quality of the
flux density prediction, the following accuracy metric is calculated:

ACCGT,pred =
∑

|𝜙GT − 𝜙pred|
∑

|𝜙GT|
(3)

As raytracing involves Monte-Carlo Sampling, slight variations in flux
densities are expected when raytracing the same scene twice. To
6

account for this, the flux density for the normal vector cloud was
calculated twice 𝜙Normals1/2, and the loss of accuracy caused by the
NURBS parameterization is calculated as:

loss = 1 − (ACCNURBS, Normals1 + (1 − ACCNormals1, Normals2)) (4)

Fig. 6(b) illustrates the accuracy loss in flux density predictions
attributable to the NURBS parameterization for 184 deflectometry mea-
surements conducted at STJ. These 184 measurements constitute the
subset with more than 99% of their mirror surface measured success-
fully (see Section 2.2 for more details on data). The distribution centers
around its mean lossNURBS = 2.2, indicating a significant but relatively
small loss due to the NURBS.

The substantial parameter reduction by 99.97% (from more than
one million to 256) is essential for the implementation of iDLR. Al-
though it is technically feasible to train generative models with over a
million pixels, the computational expense is prohibitive; for example,
the styleGAN architecture requires 41 days and 4 h of training on a
Tesla V100 GPU for 1024 × 1024 pixels [23]. In contrast, training
the iDLR model to predict the NURBS surface takes just 12 h on
a single NVIDIA A100 GPU. Furthermore, training such models is
highly challenging due to the large number of trainable parameters,
which complicates regularization. Additionally, the parameter reduc-
tion significantly enhances memory efficiency, decreasing the memory
requirement by 99.91% from 8.6 MB to 7 k B per heliostat. This im-
provement is critical for two main reasons. First, deep learning models
often necessitate hundreds of thousands of training samples, making a
memory-efficient data representation imperative. Second, large concen-
trated solar power (CSP) plants may comprise up to 200,000 heliostats,
necessitating an efficient surface representation for real-time flux den-
sity predictions during operation, which includes heliostat digital twins
with surface information.

The deviations between the NURBS normals and the original nor-
mals have resulted in a minor flux density accuracy loss of 2.2%.
This loss is particularly minimal when contrasted with the accuracy of
the ideal heliostat assumption at the STJ, which is ACCideal = 67%.
Consequently, the potential gain in flux density prediction accuracy
substantially outweighs the loss introduced by the NURBS parame-
terization. It is feasible to further reduce the mrad and flux density
loss by using additional NURBS control points. However, the accuracy
achieved with our current parameterization is considered sufficient for
our purposes.

The proposed NURBS parameterization represents a significant ad-
vancement over the current SOTA in heliostat surface parameterization,
specifically the normal vector cloud. Key advantages include enhanced
memory and computational efficiency, which are crucial for large
power plants employing a heliostat digital twin that incorporates sur-
face information for real-time flux density prediction. Moreover, the
NURBS method allows for a reduced number of free parameters in
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Fig. 6. Flux density prediction accuracy under the NURBS representation. Two example flux densities are shown on the left and the histogram with the loss in accuracy on the
right.
Fig. 7. (a): The presented surface predictions are randomly selected. The top row illustrates the ground truth obtained through deflectometry, while the bottom row depicts
the predictions generated by iDLR. b: The provided flux density predictions correspond to the heliostats shown above. The top row presents the ground truth, derived through
raytracing deflectometry surfaces, while the middle row showcases predictions generated by raytracing the iDLR predictions. As a point of reference, the bottom row displays flux
density predictions derived from the ideal heliostat assumption.
machine learning models and provides a differentiable formulation.
Consequently, all training losses and validation metrics in this work
are based on the NURBS parameterization. Overall, our findings sug-
gest that NURBS will become the new SOTA for heliostat surface
parameterization.

