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Abstract: The wave optics processes in a Fabry–Pérot cavity with a length of about tens of
millimeters are considered. Such cavities are used, among other applications, in optome-
chanical accelerometers for precise measurement of displacement of moving elements.
A Fabry–Pérot cavity formed by a spherical and flat mirror is considered. The influence
of parameters characterizing the alignment of the Fabry–Pérot cavity mirrors and the
laser beam on the appearance of the higher order modes is investigated using numerical
modeling. It is shown that the angle of inclination of the flat mirror of the cavity greatly
affects the occurrence of higher order modes in addition to the fundamental mode. The
levels of displacement of the axis of a spherical mirror in the vertical direction which do
not cause the emergence of higher order modes is shown. The influence of the degree of
displacement of the laser beam axis in the vertical direction relative to the symmetry axis
of the Fabry–Pérot cavity is also investigated.

Keywords: alignment of Fabry–Pérot cavities; optomechanics; fundamental mode; higher
order modes; wave optics; numerical simulation

1. Introduction
Fabry–Pérot interferometers (FPIs) are widely applied in various fields. FPIs are

used in sensors measuring multiple physical quantities, namely magnetic field [1],
temperature [2], pressure [3], deformation [4,5], and others. FPIs are also used in aerospace
and medicine [6]. Such wide application is due to the advantages of FPIs, such as their
simple design, the possibility of miniaturization, high resolution, and resistance to electro-
magnetic influences. FPIs are used in lasers, spectroscopy, and telecommunications.

FPIs are one of the critical elements of optomechanical accelerometers [7,8]. The
FPI allows us to determine the displacement of the moving part of the optomechanical
accelerometer mechanical resonator with high accuracy and thus measure acceleration.
Optomechanical accelerometers are used in a wide frequency range from fractions of hertz
to tens of kilohertz for accurate measurements over long periods without calibration [7,9].
These devices are applied for geodesy [10], for testing and metrology [7], in space missions
for navigation applications [9], etc.

The FPI is a cavity formed by two parallel mirrors. The transmitted beam is recorded
when a laser beam passes through the cavity. Waves can pass through the FPI only if they
resonate with the cavity. Optomechanical coupling allows the recording of mechanical

Photonics 2025, 12, 15 https://doi.org/10.3390/photonics12010015

https://doi.org/10.3390/photonics12010015
https://doi.org/10.3390/photonics12010015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-0454-3331
https://orcid.org/0000-0002-5640-1634
https://doi.org/10.3390/photonics12010015
https://www.mdpi.com/article/10.3390/photonics12010015?type=check_update&version=1


Photonics 2025, 12, 15 2 of 20

motion by optical reading. When the position of one of the mirrors varies, as in optome-
chanical accelerometers, the cavity length Lcav and the resonance condition change, and this
can be recorded, for example, by measuring the photocurrent i(t). Mechanical oscillations
of the test mass of the optomechanical accelerometer—one of the mirrors of the FPI—with
frequency ωm and amplitude Zm lead to a change in Lcav with a period ωm, which shifts
the optical resonance frequency and periodically modulates the amplitude of the electro-
magnetic field inside the resonator. As a result, the recorded i(t) periodically changes with
frequency ωm and an amplitude proportional to the displacement Zm [8].

The operation of a Fabry–Pérot resonator is based on the interference of the incident
laser beam and the beams that are reflected from its mirrors [11]. The free spectral range
of a Fabry–Pérot resonator is defined as the time it takes for the beam to pass through the
resonator and return (tRT):

∆νFSR = 1/tRT = c/2L,

where c = 2.99792458 × 108 m/s.
The resonator photon decay time τc is as follows [11]

τc = −tRT/ln(R1R2),

where R1 and R2 are the reflectivity of mirrors.
Full linewidth at half maximum (FWHM):

∆νc = (2π × τc)−1.

The finesse of a Fabry–Pérot resonator is determined as follows [11]:

Fc = ∆νFSR/∆νc = −2π/ln(R1R2). (1)

To ensure the operation of optomechanical accelerometers, alignment between the
Fabry–Pérot cavity and an input laser beam in the absence of motion is necessary. Such
an alignment implies the beam coupling to the cavity’s fundamental (longitudinal) spatial
mode, and not higher order (off–axis) spatial modes [12]. Misalignment causes errors in
cavity length determination [13], the main parameter with the help of which the acceleration
in optomechanical accelerometers is found [7,9]. Such errors occur due to the appearance
of the higher order modes and a corresponding decrease in the fundamental mode; the
proportionality between the level of the normalized amplitude of the fundamental mode
A1 and the amplitude of mechanical vibrations Zm is breached, which means that the
photocurrent read as a result of measurements will not be proportional to the value of Zm.

