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Three-dimensional laminar boundary layers over swept wings are susceptible to crossflow instabilities, manifesting

as stationary and traveling crossflow vortices. The boundary layer distorted by these vortices is prone to the growth

of secondary instabilities. Discrepancies between direct numerical simulation (DNS) and stability methodologies on

the development of secondary perturbations of stationary crossflow vortices over swept wings have been reported

in the literature. To shed light on the origin of these inconsistencies, a comparison of DNS and linear stability theory

is provided here. Secondary disturbances of finite-amplitude stationary crossflow vortices are analyzed for two

frequencies: f � 900 Hz (Type III secondary instability) and f � 2200 Hz (Type I secondary instability). Results

from linear stability theory (LST-2D) and linear parabolized stability equations (PSE-3D) formulated in a suitable

nonorthogonal coordinate system correlate well with DNS data in terms of perturbation shape and location relative to

the stationary crossflow vortices. Employing a nonorthogonal coordinate system is crucial for PSE-3D to fulfill slow

variation along the streamwise direction and spanwise periodicity, whereas LST-2D, assuming parallel flow, can also

use periodic boundary conditions in a vortex-aligned orthogonal coordinate system. However, the LST-2D results

underestimate the integrated growth rate, whereas the PSE-3D computations closely match the DNS, highlighting the

importance of including streamwise gradients and upstream history in the instability computations.

Nomenclature

cx⊥ = chord length in the x⊥ direction
E = total kinetic energy
f = frequency of the unsteady perturbation
J = number of subdomains Ωi

M = Mach number
N = number of points in the plane yz
n = n-factor, integrated growth rate
P� = nondimensional power spectral density of the

chordwise velocity fluctuations
p∞ = freestream pressure
q = degree of the piecewise polynomial interpolant in

the FD-q discretization scheme
q = total flow vector in the xyz coordinate system
q = base flow vector in the xyz coordinate system
~q = unsteady perturbation vector in the xyz coordinate

system
q̂ = vector of amplitude functions
Recx⊥ = Reynolds number based on cx⊥
Tu = freestream turbulence intensity
t = time
u∞ = freestream velocity

u; v; w = contravariant velocity components in the xyz
coordinate system

uc; vc; wc = velocity components in the x⊥yzk coordinate system
ug; vg;wg = velocity components in the xgygzk coordinate

system
x; y; z = nonorthogonal coordinate system
x 0; y; z 0 = orthogonal body-fitted coordinate system aligned

with the crossflow vortex axis
xg; yg; zk = cartesian coordinate system
x⊥; y; zk = curvilinear body-fitted coordinate system
α = wavenumber of the disturbance in the x direction
β0 = wavenumber of the disturbance in the z direction
δ0 = displacement thickness at the inlet boundary of the

DNS domain
ε = small number, ε ≪ 1
θ = angle between x and x⊥
θmin = θ → ∂u∕∂xj�§;min

λ0 = wavelength in the z direction
λ2 = lambda-2 criterion
μ = dynamic viscosity
ρ = density
σ = spatial growth rate
ω = circular frequency

Subscripts and superscripts

�⋅�i = imaginary part
�⋅�r = real part
�⋅�† = complex conjugate
�⋅�j� = nondimensional quantity
�⋅�j§ = root mean square value

I. Introduction

I N RECENT years, the rising cost of fossil fuels and heightened
environmental concerns have renewed interest in laminar wing

technology. The aim is to reduce the skin-friction drag, which
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accounts for approximately one-half of the total drag for civil
airliners, by delaying laminar to turbulent transition [1]. The tran-
sition from laminar to turbulent flow in three-dimensional (3-D)
boundary layers over swept wings is a complex phenomenon that
significantly impacts the aerodynamic performance of aircraft. The
need to control the laminar–turbulent transition process in swept-
wing flows motivates the research on 3-D boundary layers.
Subsonic two-dimensional boundary-layer transition is often

characterized by Tollmien–Schlichting (TS) waves. On the other
hand, 3-D boundary layers are characterized by a different transition
process. A swept-wing boundary layer is susceptible to different
kinds of instabilities such as attachment-line instability [2,3], TS
waves [4], Görtler vortices [5], and crossflow instabilities (CFI)
[6,7]. The latter remains one of the most critical instabilities because
the lamina–turbulent transition process in swept-wing boundary
layers is often initiated by either stationary or traveling CFI [8].
The favorable pressure gradient in the leading-edge region of swept
wings in combination with a sweep angle results in a flowfield that
is characterized by a crossflow velocity component in the direction
orthogonal to the inviscid streamline [9]. This velocity component
is zero, both at the wall and at the edge of the boundary layer. It
has at least one inflection point and is susceptible to the onset of an
inviscid instability, commonly known as crossflow instability.
Experiments by Bippes at DLR [10] and numerical simulations

by Schrader [11] have shown that stationary crossflow vortices, often
excited by surface roughness, are the predominant crossflow instabil-
ities in low-turbulence environments, whereas high-turbulence envi-
ronments favor the development of traveling crossflow instabilities.
This work focuses on boundary layers dominated by the development
of stationary crossflow vortices, which is the scenario typically en-
countered in free-flight conditions [9]. These vortices redistribute
momentum across the boundary layer, leading to a distortion of the
otherwise spanwise invariant boundary layer. In particular, low-
momentum fluid close to the wall is brought upward, whereas at other
spanwise locations high-momentum fluid is brought toward the wall.
This distortion gives rise to pronounced shear layers, rendering the
boundary layer susceptible to the growth of secondary instabilities that
finally trigger the laminar breakdown [12–14].
The literature identifies several families of secondary instabilities

classified based on their location relative to the crossflow vortex. A
sketch of the typical distorted boundary layer represented by chord-
wise velocity component isolines is provided in Fig. 1. Additionally,
the typical onset locations of the different types of secondary
instabilities are portrayed. The Type I and Type II instabilities, as
designated by Koch et al. [15], were originally identified as z-mode
and y-mode by Malik et al. [16], who discovered the association
of the different types of secondary instabilities with different shear
directions. This correlation was found by Malik et al. by computing
and comparing all six nonzero shear production terms in the energy
budget equation [16]. Furthermore, they were found by Koch et al.
employing a two-dimensional eigenvalue approach to identify the
secondary disturbances of stationary crossflow vortices. The first
family of secondary instabilities, that is, Type I, was associated with
the spanwise shear and is located on the shoulder of the stationary
crossflow vortex. On the other hand, Type II is associated with the
surface-normal gradient and resides on top of the stationary cross-
flow vortex. Högberg and Henningson [17] and Koch et al. [15]
identified another instability mechanism, defined as Type III, which
prevails at lower frequencies than Type I and Type II [15,18]. This
low-frequency mode is dominant in a region close to the wall
and it is related to the primary traveling crossflow instability
modulated by the action of the stationary crossflow vortices. The
high-frequency modes, that is, Type I and Type II, appear farther
downstream than the low-frequency Type III mode. However, they
exhibit a rapid and significant amplification over a relatively short
streamwise extent, often exceeding the Type III in amplitude. In
low-turbulence environments, these high-frequency modes typi-
cally trigger the transition from laminar to turbulent flow [15].
The evolution of secondary perturbations of crossflow vortices

has been studied with different numerical approaches, revealing
significant discrepancies, particularly when linear stability methods