4. Results

4.1. Surface prediction

Fig. 7 shows the results of the iDLR prediction. In Fig. 7a, ten
randomly selected surface predictions by iDLR are shown, whereby
seven simulated flux densities were used as an input. The mean absolute
error per control-point (MAE) between the predicted surface and the
deflectometry-derived surface has a median of 0.14 mm with (Minin-
mum/Quantile 1/Quantile 3/Maximum) of (0.07/0.12/0.17/0.7) mm.
For comparison the typical surface deviation falls within the range
7

of −2 mm to 2 mm, but exhibiting considerable variability among he-
liostats. As illustrated in Fig. 7a, a strong alignment is evident between
the predicted surface and the deflectometry ground truth surface. No-
tably, the model demonstrates accurate prediction of heliostat wavi-
ness, representing surface features with the highest spatial frequency
that is representable with the NURBS spline. Fig. 8 shows an analysis
of iDLR performance. On the left, Fig. 8(a) shows the performance
in dependency to the heliostats distance to the tower (a few outliers
are not displayed). The surface predictions become significantly better
at larger distances up to the considered maximum distance of 300 m.
However, no analogous effect is identified concerning the azimuth of
the heliostat position. Fig. 8(b) illustrates the model’s surface recon-
struction performance in relation to the number of input flux densities.
Notably, a substantial enhancement in precision is observed with an
increased number of input flux densities. However, given that the
model was trained with a maximum capacity for processing eight flux
densities, the potential impact of utilizing an even larger number of
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Fig. 8. MAE of iDLR surface predictions in dependency on the distance to the tower (left) and the number of input flux densities (right).
input flux densities on the results remains unclear as the saturation of
the curve could be at a smaller MAE.

4.2. Flux density prediction

In the subsequent phase, the predicted surfaces serve as a basis
for forecasting flux densities of heliostats using raytracing. Randomly
selected flux density predictions are visualized in Fig. 7b and com-
pared to the, deflectometry based flux density prediction and the
ideal heliostat assumption. A high match between the flux densities
predicted from iDLR and deflectometry surfaces is visible across all
shown heliostats. Remarkably, this does not only hold for the he-
liostats with accurate surface prediction (compare Fig. 7a) but also
for those with a poor surface reconstruction (the third heliostat from
the left). This phenomenon can be attributed to the inherent underde-
termination of the problem, as surface deformations that significantly
change the facets mean normal vector (especially canting errors) have
a stronger effect on the flux density distribution for heliostats at larger
distances. To quantify the quality of the flux density predictions, the
mean accuracy is computed as described in Section 2.1. The median
accuracy of the flux density prediction of the model is 0.92 with
(Min/Q1/Q3/Max) of (0.43/0.90/0.94/0.98), proving a very accurate
and reliable flux density prediction using the surfaces predicted with
the model for most predictions. Generally, even fine details can be
predicted using the method. However, some small deviations from
especially inhomogeneous and exceptional flux densities are possi-
ble. For comparison, the ideal heliostat assumption of a flat surface
without deformations achieves a median accuracy of only 0.67 with
(Min/Q1/Q3/Max) of (0.37/0.59/0.74/0.9). This is not only on median
0.25 (−0.08/0.18/0.33/0.55) less accurate then the iDLR enhanced
raytracing prediction, but also the interquartile range (IQR) of the ideal
heliostat prediction (IQRideal = 0.15) is more than three times as high as
those from iDLR (IQRiDLR = 0.04). This makes the iDLR enhanced flux
density prediction more precise and reliable then the ideal heliostat
assumption. Over the whole test data set consisting of 32 simulated
heliostats on 142 positions, the ideal heliostat flux density was more
accurate than the iDLR prediction for only four heliostats, showing a
failure rate of iDLR based flux density prediction around 1‰ in the
presented simulated heliostat field.