Misalignment also causes the Q-factor to decrease, cavity losses, and finesse reduction
even at the higher mirror reflectivity [14]. Thus, alignment is essential to ensure reliable
long-term operation of the Fabry–Pérot cavity, which is crucial for many applications,
particularly navigation. It is known that various factors can cause Fabry–Pérot cavity
misalignment, such as a shift in the arrangement of the cavity mirrors [12]. In case of
misalignment, several higher order modes may arise, the appearance of each of which
leads to a corresponding decrease in the fundamental mode. For quantitative evaluation
of the impact of higher order spatial modes on the measured cavity length accuracy and,
therefore, acceleration measurements, we will use the magnitude of the decrease in the
level of A1. We will assume that with a decrease in A1 by no more than 3%, the alignment
of a Fabry–Pérot cavity takes place.

Since the manufacturing mechanical resonators of optomechanical accelerometers and
their assembly with the Fabry–Pérot cavity is expensive and time consuming, the planned
experimental studies will be carried out considering the obtained modeling data.
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The analysis of the influence of Fabry–Pérot cavities asymmetry using analytical
solutions, given, for example, in [12], was carried out for the case of two spherical mir-
rors. Optomechanical accelerometers use Fabry–Pérot cavities, one of which mirrors has
a spherical shape, and another is flat. The flat mirror is a movable part of the mechanical
resonator, the displacement of which determines the magnitude of the measured acceler-
ation [7,9,15]. Data on the occurrence of higher modes in the Fabry–Pérot cavities “flat
mirror—spherical mirror” have been obtained experimentally for some cases [16]. How-
ever, before conducting experimental studies, mathematical modeling of wave propagation
processes in Fabry–Pérot cavities seems preferable. Such modeling allows us to estimate
the degree of contribution of the asymmetry of various parameters to the occurrence of
higher order modes. The modeling requirement applies particularly to Fabry–Pérot cavities
used in optomechanical accelerometers since their assemblies with mechanical resonators
are expensive to manufacture because manufacturing complex spatial configurations of
mechanical resonators from a single piece of silica glass with subsequent polishing is
costly. Therefore, the required accuracy in manufacturing and aligning optomechanical
accelerometer samples must be known beforehand.

Previously carried analytical and experimental studies do not allow us to analyze the
degree of influence of the main parameters of the Fabry–Pérot cavity “flat mirror—spherical
mirror” on the level of reduction in the fundamental mode. This determines the work aim:
to analyze the influence, with the help of numerical mathematical modeling, of the values
of such parameters of the Fabry–Pérot cavity used in optomechanical accelerometers as the
tilt angle of a flat mirror, the displacement of the axis of a spherical mirror, the displacement
of the axis of a laser beam and combination of these parameters, on the occurrence of higher
off–axis spatial modes.

2. The Problem of Calculating Electromagnetic Processes During Wave
Propagation in a Fabry–Pérot Cavity

The problem was formulated in terms of wave optics to consider the influence of the
asymmetry of the mirror arrangement of the Fabry–Pérot cavities and the influence of the
laser beam shift relative to the cavity axis on the occurrence of higher modes. This approach
involves solving Maxwell’s equations [17]:

∇×
→
H = ∂

→
D/∂t;

∇×
→
E = −∂

→
B/∂t;

∇·
→
D = ρ;

∇·
→
B = 0,

where
→
H is magnetic field intensity;

→
D is electric flux density; t is time;

→
E is electric field

intensity;
→
B is magnetic flux density; and ρ is electric charge density.

Analytical solutions (see, for example, [12,18]) can be used for relatively simple ge-
ometries of Fabry–Pérot cavities, namely, cavities formed by two spherical mirrors. We
consider that one of the Fabry–Pérot cavity mirrors has a flat surface, as in optomechanical
acceleration sensors [7,10,19]. In that case, using analytical solutions is impossible, and
numerical methods such as the finite element method, implemented, for example, in the
COMSOL Multiphysics package [20], are required. The Fabry–Pérot cavity has the follow-
ing features: it is formed by two mirrors, and the radius of the spherical mirror is much
larger than the cavity’s dimensions; the laser beam diameter is much less than the cavity’s
dimensions; the laser beam’s wavelength is many orders of magnitude smaller than all
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the dimensions of the cavity and the laser beam diameter; and the propagation of a plane
electromagnetic wave is considered. With this regard, the task of numerical modeling of
the propagation of electromagnetic waves in the Fabry–Pérot cavity can be formulated as
a two–dimensional problem [20]. The considered computational domain, on which the
computational grid is superimposed, consists of three subdomains: the Fabry–Pérot cavity
1, as well as the areas in front of it (2) and behind it (3) (see Figure 1). In this case, both
mirrors, flat (4) and spherical (5), are represented as very thin layers of dielectric with
permittivity ε = εd and thickness d << λ (where λ is the laser wavelength), which has high
reflective properties. Transition boundary conditions are specified at boundaries 4 and 5.
These conditions are defined under the assumption that the wave in thin layer d propagates
in the normal direction.
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At the upper (6) and lower (7) boundaries of the computational domain (see Figure 1),
the conditions for an ideal conductor are specified as follows:

→
m ×

→
Eb = 0,

where
→
m is normal to the surface;

→
Eb is electric field intensity on the boundary.