were compared to direct numerical simulation (DNS). Högberg
and Henningson [17] conducted both linear eigenvalue analysis
and spatial DNS to study the growth of disturbances in a Falkner–
Skan–Cooke boundary layer. They found that the growth rates of
small-amplitude disturbances obtained from the DNS calculations
showed differences compared to the one obtained with the linear
eigenvalue computations, indicating the presence of nonparallel
effects. Koch et al. [15] computed the nonlinear equilibrium solution
for the flow in the DLR swept-plate transition experiment [10]. This
solution is then used as a base state for a Floquet analysis, formu-
lated in an orthogonal coordinate system aligned with the vortex
axis, of the secondary instabilities of the saturated vortices. Their
numerical computations resembled the experimental results avail-
able at that time, both in terms of frequency range and eigenfunction
shape. Bonfigli and Kloker [19] carried out a detailed comparison
between DNS and secondary linear stability theory (SLST) for the
3-D crossflow-dominated base flow of the DLR-Göttingen experi-
ment [10]. However, significant deviations in the amplification rates
were found, with the SLST results being strongly dependent on
the representation of the primary state, that is, the base flow. High-
lighting the lack of a unique approach to define the base flow for
SLST, they analyzed the effects of three different extraction pro-
cedures, showing that in all cases the SLST underestimated the
amplification rate obtained from the DNS. Li and Choudhari [20]
used a planar (two-dimensional) eigenvalue analysis methodology,
that is, LST-2D, to study the spatial instabilities in both subsonic
and supersonic shear flows with two inhomogeneous directions.
Their methodology employed a nonorthogonal coordinate system
and addressed the base flow extraction ambiguity by using planes
parallel to the leading edge, which adhered to spanwise periodicity,
and aligning the out-of-plane direction with the least variation of the
distorted base flow. They analyzed the modification of the traveling
crossflow modes and the destabilization of high-frequency secon-
dary instabilities for finite-amplitude stationary crossflow vortices
of a specified spanwise wavelength and varying initial amplitudes.
They found that the onset of the secondary instability moved up-
stream as the initial amplitude of the stationary crossflow vortex
was increased. Additionally, this resulted in a weak stabilization of
the initially dominant traveling modes, which had been noted by
Fischer and Dallmann [12] already. Fischer and Dallmann used
a simplified approach in which the shape of the finite-amplitude
stationary crossflow vortices was approximated by linear eigenfunc-
tions. Xu et al. [21] employed the Floquet theory to study the
secondary instabilities in an M � 6 swept-wing boundary-layer
flow. They observed Type I and Type II secondary instabilities in
a similar manner as in subsonic swept-wing flows. Moreover, they
identified a new type of secondary instability amplified at the trough
of the stationary crossflow vortex. This perturbation mainly extracts
its energy from the wall-normal shear as the Type II secondary
instability. Furthermore, Groskopf and Kloker [22] studied the influ-
ence of a 3-D skewed roughness element in a high-speed boundary
layer. The oblique element induces a crossflow-vortex-like velocity
distribution compared to the corresponding symmetric roughness
element. The results displayed an overall good agreement between
the DNS and the LST-2D results. Furthermore, they analyzed the
sensitivity of the instability computations to different base flow
representations, as applied by Bonfigli and Kloker [19]. They found
that the base flow representation has a very small influence on the
stability results, most likely due to lack of strong gradients in the
direction orthogonal to the discretization plane, that is, chordwise
direction. Groot et al. [23] employed two-dimensional linear stability
theory (LST-2D), formulated in an orthogonal vortex-aligned coor-
dinate system, to study an experimentally measured base flow, inves-
tigating in detail the role of the Type I and Type II secondary
instabilities. Furthermore, Groot et al. [24] employed an LST-2D
approach, formulated in an orthogonal coordinate system with the
out-of-plane direction pointing in the chordwise direction, to study
the effect of a supercritical forward-facing step on finite-amplitude
stationary crossflow vortices. The base flow utilized for the stability
analysis was measured by a high-resolution, stereographic particle
image velocimetry. Several families of unstable modes, supported
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by the flowfield, were found downstream of the surface irregularity.
Comparing the latter with the measured perturbation data in the form
of spectral proper orthogonal decomposition modes revealed sev-
eral differences. Groot et al. analyzed the same base flow but with a
different formulation of the stability equations in [25]. They employed
the approach proposed by Li and Choudhari [20] to formulate
the stability equations in a nonorthogonal coordinate system, which
resulted in larger growth rates and a significant improvement in the
comparison of the eigenfunctions with the experimental results. Li
et al. [26] and Choudhari et al. [27] employed a linear plane-marching
parabolized stability equation (PSE-3D) to study the evolution of
secondary instabilities over a yawed cone in a hypersonic flow regime.
They reported a good agreement of the stability results in terms of
amplitude function shape and integrated growth rate with the DNS
results. Casacuberta et al. [28] compared the secondary instability
modes computed with LST-2D with those obtained from an unsteady
DNS. The LST-2D equations were derived in a nonorthogonal coor-
dinate system following the approach of Li and Choudhari [20]. They
have reported an overall good agreement in terms of eigenfunctions
and integrated growth rates for a Type I and Type III secondary
instability, even though major discrepancies between the DNS and
stability analysis results arise in the upper portion of the crossflow
vortex when moving downstream along the streamwise direction.
The current study is driven by the uncertainty in predicting

secondary instabilities of stationary crossflow vortices over incom-
pressible swept wings using a linear stability tool, and goes beyond
established approaches by employing not only LST-2D but also the
plane-marching parabolized stability equations, that is, PSE-3D, in a
nonorthogonal coordinate system. The accuracy of the instability
computations is proved by comparing them with DNS results. The
paper is organized as follows: Sec. II presents the flow conditions
and the different coordinate systems, Sec. III.A outlines the numeri-
cal methodology employed in the DNS, and Sec. III.B analyzes the
main characteristics of the base flow with the aim of selecting the
most suitable coordinate system to perform the stability analysis.
Sec. III.B also discusses the setup for the LST-2D and PSE-3D
stability formulations. Sec. IV compares the results of the stability
methods with the DNS data. Finally, Sec. V provides the conclu-
sions and summarizes the findings of this study.

II. Setup and Flow Conditions

The flow configuration is designed to numerically replicate the
experiments performed by Rius–Vidales et al. [29] in the Low
Turbulence Tunnel (LTT) at the Delft University of Technology.
The setup consists of a 45-deg swept-wing model with a chord

length normal to the leading edge of cx⊥ � 0.9 m. The model is
oriented vertically in the test section of the wind tunnel at an angle
of attack AoA � 3 deg. The airfoil profile is a modified NACA
66018, as described by Serpieri et al. [30], which promotes the
growth of CFI under mild angles of attack by maintaining a favor-
able pressure gradient up to x∕cx⊥ ≈ 0.65. The design avoids con-
cave surfaces and features a small leading-edge radius, about 1% of
the chord, to prevent the amplification of Görtler vortices and
attachment-line instabilities, as discussed by Bippes [10]. At refer-
ence experimental conditions, the freestream turbulence intensity,

defined as Tu � �1∕u∞� �u 02 � v 02�∕2, is less than 0.03%, ensur-
ing that stationary crossflow vortices dominate the laminar-turbulent
transition [10,31]. Discrete roughness elements (DRE), intro-
duced near the leading edge, trigger a CFI mode with a spanwise
wavelength of λ0 � 7.5 mm and a corresponding wavenumber of
β0 � 837.758m−1. To closely mimic the near-field flow of the
airfoil, the far-field flow parameters were set as follows in the
DNS [32]: freestream velocity u∞ � 27.542m s−1 (measured just
upstream of the model using a pitot-static tube), freestream
pressure p∞ � 9.941 × 104 Pa, density ρ � 1.2069 kg m−3, and
dynamic viscosity μ � 1.7829 × 10−5 kg m−1s−1. These parame-
ters result in a chord Reynolds number of Recx⊥

� 2.37 × 106.

The boundary-layer displacement thickness at the inlet, δ0 �
5.25 × 10−4 m, is the characteristic quantity used to nondimen-
sionalize the spatial coordinates.

A. Coordinate Systems

Different coordinate systems have been used for computations
and visualization purposes. In the DNS, a Cartesian coordinate
system (xg, yg, zk) is employed, where zk is the spanwise direction
and it is parallel to the leading edge of the wing, xg is perpendicular
to the leading edge, and yg is normal to those two directions, cf.
Fig. 2. The corresponding velocity components are (ug, vg, wg).
Some results are presented in the curvilinear coordinate system (x⊥,
y, zk), portrayed in Fig. 2, with the corresponding velocity compo-
nents (uc, vc, wc). It has the same origin (the origin is shifted for an
improved visualization in the plot) and the same spanwise coordi-
nate zk, with x⊥ being perpendicular to the leading edge and tangent
to the wing surface, whereas y is normal to the surface of the wing.
In the following, the x⊥ direction will be also referred to as chord-
wise. The stability analysis results are computed in a nonorthogonal
coordinate system (x, y, z), which is discussed more in detail in
Sec. III.B.1. The corresponding contravariant velocity components
are (u, v, w).