Fig. 9 compares deflectometry and iDLR enhanced flux density
forecasts with the corresponding target image taken at the STJ. The
heliostat is positioned at 4.4 m west and 25 m north of the tower. Three
source flux densities are used to predict the heliostats surface. This iDLR
surface prediction is used to predict three flux densities under new sun
position. The simulated flux densities correspond to target images that
were taken for calibration purpose at the STJ (right side). The high
8

match between raytracing deflectometric measured heliostats and the
target images taken during the calibration measurement shows that the
information necessary to predict the surfaces are in the target images
as well as in the raytracing simulation, emphasizing the possibility
to transfer the simulative model to real data by machine learning
techniques. Moreover, Fig. 9 illustrates a spatial extrapolation flux
density prediction and its comparison to a real target image. The STJ
incorporates a secondary target positioned 18 m west and 15 m than the
main target. The high correspondence between the iDLR flux density
prediction for spatial extrapolation and the deflectometry flux density
prediction and the real target image, underscores the capability of the
predicted iDLR surface to not only forecast flux densities on the source
target but also on another target plane. This is important as receivers
are situated in a different plane than the source targets and hence the
flux density prediction on the receiver is usually a spatial extrapolation.

5. Discussion

The results obtained through simulation underscore the significant
ability of iDLR. The method demonstrates its capability to predict
heliostat surfaces with high accuracy using simulated flux densities,
despite the inherently undetermined and ill-posed nature of the inverse
problem. While the majority of the reconstructed surfaces closely align
with the deflectometry ground truth (median MAE of 0.14 mm with
(Min/Q1/Q3/Max) of (0.07/0.12/0.17/0.7) mm), it is important to
acknowledge a potential drawback: there exists a risk of less accurate
surface predictions compared to deflectometry measurements for a
minority of heliostats. This phenomenon is particularly evident for
heliostats with limited input flux density data and those located close
to the tower, where surface predictions may deviate from deflectometry
ground truth. These discrepancy arises from canting errors and surface
deformations, which alter the mean normal vector of the facets. For
heliostats positioned farther from the tower, the impact of these factors
on the flux density is more pronounced. As a result, the flux density con-
serves more information about canting errors and surface deformations,
which alter the mean normal vector, at greater distances, making these
deviations easier to predict. However, this relationship does not hold
for surface errors with higher spatial frequency, such as waviness. With
higher distances to the tower, the features in the flux density caused
by waviness diminishes and the flux density becomes more smooth.
Notably, the model demonstrates the ability to predict higher frequency
heliostat features even for heliostats at greater distances, indicating
the utilization of learned static material constraints to make accurate
predictions rather than relying solely on conserved information in the
flux density.
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Fig. 9. Comparison of simulated flux densities arising from raytracing deflectometry and iDLR surfaces with target images obtained at the Solar Tower Jülich. The top row displays
three simulated flux densities (left) corresponding to three target images (right). These flux densities were used to predict the heliostat surfaces (not shown). Subsequently, flux
density predictions for three new sun positions were generated with a ray tracer (middle row, left). The three flux densities on the right are generated under the ideal heliostat
assumption. The bottom row presents the ground truth flux densities along with their corresponding target images. Notably, the red-marked target images were captured from an
additional target positioned 18 m west and 15 m higher than the source target.
In contrast to the singular existing alternative for heliostat surface
prediction from target images, the differentiable ray tracer proposed
by Pargmann et al. [12], our findings demonstrate substantial im-
provement. While the differentiable ray tracer can only predict the
surface for one singular heliostat with pronounced, artificially intro-
duced surface deformations, iDLR is able to predict a wide range of
measured, realistic heliostat surfaces. The problem of the differentiable
ray tracer lies in the underdetermined nature of the problem as it
does not acquire any preknowledge about the physical constraints
of the surface deformations. Our approach successfully navigates this
challenge by learning the physical constraints of the heliostat surfaces,
thereby narrowing the solution space and enabling precise predictions
despite the inherent underdetermination and ill-posed characteristics
of the problem. Furthermore, iDLR predictions come at real time while
the predictions of differentiable raytracing is depended on the number
of epochs and number of input flux densities, resulting in computation
times in the range of a few minutes up to some hours per heliostat.