The scattering boundary condition is specified on the left (8) and right (9) boundaries
of the computational domain (see Figure 1). This condition determines the tangential
components of the electric and magnetic field intensity through the following correlation:

→
m ×

→
E = Z0

→
H,

where Z0 is the impedance of the vacuum.
This boundary condition makes the boundary transparent for the scattered and incom-

ing plane waves. The z–th component of
→
E is set to be nonzero, and the others are set to be

zero on boundary 8 to set the conditions for the plane wave to fall from the left. On this
boundary, a reference point is also selected relative to which the levels of the incident wave

at the other nodes on the boundary are calculated. On boundary 9, all components of
→
E are

set equal to zero.
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3. Comparison of the Results of the Numerical Calculation of Wave
Processes in the Fabry–Pérot Cavity with the Analytical Solution

The use of mathematical modeling of wave optics processes is one of the means for
selecting the parameters of the Fabry–Pérot cavities to avoid misalignment. When modeling
wave optics processes in Fabry–Pérot cavities using the COMSOL Multiphysics software
package [20,21], the “Electromagnetic Waves, Beam Envelopes” node was used. It was
assumed that the computational domain consists of three parts (see Figure 1): the left
border (4) models one of the Fabry–Pérot cavity mirrors, which can have a spherical shape
(as when comparing with the analytical solution) or represent a flat surface of the moving
test mass of the optomechanical accelerometer. The right border (5) models the second
Fabry–Pérot cavity mirror, which has a spherical shape. The zone of the computational
domain in the middle (1) models the Fabry–Pérot cavity, filled with air or vacuum. At
the upper (6) and lower (7) boundaries of the domain (see Figure 1), the “Perfect Electric
Conductor” condition was specified. At the right boundary (9), the “Scattering Boundary
Condition” condition with zero values of the electric field strength was specified; at the
left boundary (8), the “Scattering Boundary Condition” condition with a non–zero value
of the z–th component of the electric field strength was specified. The laser beam axis
was modeled by adding the “Reference Point” sub–feature to the “Scattering Boundary
Condition” node and specifying this point, for example, as having an ordinate y = 0 and an
abscissa x = 0 (see Figure 1). At the internal boundaries that model the reflecting surfaces of
the Fabry–Pérot cavity mirrors (see 4, 5 in Figure 1), the “Transition Boundary Condition”
was specified.

According to [20], a mapped mesh is imposed on the computational domain in the
numerical simulation of wave optics processes implemented using COMSOL Multiphysics.
The number of transverse mesh elements is assigned NT = 120, and the number of longitu-
dinal mesh elements is assigned NL = 60. Such an assignment is possible if, in the settings
window for “Mesh”, we select the “Electromagnetic Waves, Beam Envelopes” section.

The following parameters were used as initial data in the modeling: the radii of
the spheres whose surfaces facing each other are mirrors of the Fabry–Pérot cavity,
r1 = r2 = 500 mm; the cavity height hcav = 6 mm, the cavity length Lcav = 25 mm, laser
frequency f 0 = 0.193548·1015 Hz, the reflectance of mirror interfaces R1 = R2 = 0.7656,
free spectral range ∆νFSR = 5.9958 GHz, finesse (see (1)) Fc = 116.2, and waist size
w0 = 0.196 mm.

The results of the numerical simulation performed using the wave optics process
model implemented in COMSOL Multiphysics for this case are shown in Figure 2.
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As can be seen from the distributions, there are resonances corresponding to the
eigenmode of the first order that have a periodicity equal to the free spectral range
∆νFSR ≈ 6 GHz, corresponding to the analytical solution [12]. Figures 2–4 show the
dependences of the Fabry–Pérot cavity resonant frequency (freq) on the value of f 0:
freq − f 0.
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A one–dimensional approximation is used to obtain an analytical solution in this case,
and only transverse displacement in the y direction is considered since the equations are
identical for the x dimension. Then, the normalized spatial eigenmode of the first order
and the second order can be written as follows [12]:

U0(y) =

(
2

π·w2
0

)1/4

× exp

[
−
(

y
w0

)2
]

,

U1(y) =

(
2

π·w2
0

)1/4

× 2y
w0

× exp

[
−
(

y
w0

)2
]

,

where w0 = (λ/π)1/2 ×
[

Lcav(R1−Lcav)(R2−Lcav)(R1+R2−Lcav)

(R1+R2−2Lcav)
2

]1/4
is waist size; λ is

the wavelength.
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In this case, the incoming ray Ψ(y) is written as follows [12]:

Ψ(y) = A × U0(y),

where A is a coefficient.
With a small difference between the axis of the Fabry–Pérot cavity mirrors and the

axis of the laser beam in the vertical direction (ay), the second order mode appears at y = 0.
In this case, the incoming beam Ψ(y) is written as follows [12]:

Ψ(y) = A × U0(y − ay) ≈ A × [U0(y) + (ay/w0) × U1(y)]. (2)

The numerical simulation performed using the wave optics process model imple-
mented in COMSOL Multiphysics showed that the numerical solution matches the an-
alytical one [12]. Thus, at ay/w0 = 0.15, the second mode with a normalized amplitude
A2 = 0.023 appears in the resonant shape of the Fabry–Pérot cavity, and the fundamental
mode normalized amplitude decreases by the same amount: A1 = 0.977 (see Figure 3). From
the analytical solution (2), the A2 value is (0.15)2, i.e., 2% less.

At ay/w0 = 0.3, the second mode has a normalized amplitude of 0.087, and the normal-
ized amplitude of the first mode decreases by the same amount (see Figure 4). From the
analytical solution (1), this value is (0.3)2, i.e., approximately 3% less.

Thus, from a comparison of analytical and numerical solutions, it can be concluded
that the used model of numerical simulation of wave optics processes during excitation of
a Fabry–Pérot cavity by a laser beam describes well both the case of coincidence of the beam
and cavity axes and the instances of the presence of a vertical displacement between them.

4. Investigation of the Influence of Fabry–Pérot Cavity “Flat
Mirror—Spherical Mirror” Displacements on the Appearance of
Higher Modes

During the manufacture of the mechanical resonator of the optomechanical accelerom-
eter, as well as during its assembly with the Fabry—Pérot cavity, various imperfections and
defects are possible, such as the displacement of the spherical mirror axis relative to the
cavity axis, the tilt of the flat mirror relative to the cavity axis, and the displacement of the
laser beam relative to the cavity axis. Each parameter must be varied to assess the degree
of influence of these factors on cavity misalignment. This will allow the required accuracy
of manufacturing and adjustment of optomechanical accelerometers to be set. Then, from
the experimental data, it will be possible to comprehend which factor causes misalignment
in the case of the appearance of higher order modes.

4.1. Investigation of the Influence of the Tilt Angle of a Flat Fabry–Pérot Cavity Mirror on the
Appearance of Higher Modes

When using the Fabry–Pérot cavity as a displacement indicator in an optomechanical
accelerometer, one of the cavity mirrors is made spherical and concave, and the second
mirror is a flat polished front surface of the moving test mass. In this case, an analytical
solution to the problem of electromagnetic wave propagation in the Fabry–Pérot cavity
is impossible, and numerical methods are required. The geometry and parameters of the
system under study were the same as in the previous case (see Section 3), and the only
difference was the replacement of the left concave hemisphere with a flat surface (see 4 in
Figure 1).

For the system under consideration, the reflectivity of the Fabry–Pérot cavity mirrors
R1 and R2 were equal to 0.7656. The distance between the mirrors is Lcav = 25 mm, and
a laser with a wavelength of λL = 1550 nm is used. Then ∆νFSR ≈ 6 GHz, Fc = 116.2.
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As the calculations performed have shown, the curve of the resonance sweep for
the Fabry–Pérot cavity with the described parameters practically coincides with the case
of two spherical mirrors (see Figure 2) except the appearance of a minor second mode
with a relative amplitude of A2 ≈ 0.01·A1 (where A1 is the normalized amplitude of
the fundamental mode, A2 is the normalized amplitude of the second mode), while the
amplitude of the fundamental mode decreases by the same amount (see Figure 5).
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Let us consider the effect of the tilt of the flat mirror of the Fabry–Pérot cavity α on
the appearance of higher modes and the resulting decrease in the level of the fundamental
mode. As can be seen from the simulation results presented in Figure 6, even a slight tilt
angle α = 0.003◦ causes the occurrence of higher modes. However, their amplitude levels
are small—they do not exceed 3% of the level of the fundamental mode.
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Figure 6. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) at the level of the plane mirror tilt α = 0.003◦.
A1 = 0.97, A2 = 0.02, and A3 = 0.01.

Increasing the tilt angle to α = 0.01◦ causes the appearance of higher modes, the
amplitude levels of which already make up to 16% of the level of the fundamental mode
(see Figure 7).
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Figure 7. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) at the level of the plane mirror tilt α = 0.01◦.
A1 = 0.84, A2 = 0.16.

Increasing the tilt angle to α = 0.012◦ leads to further amplifying higher modes, the
amplitude levels of which already make up to 22% of the level of the fundamental mode
(see Figure 8).
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When the tilt angle of the flat mirror of the Fabry–Pérot cavity is set to α = 0.014◦, the
amplitude level of the higher modes is 27% of the fundamental mode level, and a third mode
appears, the amplitude of which, however, is small (see Figure 9).

Further increase in α to 0.015◦ causes the appearance of a more pronounced third
mode (A3 is the normalized amplitude of the third mode) (see Figure 10).