Type II

Type III

Type I

Fig. 1 Sketch of the distorted boundary layer due to the action of the stationary crossflow vortices. Color-shaded areas denote the locations of various
secondary instabilities of crossflow vortices: Type I in green, Type II in black, and Type III in purple.
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III. Numerical Methods

This section introduces the different numerical methodologies
used in this work. First, a brief overview of the DNS is given.
The numerical simulations, conducted as part of another work [32],
not only provide the steady base flow for the instability analysis, but
also provide the unsteady results that serve as benchmarks for the
secondary instability results from LST-2D and PSE-3D. The second
part of the section introduces these two linear instability analysis
approaches, emphasizing the selection of the optimal coordinate
system to solve the corresponding stability equations.

A. DNS

DNS are performed with the spectral element method (SEM)
code Nek5000 [33]. The SEM decomposes the physical domain
into spectral elements, where the flowfield solution is given by a
sum of Lagrange interpolants defined by an orthogonal basis of
Legendre polynomials within each element.

1. Steady DNS

Due to the high computational cost of 3-D DNS, these com-
putations are conducted on a relatively small domain, requiring
adequate boundary conditions. These conditions are derived in a
two-step process. First, RANS equations are employed to perform
an infinite-swept wing (two-and-a-half dimensional or 2.5-D) com-
putation on a section of the wind tunnel that includes the entire
airfoil shape and the tunnel walls. The flowfield resulting from
this calculation sets the far-field conditions for a subsequent 2.5D
DNS, which provides an accurate spanwise-invariant steady-state
flowfield in an intermediate-sized domain. The data derived from
this step provides the boundary conditions for the 3-D DNS. The
computational domain in the spanwise direction is limited to a
single wavelength λ0, with periodic boundary conditions applied
along this spanwise axis, that is, zk. Figure 2 illustrates the swept
airfoil and the reduced domain adopted for the 3-D DNS highlighted
in purple. The inflow boundary of the 3-D DNS domain is placed
at xg∕cx⊥ ≈ 0.1. The receptivity stage, namely the generation of the
crossflow vortices by the DRE in the experiments, is not considered
in the DNS performed here. Instead, the stationary crossflow vor-
tices are imposed as a boundary condition on the inflow boundary of
the domain, superposed to the spanwise invariant base flow from
the 2.5-D DNS. Their shape and amplitude were determined using
nonlinear PSE [34]. When only steady crossflow vortices are
introduced at the inflow of the 3-D DNS, the simulations do not
exhibit a transition to turbulence due to the minimal numerical
noise. The resulting steady distorted flowfield is shown in Fig. 3.
In the following sections, the latter will be referred to as the base
flow.

2. Unsteady DNS

To emulate the unsteadiness caused by the nonzero freestream
disturbance environment of the LTT wind tunnel in the DNS, un-
steady perturbations are artificially induced inside the boundary

layer just downstream of the inflow boundary by applying a ran-
domly pulsed volume force. This perturbation strategy is similar
to the "trip forcing" method delineated by [35]. It is implemented
in the momentum equation as a force component normal to the wall
and introduces perturbations within a specific range of spanwise
wavenumbers (β � mβ0 with m � 1; 2; : : : ; 16) and 400 discrete
frequencies equally distributed in the interval f � 0 − 10 kHz. The
noise amplitude is calibrated to ensure that the location of the tran-
sition from laminar to turbulent flow in the simulations correlates
closely with the experimental observations. In the postprocessing
phase, the velocity field is decomposed through a Fourier trans-
formation in time, isolating a single mode for comparison with the
results of the instability analysis.

B. Instability Analysis

1. Choice of the Coordinate System

The base flow used in the stability analysis to study the evolution
of the secondary perturbations is shown in Fig. 3. It can be seen that
the boundary layer is strongly distorted due to the action of the
stationary crossflow vortices. As a consequence, it displays a wavy
pattern in the chordwise and spanwise directions. The most suitable
coordinate system for solving the stability equations is chosen based
on the principal characteristics of the base flow. This choice is
driven by the need to comply with the LST-2D and PSE-3D
assumptions (see Sec. III.B.2), which require zero or slow variation
along the x direction, respectively. An overview of different poten-
tial coordinate systems is shown in Fig. 4. In addition, the trace of
the stationary crossflow vortex projected onto the surface x⊥zk is
indicated in the plot by the gray-shaded area. The solid orange line
denotes the axis of the crossflow vortex and the blue dashed line
indicates the inviscid streamline. A primary consideration in select-
ing the appropriate coordinate system is the periodicity of the base
flow in the direction parallel to the leading edge, that is, zk. An
orthogonal system (x⊥, y, zk), as shown in Fig. 4a, could be
contemplated to align with this periodic characteristic. However,
despite fulfilling the periodicity of the base flow along the zk
direction, the gradient of the base flow quantities in the orthogonal
out-of-plane direction, that is, x⊥, may be large due to the action
of the finite-amplitude stationary crossflow vortex, rendering the
choice of this coordinate system incompatible with the assumptions
of both LST-2D and PSE-3D. Consequently, this choice is inap-
propriate and must be discarded. To satisfy the assumption of the
stability theory, a direction along which the distorted base flow
quantities vary the least [28] has to be employed. An orthogonal
coordinate system, that is, (x 0; y; z 0) as shown in Fig. 4b, with x 0
direction aligned along this direction of minimal gradient and z 0
direction orthogonal to the x 0 direction, would initially seem appro-
priate. However, this coordinate system would not allow one to
apply the periodic boundary condition in the z 0 direction in the
context of the PSE-3D. Thus, to simultaneously satisfy the criteria
of spanwise periodicity and slow variation along the x direction, a
nonorthogonal coordinate system as shown in Fig. 4c is chosen.

Fig. 3 Pseudocolor of the normalized instantaneous x⊥-velocity com-

ponent (uc∕u∞) extracted from the steady DNS at different yzk and x⊥y
planes.

Fig. 2 Overview of the geometry alongside the Cartesian and the
orthogonal curvilinear coordinate systems. The computational domain
employed for the 3-D DNS is highlighted in purple.
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In this coordinate system, the x direction is aligned with the direc-
tion of least variation of the base flow derivatives at each x position
and will be referred to as streamwise, while the z direction is parallel
to the leading edge and its origin is shifted with respect to the zk
coordinate, being zero along the x axis, while zk equals zero along
the x⊥ axis [see Appendix, Eq. (12)]. The component of vectors in
this coordinate system can be represented by two different formu-
lations named covariant and contravariant. As underlined in the
Appendix, the latter is adopted in the current implementation and
the (u, v, w) are the contravariant components of the velocity vector
in the nonorthogonal coordinate system. The angle θ represents the
deviation of the x coordinate from the chordwise direction and is

determined in a similar manner as in [28]. The out-of-plane deriv-
atives ∂u∕∂x, ∂v∕∂x, and ∂w∕∂x are evaluated, and the root mean
square (rms) of these derivatives is computed at all x positions over
each yz plane. The rms of the derivatives is denoted by ∂�⋅�∕∂�⋅�j§
and is evaluated as �⋅�§ � 1∕N N

j�1 j�⋅�jj2, where N is the

number of points in the plane yz. Then, the direction along which
the derivatives are computed, and thus the angle θ, is varied until the
minimum rms value of these derivatives is obtained for each com-
ponent separately. Figure 5 elucidates this process: on the left a
sketch of the base flow at two subsequent x⊥ positions is shown,
indicating both the x⊥ and x directions. On the right, the normalized

CF vortex axis CF vortex axis

CF vortex axis

Fig. 4 Sketch of different possible coordinate system choices for the formulation of the stability problem.

