
Electronic Communications of the EASST
Volume 83 Year 2025

deRSE24 - Selected Contributions of the 4th Conference for
Research Software Engineering in Germany

Edited by: Jan Bernoth, Florian Goth, Anna-Lena Lamprecht and Jan Linxweiler

Extending and applying automated
HERMES software publication workflows

Sophie Kernchen, Michael Meinel, Stephan Druskat, Michael Fritzsche, David Pape,
Oliver Bertuch

DOI: 10.14279/eceasst.v83.2624

License: L M This article is licensed under a CC-BY 4.0 License.

Electronic Communications of the EASST (https://eceasst.org).
Published by Berlin Universities Publishing
(https://www.berlin-universities-publishing.de/)

10.14279/eceasst.v83.2624
https://creativecommons.org/licenses/by/4.0/
https://eceasst.org
https://www.berlin-universities-publishing.de/

ECEASST

Extending and Applying Automated HERMES Software Publication
Workflows

Sophie Kernchen1∗, Michael Meinel2∗, Stephan Druskat3∗, Michael Fritzsche4,
David Pape5, Oliver Bertuch6

1sophie.kernchen@dlr.de, 2michael.meinel@dlr.de, 3stephan.druskat@dlr.de
Institute of Software Technology

German Aerospace Center, Berlin, Germany

4Andreas-Gymnasium, Berlin, Germany

5Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

6Forschungszentrum Jülich, Jülich, Germany

∗Authors contributed equally.

Abstract: Research software is an important output of research and must be pub-
lished according to the FAIR Principles for Research Software. This can be achieved
by publishing software with metadata under a persistent identifier. HERMES is a
tool that leverages continuous integration to automate the publication of software
with rich metadata. In this work, we describe the HERMES workflow itself, and
how to extend it to meet the needs of specific research software metadata or infras-
tructure. We introduce the HERMES plugin architecture and provide the example
of creating a new HERMES plugin that harvests metadata from a metadata source in
source code repositories. We show how to use HERMES as an end user, both via the
command line interface, and as a step in a continuous integration pipeline. Finally,
we report three informal case studies whose results provide a preliminary evaluation
of the feasibility and applicability of HERMES workflows, and the extensibility of
the hermes software package.

Keywords: Research software, software publication, software metadata, FAIR Prin-
ciples for Research Software, automation.

1 Introduction

An important goal that every Research Software Engineer (RSE) should follow, is to make soft-
ware compliant with the FAIR Principles for Research Software [CKB+22]. In order to make
software FAIR, it should be published with rich metadata in a way that supports its identification
through persistent identifiers such as DOIs. The publication of software is also appropriate due
to its status as an important product of research [JHK21]. Software published in the way de-
scribed above furthermore allows for formal software citation [SKNF16], which in turn supports
the reproducibility of research results that have been gained using the software.

1 / 18

mailto:sophie.kernchen@dlr.de
mailto:michael.meinel@dlr.de
mailto:stephan.druskat@dlr.de

Extending and Applying Automated HERMES Software Publication Workflows

Software publication, i.e. the deposition of software artifacts to open access repositories that
provide persistent identifiers (PIDs), such as InvenioRDM1, Dataverse2, or similar, can be auto-
mated to a large degree. Currently, however, the addition, maintenance, curation and publication
of software metadata specifically is often a manual process [DBJ+22].

The project HERMES [MDK+24b] (see Section 2) automates the process of publishing soft-
ware with rich metadata [DBJ+22]. This paper presents HERMES software publication work-
flows and their extension mechanism via plugins for the hermes software package. As a prelim-
inary evaluation of the applicability and extensibility of HERMES workflows, we report results
and experiences from a live coding workshop conducted by the authors, as well as informal case
studies for applying HERMES in source code repositories, and extending HERMES with a new
plugin. In these preliminary evaluations, we focus on the following questions that inform the
future development of HERMES:

Q1. How effectively does the HERMES concept described in [DBJ+22] enable users to publish
software with rich metadata, and what are implementation challenges?

Q2. How effectively do the hermes package and its documentation enable software developers
without prior knowledge about HERMES publication workflows to extend the hermes
package with a new plugin?

Q3. How can the hermes package and its documentation be improved to support different
stakeholder needs?

2 HERMES

HERMES (HElmholtz Rich MEtadata Software Publication) is an open source project initially
funded by the Helmholtz Metadata Collaboration3 under the grant ZT-I-PF-3-006. The HER-
MES tools help users automate the publication of rich metadata together with their software
projects and each of its versions. They can automatically harvest and process software metadata,
and submit them to tool-based curation, approval and reporting processes. Software versions can
be deposited on publication repositories that provide PIDs (e.g. DOIs).

2.1 HERMES project

The central outputs of the HERMES project are a concept for automating workflows for soft-
ware publication with rich metadata [DBJ+22], a Python software package called hermes
[MDK+24b], and templates that enable hermes’ use in different continuous integration sys-
tems. hermes implements the single phases of the workflow while the HERMES workflow
itself is configured in continuous integration instructions.

The adoption of the continuous integration configuration templates provided by the project al-
lows RSEs to focus more on their actual work. HERMES provides documentation4 for hermes’
1 https://inveniosoftware.org/products/rdm/
2 https://dataverse.org/
3 https://helmholtz-metadaten.de/de
4 https://docs.software-metadata.pub/en/latest/

2 / 18

https://inveniosoftware.org/products/rdm/
https://dataverse.org/
https://helmholtz-metadaten.de/de
https://docs.software-metadata.pub/en/latest/
https://inveniosoftware.org/products/rdm/
https://dataverse.org/
https://helmholtz-metadaten.de/de
https://docs.software-metadata.pub/en/latest/

ECEASST

Python API5, and tutorials to get started6. The Python API has been designed to enable inter-
operability across many different metadata types and infrastructure ecosystems. In configuring
a HERMES publication workflow, RSEs decide which environments (e.g., source code reposi-
tory platforms, metadata sources, publication repositories) to use. Additionally, the data model
allows RSEs to use HERMES as a framework and build additional automated processes.