When the tilt angle increases to α = 0.02◦, the amplitude of the second mode is 39% of
the fundamental mode level, and that of the third mode is 8% (see Figure 11).

Figure 12a shows the dependence of the value of A1 on the level of α. From the
numerical analysis of the influence of the tilt angle of the flat Fabry–Pérot cavity mirror, it
follows that additional modes have practically no effect on the fundamental one at a tilt
angle of α ≤ 0.003◦; in this case, the decrease in the amplitude of the first mode does not
exceed 3% (see Figures 6 and 12a). The curve characterizing the degree of dependence of the
normalized amplitude of the fundamental mode A1 on the α level is shown in Figure 12a.
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A2 = 1 − A1 appears at 0.5 < A1 ≤ 0.97; at A1 < 0.5, the wave splits into three or more modes.

4.2. Investigation of the Influence of the Displacement of the Axis of the Fabry–Pérot Cavity
Spherical Mirror on the Occurrence of Higher Modes

Another important parameter influencing the alignment of Fabry–Perot cavities and
the appearance of higher modes is the displacement of the axis of the Fabry–Pérot cavity
spherical mirror in the vertical direction relative to the laser beam axis that coincides with
the cavity axis. Let us denote this displacement as bR. Since an analytical solution for the
“flat mirror—spherical mirror” cavity cannot be obtained, numerical simulation of wave
propagation processes was used. Let us first consider a relatively large displacement bR

relative to the cavity height hcav (see Figure 1). Figure 13 shows the calculated curves of the
resonance sweep for the case of bR = hcav × 0.05. Figure 13a corresponds to the sweep for
the frequency range between two consecutive maxima, and Figure 13b shows the frequency
range near the first resonance. As can be seen from Figure 13, such a displacement of the
spherical mirror axis relative to the laser beam axis leads to the occurrence of higher modes
and beam breakup. In this case, six maxima appear, the amplitude of each of which is
reduced by three or more times compared to the case of no displacement of the axes.

When the displacement between the axis of the laser and the cavity decreases:
bR = hcav × 0.02, the number of maxima decreases to three, and the maximum amplitude of
the higher modes does not exceed 27% of the amplitude in the absence of displacement of
the axes (see Figure 14).

With a further decrease in the displacement between the axis of the laser and the cavity
to bR = hcav × 0.01, only two maxima remain, and their maximum amplitude is less than
10% of the amplitude in the case of no displacement of the axes (see Figure 15).



Photonics 2025, 12, 15 12 of 20

Photonics 2025, 12, x FOR PEER REVIEW 11 of 20 
 

 

 
(c) 

Figure 12. Calculated dependencies of the normalized amplitude of the fundamental mode A1: (a)—
A1 (α); (b)—A1 (bR); and (c)—A1 (ΔH) (where curve 1 corresponds to the case of absence of displace-
ments of α and bR; curve 2 corresponds to the case of the levels of displacements of α and bR: α = 
0.003°, bR = hcav × 0.005 = 0.03 mm). A high-frequency mode with the normalized amplitude A2 = 1 − 
A1 appears at 0.5 < A1 ≤ 0.97; at A1 < 0.5, the wave splits into three or more modes. 

4.2. Investigation of the Influence of the Displacement of the Axis of the Fabry–Pérot Cavity 
Spherical Mirror on the Occurrence of Higher Modes 

Another important parameter influencing the alignment of Fabry–Perot cavities and 
the appearance of higher modes is the displacement of the axis of the Fabry–Pérot cavity 
spherical mirror in the vertical direction relative to the laser beam axis that coincides with 
the cavity axis. Let us denote this displacement as bR. Since an analytical solution for the 
“flat mirror—spherical mirror” cavity cannot be obtained, numerical simulation of wave 
propagation processes was used. Let us first consider a relatively large displacement bR 
relative to the cavity height hcav (see Figure 1). Figure 13 shows the calculated curves of the 
resonance sweep for the case of bR = hcav × 0.05. Figure 13a corresponds to the sweep for the 
frequency range between two consecutive maxima, and Figure 13b shows the frequency 
range near the first resonance. As can be seen from Figure 13, such a displacement of the 
spherical mirror axis relative to the laser beam axis leads to the occurrence of higher 
modes and beam breakup. In this case, six maxima appear, the amplitude of each of which 
is reduced by three or more times compared to the case of no displacement of the axes. 

When the displacement between the axis of the laser and the cavity decreases: bR = 
hcav × 0.02, the number of maxima decreases to three, and the maximum amplitude of the 
higher modes does not exceed 27% of the amplitude in the absence of displacement of the 
axes (see Figure 14). 

