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Decoupling of external and internal dynamics in driven two-level systems
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We show how a laser driven two-level system including quantized external degrees of freedom for each
state can be decoupled into a set of oscillator equations acting only on the external degrees of freedom with
operator valued damping representing the detuning. We give a way of characterizing the solvability of this
family of problems by appealing to a classical oscillator with time-dependent damping. As a consequence of this
classification we (i) obtain analytic and representation-free expressions for Rabi oscillations including external
degrees of freedom with and without an external linear potential, (ii) show that whenever the detuning operator
can be diagonalized (analytically or numerically) the problem decomposes into a set of classical equations,
and (iii) we can use the oscillator equations as a perturbative basis to describe Rabi oscillations in weak
but otherwise arbitrary external potentials. Moreover, chirping of the driving fields phase emerges naturally
as a means of compensating the Ehrenfest/mean-value part of the detuning operator’s dynamics while in the
presence of driving phase noise leads to a stochastic evolution equation of Langevin type. Lastly, our approach is
representation free with respect to the external degrees of freedom and as consequence a suitable representation
or basis expansion can be chosen a posteriori depending on the desired application at hand.
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I. INTRODUCTION

The two-level system and the harmonic oscillator consti-
tute the two foundational models upon whose understanding
most of today’s descriptions of quantum systems are built
upon. In quantum optics and cavity quantum electrodynam-
ics the two-level atom in resonator combines both of these
systems into a single, interacting system. In this form, this
duo serves as the workhorse model of these fields, e.g., as the
Jaynes-Cummings [1] or Rabi model. Fundamentally, these
models describe the simplest conceivable coupling between
a spin system and a continuous degree of freedom. As such,
they have been studied extensively in quantum optics [2,3]
and feature heavily in applications ranging from atomic clocks
[4,5] over atom interferometers and inertial sensors [6–9] and
atomtronics [10] to quantum repeaters [11] and qubits [12] in
the field of quantum information.

Many of these approaches, experiments, and systems in-
volve a two-level system with motional degrees of freedom,
driven coherently by an external (classical) field. This combi-
nation leads to coherent Rabi oscillations [13] of the two-level
system for resonant external driving fields. Without external,
that is motional degrees of freedom, there even is a wide
range of analytic solutions available [14–19] for different
pulse envelopes in the driving field. In qubit applications
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[20,21] and atomic clocks [22,23] the motional degrees of
freedom of the system are often seen as parasitic effects lim-
iting the ultimate precision and stability of such systems. In
such cases the motional degrees of freedom might represent,
e.g., residual motion in the trap, stray fields, or vibrations.
In contrast, in atom optics the coupling between internal dy-
namics and external motion is key in transferring momentum
to atoms via diffraction and thus opens the door to perform
atom interferometry in the first place [24–26]. In all of these
cases the joint system, consisting of continuous external and
spin-like internal degrees of freedom, is driven by the exter-
nal field to facilitate a transition. Hence, a full description
also necessitates solving the coupled Schrödinger dynamics
of internal and external motion, as they are noncommutative
in general. Even in the simplest case of a two-level atom
interacting with a potential in free space we are thus left with
an intricately coupled and complex six-dimensional partial
differential equation system when all internal and external
degrees of freedom are accounted for. Although nowadays a
feasible task, this is, in general, still numerically challenging.
As a consequence, finding simplifications for this problem is
of immense interest as they may proof useful in many appli-
cations or lead to new insights and methods. In this article we
provide such a simplification by formally decoupling internal
and external dynamics of a driven spin system under quite
generic assumptions.