HERMES aims to build an open community, where everyone is welcome to contribute. The
extensibility of the tools developed within the HERMES community makes them adoptable for
the needs of their users.

2.2 HERMES workflow

The HERMES workflow is designed to be run within a continuous integration (CI) pipeline in-
dependent of the CI infrastructure in use. Supported platforms include, but are not limited to,
GitHub Actions7 and GitLab CI8. The pipeline-based approach enables a push-based model,
compared to other pull-based workflows (e.g. the Zenodo-GitHub integration9) [DBJ+22]. Run-
ning hermes on in-house resources, e.g., your own source code repository platform instance
and continuous integration system, also reduces the dependency on third-party services.

Figure 1: The five phases that form the HERMES workflow: harvest, process, curate, deposit,
and postprocess

The overall HERMES workflow consists of five phases that form a pipeline as shown in Fig-
ure 1. In the pipeline, each phase needs to run successfully before the subsequent phase can be
started. Each phase of the workflow has a clear objective:

harvest During this phase, metadata is collected into a common, well-defined data model that
is derived from CodeMeta [JBC+23]. As rich descriptive metadata is the key element
to useful software publication, hermes strives to collect all metadata from source code
repositories and connected platforms. It supports the collection from structured metadata
sources like Citation File Format [DSC+21] files, CodeMeta files, or Git history. However,
it can also be extended to retrieve unstructured metadata, e.g., from a README file or a
CONTRIBUTORS list.

5 https://docs.software-metadata.pub/en/latest/api/index.html
6 https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html
7 https://docs.github.com/en/actions
8 https://docs.gitlab.com/ee/ci/
9 https://developers.zenodo.org/#update-schedule

3 / 18

https://docs.software-metadata.pub/en/latest/api/index.html
https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://developers.zenodo.org/#update-schedule
https://docs.software-metadata.pub/en/latest/api/index.html
https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html
https://docs.github.com/en/actions
https://docs.gitlab.com/ee/ci/
https://developers.zenodo.org/#update-schedule

Extending and Applying Automated HERMES Software Publication Workflows

process After the harvest phase collects all retrievable metadata and stores them in separate
files for each metadata source, these collected artifacts are then collated during the process
phase to produce a single set of metadata. The result is a consistent set of metadata in
an extended CodeMeta format, i.e., a well-defined JSON-LD format. Additional meta-
data about the processed metadata tracks metadata provenance, i.e., the source of each
metadata point. Where appropriate, we collaborate with other consortia to identify meta-
data standards that can be applied to metadata that cannot currently be represented as pure
CodeMeta.

curate The objective of this optional phase is to retain, manually check and validate the meta-
data that is to be published. The default implementation of this phase is a non-operation,
i.e., the collated metadata is copied to the output without changes. During a given cura-
tion process implementation, the collated metadata may be improved according to users’
requirements. Both the default non-operation, and any custom curation implementations,
signal hermes that the data has been curated by writing output. An example of how
the non-operation can be used for merge-based curation on GitHub or GitLab is imple-
mented in the respective templates as described in Subsection 4.2. Further possible review
methods are currently being investigated in the project Software Curation and Reporting
Dashboard (Software CaRD)10.

deposit After processing and optional curation, the resulting metadata files are deposited in a
publication repository. This deposition target can be a long-term storage that provides
a persistent identifier (PID) and access to the metadata, a software registry or directory
solution that makes the software better findable, a local file system, or anything in between.
A deposition to different targets is also possible by running this phase repeatedly with
different configurations within the same workflow run.

post-process The last phase provides a means to clean up and feed back information from the
workflow to the original (source code) repository, or targets that are not publication plat-
forms. This can include, but is not limited to, backtracking changes from the publication
repository (e.g., by storing a newly minted PID in the structured metadata in the source
code repository).

All phases can be configured individually and can also be extended with new functionality
using a plugin interface. Each phase is run independently11 as a separate process. It is also
possible to invoke a certain phase several times. This flexibility allows HERMES to be adapted
to multiple use cases, for example in mandatory organizational processes. A collection of pre-
defined workflows for common processes is available to help users get started.

The next section explains the extension mechanism in general and takes a closer look at how
to provide a new hermes harvesting plugin.

10 https://helmholtz-metadaten.de/de/inf-projects/softwarecard
11 Of course this is only true as long as the process does not need output data from a previous phase.

4 / 18

https://helmholtz-metadaten.de/de/inf-projects/softwarecard
https://helmholtz-metadaten.de/de/inf-projects/softwarecard
https://helmholtz-metadaten.de/de/inf-projects/softwarecard

ECEASST

3 Extending HERMES

The hermes Python package can be used and adapted in different ways. As hermes is pub-
lished open source under an Apache 2.0 license, users can fork it and adapt the software to their
needs. hermes also defines a public API, so that the package can be integrated into other tools
as a library. This approach is taken, for example, in the Software CaRD project. However, the
primary intended use case is to use the command line interface and configuration file to integrate
hermes into CI templates, standalone software, or build scripts.

Early in the HERMES research project’s (see Subsection 2.1) funding phase, we ran a stake-
holder workshop12 to gather and discuss requirements for an automated workflow for software
publication with rich metadata. As a result of this workshop and further ad-hoc community con-
sultations, we were able to define requirements, the two most important in the context of this
paper being:

1. the workflow uses formats and schemas that follow community standards;

2. any software implementing the workflow is extensible to enable its application for com-
binations of different metadata sources, different infrastructure components, different dis-
ciplinary requirements, and different organizational requirements.

We implement this in hermes by using the community standard schema for descriptive soft-
ware metadata CodeMeta [JBC+23] as universal exchange format between workflow phases,
and as output format. CodeMeta’s serialization as JSON-LD furthermore allows us to extend
it to represent additional harvested metadata. We also harvest CodeMeta files, as well as the
community standard format for software citation metadata, the Citation File Format [DSC+21].