  
(a) (b) 

Figure 13. Calculated curves of the resonance sweep for the frequency range, including the two 
main resonant frequencies (a) and near the first resonance (b) for the level of the spherical Fabry–
Pérot cavity mirror axis displacement in the vertical direction bR = hcav × 0.05 = 0.3 mm. A0 = 0.15, A1 
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Figure 13. Calculated curves of the resonance sweep for the frequency range, including the
two main resonant frequencies (a) and near the first resonance (b) for the level of the spherical
Fabry–Pérot cavity mirror axis displacement in the vertical direction bR = hcav × 0.05 = 0.3 mm.
A0 = 0.15, A1 = 0.32, A2 = 0.3, A3 = 0.17, A4 = 0.05, and A5 = 0.01 (where An is the normalized
amplitude of the n–mode).
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Figure 14. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) for the level of the spherical Fabry–Pérot
cavity mirror axis displacement in the vertical direction bR = hcav × 0.02 = 0.12 mm. A1 = 0.72,
A2 = 0.27, and A3 = 0.01.
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Figure 15. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) for the level of the spherical Fabry–Pérot
cavity mirror axis displacement in the vertical direction bR = hcav × 0.01 = 0.06 mm. A1 = 0.91,
A2 = 0.09.
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As the modeling showed, the reduction in the displacement value to bR = hcav × 0.005
less ensures the alignment of Fabry–Pérot cavities (see Figure 16). In this case, the maximum
amplitudes of the higher modes do not exceed 3% of the amplitude in the absence of
the axes’ displacement (see Figures 12b and 16). The curve characterizing the degree of
dependence of the normalized amplitude of the fundamental mode A1 on the bR level is
shown in Figure 12b.
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Figure 16. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) for the level of the spherical Fabry–Pérot
cavity mirror axis displacement in the vertical direction bR = hcav × 0.005 = 0.03 mm. A1 = 0.97,
A2 = 0.018, and A3 = 0.012.

4.3. Investigation of the Influence of the Degree of Laser Beam Axis Displacement on the
Occurrence of Higher Modes in the Fabry–Pérot Cavity

Let us consider the influence of the laser beam axis offset relative to the Fabry–Pérot
cavity axis on the occurrence of higher modes. The laser beam diameter was set as follows:
DL = 0.5 mm. Figure 17 shows the calculated curves of the resonance sweep for the fre-
quency range in the case of an asymmetrical beam arrangement relative to the Fabry–Pérot
cavity axis, namely when the laser beam axis is located at the distance ∆H above the cavity
axis. At ∆H = 0.06 × DL = 0.03 mm, the second mode appears. Still, its amplitude does
not exceed 3% of the maximum possible level (see Figure 17c). As shown in Figure 18, the
contribution of higher modes increases with an increase in the offset ∆H of the laser beam
axis relative to the Fabry–Pérot cavity axis. Thus, at ∆H = 0.125 × DL = 0.0625 mm, the
second mode amplitude is about 9% of the maximum possible (see Figure 18c). A further
increase in the laser beam axis displacement to ∆H = 0.25 × DL = 0.125 mm leads to the
appearance of the second mode with a larger amplitude, which is approximately 29% of the
maximum amplitude level (see Figure 19) and a third mode with a relatively small level.
At ∆H = 0.5 × DL = 0.25 mm, the beam splits into four modes, the amplitudes of 8% to
40% of the maximum level (see Figure 20).

It follows from the modeling that at the laser beam axis location above the cavity axis
at the distance ∆H = 0.06 × DL = 0.03 mm and less, the alignment of Fabry–Pérot cavities
as the maximum amplitudes of the higher modes does not exceed 3% of the amplitude in
the absence of the axes’ displacement (see Figure 17; Figure 12c, curve 1).
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4.4. Investigation of the Influence of the Combinations of Displacements of Various Parameters of
the Fabry–Pérot Cavity on the Appearance of Higher Modes

Let us consider the cases when displacements of several different parameters occur
simultaneously in the Fabry–Pérot cavity. Let us set the levels of minimum displace-
ments of all three parameters under consideration, each of which individually causes
a decrease in the level of the fundamental mode by no more than 3%, namely: α = 0.003◦,
bR = hcav × 0.005 = 0.03 mm, and ∆H = 0.06 × DL = 0.03 mm. The remaining parameters
were the same as described above. As follows from the modeling, the decrease in the
amplitude of the fundamental mode in this case does not exceed the permissible levels,
namely 3%.

The simulation was also performed when one of the three considered parameters of
the Fabry–Pérot cavity has no deviation, and the deviations of the other two are within
the values described above as permissible. In this case, if the deviations of the Fabry–
Pérot cavity parameters are such that their combination increases the degree of asymmetry
of the cavity and the laser beam, the decrease in the fundamental mode level exceeds
the permissible levels of 3%. Figure 21 shows the calculated curves of the resonance
sweep for the frequency range for one such case when the parameter levels are as follows:
α = 0.003◦, bR = 0, ∆H = −0.06 × DL = −0.03 mm, and the decrease in the fundamental
mode level is 8%. The emergence of higher modes is because, with a positive tilt of a flat
mirror, the distance between it and a spherical mirror in the area above the cavity axis y = 0
(see Figure 1) increases, and in the area below this axis it decreases; thus, the displacement
of the laser beam axis below the cavity axis adds to the rise in the degree of asymmetry,
and the decrease in the fundamental mode level increases.
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Figure 21. Calculated curves of the resonance sweep for the frequency range, including the two main
resonant frequencies (a) and near the first resonance (b) for the levels of the offsets α = 0.003◦, bR = 0,
∆H = −0.06 × DL = −0.03 mm. A1 = 0.92, A2 = 0.075, and A3 = 0.005.