35 36 37 38 39 40 41 42 43
10

-4

10
-3

10
-2

b)

a)
Fig. 5 a) Sketch of the distorted base flow and the out-of-plane directions x and x⊥, and b) variation of the normalized rms of the out-of-plane velocity
gradients as function of the angle θ at the station x⊥∕δ0 � 650.
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out-of-plane velocity gradients are shown as a function of the angle
θ for the station x⊥∕δ0 � 650. The normalization of the derivatives
is conducted as follows:

∂u
∂x

�
� ∂u

∂x
δ0
u∞

;
∂v
∂x

�
� ∂v

∂x
δ0
u∞

;
∂w
∂x

�
� ∂w

∂x
δ0
u∞

(1)

It is worth noting that even a marginal deviation in the angle θ
from its optimal value, for which the rms of the derivatives is
minimized, causes a significant change in the out-of-plane gradient
of both the streamwise and spanwise velocity components. In
particular, Fig. 5 shows that a change of about 4-deg can increase
the rms of the derivatives by nearly two orders of magnitude, which,
as Sec. IV will elucidate, significantly affects the instability results.
Figure 6 shows the angle for which the three rms of the deriva-

tives have a minimum as a function of the chordwise coordinate x⊥.
It is interesting to observe that those curves almost coincide, deviat-
ing only by a few degrees from the angle of the external inviscid
streamline. Furthermore, it can be noted that the angles for which
the three rms of the derivatives have a minimum closely align
with the angle of the crossflow vortex axis. This confirms that the
direction of least variation is very close to the one of the crossflow
vortex axis. The latter was evaluated by adopting the vortex tracking
procedure employed in [36] and is described more in detail in [37].
In addition, Fig. 7 shows the rms of the velocity derivatives as
a function of the chordwise direction. Figure 7a illustrates these
gradients in the orthogonal (x⊥, y, zk) coordinate system, whereas

Fig. 7b depicts them in the nonorthogonal (x, y, z) system. It can be
noted that the out-of-plane derivatives in the orthogonal system are
of the same order of magnitude as the spanwise derivatives and only
one order of magnitude smaller than the wall-normal shear. When
analyzing the data in the nonorthogonal coordinate system, where
the out-of-plane axis is aligned along the direction θ that minimizes
the ∂u∕∂xj�§ , a substantial reduction is observed in the out-of-plane
gradients of both the spanwise and streamwise velocity components.
This direction will be referred to as θmin. These gradients decrease
by about two orders of magnitude, that is, from 10−2 to 10−4. It can
be noted that, as expected, the wall-normal velocity derivatives do
not change when moving from the orthogonal to the nonorthogonal
coordinate system.
Moreover, Fig. 8 illustrates the out-of-plane derivative of uc and u

in both coordinate systems at the station x⊥∕δ0 � 650. It can be
noted that the maximum value of the x derivative decreases by two
orders of magnitude, and moreover, the spatial distribution of the
derivatives exhibits a distinctly different shape when represented in
a coordinate system closely aligned with the crossflow vortex axis.
The resulting domain, oriented to coincide with the direction θmin

and used for the stability analysis, is displayed in Fig. 9 with a
light green color. Also shown is a close-up view of the domain
that displays the stationary crossflow vortices visualized by an
isosurface of the λ2 criterion [38]. The vortex turns out to be
completely contained within the domain employed for the stabil-
ity analysis, confirming that the crossflow vortex axis is closely
aligned in the direction of the least gradient of the distorted base
flow.

2. LST-2D and PSE-3D Methodologies

In this work, the incompressible LST-2D and PSE-3D method-
ologies formulated in a nonorthogonal coordinate system are
employed to address the instability characteristics of flows that
are inhomogeneous in at least two spatial directions. Both are linear
theories that superpose an unsteady perturbation of small amplitude
onto an undisturbed steady base flow. Accordingly, the flow quan-
tities q � �u; v;w; p�T are decomposed into a steady part �q �
� �u; �v; �w; �p�T , which is commonly known as the base flow, and into
a fluctuating component with small-amplitude ε, denoted as
~q � � ~u; ~v; ~w; ~p�T :

q�x; y; z; t� � �q�x; y; z� � ε ~q�x; y; z; t�; ε ≪ 1 (2)

where (x, y, z) represent the nonorthogonal coordinate system intro-
duced earlier. The LST-2D relies on the parallel flow assumption.
Therefore, two spatially inhomogeneous directions have to be resolved
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b) Nonorthogonal ( , , ) coordinate system
Fig. 7 Rms of the velocity gradients in a) the chordwise direction, and in b) the direction of least variation for the out-of-plane derivative, i.e., θmin at
the station x⊥∕δ0 � 650.
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Fig. 6 Chordwise development of the angle of the inviscid streamline
(solid black line), the angle of the crossflow vortex axis (dash-dotted
black line), and the ones corresponding to the minimum out-of-plane
rms derivative.
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simultaneously in a plane, whereas spatial homogeneity in the stream-
wise direction is assumed, that is, �q � �q�y; z� holds. The correspond-
ing ansatz for the perturbation term is

~q�x; y; z; t� � q̂�y; z� exp�i�αx − ωt�� � c:c: (3)

where q̂ � �û; v̂; ŵ; p̂�T represents the complex-valued amplitude
function in the plane yz, and c:c: denotes the complex conjugate.
This work utilizes the spatial framework and therefore α is a complex
number and represents the streamwise wavenumber in the non-
orthogonal coordinate system, and ω is real and represents the
circular frequency of the mode. The real part of α represents the
wavenumber of ~q along the streamwise direction x with wave-
length λx � 2π∕αr, whereas the imaginary part is related to the
growth rate, that is, σ:

σ � −αi (4)

where αi < 0 means that the perturbation grows exponentially in
the streamwise direction. The LST-2D equations can be formulated
as a two-dimensional generalized eigenvalue problem, which is
solved with the iterative implicitly restarted Arnoldi algorithm. On
the other hand, the PSE-3D relaxes the parallel flow assumption
and allows for slow variation of the base flow, the amplitude
function q̂, and the wavenumber α along the x direction. Hence,
the following ansatz for the disturbance terms is considered:

~q�x; y; z; t� � q̂�x; y; z� exp i
x
α�x� dx − ωt � c:c: (5)

In this case, the spatial growth rate σ consists of two contri-
butions. The first accounts for the exponential part of the per-
turbation ansatz, whereas the second takes into account the
growth associated with the streamwise variation of the ampli-
tude function:

σ � −αi �
∂
∂x

ln E
p

(6)

where E is the total kinetic energy:

E �
y z

�jûj2 � jv̂j2 � jŵj2� dy dz (7)

Substituting the PSE-3D ansatz into the linearized Navier–Stokes
equation, introducing a scale separation between the weak variation
in the streamwise direction and the strong variation in the wall-
normal direction and neglecting terms of order (O�1∕Re2�), leads to
the nonlocal linear stability equations. Those are expressed in a
compact form as

Aq̂� B
∂q̂
∂y

� C
∂2q̂
∂2y

�D
∂q̂
∂z

�E
∂2q̂
∂2z

� F
∂2q̂
∂y∂z

� G
∂q̂
∂x

� 0 (8)
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Fig. 8 a) Out-of-plane derivative in the chordwise direction x⊥, and b) x direction. Isolines of the x⊥-velocity component of the distorted base flow are in

solid black.
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the stability analysis

Computational domain 

for the 3-D DNS y

Fig. 9 Computational domain for the 3-D DNS in violet and the domain employed for the stability analysis in green with a close-up of the two domains
in which the stationary crossflow vortex is visualized by an isosurface of the λ2 criterion (λ2 � −2 ⋅ 106).

