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Abstract. Rail monitoring using in-service vehicles enables the fast
detection of surface defects, which are often responsible for high noise
emission. In this paper a processing sequence is presented that converts
axle box accelerations into rail condition indicators based on spectral
characteristics of the rail surface. The methodology is exemplified with
data acquired with a shunter locomotive operating at an inland harbour
in the city of Braunschweig, Germany.
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1 Introduction

Railways play an important role for urban transportation and mobility. How-
ever, railway noise is a considerable challenge in urban environments and its
minimization is an important task. The continuous monitoring of the rail surface
can help to identify track segments that are potential sources of increased noise
emissions. Traditional methods of rail condition monitoring are based on visual
inspections and manually operated measurement equipment. These are accurate
and reliable but relatively expensive and slow. They cannot be carried out dur-
ing railway operations and thus are performed only at dedicated time intervals.
Vehicle-based condition monitoring (VBCM) in contrast is fast and cost efficient,
especially if carried out with in-service vehicles. It provides data of entire track
networks continuously. Therefore, there is a growing interest in VBCM with in-
service vehicles for urban railway networks. However, urban railway operations
present unique challenges for VBCM compared to mainline railways [4]. Highly
variable vehicle speeds, short travel intervals and frequent stops complicate vehi-
cle positioning and data analysis. This results in a special demand for dedicated
data processing and analysis algorithms. In this paper we present a combina-
tion of signal processing, data fusion and machine learning techniques for the
c© The Author(s) 2025
C. McNally et al. (Eds.): TRAconference 2024, LNMOB, pp. 335–341, 2025.
https://doi.org/10.1007/978-3-031-85578-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-85578-8_42&domain=pdf
https://doi.org/10.1007/978-3-031-85578-8_42


336 B. Baasch et al.

spectral characterisation of the rail surface in urban environments. Specifically,
georeferenced axle-box accelerations (ABA) are analysed and decomposed in dif-
ferent spectral components. The use of accurate speed information from vehicle
positioning allows to transform the data from a time-frequency representation
to an equivalent representation in the spatial domain, which reveals speed inde-
pendent information on the wavenumber spectrum of the rail surface. In this
spectral domain unsupervised feature extraction is performed. The features can
then be linked to rail surface defects such as corrugation.

2 Materials and Methods

The goal of the VBCM methods described here is to find and extract spec-
tral patterns that can be linked to characteristics of rail surface irregularities.
The following sections describe the complete process chain from data record-
ing through signal processing to the extraction of characteristic features for rail
condition monitoring.

2.1 Data Acquisition

Onboard data have been acquired with a shunter locomotive operating at the
Braunschweig (Germany) Harbour. Condition monitoring of the track is carried
out by using analogue broadband three-component accelerometers, which mea-
sure the ABA with a working frequency band of 0.8-8,000 Hz. The accelerometers
are mounted on the axle boxes on the left and right side of the shunter’s front
axle. The resulting six ABA channels are digitised by an analogue-to-digital
converter and sampled with 20.625 Hz. A central data processing unit is used to
collect and process the data. The multi-sensor system further comprises GNSS
(global navigation satellite system) receiver and antenna and an IMU (inertial
measurement unit) for vehicle positioning tasks.

2.2 Georeferencing

In this context georeferencing refers to the association of actual locations in the
track network to the ABA recordings. It facilitates the track-dependent analysis
of monitoring data from repeated runs and is crucial for tracking the development
of rail defects over time. Furthermore, accurate velocity estimates are important.

The actual georeferencing is performed using an advanced processing pipeline
that is based on [6]. It employs map data and Kalman filters. In brief, the follow-
ing steps are performed. First, the GNSS and IMU data of entire measurement
days (sessions) are processed in a Kalman filter and smoother to provide accu-
rate estimates of the vehicle velocity, longitudinal acceleration, and the IMU
acceleration bias. Based on these results, the session is divided into single jour-
neys from vehicle start to stop (without changes of direction). For each journey
the driven path in the network is then found from a graph of the network and
comparing different path hypothesis with the GNSS measurements. Finally, the
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GNSS and IMU are re-processed using an on-path Kalman filter and smoother
that encodes the vehicle position as a one-dimensional on-path distance. The
georeferencing results comprise position and velocity estimates with covariance
matrices. The 100 Hz output rate translates to a spatial resolution of ca. 0.14 m
at 50 km/h.

2.3 Signal Processing

When a train travels along a track with a defect characterized by a specific
wavelength λ at a constant speed v, it undergoes a vertical movement, and the
excitation frequency of the resulting vibration is given by f = v/λ [7].

Time-frequency representations are powerful tools to analyse these frequency
patterns in the ABA data [2,5]. The task of the signal processing here is to
transform the time domain data to a space-wavenumber representation that
facilitates the extraction of characteristic wavelength patterns of rail surface
irregularities.