The decrease in the fundamental mode and the appearance of higher modes can also be
observed when the tilt angle of the flat mirror is zero, but bR and ∆H are not. Let us consider
a case when the displacements of the axes of the spherical mirror and the laser beam occur
in different directions, namely, the mirror axis is shifted upward, and the laser beam axis is
shifted downward: α = 0, bR = hcav × 0.005 = 0.03 mm, and ∆H = −0.06 × DL = −0.03 mm.
Here, a decrease in the level of the fundamental mode is 9%: A1 = 0.91, A2 = 0.085, and
A3 = 0.005 (see Figure 22). The emergence of the higher mode is because the distance
between the spherical mirror and the flat mirror in the area above the cavity axis y = 0 (see
Figure 1) increases and in the area below the axis y = 0 it decreases, so, the displacement of
the laser beam axis below the cavity axis adds to the rise in the degree of asymmetry.
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Figure 22. Calculated curves of the resonance sweep for the frequency range, including the
two main resonant frequencies (a) and near the first resonance (b) for the levels of the offsets α = 0,
bR = hcav × 0.005 = 0.03 mm, and ∆H = −0.06 × DL = −0.03 mm. A1 = 0.91, A2 = 0.085, and
A3 = 0.005.

The simulation also showed that if the displacements of the cavity parameters occur
in the same direction, for example, for cavities with the following parameters: α = 0,
bR = hcav × 0.005 = 0.03 mm, ∆H = 0.06 × DL = 0.03 mm or α = 0.003◦, bR = 0, and
∆H = 0.06 × DL = 0.03 mm, the decrease in the fundamental mode level does not exceed
3%. Such an effect is due to some compensation of the non-symmetry of the cavities
as the greater the degree of asymmetry, the more significant the proportion of higher
harmonics, and therefore, the greater the diffraction losses and changes in the shape of the
electromagnetic wave [12].

The dependence of A1 on the level of the laser beam axis shift below the Fabry–Pérot
cavity axis in the vertical direction (−∆H) was also studied in the absence of α and bR shifts:
α = 0, bR = 0 (see the left part of curve 1 in Figure 12c). The A1(±∆H) dependence was also
studied in the presence of α and bR small shifts: α = 0.003◦, bR = hcav × 0.005 = 0.03 mm
(see curve 2 in Figure 12c). As follows from the presented results, when the laser beam
axis is shifted up and down relative to the cavity axis, the A1(∆H) curve is symmetrical
relative to the cavity axis (at ∆H = 0) only in the absence of shifts of α and bR (see curve 1 in
Figure 12c) and it is significantly asymmetrical in the presence of such shifts (see Figure 12c,
curve 2).

5. Discussion
Despite the previous studies, including both analytical models [12,18] and experi-

ments [13,14,16] devoted to the Fabry–Pérot cavity misalignment, the determination of the
ranges of variation of the main parameters of the “flat mirror—spherical mirror” cavity,
within which an acceptable decrease in the fundamental mode amplitude is still ensured,
has not been carried out. Analytical models do not allow us to investigate the effect of
asymmetry of the parameters of such a Fabry–Pérot cavity, which is used in optomechani-
cal accelerometers; therefore, the numerical studies conducted are relevant. Even if it is
qualitatively clear how various parameters affect the asymmetry of a Fabry–Pérot cavity,
numerical modeling is effective in obtaining quantitative values. The importance of such
studies is determined by the need for preliminary information on the acceptable levels of
dimensional deviations during the assembly of the “mechanical resonator—Fabry–Pérot
cavity” systems, which are the main part of the optomechanical accelerometer. It is also
essential to study the effect of a combination of various parameters affecting the emergence
of higher order spatial modes and a decrease in the fundamental mode level. Such inves-
tigations also have not been carried out previously. Since the manufacturing mechanical
resonators of optomechanical accelerometers and their assembly with the Fabry–Pérot
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cavity is expensive and time consuming, the planned experimental studies will be carried
out further considering the obtained modeling data.