Article in Advance / AMBROSINO ET AL. 7

D
ow

nl
oa

de
d 

by
 D

L
R

 D
eu

ts
ch

es
 Z

en
tr

um
 f

ue
r 

L
uf

t u
nd

 R
au

m
fa

hr
t o

n 
M

ar
ch

 1
1,

 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
46

63
 



where the matrices A, B, C, D, E, F, and G contain the coefficients
of the PSE-3D system of equations. In the PSE ansatz, both the
amplitude function and the wavenumber α depend on the x direc-
tion. Therefore, an additional equation is required to remove this
ambiguity. The following equation, which enforces the requirement
for the PSE approximation that the amplitudes change slowly in the
streamwise direction, is employed here [39]:

y z
û†

∂û
∂x

� v̂†
∂v̂
∂x

� ŵ†
∂ŵ
∂x

� p̂†
∂p̂
∂x

dy dz � 0 (9)

where (·)† indicates the complex conjugate. Starting from Eq. (8),
four different subsets of equations can be derived. Neglecting the
streamwise derivatives of the amplitude function, that is, ∂q̂∕∂x �
0 in Eq. (8), and those of the base flow, leads to the local parallel
LST-2D. In this work, the parallel LST-2D also includes the base
flow wall-normal velocity component. In literature, there is no
consensus on whether it should be included in the equations and
it appears to be dependent on the problem under investigation. For
instance, Di Giovanni and Stemmer [40] analyzed the instabilities
developing in the wake of spanwise periodic roughness elements,
employing an LST-2D approach in which the wall-normal velocity
component is neglected, and they found that this methodology
provides a good enough agreement between the instability compu-
tations and DNS. On the other hand, we found that neglecting the
base flow wall-normal velocity component for analyzing the devel-
opment of secondary instabilities of stationary crossflow vortices did
not result in a satisfactory agreement with DNS, which is why it is
taken into account in the parallel LST-2D computations shown here.
These findings are consistent with the results of Malik and Chang
[41], who found that dropping the wall-normal velocity of the base
flow significantly increased secondary amplification rates. The par-
allel flow assumption also implies that the base flow is periodic in
the direction orthogonal to the crossflow vortex axis (not only in the
direction parallel to the leading edge) and therefore this approach
can be formulated in an orthogonal vortex-aligned coordinate sys-
tem with the x direction along the vortex axis and the z direction
perpendicular to the latter. This kind of coordinate system has been
widely employed in the past to study the evolution of secondary
perturbations of crossflow vortices [15,16,19,23]. The inclusion of
streamwise base flow gradients, instead, yields the local nonparallel
LST-2D set of equations. On the other hand, the nonlocal parallel
PSE-3D neglects only the terms related to the streamwise variation
of the base flow, retaining the upstream history of the amplitude
functions through their streamwise gradient. Finally, when the com-
plete set of equations is considered, the nonlocal nonparallel PSE-
3D problem is solved. The local parallel LST-2D and the nonlocal

nonparallel PSE-3D are the methodologies that are employed the
most in literature. When parallel/nonparallel is not explicitly speci-
fied in the text, these approaches are used here for the instability
computations. The two intermediate steps are introduced to separate
the local/nonlocal and parallel/nonparallel effects and investigate
their contribution separately on the instability computations when
different out-of-plane directions are considered (see Sec. IV.D). The
PSE-3D set of equations constitutes an initial boundary-value prob-
lem that can be solved by a streamwise marching procedure, which
requires the information of the upstream disturbance flow in order to
advance downstream. The nonlocal PSE-3D computation typically
is started with a solution from an LST-2D eigenvalue computation
(see [39,42] for more details on the LST-2D and PSE-3D for cur-
vilinear orthogonal coordinate systems). In Sec. IV, the instability
results are presented in terms of the integrated growth rate (n-factor),
which is defined as follows:

n �
x

x0

σ dx 0 (10)

where σ represents the growth rate in the nonorthogonal coordi-
nate system and x 0 represents a dummy integration variable for
the out-of-plane x direction. To solve the LST-2D and PSE-3D

equations, it is necessary to define appropriate boundary con-
ditions for the disturbance variables. The no-slip condition is
imposed at the wall (y � 0) by setting the velocity perturbations
to zero. In the wall-normal direction, the perturbations are en-
sured to decay by imposing a homogeneous Dirichlet condition
at the upper boundary. This boundary is placed far away from
the wall to avoid any influence on the instability characteristics.
Finally, the periodicity is exploited at the lateral boundaries by
applying the periodic boundary condition to all involved varia-
bles. The wall-normal and spanwise directions are discretized
using a stable finite-differences scheme of high order (FD-q),
developed in [43]. The method is based on piecewise polynomial
interpolation of degree q ≤ J on a nonuniform grid point distri-
bution, where J � 1 is the total number of grid points in the
corresponding spatial direction. The nonuniform grid point dis-
tribution, which lies in the interval [−1 1], usually does not
coincide with the physical domain, so a proper mapping must
be applied. In the spanwise direction, a biquadratic mapping [23]
has been employed, which is a generalization of the mapping
used by Malik [44]. The grid points are equally distributed in
three intervals �0; zi1�, �zi1; zi2�, and �zi2; zmax�. This type of dis-
tribution allows the clustering of more points in the middle of
the domain, where the amplitude function is expected to have the
largest gradients while keeping a cosine distribution toward the
lateral boundaries to avoid oscillations. In the wall-normal direc-
tion, a similar approach has been used that allows a flexible
distribution of points in order to cluster them at different wall-
normal heights. In the PSE-3D computations, the streamwise
derivative is discretized via an implicit first-order backward Euler
scheme. Grid convergence was obtained with a grid of 101 × 121
points in the spanwise and wall-normal directions, respectively,
and applying a value of 8 for q.

IV. Secondary Instabilities

This section presents a comparative analysis of DNS and LST-
2D/PSE-3D results for the unsteady perturbations evolution. Addi-
tionally, the effect of selecting different out-of-plane directions for
the instability computations is investigated.
The nondimensional power spectral density P� of the chordwise

velocity fluctuations for two selected probe positions from the
DNS (displayed by the green circle and blue triangle in the inset
of Fig. 10) at the chordwise station x⊥∕δ0 � 584 are plotted in
Fig. 10. The velocity signals obtained from the DNS, comprising
3400 samples at a sampling rate of 25;000 Hz, were analyzed using
Welch’s method [45]. This involved dividing the data into segments,
with each segment windowed by a Hann function. A total of 10
periodograms were computed and averaged to estimate the power
spectral density, with a 50% overlap between consecutive segments.
The power spectral density lines in the figure are color-coded to
match the color of the markers in the contour inset, which depicts
the rms distribution of the chordwise velocity component of the
fluctuations from the DNS. Figure 10 reveals that the fluctuations
occur in regions associated with Type I and Type III secondary
instability, as discussed in Sec. I. The chordwise station at x⊥∕δ0 �
584 is chosen as an illustrative example because it is located slightly
upstream of the transition location in the DNS, thereby providing an
indication of the mechanisms playing a relevant role in the transition
process. The spectral analysis of the two probes within the different
fluctuation regions reveals a marked dominance of distinct spectral
content: the inner upwelling region (marked by the blue color) is
characterized by pronounced spectral energy around f � 900 Hz,
whereas the fluctuations in the outer region of the upwelling
flow (indicated with the green color) predominantly feature higher
frequencies. Consequently, the frequencies of f � 900 Hz and
f � 2200 Hz, representative of Type III and Type I secondary
instability modes, respectively, are selected for the subsequent insta-
bility analysis and comparison with DNS. In particular, Sec. IV.A
portrays the impact of surface curvature on a Type III secondary
instability, and then a comparison with DNS data is displayed in
Secs. IV.B and IV.C. In view of the discussion presented in Sec. III.B.1,
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on how the choice of the x direction influences the rms of the base
flow derivatives, the instability computations shown in Sec. IV.A,
IV.B, and IV.C are carried out employing θmin as x direction. On the
other hand, the effect of different x-direction choices on the instability
computations is investigated in Sec. IV.D.
Note that, because the secondary instabilities of stationary

crossflow vortices are of convective nature, as demonstrated by
Wasserman and Kloker employing DNS [14] and theoretically by
Koch [46], a spatial approach (see Sec. III.B.2) is more appropriate
and is employed here for the instability computations. However,
solving the spatial eigenvalue problem is computationally more
expansive than solving the eigenvalue system in the temporal
framework. Therefore, previous authors have employed the well-
known Gaster transformation [47] to relate the temporal and
spatial growth rates:

−αi � ωi∕cg;r (11)

where cg;r � ∂ωr∕∂αr denotes the real part of the group velocity.
The relation was derived assuming a small temporal growth rate
but it has been successfully applied by previous authors to study
the roughness-induced instabilities in high-speed boundary layers
[22,48] or to analyze the development of the secondary instabil-
ities of Görtler vortices [49]. Furthermore, Malik et al. [16] and
Koch et al. [15] extended the Gaster’s transformation to convert
temporal growth rate data to spatial growth rates for secondary

instabilities of crossflow vortices. In particular, Koch et al. [15]
demonstrated its accuracy for such cases. Recently, Gaster’s trans-
formation was revisited by Xu et al. [50], who proposed first- and
second-order transformations, which are less restrictive than the
former one. In the present work, both the Gaster’s transformation
and the newly developed spatiotemporal relationships were em-
ployed (not shown) to check their validity for the development of
secondary instabilities of stationary crossflow vortices computed
in a nonorthogonal coordinate system. The comparison between
spatial growth rates obtained by means of the transformations of
Gaster and Xu et al. and the ones computed by solving the spatial
eigenvalue problem revealed an overall good agreement. Note that
the real part of the group velocity (cg;r) in the nonorthogonal x
direction is employed for the transformation.

A. Impact of Surface Curvature

This section analyzes the effect of surface curvature on the
secondary instabilities. Figure 11a portrays the impact of chordwise
convex surface curvature on the spatial growth rate of an LST-2D
computation, for a Type III secondary instability at two different
positions computed with rectilinear (surface curvature neglected)
and curvilinear (surface curvature included) metric. Figure 11b
depicts the impact of convex surface curvature on the spatial growth
rate of a PSE-3D computation for a frequency f � 900 Hz as
function of the chordwise direction. As evident from the figure,
the convex airfoil curvature has a nonnegligible stabilizing impact
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Fig. 11 Impact of convex surface curvature on the spatial growth rate of a Type III secondary instability. a) σ as a function of frequency for an LST-2D
computation, and b) σ as a function of x⊥∕δ0 at a frequency f � 900 Hz for a PSE-3D solution.
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Fig. 10 Nondimensional power spectral density of the chordwise velocity fluctuations for two selected probe positions marked by the green circle and
blue triangle in the inset.
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on the growth rate of the secondary instability, displaying a similar
trend as for the primary crossflow instability [51]. The impact of
convex surface curvature on Type I secondary instabilities follows a
pattern similar to that observed for the Type III instabilities. Due to
its stabilizing impact, surface curvature will be considered for all the
following computations.

B. Perturbation Evolution at f � 900 Hz

In this section, the focus is on the development of the unsteady
perturbation at a frequency of f � 900 Hz for which a Type III
secondary instability mechanism prevails. Figure 12 presents a
comparison between the DNS results, depicted by filled isocon-
tours, and those obtained from LST-2D (Fig. 12a) and PSE-3D
(Fig. 12b), illustrated with purple isolines, for the normalized
magnitude of the chordwise velocity component of the amplitude
function, that is, jûc∕ûc;maxj. The results from the instability compu-
tations are transformed back to the orthogonal curvilinear (x⊥, y, zk)
coordinate system for a direct comparison with the DNS results. The
amplitude function closely resembles previous results from theo-
retical, numerical, and experimental works [15,19,23,52], where
unsteady perturbations of this particular shape, located close to
the wall, are classified as Type III secondary instabilities. As noted
earlier, this instability is related to low-frequency traveling cross-
flow instabilities modulated by the presence of the stationary cross-
flow vortex.
Both the LST-2D and PSE-3D computations are able to recover

the main features of the unsteady perturbation, accurately reflecting

the mode shape and location, with a strong overall agreement with
the DNS results at station x⊥∕δ0 � 430, as shown in Fig. 12.
Although there is a notable agreement, the LST-2D results appear
to deviate slightly. It should be noted that the LST-2D solution is
obtained by solving a generalized eigenvalue problem at the specific
x⊥ station, whereas the PSE-3D solution is obtained by a marching
procedure, which accounts for the nonparallel effects on the ampli-
fication of the secondary instability modes. The PSE-3D starts at
station x⊥∕δ0 ≈ 300, which is far enough upstream to ensure that the
PSE-3D results at the station x⊥∕δ0 � 430 are unaffected by the
initial transient. The comparison is further carried out by comparing
the DNS results with the PSE-3D instability results across different
stations, as shown in Fig. 13. It is observed that the secondary
perturbation, initially situated in the inner upwelling region of the
stationary crossflow vortex, shifts away from the wall toward the
upwash side of the stationary crossflow vortex as it progresses
downstream along the streamwise direction. The PSE-3D results
show an overall good agreement with the DNS data for all down-
stream stations. Casacuberta et al. [28], in their two-dimensional
eigenvalue computations for the development of secondary insta-
bilities in a swept-wing-type boundary layer over a flat plate,
reported that the Type III mode from the instability computation
tends to extend more toward the shoulder of the stationary crossflow
vortex with respect to the results observed from the DNS. Moreover,
their computations employing a local approach not only display a
major disagreement on the upper side of the eigenfunction, but an
increasing disagreement also in the near-wall region, as the pertur-
bation evolves downstream. The results in Fig. 13 exhibit only
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Fig. 12 Normalized magnitude of the chordwise velocity amplitude function (jûc∕ûc;maxj) for a Type III secondary instability at a frequency of 900 Hz,
shown at the station x⊥∕δ0 � 430.
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Fig. 13 Normalized magnitude of the chordwise velocity amplitude function (jûc∕ûc;maxj) for a Type III secondary instability at a frequency of 900 Hz,
shown at the stations a) x⊥∕δ0 � 390, b) x⊥∕δ0 � 439, c) x⊥∕δ0 � 458, and d) x⊥∕δ0 � 490.
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minor deviations with respect to the DNS results, and the lower
discrepancy on the shape of the amplitude function might be attrib-
uted to the use of a PSE-3D methodology in the current analysis that
incorporates the streamwise derivative of the base flow and of the
amplitude functions, resulting in enhanced accuracy. Furthermore,
it is emphasized that the perturbations extracted from the DNS
do not necessarily consist of a pure secondary instability mode,
but may include contributions from other perturbations at the same
frequency because in the DNS they originate from a random forcing.
This may contribute to the small differences noted between PSE-3D
and DNS results and it holds also for the comparisons shown in
Sec. IV.C.
The integrated growth rate, that is, the n-factor, is shown in

Fig. 14. Note that the n-factor computations in DNS and the
instability analyses are based on the integral of the disturbance
kinetic energy across the plane yz. In the DNS, a disturbance strip
at the wall near the inflow introduces a wide spectrum of frequen-
cies, necessitating a transient phase before the emergence of a
distinct Type III secondary instability, which is observed starting
from x⊥∕δ0 ≈ 390. From this station on, a clear Type III secondary
instability can be recognized in the DNS, which facilitates a quan-
titative comparison with the results from the instability computa-
tions. The n-factor curves from the instability computations have
been normalized at this position for comparison with the DNS data.
It can be seen that the parallel LST-2D computation strongly under-
estimates the n-factor curve of the DNS over the entire domain. The

same holds for the nonparallel LST-2D that additionally takes into
account the streamwise gradients of the base flow quantities. On the
other side, the parallel PSE-3D and the PSE-3D results align closely
with the exponential growth of the secondary instability. The PSE-
3D computation is the only one displaying an excellent agreement,
at least up to station x⊥∕δ0 ≈ 520. Choudhari et al. [27] also
observed in their stability computations a strong underprediction
of the n-factors when solving the two-dimensional eigenvalue prob-
lem compared to the plane-marching PSE-3D approach. It can be
noted that the inclusion of the streamwise gradient of the base
flow quantities does not seem to play a significant role because
the parallel and nonparallel LST-2D computations are close to each
other, and the same holds for the PSE-3D.
Beyond x⊥ ≈ 520, the two curves start to deviate, probably due to

nonlinear interactions of secondary instabilities in the DNS compu-
tation, precluding further comparison with linear instability results.
Figure 15 visualizes the instability, based on PSE-3D data, through
two isosurfaces of the normalized real part of the streamwise velocity
component of the amplitude function. Furthermore, the insets display
a zoom at three different stations x⊥∕δ0 � 260, x⊥∕δ0 � 420,
and x⊥∕δ0 � 560. As already seen in Fig. 13, the amplitude function
shifts toward the upwash side of the crossflow vortex as it progresses
in the streamwise direction. As can be seen in Fig. 15, the isosurfaces,
initially in the near-wall shear layer, twist and follow the direction
of rotation (clockwise) of the crossflow vortex as they move
downstream.