Extensibility is implemented in a plugin architecture that uses the standard Python entry point
definition [PPA]. The hermes API also exposes a plugin interface that can be used to extend
hermeswithout modification of the core source code. The following section explains the plugin
structure and provides the necessary know-how to build a new plugin.

3.1 Plugin architecture

Figure 2: hermes components and interactions with external components.

hermes provides a plugin architecture for third parties to contribute additional features. The
basic structure is the same for every plugin. There is a generic base class HermesPlugin that
provides basic functionality:
12 https://events.hifis.net/event/205/

5 / 18

https://events.hifis.net/event/205/

Extending and Applying Automated HERMES Software Publication Workflows

• The execution context that was used to invoke the plugin. This functionality is encapsu-
lated in the HermesCommand class and requires adapting the specific behaviour according
to the way hermes was executed. This interface is also used to access the hermes con-
figuration.

• Methods to load and store data from the hermes caches. This allows access to the results
of previous phases as well as provision of the current plugin’s results to other plugins for
further processing.

• A possibility to define additional, plugin specific settings. Configuration options are im-
plemented using pydantic-settings [CJR23]. This allows to declaratively define
new settings options and validate the settings upon loading. It also supports different
sources for settings out of the box (e.g., reading from a configuration file, loading from
environment variables).

For each phase, there is a derived base class available that adds the basic processing logic that
is required. In this HermesPlugin class there is one abstract method call which is overwritten
by the derived classes to reflect the basic flow. Figure 3 shows a reduced UML class diagram
including an exemplary implementation of a new plugin that inherits from a base class. hermes
provides some built-in plugins for typical basic HERMES workflows:

git A harvest plugin that collects all contributors and committers from the Git history.

cff A harvest plugin that collects citation metadata found in a CITATION.cff [DSC+21] file.

codemeta A harvest plugin that collects metadata from an existing CodeMeta [JBC+23] file.

invenio deposit, invenio rdm deposit Two deposit plugins that publish finalized metadata in
Invenio [RLP+21] or InvenioRDM [INV] instances respectively.

file A deposit plugin that writes an extended CodeMeta file with all collected metadata.

invenio postprocess, invenio rdm postprocess Two postprocess plugins that provide function-
ality to: (1) store the new record ID that was created during the deposition to Inve-
nio(RDM) in the hermes.toml configuration file (see Section 4); (2) record a new DOI
in the CITATION.cff citation file.

3.2 How to write a plugin

hermes exposes a number of Python extension points [PPA] that are used to hook in new func-
tionality. There is one extension point for each phase of the workflow. The extension point
groups are structured as follows:

hermes.harvest Extend the harvest phase with a new metadata source. The entry point needs
to be a subclass of HermesHarvestPlugin and override the call method accordingly.

6 / 18

ECEASST

Figure 3: Partial class structure for a new harvest plugin FundingHarvestPlugin showing
the classes that implement the new plugin (green border) and parent classes (blue border).

hermes.process Extend the process phase. This entry point is not well defined or finalized yet.
However, the base class to derive from is HermesProcessPlugin.

hermes.curate Add new possible review methods to the curate phase. A successful curation
means that the output of this phase does not differ from the input. The base class that
needs to be extended for this entry point is HermesCuratePlugin.

hermes.deposit Add new deposition targets to the deposit phase. Currently, the HermesDe-
positPlugin provides a base workflow that relies on the internal state of the deposit plugin.
Internally, it follows a sub-workflow that takes care of

• projecting the metadata onto a supported schema,

• creating a container / entry to upload metadata (and optionally software artifacts) to,
or selecting an existing one to be extended with a new version,

• uploading the metadata and software artifacts, and

• publishing the new deposition.

hermes.postprocess Extend the post-process phase to feed back output from the HERMES
workflow, e.g., into the repository. The base class for this entry point is HermesPost-
processPlugin.

To write a new plugin, it is important to follow the given plugin structure (see Subsection 3.1).
Listing 1 shows the structure of an example plugin that provides a new source for the harvest

7 / 18

Extending and Applying Automated HERMES Software Publication Workflows

phase, in this example implementing harvesting of funding metadata as set in hermes.toml
directly. Figure 3 shows that FundingHarvestPlugin inherits from the HermesHarvestPlugin and
uses a settings class FundingSettings which is derived from Pydantic’s BaseModel.

The plugin’s functionality is implemented in the call method that is overridden by the
plugin. The method is meant to return a tuple of two dictionaries. The first dictionary should
contain the collected metadata as a CodeMeta dataset. The second dictionary may contain addi-
tional meta-metadata that is not restricted to some schema (even though this is encouraged). The
additional meta-metadata can later be used, e.g., to keep a record of the metadata provenance or
to help decide automatically how to collate different metadata sets.

Our example adds a new configuration key harvest.funding.grant id to the workflow config-
uration file hermes.toml (see Section 4). If set to be non-empty, this value will be added as
funding metadata value. The extension of the metadata is reflected by setting the meta-metadata
value for added accordingly.

Listing 1: Example for a plugin named ”funding” that implements a new source for the harvest
phase

from pydantic import BaseModel

from hermes.commands.harvest.base import HermesHarvestPlugin

class FundingSettings(BaseModel):
grant_id: str = ""

class FundingHarvestPlugin(HermesHarvestPlugin):
settings_class = FundingSettings

def __call__(self, command):
codemeta_data = {}
plugin_metadata = {}

funding_info = command.settings.funding
if funding_info.grant_id:

codemeta_data["funding"] = funding_info.grant_id
plugin_metadata["added"] = ["funding"]

return codemeta_data, plugin_metadata

8 / 18

ECEASST

4 Using HERMES

There are various ways to use HERMES. This section describes the usage of HERMES from
the command line and within a continuous integration workflow, using the example of GitHub
Actions. Note that this has been tested with Python 3.10 and hermes 0.8.0 [MDK+24b], whose
API must still be considered unstable. We provide further information and up-to-date tutorials in
the HERMES Documentation13.