After the assembly of an optomechanical accelerometer and a Fabry–Pérot cavity is
manufactured, it must be tested to determine the possible asymmetry of its elements that
could cause higher order spatial modes to appear during operation. Experiments that inves-
tigate the distributions of the fundamental harmonic mode that occurs in the Fabry–Pérot
cavity during scans that involve deviation of the laser beam axis from the cavity axis in the
vertical and horizontal directions can be used for such testing. As follows from the modeling
of the dependence of the normalized amplitude of the fundamental mode on the deviation
of the laser beam axis from the Fabry–Pérot cavity axis in the vertical direction (±∆H), in
the case when the other parameters under consideration (α and bR) have no deviations, the
distribution of A1(±∆H) is symmetrical (see Figure 12c, curve 1). If the parameters α and bR

have even minor deviations, for example, those levels, the presence of which does not cause
misalignment (α = 0.003◦—see Figure 12a, bR = hcav × 0.005 = 0.03 mm—see Figure 12b),
then the distribution A1(±∆H) becomes essentially asymmetrical (see Figure 12c, curve 2).
This asymmetry is explained by the fact that when the displacement of the spherical mirror
axis (bR > 0) and/or the angle of inclination of the flat mirror (α > 0) occur in the same
direction as the displacement of the laser beam axis (∆H > 0), some compensation of the
asymmetry happens compared to the case when such displacements of bR and α are absent
(bR = 0, α = 0), and the modulus of the fundamental mode decreases less (compare the right
parts of curves 1 and 2 in Figure 12c). If the direction of the laser beam axis displacement
does not coincide with the directions of displacements of bR and α (bR > 0, α > 0, ∆H <
0), then an increase in the degree of asymmetry in comparison with the case when bR = 0,
α = 0, ∆H < 0 occurs (compare the left parts of curves 1 and 2 in Figure 12c).

As already indicated above, this is explained by the fact that when the parameters are
shifted in the same direction, the asymmetry of the system somewhat decreases. When
shifted in different directions, the asymmetry of the system increases. This feature can be
used to assess whether the asymmetry of the assembly “mechanical resonator—Fabry–Pérot
cavity” can cause cavity misalignment. If the dependence A1(±∆H) is asymmetrical when
the laser beam axis is shifted vertically or horizontally, then the asymmetry of the assembly
will cause cavity misalignment. Despite the seeming obviousness of this approach, the
main thing in its application is the quantitative differences between the amplitude levels of
the fundamental mode when the laser beam axis moves above or below the resonator axis.
As shown in Figure 12c, the asymmetry of the curve A1(±∆H) is quite significant, even
with minor deviations in the cavity parameter values.

6. Conclusions
A model for describing the processes of wave optics during the passage of a laser

beam through a Fabry–Pérot cavity is implemented numerically using the finite element
method in the COMSOL Multiphysics package. The case when two spherical mirrors form
the Fabry–Pérot cavity is considered; a comparison of the results obtained using this model
with the results of the analytical solution [12] is carried out, which showed their coincidence
within 2–3%. Numerical modeling revealed that in a Fabry–Pérot cavity consisting of a flat
and a spherical mirror, when the laser beam axis is shifted vertically relative to the cavity
axis, the wave splits into two higher modes or more, which coincides with the experimental
data for such a case [16].

Using the performed numerical simulation, we obtained dependences characterizing
the decrease in the fundamental mode amplitude for various values of the deviations of
the system parameters from the symmetrical arrangement. Thus, the displacement of the
spherical mirror axis in the vertical direction relative to the laser beam axis, coinciding with
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the cavity axis, by a value no greater than 0.5% of the cavity height leads to a decrease in
the fundamental mode amplitude by no more than 3% (see Figures 12b and 16). Inclination
of the flat Fabry–Pérot cavity mirror by angles less than 0.003◦ leads to a decrease in
the fundamental mode amplitude by no more than 3% (see Figures 6 and 12a). The
displacement of the laser beam axis does not lead to a decrease in the fundamental mode
amplitude by more than 3% if the value of this displacement does not exceed 6% of the
laser beam diameter (see Figure 17; Figure 12c, curve 1).

As can be seen from the calculated curves of the reduction in the fundamental mode
levels depending on the tilt angle of a flat Fabry–Pérot cavity mirror α—Figure 12a, the
displacement of the axis of the Fabry–Pérot cavity spherical mirror bR—Figure 12b, the
degree of laser beam axis displacement ∆H—Figure 12c, the most significant influence on
the misalignment of the Fabry–Pérot cavity causes the level of tilt angle of a flat Fabry–Pérot
cavity mirror. The dependences of the fundamental mode levels on the values of bR and
∆H are similar since they belong to the same type of asymmetry. Thus, when assembling
a mechanical resonator and a Fabry–Pérot cavity “flat mirror—spherical mirror”, primary
attention should be paid to monitoring the parallelism of its flat mirror.

The combination of displacements of different parameters of the Fabry–Pérot cavity
can cause either a decrease or an increase in the degree of the cavity misalignment (see
Figure 12c, curve 2). This property can be used to evaluate the quality of the Fabry–Pérot
cavity assembly with the mechanical resonator, as suggested in the Discussion section.
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