Overview and key results

In this article particularly, we show that internal spin-
and external dynamics can be decoupled and the Schrödinger
equation is equivalent to a decoupled system of driven os-
cillator equations with operator-valued coefficients. These
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oscillator equations and their solution give direct access to the
matrix elements of the time-evolution operator with respect to
the spin degrees of freedom of the system. Furthermore, they
can be solved directly for specific external potentials, among
them the free particle and a linear potential, which leads us to
representation free analytic expressions for the time-evolution
operator in these cases. Moreover, the oscillator equations and
their solutions can serve as basis for a suitable perturbation
expansion applicable to arbitrary but weak external potentials.
This perturbation expansion directly accounts for the oscilla-
tory nature of the spin dynamics without relying on a specific
choice of interaction picture first in contrast to typical appli-
cations of perturbation theory via the Dyson series. Lastly, we
apply our perturbation method to the case of a two-level atom
in a quadratic potential and show how the combination of
internal and external dynamics modifies the Rabi oscillations.

Our paper is organized as follows: Section II demonstrates
the process of decoupling the Rabi model, which incorpo-
rates external degrees of freedom in arbitrary potentials, into
oscillator equations solely within the external space. This
derivation is followed by three subsections discussing differ-
ent aspects of the model. In Sec. II A we explicitly show how
our oscillator equation can be brought into a (less favorable)
form which coincides in special cases with a previously de-
rived result by Marzlin et al. in Ref. [27] for the case of a
linear potential. In Sec. II B we discuss the emergence of the
resonance condition from our operator approach. Following
this in Sec. II C we elaborate how chirping the driving field
can be used to on average remove the action of the potential
and how phase noise from the driving field enters.

In the following Sec. III we apply our results to the cases of
(i) a free particle and (ii) a particle in a linear potential where
we obtain an analytical solution in both cases by considering a
classical oscillator equation. Moreover, in Sec. III C we derive
a perturbative approach based on our oscillator equation for
the case of driven Rabi oscillations in weak external poten-
tials. We conclude the applications by and example and apply
this result to the case of a particle in a harmonic potential.

Lastly, we recap and conclude in Sec. IV and comment on
possible future applications for the results presented here.

II. DECOUPLING DRIVEN RABI MODELS
IN EXTERNAL FIELDS

Throughout this article we will employ the following nota-
tion: Operators on the system’s total Hilbert space, consisting
of the internal and external degrees of freedom, will be
denoted with script letters (e.g., H, S). Operators on the ex-
ternal space will be denoted with a hat on top, for example,
the position operator ẑ and the momentum operator p̂. We
will often suppress the functional dependency of not explic-
itly time-dependent objects like Heisenberg picture operators.
Additionally, we will formally write sequences of operators
containing an inverse as fractions where the denominator is
always assumed to be ordered to the left-hand side of the
sequence. For example, we have A/B = B−1A for two op-
erators A and B. With these preliminaries settled we turn to
our task at hand, decoupling internal and external motion of a
driven two-level system.

The Hamiltonian of a two-level system with internal states
|e〉 and |g〉 with quantized motional degrees of freedom in
presence of an external, classical laser field in paraxial and
dipole approximation takes the form [27,28]

H0 =
∑

j∈{e,g}

(
p̂2

2m
+ Vj (ẑ)

)
⊗ | j〉〈 j| − E (ẑ, t ) ⊗

∑
�, j∈{e,g}

d� j |�〉〈 j|,

(1)

where p̂ is the momentum operator and ẑ the posi-
tion operator of the two-level system along the propa-
gation direction of the light field, m the atomic mass,
E (t, ẑ) = E0 cos [ωLt − kẑ + ϕL(t )] the magnitude of the
electric field of the laser and the dipole transition ele-
ment d� j = 〈�|d| j〉 of the atom. The atom’s internal en-
ergy h̄ε j is accounted for by the state-dependent potential
Vj (ẑ) = Q(ẑ) + h̄ε j . Note that this form of interaction is
generic in the sense that a similar expression can be written
down for the magnetic dipole interaction or any bilinear cou-
pling between the two-level atom and external modes.