As a primary source of configuration information, hermes uses the file hermes.toml in TOML
format14. This file contains information for all phases, each in a separate section named after the
phase.

Most phases provide generic configuration options. For example, the user can select which
harvest plugins to activate and which deposition target(s) to use. An overview of those generic
options is listed in Table 1.

Plugins are referenced by their name, must be part of the respective entry point group, and
implement the matching base class as described in Subsection 3.2. The special settings that each
plugin might introduce are collected in a subsection below the respective phase section. I.e., the
settings of the Citation File Format [DSC+21] harvest plugin (named cff) are collected in the
section harvest.cff.

Table 1: HERMES TOML configurations.

Plugin Setting Type Options

harvest sources List Plugin name (e.g., ”cff”, ”codemeta”, ”git”)
harvest.cff enable validation Bool Whether to validate CITATION.cff
harvest.git branch String Name of branch that will be harvested
deposit target String Plugin name (e.g., ”invenio”, ”invenio rdm”, ”file”)
deposit.file filename String Path of file to deposit to
deposit.invenio(rdm) site url String URL of publication repository

communities List Communities to publish software into
access right String Access rights (”open”, ”embargoed”, ”restricted”, ”closed”)
embargo date String Embargo date for software
access conditions String Conditions for software access
api paths Dict API paths for keywords
auth token String Token for target platform
files List[pathlib.Path] Files/paths to deposit
record id Int Identifier of publication to append new version to
doi String DOI of software

postprocess execute List Tasks to execute

As hermes uses pydantic-settings, it is possible to set configuration options using
environment variables. The implementation does also allow to override configuration options
using command line parameters.

13 https://docs.software-metadata.pub/en/latest/index.html
14 https://toml.io/

9 / 18

https://docs.software-metadata.pub/en/latest/index.html
https://docs.software-metadata.pub/en/latest/index.html
https://toml.io/

Extending and Applying Automated HERMES Software Publication Workflows

4.1 Using HERMES via command line

hermes is published on the Python Package Index15. The command pip install hermes
installs the latest version of hermes. After installation, users can use hermes from the com-
mand line. hermes comes with a single top-level command that provides sub-commands for
each phase and some additional utility functions. Table 2 shows all sub-commands and their
functionality.

Table 2: An overview of the different sub-commands that the hermes command line interface
provides [MDK+24b].

Command Description

help Show help page and exit.
clean Clean up caches from previous hermes runs.
harvest Harvest metadata from configured sources.
process Process the collected metadata into a common dataset.
curate Curate the unified metadata before deposition.
deposit Deposit the curated metadata to repositories.
postprocess Post-process the published metadata after deposition.

For hermes to work, it is important to run the phases in the order as described in Subsec-
tion 2.2. To enforce this, hermes keeps track of the phases that have already been run in an
internal cache. Each phase can be run repeatedly as long as the caches from the previous phases
are valid.

4.2 Using HERMES via continuous integration in GitHub

HERMES was developed with application in continuous integration environments in mind. As
part of the project, we provide different templates in a separate project on GitHub16. Continuous
integration in GitHub17 is configured using GitHub Actions. Each action is described in a single
YAML file located in the .github/workflows/ directory of the respective Git repository.
Users can copy the matching HERMES template into the Git repository and adapt it accordingly.
To help with the adaptation, the templates have areas marked with #ADAPT to highlight the
contents that need to be changed.

The default GitHub template provides a set of jobs that use hermes for a pull-request-based
curated deposition to Zenodo18 (or any other platform that runs InvenioRDM). In addition to
the basic HERMES workflow and the correct invocation of the different phases, it also offers an
example of how the curation phase could be implemented.

For the deposition phase, the user needs to provide a valid authentication token for the target
platform, stored as a “GitHub Secret”. During the continuous integration run, the curation phase

15 https://pypi.org
16 https://github.com/softwarepub/ci-templates/
17 https://github.com/
18 https://zenodo.org/

10 / 18

https://pypi.org
https://github.com/softwarepub/ci-templates/
https://github.com/
https://zenodo.org/
https://pypi.org
https://github.com/softwarepub/ci-templates/
https://github.com/
https://zenodo.org/

ECEASST

opens a pull request to let users review the collected metadata. To enable this, the user has to
allow GitHub Actions to create pull requests. Only when the curation pull request is successfully
merged, the continuous integration workflow will continue to carry out the actual deposition in
the target repository. Note that all branches that are created for the curation are only temporary
and will be deleted once the deposition was successful. The final post-process phase will again
open a pull request contributing metadata that can be added back into the repository (e.g., a
newly created PID for the latest deposition). If the branch is not changed in the template, the
HERMES workflow will run with every push to the main branch.

5 Preliminary evaluation

After describing the concept for automated software publication workflows [DBJ+22], gathering
requirements, and implementing a proof-of-concept version of hermes, we took some first steps
to evaluate these early outcomes. Specifically, we wanted to test the feasibility of the HERMES
workflow concept for developers of research software as its users (Q1) and the practical exten-
sibility of the hermes package (Q2), and identify key areas for improvement of the hermes
package and its documentation for both, users and plugin developers (Q3).

To test this and achieve a preliminary evaluation, we ran a live coding workshop and conducted
two informal case studies. We report on the preliminary results in the following sections.

5.1 Case study 1: live coding workshop at deRSE24

We ran a 90-minute hands-on live coding workshop at deRSE24 - Conference for Research Soft-
ware Engineering in Germany (Automating your FAIR software publications with HERMES –
a hands-on workshop) to evaluate the general feasibility of the HERMES workflow approach
detailed in [DBJ+22].

During the workshop, participants learned to use the hermes package [MDK+24a] on the
command line, as well as within a continuous integration workflow using Github Actions. The
audience consisted of 18 people. Three participants had some prior knowledge about HERMES
and its usage, and joined a breakout group where they were given a demonstration about the
plugin mechanism of hermes.