On the other hand, we identified three drawbacks of iDLR. First,
while the model provides real-time predictions, its training process
is notably time-intensive. The execution of raytracing and subsequent
flux density processing requires approximately 0.1 s per iteration.
As a result, generating the training dataset demanded approximately
45 h of computation on a single GPU (NVIDIA A100). Additionally,
training and testing the model on the same GPU required an additional
12 h. Despite this initial time investment, the eventual computational
costs are anticipated to be outweighed by iDLR’s real-time inference
capabilities, making it superior to optimization-based algorithms like
differentiable raytracing over even short periods of use. Second, to
achieve accurate surface predictions, the model requires training on re-
alistic heliostat surfaces, which can be obtained through measurement
or simulation. While surface measurement entails associated costs, it is
important to note that each power plant implementing iDLR does not
require its own measurement setup. Instead, a single setup per heliostat
model, located either at a power plant or on the manufacturer’s side, is
sufficient. Alternatively, finite-element simulation of heliostats can be
used to predict potential deformations caused by construction-induced
stress, eliminating the need for surface measurements. However, simple
surface simulations that do not account for physical factors, such as
adding Gaussian deformations to an ideal heliostat, were found to be
insufficient. Models trained on such simplified data struggled to predict
real heliostat surfaces based on simulated flux densities, as they failed
to learn the physically constrained heliostat surface space. Lastly, the
model may face challenges in accurately predicting rare or unique
surface deformations that deviate significantly from those encountered
9

during training. These out-of-distribution predictions present a notable
challenge, necessitating ongoing refinement and adaptation of the iDLR
framework.

The minimum requisite quantity of measured heliostat surfaces for
model training is contingent upon two primary factors. Firstly, it relies
on the diversity present in surface deformations, as the iDLR model
necessitates comprehending a broader surface space, thereby requiring
a larger dataset for effective learning. Secondly, it is influenced by
the generalizability of a distinct set of deflectometry measurements.
Biases often manifest within datasets, such as an overrepresentation of
deflectometry measurements from heliostats situated in close proximity
to the tower, owing to the ease of application in these areas. Given
the likely existence of correlations between mirror error and heliostat
position (e.g. larger canting errors occurring at closer positions), a
biased dataset may diminish the predictive accuracy of the model, even
when training set sizes remain constant.

When comparing to existing methods for surface measurements such
as deflectometry [11], laser scanning, photogrammetry [14,16,18] or
flux mapping [21], iDLR stands out as a software-only approach for sur-
face prediction. It relies on hardware already employed in commercial
power plants and eliminates the need for active human involvement
during execution, making it considerably more cost-effective. However,
as mentioned above, this is traded against the risk of having a less
accurate surface prediction for a minority of the heliostats.

The flux density predictions obtained through raytracing the iDLR
prediction significantly outperform the ideal heliostat assumption (ac-
curacy of iDLR is 0.92 compared to accuracy of ideal heliostat assump-
tion of 0.67). This highlights the potential benefits of replacing the ideal
heliostat model with the iDLR prediction in the operation of a solar
power plant as aim-point optimization strategies reliant on raytracing
a heliostat model, as seen in works like [2–4,45], can experience
enhancements when the ideal heliostat assumption is substituted with
the iDLR surface predictions. Notably, Zhu et al. [4] demonstrated
that their post-installation calibration procedure ‘‘can lead to up to a
20% increase in utilized solar power’’. However, their method is only
applicable to focused heliostats, whereas our approach is adaptable
to all heliostat models. A comparable efficiency gain, exceeding the
accuracy achieved by Zhu et al. [4], could potentially be realized
with iDLR. Moreover, this is achieved with a generic heliostat model,
that can, unlike the model of Zhu et al. [4] parameterize all heliostat
models precisely. Nevertheless, the precise efficiency gain remains to
be determined in future research.