006055005054004
0

1

2

3

Fig. 14 N-factor curves vs x⊥∕δ0 for a Type III secondary instability of f = 900 Hz.

Fig. 15 Type III secondary instability at f = 900 Hz represented by red (positive) and blue (negative) isosurfaces of the normalized real part of the

streamwise velocity component amplitude function (ûr∕ûr;max � �0.2). Isolines of the streamwise velocity component of the distorted base flow in solid

black and normalized magnitude of the streamwise velocity amplitude function represented by a purple isoline (jû∕ûmaxj � 0.5).
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C. Perturbation Evolution at f � 2200 Hz

In the following section, the evolution of the unsteady perturba-
tion at a frequency of 2200 Hz is analyzed. This frequency is
dominated by a perturbation localized on the shoulder of the sta-
tionary crossflow vortex. Such perturbations are associated with a
Type I secondary instability in the literature [9,15,16,19,23,52].
Figure 16 shows a comparison between the DNS results and those
obtained from a) LST-2D and b) PSE-3D for the normalized mag-
nitude of the chordwise velocity component of the amplitude func-
tion. The secondary instability is located on the upwash side of the
stationary crossflow vortex and the location of the maximum per-
turbation coincides with the minimum (negative maximum) of the
spanwise shear, that is, ∂u∕∂z. Similar to the Type III instability,

both LST-2D and PSE-3D results show an overall good agreement
in terms of amplitude function, even though the PSE-3D computa-
tion aligns more closely with the DNS results. The agreement of the
PSE-3D results with the DNS is further confirmed at several stations
downstream, as plotted in Fig. 17. Figure 18 shows the evolution
of the n-factor curve along x⊥. As for the instability results for
f � 900 Hz, in the DNS there is a transient phase before the
emergence of a distinct Type I secondary instability, which is
observed starting from x⊥∕δ0 ≈ 370. The n-factor curves from the
instability computations have been normalized at this position for
comparison with the DNS data. As the Type III secondary insta-
bility, it is noteworthy that both the parallel and nonparallel LST-
2D results significantly underpredict the integrated growth rate,
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b)
Fig. 16 Normalized magnitude of the chordwise velocity amplitude function (jûc∕ûc;maxj) for a Type I secondary instability at a frequency of 2200 Hz,
shown at the station x⊥∕δ0 � 390.
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Fig. 17 Normalized magnitude of the chordwise velocity amplitude function (jûc∕ûc;maxj) for a Type I secondary instability at a frequency of 2200 Hz,
shown at the stations a) x⊥∕δ0 � 390, b) x⊥∕δ0 � 439, c) x⊥∕δ0 � 458, and d) x⊥∕δ0 � 490.
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Fig. 18 N-factor curves vs x⊥∕δ0 for a Type I secondary instability for a frequency of 2200 Hz.
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whereas the parallel PSE-3D and the PSE-3D results are much
closer to those from the DNS, with the PSE-3D computation show-
ing the overall best agreement. Again, Fig. 19 depicts two isosur-
faces of the real part of the normalized streamwise velocity
component of the amplitude function, providing a visual represen-
tation of the perturbation structures at the specified frequency.
Additionally, the insets provide a zoom at three different stations
x⊥∕δ0 � 330, x⊥∕δ0 � 410, and x⊥∕δ0 � 540.

D. Effect of Different Out-of-Plane Directions

In this section, we examine the effect of different out-of-plane
directions when using the four different sets of equations introduced
in Sec. III.B.2. The results presented in the two preceding sections
were obtained using a coordinate system such that the x direction
deviates from the chordwise direction by the angle θmin. We inves-
tigate the unsteady perturbation evolution at a frequency of 900 Hz
while considering variations in the out-of-plane direction, which
translates into different integration paths for the n-factor evaluation.
These paths are visualized as colored solid lines in Fig. 20, together
with a schematic representation of the wing. The path considered for
the n-factor computation in Figs. 14 and 18 is indicated by a light-
blue solid line. Here, we explore slight deviations from this out-of-
plane direction, specifically deviations of 	0.5 deg, as well as the
direction of the external inviscid streamline. The results for the
selected integration paths are depicted in Fig. 21, which presents
the n-factor curves for the a) LST-2D, b) the local nonparallel LST-
2D, c) the nonlocal parallel PSE-3D, and d) PSE-3D. The four
different sets of equations were considered to gain a better insight
into the terms that significantly affect the results and to understand
the sensitivity to the out-of-plane direction employed in computing
the integrated growth rate. The parallel LST-2D results exhibit a

pronounced sensitivity to changes in the integration path; even
slight deviations in the θ angle significantly influence the predicted
n-factor. A variation of 	0.5 around the angle θ, for which the rms
∂u∕∂xj§ is minimal, leads to a notable difference in the n-factor value,
with a jΔnj of approximately 0.5 at the end of the integration domain.
Furthermore, the effect becomes even more pronounced when the
inviscid external streamline direction is used as the integration path.
The relationship between the angle of the inviscid streamline at the
boundary-layer edge and the angle θmin is depicted in Fig. 6. It can be
noted that they differ from each other by approximately 2-deg in the
domain of interest. Choosing the streamline direction as x direction of
the nonorthogonal coordinate system leads to an n-factor value that is
approximately twice the value obtained from the direction θmin at the
end of the computational domain.
The significant effect of the x direction on the n-factor results is

partially explained by its influence on the spanwise and streamwise
gradients of the base flow, which, in turn, drastically affects the
growth rate. In Fig. 22, the rms of the streamwise, ∂u∕∂xj�§ , and
spanwise, ∂u∕∂zj�§ , velocity gradients are shown for the four differ-
ent out-of-plane marching directions as a function of x⊥∕δ0. A
significant influence of the x direction on the rms of the spanwise
shear can be noted. The spanwise gradients change with θ due to the
interdependence between the x- and z direction in the nonorthogo-
nal coordinate system (see Appendix). It can be noted that as the
deviation from the direction θmin increases, the rms of the stream-
wise gradient becomes larger. In fact, it can be seen that the stream-
wise gradient, in the case where the out-of-plane direction is aligned
with the inviscid streamline, is about four times larger than the same
derivative computed along the direction of least variation over the
full range of x⊥. This discrepancy causes the modeling error in the
LST-2D to become more pronounced, as this methodology assumes a
negligible streamwise gradient. On the other hand, when we consider
the local nonparallel LST-2D results, it can be seen that the inclusion
of the base flow streamwise derivative has beneficial effects on the
sensitivity of the n-factor results across the four different integration
paths, leading to smaller differences at the end of the integrated
curves. Additionally, when we consider the nonlocal parallel PSE-
3D, including the upstream history of the amplitude function, it has a
beneficial effect over the parallel LST-2D, displaying a sensitivity to
the x direction slightly worse than the nonparallel LST-2D. As one
can see, the slopes of the n-factor curves up to x⊥ � 350 in Fig. 21b
are very similar, whereas the slopes up to the same location in Fig. 21a
display a larger deviation, indicating that the sensitivity to the out-of-
plane direction is mainly affected by the streamwise base flow
gradients at the beginning of the integration path. On the other hand,

Fig. 19 Type I secondary instability at 2200 Hz represented by red (positive) and blue (negative) isosurfaces of the normalized real part of the
streamwise velocity amplitude function (ûr∕ûr;max � �0.2). Isolines of the streamwise velocity component of the distorted base flow in solid black and

normalized magnitude of the streamwise velocity amplitude function represented by a purple isoline (jû∕ûmaxj � 0.5).