The remaining 15 participants did not have any knowledge of HERMES, but at least basic
knowledge of Python. They were introduced to HERMES with a presentation. After that a live
coding session demonstrated HERMES, which allowed participants to follow along in real time.
The live coding included setting up a mock project, and installing and using hermes from the
command line. After successful set up for local use, we did an interactive walk through of the
HERMES tutorial “Set up automatic software publishing”19. After live coding, 8 participants had
succeeded in setting up and using HERMES to publish their own software on Zenodo Sandbox.

For those participants that did not successfully complete the publication process with HER-
MES, we interactively elicited and recorded the reasons for failure during the workshop:

1. Inability to install the hermes package due to either the lack of a Python installation on
participants’ machines, or failure to install the required Python version (≥ 3.10).

19 https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html

11 / 18

https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html
https://docs.software-metadata.pub/en/latest/tutorials/automated-publication-with-ci.html

Extending and Applying Automated HERMES Software Publication Workflows

2. Non-existent accounts required to follow the live coding using the respective platforms
(GitHub, Zenodo Sandbox), and therefore inability to follow the live coding due to delays
while creating accounts.

Both reasons show failure of the workshop organizers to provide clear technical requirements
to participants and assistance in their fulfillment ahead of the workshop, and failure to check their
fulfillment during the workshop before live coding. These failures are of methodological nature
and do not as such attest a lack of feasibility of applying HERMES workflows for automated
software publication with rich metadata, and thus cannot contribute to answering Q1 or Q3.

Beyond these issues, the workshop showed the general usability of HERMES, and that it is
possible for a principal stakeholder group – RSEs and developers of research software – to apply
HERMES. To answer our question Q1 above, we therefore partially conclude that HERMES’
approach [DBJ+22] is generally viable, and that the current development status of hermes and
its documentation makes HERMES workflows fundamentally usable. Beyond that, we were able
to elicit first-hand user feedback towards answering our question Q3:

Issue 1 Using the default configuration, hermes v0.8.0 [MDK+24a] provides very limited
feedback to users. Logging output is only available in a hidden file, or by adapting
the logging configuration. Errors coming from plugins are not reported clearly enough
by hermes. This makes it hard to debug HERMES workflows.

Issue 2 The hermes user interface should be improved to support inexperienced users in apply-
ing the automated workflow, i.e., adjust templates, supply credentials for infrastructure
components (source code repository platform, publication repository platform).

We addressed Issue 1 in hermes 0.8.1 [MDK+24c] by adapting the default logging config-
uration. The log file is now output to the working directory and therefore more visible. Also,
more logging output is now directed towards the standard output. This is especially helpful when
HERMES is run in a CI context, and files produced during the process are not easily retrievable.
We also made sure that errors originating from plugins are output and better visible.

We furthermore address Issue 2 by introducing a new hermes init command that provides
a dialogue-based guided setup of the HERMES workflow from the command line. It has been
merged into the codebase20 and will be released with version 0.9.0.

We argue that having a locally installed Python version ≥ 3.10 – as proved to be an issue for
some workshop participants – is not necessary for the main use case of HERMES workflows,
where hermes is run remotely in a continuous integration environment and technical require-
ments are solved by defining a CI workflow as per the HERMES documentation. Overall, we
found that a hands-on workshop as described above was useful for eliciting user feedback, as
well as advocacy for automated software publication with HERMES.

5.2 Case study 2: publish hermes on Zenodo using HERMES

To further explore potential answers to our questions Q1 and Q3, we dogfooded hermes in a
HERMES workflow to publish the package on Zenodo with metadata harvested from different
sources.
20 See https://archive.softwareheritage.org/swh:1:rev:dc0f62585d7696ed1ec8380887811b3c661ec6c3.

12 / 18

https://archive.softwareheritage.org/swh:1:rev:dc0f62585d7696ed1ec8380887811b3c661ec6c3

ECEASST

To achieve this, we followed our own tutorial to publish hermes version 0.8.1b1 on Zen-
odo21, an instance of the InvenioRDM repository software [INV] that is supported by HERMES
as a publication target. As collaborative development of hermes is using GitHub, we imple-
mented the HERMES workflow using GitHub Actions.

The respective HERMES workflow made use of the optional curation phase (see Subsec-
tion 2.2), in which the processed metadata was made available before publication in a pull re-
quest22 against the source code repository from which the software was being published. Once
the pull request was accepted, the publication process continued as expected, successfully pub-
lishing hermes via HERMES [MDK+24d]. This successful dogfooding experiment provides
positive preliminary evidence towards answering Q1, while in the process also providing prelim-
inary evidence towards Q3 as described in the following.

The applied GitHub Action template provided in our documentation automates publication
using a prescribed process. If you follow the template closely, the publication process works
out-of-the-box. However, any specific requirements on the publication workflow require that the
template is adapted, which in turn requires an understanding of how the workflow configuration
works.

An example of this is a change of publication trigger: In our experiment, the publication of a
new version should be triggered by creating a new Git tag for the version to be published, and
pushing that tag to the GitHub repository. However, the template at experiment time included
the example of a trigger event upon push to a specific branch.

We solved this by adjusting the workflow configuration to use a different Git command to
create the Git branch which presents the processed software metadata for curation23. While this
resulted in a successful publication on Zenodo, the post-processing phase was not completed
successfully. The cause for this problem lies in GitHub internals: When being triggered by a Git
tag, it is not easily possible do determine the base branch from within a GitHub Action. There
are solutions available but they can not be easily integrated into the template in its current form.
Therefore, in answer to Q3, a more complex templating system may be needed to better support
curation-based HERMES workflows.

Another pointer to the need for improved error logging (see also Subsection 5.1) is insuffi-
cient feedback when supplying a wrong authentication token for the target publication platform.
During the experiment, we failed to change the token in the workflow configuration when we
switched from Zenodo Sandbox to Zenodo proper as the target publication platform.