In addition to enhance aim point optimization, achieving reduced
tracking errors and enhanced heliostat calibration is desirable. Current
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calibration methods often use the flux density’s center of mass as input
o a rigid-body regression model [22,34,46], assuming the center of
ass aligns with the desired aim point. However, due to irregularities

n flux densities, significant discrepancies can arise between the desired
im point and the center of mass, introducing modeling errors that

compromise the accuracy of the rigid-body model. This challenge could
be tackled by integrating the approach of Pargmann et al. [22], which
employs a combination of differentiable raytracing and deep learning
for calibration, with iDLR. In particular, iDLR’s surface prediction
can be initialized within the differentiable raytracing framework. The
alibration process could then be further refined by treating the helio-
tat’s desired aim point as an optimizable variable, enabling its precise

determination and improve the accuracy of the calibration. This avenue
of investigation warrants further exploration in future studies.

During power plant construction, surface quality measurements of
eliostats are typically conducted sparsely and randomly across the

field due to the significant time and cost associated with conventional
methods such as deflectometry or photogrammetry. Our method over-
comes these limitations by enabling the extraction of detailed surface
information for every heliostat in the field, facilitating comprehensive
monitoring of the field’s optical performance. While occasional inac-
uracies may occur, this approach allows for a vastly greater number
f heliostats to be measured accurately compared to traditional meth-

ods, potentially significantly enhancing the efficiency and coverage of
surface quality assessments.

To successfully apply the trained model to real-world data, the
limited availability of surface data for training poses significant chal-
enges. Relying solely on real data for training is impractical due to the
equirement for surface measurements of a large number of heliostats in
he corresponding power plant. Consequently, the preferred approach
nvolves transferring the simulated model presented here to real data
sing deep learning techniques like domain randomization [35–38].

Key latent parameters, such as varying sun shapes [41,47], soiling [48,
49], mirror surface roughness [50], heliostat geometry models, and
the disparities between simulated flux density and target images due
to non-ideal Lambertian properties, background radiation reflection,
varying sun shapes or aberration effects can be randomized during
simulation. This can ensure the robustness of the simulated model
against differences between simulation and real-world data.

An alternative strategy for transferring the model to real-world
data involves incorporating differentiable raytracing formulations or
utilizing a deep learning ray tracer within the workflow. This approach
would enables close-loop training, using target images exclusively after
retraining on simulated data.

6. Conclusion

We have presented iDLR, an innovative and cost-effective method-
logy for predicting heliostat surfaces from target images, leveraging
eep learning to solve the inverse direction of the raytracing process. A
ecessity for iDLR is the compact heliostat surface parameterization us-
ng NURBS. This approach enables heliostat surfaces to be represented
ith just 256 parameters, achieving a 99.97% reduction in the num-
er of parameters and a 99.91% reduction in memory requirements,
hile maintaining minimal loss in accuracy. This significantly improves

omputational efficiency compared to existing methods. Our findings
uggest that NURBS parameterization has the potential to become
he new SOTA for heliostat surface representation. Our simulation re-
ults demonstrate that iDLR effectively predicts heliostat surfaces with
ccuracy comparable to deflectometry for the majority of heliostats,
ith a median MAE of 0.14 mm. When integrating the iDLR surface
redictions into a ray-tracing environment to compute flux densities,
ur method achieves an accuracy of 92%, surpassing the performance
f the ideal heliostat assumption by 25%. The method relies solely
n software and requires no additional hardware or sensors for infer-
nce. It utilizes input data already available from routine power plant
10
operations, enabling nearly zero-cost inference to monitor the optical
performance of the whole heliostat field. Furthermore, integrating the
redicted surfaces into raytracing aim-point optimization strategies and

the calibration procedure has the potential to enhance the flux density
distribution on the receiver, thereby optimizing the overall efficiency
of power plant operations.
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