First, the data is transformed from the time domain to a time-frequency rep-
resentation using a Short-Time-Fourier-Transform (STFT). The discrete STFT
of the signal y[n] with the window w[n] can be expressed as

STFT{y[n]}[m, f ] ≡ Y [m, f ] =
n=N∑

n=1

y[n]w[n − m]e−i2πfn, (1)

where n, m and f are discrete time and frequency steps, respectively.
In the time-frequency domain the frequency response of the wheel-rail system

is removed employing log-spectral averaging as follows:
The wheel-rail interaction can be modelled by a linear time-invariant system

in form of the convolution of the source (rail roughness) function r (t) and the
impulse response of the rail-wheel system s (t):

y (t) = s (t) ∗ r (t) . (2)

The logarithmic amplitude of the STFT of y (t) can then be expressed as

log |Y (m, f)| = log |S (m, f)| + log |R (m, f)| . (3)

If the rail roughness function is considered spatially non-stationary and the
rail-wheel response stationary, by averaging the log-spectra of the overlapping
segment of the STFT, the log-spectra of the rail roughness will average out and
the resulting estimate of the log-spectrum of the rail-wheel system

log
∣∣∣Ŝ (m, f)

∣∣∣ = 1/M

m=M∑

m=1

log |Y (m, f)| (4)

can then be subtracted from log |Y (m, f)|, which yields an estimate of the log-
arithmic amplitude of the STFT of the rail roughness:

log
∣∣∣R̂ (m, f)

∣∣∣ = log |Y (m, f)| − log
∣∣∣Ŝ (m, f)

∣∣∣ . (5)
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Finally, the time-frequency representation of the rail roughness function is
transformed to a distance(x)-wavenumber(k) representation using vehicle speed
obtained from georeferencing with x = tv and k = f/v = 1/λ.

This representation serves as input to the feature extraction via machine
learning, which is explained in Sect. 2.4. Figure 1 shows the raw onboard data
from one journey in the time-domain (top) and after signal processing as
distance-wavenumber representation (bottom).

Fig. 1. ABA data in the time domain (top), in the time-frequency domain (middle)
and distance-wavenumber domain (bottom).

2.4 Machine Learning

An unsupervised machine learning approach is used to extract characteristic
spectral patterns from the distance-wavenumber representation of the ABA data.
Specifically, an undercomplete sparse dictionary is learned that represents the
actual input data in a lower-dimensional space. The atoms of the dictionary
represent characteristic spectra of the rail surface. The weights of the atoms can
then be used to find and describe rail surface defects. The dictionary H and the
weights W can be found via the following optimization problem:

arg min
W,H

1
2
‖Y − WH‖2Fro + α‖W‖1,1, (6)

where ‖.‖2Fro stands for the Frobenius norm and ‖.‖1,1 stands for the element-
wise matrix norm, namely the sum of the absolute values of all the entries in the
matrix.
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3 Results

Onboard data acquired with a shunter locomotive as described in Sect. 2.1
are used to exemplify the results of the proposed methodology. In Fig. 1 the
time frequency representation of the raw data is compared with the distance-
wavenumber representation of the data after signal processing. It can be seen
how, after signal processing, the rail-wheel system’s response and spectral com-
ponents of rotating parts of the wheelset and engine are suppressed, whereas the
spectral components associated with the irregularities of the rail surface stand
out. In the distance-wavenumber domain, characteristic spectra are extracted by
sparse dictionary learning. Eight atoms representing wavenumber spectra of the
rail surface are found (Fig. 2). The low wavenumber atoms (dark blue lines) rep-
resent track geometry anomalies with longer wavelength, whereas atoms in high
wavenumber ranges (light-green and yellow lines) represent short-wavelength

Fig. 2. Different atoms of the learned dictionary. Brightness of lines increases with
increasing wavenumber of the maximum magnitude of the different atoms.

Fig. 3. Map of the railway network [1]. Dots indicate rail surface anomalies. The color
represents the atom according to Fig. 2 that best approximates the wavenumber spec-
trum of an anomaly. The size represents the magnitude of the corresponding weight.
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rail irregularities. The sparsity constraint on the weights ensures that mainly
frequency components from relatively strong track and rail irregularties are con-
sidered. The weights of these atoms can be mapped on the railway network
(Fig. 3). The high-wavenumber anomalies indicated by yellow and light-green
dots at a rail segment in the north-west of the map reflect known corrugation
defects.

4 Conclusions

A methodology to monitor the rail surface condition using in-service vehicles
has been presented. It includes sensor fusion, signal processing and machine
learning approaches that are suitable to extract information from ABA data in
challenging environments. Real-world data from a shunter locomotive operating
at an inland harbour in the city of Braunschweig, Germany were presented and
analysed. The results indicate the great potential of the presented methodology
to detect and describe rail surface irregularities with in-service vehicles. The
conditions of the shunting operations pose typical challenges that are shared
by other urban railway systems such as light rails and trams. Therefore, the
methodologies presented here are readily applicable to other kinds of urban rail
transportation systems.
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