We partially conclude that while the results of this dogfooding experiment yield positive an-
swers for Q1, its more complex application case contributes to an answer for Q3. Specifically, it
provides further evidence for the need for better error logging and feedback (see Issue 1 above),
and points to issues when configuring HERMES workflows that include the optional curation
phase. While this may not be the default use case, the existing issues need to be solved to pro-
vide full support in hermes. An alternative process and tooling for software metadata curation
is currently investigated in the project Software CaRD, which is conducted with participation
from the HERMES team.

21 https://zenodo.org
22 https://github.com/softwarepub/hermes/pull/267
23 https://github.com/softwarepub/hermes/commit/d42aa8f41e507718e9b23d11825911aa4096c9aa

13 / 18

https://zenodo.org
https://github.com/softwarepub/hermes/pull/267
https://github.com/softwarepub/hermes/commit/d42aa8f41e507718e9b23d11825911aa4096c9aa

Extending and Applying Automated HERMES Software Publication Workflows

5.3 Case study 3: developing a harvester for pyproject.toml

To explore potential answers to Q2, we conducted another informal case study involving the
development of a new HERMES plugin by a less experienced Python developer.

In July 2024, a student intern (author Fritzsche) joined the Institute of Software Technology
of the German Aerospace Center for three weeks. With his consent, he was tasked to develop a
hermes plugin that harvested metadata from Python pyproject.toml manifest files24.

The intern was 16 years old and attended 11th grade in a German secondary school when
he started his internship. According to himself, he had basic experience in programming with
Python, but “felt more comfortable” programming in C#. He also could not prove any detailed
knowledge of relevant Python specific standards, such as entry points or pyproject.toml
files, and had no prior knowledge about the HERMES project, software metadata, the FAIR prin-
ciples, or the CodeMeta standard. Our aim in conducting the informal case study was to gather
evidence towards answering Q2, and evaluating the level of proficiency required to develop a
harvesting plugin for hermes. We assume that proficiency in Python, as well as detailed knowl-
edge about software metadata and software publication processes, cannot be expected across the
complete RSE population, which made this study especially interesting to evaluate the usability
of the hermes plugin mechanism. The intern is not an RSE and has never published software
or written a hermes plugin before. He was given a general introduction to HERMES during
onboarding to this task – comparable to the introductory talk during the deRSE24 workshop
(see Subsection 5.1) – and supervised by a hermes core developer This developer did not ac-
tively intervene with the intern’s implementation work, but was available to answer any questions
by the intern.

To facilitate development, a fork of the hermes Git plugin25 was created and used as base-
line, along with the tutorial that describes the hermes Git plugin26. The intern researched any
missing information himself on the internet. In the process, the intern rarely needed to query an
expert (i.e., his supervisor). Within two weeks of development time, the intern finished a work-
ing plugin that could be used with the hermes 0.8.027 release [MDK+24a]. This development
time included a longer period for setting up and configuring build automation for publishing the
new plugin to PyPI. To demonstrate that the metadata extracted from the pyproject.toml
was complete, we adapted a HERMES workflow to publish the new plugin to Zenodo [FM24].

After the intern handed in the initial version of the plugin, we solved minor technical issues,
such as backporting the plugin to run on Python 3.10, and harvesting missing license metadata.
Such changes would usually be requested by maintainers of a software project during a request
to merge new code into an existing codebase. In this case, we refrained from implementing a
more complex request-based merge workflow due the the limited availability of the intern. We
take the small number of necessary changes to the intern’s initial implementation to suggest an
overall good maintainability of the plugin. Overall, we take the intern’s success to produce the
plugin within a two week timeframe as a pointer towards a positive potential answer to Q2.

24 See PEP 621 (https://peps.python.org/pep-0621/).
25 https://github.com/softwarepub/hermes-plugin-git
26 https://docs.software-metadata.pub/en/latest/tutorials/writing-a-plugin-for-hermes.html
27 https://pypi.org/project/hermes/0.8.0/

14 / 18

https://github.com/softwarepub/hermes-plugin-git
https://docs.software-metadata.pub/en/latest/tutorials/writing-a-plugin-for-hermes.html
https://pypi.org/project/hermes/0.8.0/
https://peps.python.org/pep-0621/
https://github.com/softwarepub/hermes-plugin-git
https://docs.software-metadata.pub/en/latest/tutorials/writing-a-plugin-for-hermes.html
https://pypi.org/project/hermes/0.8.0/

ECEASST

In terms of preliminary answers to our question Q3, we identified some issues during the
experiment. First of all, the existing Git plugin is not a good starting point for implementing
new harvesters. This is due to the fact that it includes internal processing of harvested data, such
as matching different contributors, and differentiation between authors and contributors. This
is unnecessary code that artificially bloats a plugin meant to be used as a template for newly
developed plugins.

Additionally, we found opportunities for improvement of the hermes data model, which is
both complex by nature and unsophisticated by design. The expected data for internal process-
ing for hermes is a mapping with CodeMeta-compliant linked datasets. While this is already
explicitly used in some of hermes’ API, there is no library yet that allows the performance
of common tasks on the dataset, such as matching two typed dictionaries, or merging two typed
datasets. This makes new plugin implementations more cumbersome and verbose than necessary.

6 Conclusion and outlook

We presented HERMES, an implementation of the HERMES concept for automated software
publication with rich metadata [DBJ+22], based on the hermes Python package [MDK+24b].
We also presented an extension mechanism to customize HERMES workflows for particular and
highly customized use cases, based on hermes plugins. Such use cases include the harvesting
of additional metadata sources, or publishing to different target publication repositories.

We furthermore reported three informal case studies that we conducted to provide preliminary
answers to our questions Q1, Q2 and Q3. While being informal, the presented studies are valu-
able in that they provide initial evidence from examining typical uses of HERMES workflows
and the hermes package by relevant stakeholders: RSEs and developers of research software
as users of HERMES workflows, and as developers of hermes plugins.