With the help of the rotating-wave approximation and by
transforming into the interaction picture with respect to the
internal energy levels h̄ε j , this Hamiltonian can be approxi-
mated [29] in a simpler form as [27,28]

H0 =
(

p̂2

2m + Q̂ h̄� ei(ϕ(t )+kẑ)

h̄� e−i(ϕ(t )+kẑ) p̂2

2m + Q̂

)
, (2)

with the phase function ϕ(t ), the external energy p̂2/(2m) + Q̂
where the potential Q̂ is assumed to be state and time inde-
pendent. While state independence up to a constant difference
is mandatory for the following the requirement on time in-
dependence can be lifted by using appropriate time-ordered
exponentials in a generalized version of the derivation which
follows below and does not change the end result.

Note that any additional constants on the diagonal of
Eq. (2) are transformed into the phase term ϕ(t ) by the appro-
priate unitary transformation into the interaction picture. The
dipole operator matrix element defines the Rabi frequency
h̄� = −E0〈�|d| j〉/2. Here E0 is the amplitude of the electric
field and d is the dipole operator. Equation (2) has a variety
of applications and appears in various systems, e.g., single
Raman diffraction [26,29–32]. The laser frequency ωL, the
laser phase ϕL(t ), and the level splitting ε j are then collected
in the time-dependent function

ϕ(t ) = t�(εe − εg − ωL) − ϕL(t ). (3)

In this manner constant state-dependent potentials, such as
state-dependent light shifts, can be removed in full analogy
to the internal energy difference between the states.

To simplify the notation and explicitly highlight the rele-
vant timescales we introduce the dimensionless time τ = t�.
Furthermore, we introduce a dimensionless pair of momen-
tum and position operators that define the characteristic
(dimensionless) Doppler frequency operator and recoil length
operator in relation to the Rabi frequency via [27]

ν̂( p̂) = k p̂

m�
and ζ̂ (ẑ) = kẑ

2ωr
, (4)
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with the recoil frequency ωr = h̄k2/(2m�). These dimen-
sionless operators fulfill the canonical commutation relation
[ζ̂ , ν̂] = i.

With these operators we define the displacement op-
erator D̂ = exp(i(2wr ξ̂ + φ(τ ))) with the (laser) phase
φ(τ ) = ϕ(τ/�), which naturally shifts the Doppler oper-
ator by 2ωr. Similarly, the kinetic energy term takes the
form T̂ = p̂2/(2mh̄�) = ν̂2/(4ωr ) while the external poten-
tial becomes V̂ = Q̂(ẑ)/(h̄�) = Q̂(2ωrζ̂ /(k))/(h̄�). Using
these definitions the Hamiltonian, Eq. (2), takes the compact
form

H0

h̄�
=

(
T̂ + V̂ D̂

D̂† T̂ + V̂

)
= H. (5)

To obtain the time evolution generated by this Hamiltonian we
need to solve the Schrödinger equation

i
d

dτ
U = HU , and U (0) = 1. (6)

Our aim in this section is to decouple the Schrödinger
equation with respect to the internal states by deriving a
diagonalized equation. To do so, we start by removing all
diagonal elements of the Hamiltonian Eq. (5) via a unitary
transformation, that is,

S = Ŝ ⊗ 12 = exp(−iτ (T̂ + V̂ )) ⊗ 12, (7)

where Ŝ is the part of the transformation acting purely
on the external degrees of freedom. This transformation
leads to an interaction picture where the diagonal terms of
the Hamiltonian are removed in their entirety. While ini-
tially counterintuitive, we will see shortly that this purely
off-diagonal form will become handy, when we consider
a second-order equation emerging from this Schrödinger
equation.