Fig. 20 Sketch of the wing and the different integration paths
considered.
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Fig. 21 N-factor curves vs x⊥∕δ0 of a Type III secondary instability for a frequency of 900 Hz. a) LST-2D, b) LST-2D nonparallel, c) PSE-3D parallel,
and d) PSE-3D for different out-of-plane marching directions.
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Fig. 22 a) Streamwise ∂u∕∂xj�§ , and b) spanwise ∂u∕∂zj�§ velocity gradient for different out-of-plane directions.
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the inclusion of the streamwise gradients of the amplitude function
plays an important role more downstream.
Finally, in contrast with the preceding numerical methodologies,

the nonparallel PSE-3D results for the four distinct paths yield the
same n-factor, despite the substantial variation in spanwise shear due
to a change in the angle θ. This is attributed to both the inclusion of the
streamwise gradient in the PSE-3D approach and of the upstream
history of the perturbation, whereas those are neglected in the LST-2D
methodology. Therefore, the use of a nonlocal nonparallel PSE-3D
approach permits the selection of various marching directions without
affecting the instability results. This is valid as long as the deviation
from the direction θmin is small because larger deviations result in
larger gradients in the x direction, rendering the PSE-3D assumptions
questionable. Finally, Table 1 provides a summary of the results in
terms of jΔnj among the three additional paths considered in this
section and the one featuring θmin at the station x⊥∕δ0 � 500.

V. Conclusions

In this work, a detailed quantitative comparative analysis between
direct numerical simulation (DNS) and linear stability theory was
conducted, examining the evolution of secondary unsteady disturb-
ances in a crossflow-dominated incompressible boundary layer
over an infinite swept wing. Specifically, the linear stability theory
(LST-2D) and plane-marching linear parabolized stability equations
(PSE-3D) methodologies formulated in a nonorthogonal coordinate
system were employed to investigate the base flow, which is dis-
torted by the action of finite-amplitude stationary crossflow vortices
and exhibits strong inhomogeneity in the spanwise, wall-normal,
and chordwise directions. The LST-2D and PSE-3D equations can
handle the strong gradients in the wall-normal and spanwise direc-
tions. However, the strong gradient in the chordwise direction
neither complies with the assumption of zero streamwise gradients
of the LST-2D nor the slow variation in the marching direction of
the PSE-3D when formulated in an orthogonal coordinate system.
One initial challenge is to find the most suitable way to represent the
base flow in the stability problem. In previous studies, discrepancies
between DNS and various stability tools were attributed to sim-
plifying assumptions required for the base flow used as input for
stability analysis [19]. By adopting a nonorthogonal coordinate
system, the periodicity of the base flow in a direction parallel to
the leading edge is respected. Moreover, it allows for the selection of
an out-of-plane direction, along which the base flow evolves slowly.
This direction was found by minimizing the root mean square (rms)
of ∂u∕∂x, and it has been referred to as θmin.
The main focus of this study was to examine the evolution of

unsteady secondary disturbances at frequencies of f � 900 Hz
and f � 2200 Hz. The former frequency exhibits a dominant
Type III mode located in the region close to the wall, at the location
where the spanwise shear attains its maximum. On the other hand,
the higher frequency corresponds to a Type I instability, which lies
on the upwash side of the stationary crossflow vortex. The main
results may be summarized as follows:
1) The excellent quantitative agreement of the PSE-3D compu-

tations, formulated in a nonorthogonal coordinate system with DNS
results, demonstrated that the choice of a suitable coordinate system
is essential to analyze the secondary instabilities of stationary cross-
flow vortices.
2) A comparison of the LST-2D and PSE-3D results, employing

θmin as x direction, with DNS, reveals that both stability approaches
have an overall good agreement when comparing the shape and

location of the perturbation amplitude functions, and this holds for
the entire chordwise locations in the linear regime.
3) PSE-3D results align more closely with DNS data due to their

ability to include upstream information, thus improving the match
over the LST-2D results. This is further evidenced when comparing
the n-factor curves, where the LST-2D results significantly under-
predict the instability growth. On the other hand, the PSE-3D data
exhibits a close agreement with the DNS results, at least in the range
of linear growth of the secondary instability, and this holds for both
Type I and Type III.
4) The impact of convex surface curvature of the infinite swept

wing on the secondary disturbance growth has been analyzed and it
turned out that it has a stabilizing impact, resulting in smaller growth
rates and, as a consequence, n-factors. This is somehow similar to
the impact of surface curvature on the primary crossflow instability.
5) The sensitivity of LST-2D/PSE-3D results to the choice of the

out-of-plane (x) direction was addressed considering four different x
directions. The findings indicate a marked sensitivity of the LST-2D
to the x direction, with significant implications for the computed
n-factor, especially when aligned with the inviscid streamline. On the
other hand, the nonparallel LST-2D and the parallel PSE-3D display a
lower sensitivity to the marching direction compared to the parallel
LST-2D behavior. Finally, the PSE-3D results show that for different
directions, which slightly deviate from the θmin one, the n-factor
curves are almost overlapping, indicating that the nonlocal nonpar-
allel approach allows one to retrieve the same integrated growth rate.
6) The latter results highlight the importance of an appropriate

choice of the x direction, providing guidelines on the definition of
such direction. In particular, the results indicate that in PSE-3D
computations a quantitatively good agreement with DNS results
is obtained even for small deviations from θmin and including the
inviscid streamline direction.
7) The direction θmin is found to be very close to the direction of

the crossflow vortex axis and deviates from the direction of the
inviscid streamline by an offset of 2–4 deg.
In conclusion, this study contributed to a detailed understanding

of the origins of discrepancies found in literature between LST-2D
results and DNS in the linear analysis of secondary instabilities of
crossflow vortices. Moreover, it demonstrated that the results from
the PSE-3D methodology, formulated in a nonorthogonal coordinate
system, are in excellent quantitative agreement with DNS results.
This methodology could be directly extended to study the nonlinear
development of secondary instabilities of stationary crossflow vorti-
ces using a plane-marching nonlinear PSE-3D approach.

Appendix: Vectors in a Generalized Nonorthogonal
Curvilinear Coordinate System

The stability equations in a nonorthogonal coordinate system
have been derived starting from the Navier–Stokes formulated
in a generalized nonorthogonal curvilinear coordinate system [53].
When it comes to a nonorthogonal coordinate system a co-
variant or contravariant formulation of a vector can be adopted.
The general meaning of covariance and contravariance refers to how
the components of a vector transform under a change of basis. This
is represented in Fig. A1, where the covariant and contravariant

Table 1 Sensitivity to the integration path: jΔnj relative
to the path θmin

Path LST-2D
LST-2D

nonparallel
PSE-3D
parallel PSE-3D

θmin − 0.5 deg 0.33 0.23 0.14 0.001

θmin � 0.5 deg 0.35 0.27 0.13 0.002

Inviscid streamline 3.4 1.37 2.2 0.002

a) Covariant components b) Contravariant components
Fig. A1 Sketch of the covariant and contravariant components of a
vector when the basis is not orthogonal.
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components of a generic vector b are portrayed. In particular, the
covariant components are perpendicular projections on the base
vectors êx and êz, whereas its contravariant components are parallel
projections. In deriving the equations, a contravariant formulation
for the vectors has been employed. Figure A2 and Eq. (12) give
information on the coordinate transformations.

x � x⊥∕ cos θ
z � zk − x⊥ tan θ

x⊥ � x cos θ

zk � z� x sin θ

(A1)
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