Two of the case studies (study 1 in Subsection 5.1 and study 2 in Subsection 5.2) demonstrate
that the HERMES concept for automating software publication is feasible and fundamentally
applicable with the current development status of the hermes package (Q1). Study 3 presented
in Subsection 5.3 demonstrates that it is fundamentally possible to extend hermes with new
plugins. In this case, the developer that we studied is not in fact part of either of the user target
groups of research software engineers and researchers who code. Nevertheless, we argue that
the prior experience by the developer likely matches that of researchers with some, if little,
experience in writing code. The study is therefore relevant, in that it provides initial evidence
that extending hermes with plugins that provide new functionality is generally possible with
adequate and realistic resources (Q2). All studies furthermore helped us identify future work to
improve HERMES’ applicability and extensibility by pointing to some underlying problems that
need to be solved in future work, e.g., identifying usage patterns for workflows and deducting
sensible defaults, and determining configuration requirements for workflows (Q3).

Our preliminary studies exhibit clear limitations. As case studies, they suffer from inherent
shortcomings with regard to their sample size, reproducibility, generalization, internal validity,
etc. Additionally, the reported cases were not selected in a fully controlled fashion. While we
selected participants for study 1 from the population of participants in the workshop, excluding
those with prior (practical) knowledge of HERMES, we did not actively control for this or other

15 / 18

Extending and Applying Automated HERMES Software Publication Workflows

variables. Case study 2 is also limited with regard to potential researcher bias, as it was conducted
with participants – the HERMES developers and project team – who have extensive and detailed
insights into the project, including the concept and implementation of HERMES workflows.
Case study 3 is potentially limited by the role of the studied developer (secondary school student),
which does not reflect the primary target group for HERMES. As argued above, we believe that
regardless of this fact, this limitation is less severe as to our knowledge, there are no factors that
qualify high school students more than academic researchers with regard to research software
development.

Future work should build on the preliminary evidence presented here to apply more formal re-
search methods to evaluate the HERMES workflow concept and the relevant technical artifacts.
More precisely, we believe that a design science methodology for software engineering, e.g., as
put forward by Wieringa [Wie14], should be applied. In this context, the HERMES workflows
would represent conceptual and methodological, and the hermes package and its documenta-
tion technical, artifacts, whose development could be treated as an improvement problem.

As a first step in this direction, HERMES’ context should be methodically re-evaluated in
terms of the stakeholders to consider. While our informal user studies cover important concep-
tual and technical questions, they focus on only two of at least three stakeholder groups: RSEs
and developers of research software, and developers of hermes plugins. A third stakeholder
group should be taken into account going forward: research software infrastructure providers.
Given the heterogeneous landscape of infrastructure components in use at research organiza-
tions – for example, different source code repository platforms, different publication repository
platforms, different organizational prerequisites, and different methods to create and maintain
knowledge of software publication – future research projects on software publication should
work with infrastructure providers such as libraries and computing centers; More precisely, the
feasibility, adoptability and usability of HERMES workflows should be investigated in the con-
text of different infrastructure ecosystems and across different research disciplines.

HERMES is still under active development by the original developers. Future technical work
within the HERMES project includes the development of additional plugins to support harvesting
metadata sources, deposition and post-processing targets, as well as API design and documenta-
tion work to make the project more accessible to the wider community.

Acknowledgements: The HERMES project (ZT-I-PF-3-006) was funded by the Initiative and
Networking Fund of the Helmholtz Association28 in the framework of the Helmholtz Metadata
Collaboration’s29 2020 project call30. The authors thank their collaborators at the Helmholtz-
Zentrum Dresden-Rossendorf (Dr. Oliver Knodel, Guido Juckeland, Tobias Huste) and Forschungszen-
trum Jülich (Nitai Heeb). The authors also thank three anonymous reviewers for the time and
effort they afforded. Their constructive comments contributed greatly to improving this paper.

28 https://www.helmholtz.de/en/about-us/structure-and-governance/initiating-and-networking
29 https://helmholtz-metadaten.de/de
30 https://helmholtz-metadaten.de/en/inf-projects

16 / 18

https://www.helmholtz.de/en/about-us/structure-and-governance/initiating-and-networking
https://helmholtz-metadaten.de/de
https://helmholtz-metadaten.de/de
https://helmholtz-metadaten.de/en/inf-projects
https://www.helmholtz.de/en/about-us/structure-and-governance/initiating-and-networking
https://helmholtz-metadaten.de/de
https://helmholtz-metadaten.de/en/inf-projects

ECEASST

Bibliography

[CJR23] S. Colvin, E. Jolibois, H. Ramezani. pydantic-settings (Version 2.1.0).
PyPI, Nov. 2023.
https://pypi.org/project/pydantic-settings/2.1.0/

[CKB+22] N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. E.
Psomopoulos, J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Hon-
eyman, A. Struck, A. Lee, A. Loewe, B. van Werkhoven, C. Jones, D. Gar-
ijo, E. Plomp, F. Genova, H. Shanahan, J. Leng, M. Hellström, M. Sandström,
M. Sinha, M. Kuzak, P. Herterich, Q. Zhang, S. Islam, S.-A. Sansone, T. Pol-
lard, U. D. Atmojo, A. Williams, A. Czerniak, A. Niehues, A. C. Fouilloux,
B. Desinghu, C. Goble, C. Richard, C. Gray, C. Erdmann, D. Nüst, D. Tartarini,
E. Ranguelova, H. Anzt, I. Todorov, J. McNally, J. Moldon, J. Burnett, J. Garrido-
Sánchez, K. Belhajjame, L. Sesink, L. Hwang, M. R. Tovani-Palone, M. D. Wilkin-
son, M. Servillat, M. Liffers, M. Fox, N. Miljković, N. Lynch, P. Martinez La-
vanchy, S. Gesing, S. Stevens, S. Martinez Cuesta, S. Peroni, S. Soiland-Reyes,
T. Bakker, T. Rabemanantsoa, V. Sochat, Y. Yehudi, R. F. WG. FAIR Principles
for Research Software (FAIR4RS Principles) (1.0). Research Data Alliance, May
2022.
doi:10.15497/RDA00068

[DBJ+22] S. Druskat, O. Bertuch, G. Juckeland, O. Knodel, T. Schlauch. Software publi-
cations with rich metadata: state of the art, automated workflows and HERMES
concept. ArXiv abs/2201.09015, 2022.
doi:10.48550/2201.09015

[DSC+21] S. Druskat, J. H. Spaaks, N. Chue Hong, R. Haines, J. Baker, S. Bliven, E. Wil-
lighagen, Pérez-Suárez, David, O. Konovalov. Citation File Format. Aug. 2021.
doi:10.5281/zenodo.1003149

[FM24] M. Fritzsche, M. Meinel. hermes-plugin-python (Version 0.2.0). Aug. 2024.
doi:10.5281/zenodo.13168126

[JBC+23] M. B. Jones, C. Boettiger, A. Cabunoc Mayes, A. Smith, M. Gruenpeter,
V. Lorentz, T. Morrell, D. Garijo, P. Slaughter, K. Niemeyer, Y. Gil, M. Fenner,
K. Nowak, M. Hahnel, L. Coy, A. Allen, M. Crosas, A. Sands, N. Chue Hong,
P. Cruse, D. S. Katz, C. Goble, B. Mecum, A. Gonzalez-Beltran, N. Ross.
CodeMeta: An Exchange Schema for Software Metadata (Version 3.0). 2023.
https://w3id.org/codemeta/v3.0

[JHK21] C. Jay, R. Haines, D. S. Katz. Software Must Be Recognised as an Important Out-
put of Scholarly Research. International Journal of Digital Curation 16(1):6, Apr.
2021.
doi:10.2218/ijdc.v16i1.745

17 / 18

https://pypi.org/project/pydantic-settings/2.1.0/
http://dx.doi.org/10.15497/RDA00068
http://dx.doi.org/10.48550/2201.09015
http://dx.doi.org/10.5281/zenodo.1003149
http://dx.doi.org/10.5281/zenodo.13168126
https://w3id.org/codemeta/v3.0
http://dx.doi.org/10.2218/ijdc.v16i1.745

Extending and Applying Automated HERMES Software Publication Workflows

[MDK+24a] M. Meinel, S. Druskat, J. Kelling, O. Bertuch, O. Knodel, D. Pape. hermes (Ver-
sion v0.8.0). Mar. 2024.
https://archive.softwareheritage.org/swh:1:rev:b2033c915fa839e6043133e05670
6dce79f46d27;origin=https://github.com/softwarepub/hermes;visit=swh:1:snp:
445289f60b81647ec811f300ccbe74026e8c8517

[MDK+24b] M. Meinel, S. Druskat, J. Kelling, O. Bertuch, O. Knodel, D. Pape, S. Kernchen.
hermes. Aug. 2024.
doi:10.5281/zenodo.13221383
https://hermes.software-metadata.pub/

[MDK+24c] M. Meinel, S. Druskat, J. Kelling, O. Bertuch, O. Knodel, D. Pape, S. Kernchen.
hermes (Version v0.8.1). Aug. 2024.
doi:10.5281/zenodo.13311079

[MDK+24d] M. Meinel, S. Druskat, J. Kelling, O. Bertuch, O. Knodel, D. Pape, S. Kernchen.
hermes (Version v0.8.1b1). Aug. 2024.
doi:10.5281/zenodo.13221384

[PPA] Python Packaging Authority. Entry points specification.
https://packaging.python.org/en/latest/specifications/entry-points/

[RLP+21] A. Rao, A. Lawrence, A. Pace, D. Rodriguez, E. J. G. Gabancho, G. Lastecoueres,
I. Masár, J. Delgado, J. Kuncar, J. Gonçalves, L. H. Nielsen, L. Rossi, N. Tarocco,
N. Harraudeau, R. Ducceschi, S. Hiltunen, S. Kaplun, T. Simko, X. Meng. Invenio
Framework. PyPI, May 2021.
https://pypi.org/project/invenio/

[SKNF16] A. M. Smith, D. S. Katz, K. E. Niemeyer, FORCE11 Software Citation Working
Group. Software Citation Principles. PeerJ Computer Science 2(e86), 2016.
doi:10.7717/peerj-cs.86

[INV] The InvenioRDM team. InvenioRDM. CERN & contributors.
https://inveniosoftware.org/products/rdm/

[Wie14] R. J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, Berlin, 2014.

18 / 18

https://archive.softwareheritage.org/swh:1:rev:b2033c915fa839e6043133e056706dce79f46d27;origin=https://github.com/softwarepub/hermes;visit=swh:1:snp:445289f60b81647ec811f300ccbe74026e8c8517
https://archive.softwareheritage.org/swh:1:rev:b2033c915fa839e6043133e056706dce79f46d27;origin=https://github.com/softwarepub/hermes;visit=swh:1:snp:445289f60b81647ec811f300ccbe74026e8c8517
https://archive.softwareheritage.org/swh:1:rev:b2033c915fa839e6043133e056706dce79f46d27;origin=https://github.com/softwarepub/hermes;visit=swh:1:snp:445289f60b81647ec811f300ccbe74026e8c8517
http://dx.doi.org/10.5281/zenodo.13221383
https://hermes.software-metadata.pub/
http://dx.doi.org/10.5281/zenodo.13311079
http://dx.doi.org/10.5281/zenodo.13221384
https://packaging.python.org/en/latest/specifications/entry-points/
https://pypi.org/project/invenio/
http://dx.doi.org/10.7717/peerj-cs.86
https://inveniosoftware.org/products/rdm/

	Introduction
	HERMES
	HERMES project
	HERMES workflow

	Extending HERMES
	Plugin architecture
	How to write a plugin

	Using HERMES
	Using HERMES via command line
	Using HERMES via continuous integration in GitHub

	Preliminary evaluation
	Case study 1: live coding workshop at deRSE24
	Case study 2: publish hermes on Zenodo using HERMES
	Case study 3: developing a harvester for pyproject.toml

	Conclusion and outlook