The resulting interaction picture Schrödinger equation and
its Hamiltonian are

i
d

dτ
US = HSUS with US (0) = 1 and

HS =
(

0 D̂S

D̂†
S 0

)
. (8)

This Hamiltonian HS is governed by the operator D̂S = Ŝ†D̂Ŝ,
which is the interaction picture operator with respect to the
external motion’s evolution operator Ŝ = exp(−iτ (T̂ + V̂ )).
Within this interaction picture external operators evolve un-
der Ŝ. In particular, they follow the Heisenberg equations of
motion

d

dτ
ÔS = i[ĤS, ÔS], (9)

with respect to the external Hamiltonian ĤS = T̂ + V̂ .
As we aimed for, the remaining Hamiltonian Eq. (8) is

now purely off-diagonal and governed solely by the unitary
operator D̂S (and its inverse D̂†

S).
In the next step we exploit this property to decouple the

equations for the internal degrees by defining the Schrödinger
differential operator L = (i d

dτ
− HS ) and applying L† to

LUS = 0. This way we derive a second-order equation for the
time evolution operator. The corresponding initial conditions

are derived by applying the operator L once on the initial
conditions of the original Schrödinger equation, Eq. (8). This
procedure yields the second-order problem

L†LUS =
[

d2

dτ 2
+ H2

S + i

(
d

dτ
HS

)]
US = 0 with (10)

US (0) = 1 and U̇S (0) = −i

(
0 D̂S(0)

D̂†
S(0) 0

)
. (11)

Our aim is now to convert the operator sequence L†LUS
into a diagonal form. This can be achieved by applying a
formal trick. Namely, we formally multiply the inverse of
the Hamiltonian H−1

S onto the Schrödinger Eq. (8) from the
left such that the time evolution operator can be expressed
formally as US = iH−1

S
d

dτ
US . By design of the unitary trans-

formation from Eq. (7) and the unitarity of the displacement
we find the relation H2

S = 1 and consequently HS
−1 = HS .

Note, that the inversion of the Hamiltonian is possible if it is
bounded from below as the energy can be shifted such that HS
is positive definite. In our case at hand HS has eigenvalues
that are ±1 independently of the potential that is assumed.
Therefore, an inversion is always possible.

Finally, by inserting the inverted Schrödinger equation into
the last term of Eq. (10) we arrive at

L†LUS =
[

d2

dτ 2
+ 1 −

(
d

dτ
HS

)
HS

d

dτ

]
US = 0, (12)

which is the promised second-order equation. The insertion of
the inverse seems rather arbitrary and a bit ad hoc at first but
will ultimately lead to a diagonal form.

We are left with the task to evaluate the derivative of the
Hamiltonian HS that is determined by unitary interaction
picture displacements D̂S and its adjoint.

By applying the usual Lie-algebraic formulas [33,34] or
equivalent operator derivative rules [35] we obtain the deriva-
tive of the interaction picture displacement as

d

dτ
D̂S = 2iD̂Sδ̂−(τ ) = −2iδ̂+(τ )D̂S. (13)

For the details and intricacies of the operator derivative cal-
culation we refer to Appendix A. Furthermore, we introduced
the detuning operators δ̂± in the previous equation via

δ̂±(τ ) = 1

2

(
∓dφ(τ )

dτ
∓ ν̂S + ωr

)
. (14)

Here we also recall the definition of the dimensionless
Doppler operator as defined in Eq. (4), ν̂S = �−1k p̂S/m,
as well as the (dimensionless) recoil frequency [27,28] via
ωr = �−1h̄k2/(2m). We emphasize that the Doppler operator
ν̂S = Ŝ†ν̂Ŝ is in the interaction picture with respect to the
evolution operator of the external motion Ŝ and therefore time
dependent.

In contrast to typical discussions of atomic diffraction
based on resonant transitions and their slight off resonance
due to a detuning [27,28,31], in our derivation the detuning
and Doppler operators arise as natural consequences of the
underlying operator structure without such assumptions and
any notion of a diffraction process. Moreover, we observe that
the evolution of these operators is governed by the Heisenberg
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equations of motion, Eq. (9), with respect to the external
generator of motion ĤS .

When we insert the derivative of the displacement,
Eq. (13), into the corresponding term of Eq. (12) we arrive
at the identity(

d

dτ
HS

)
HS = −2i

(
δ̂+(τ ) 0

0 δ̂−(τ )

)
, (15)

which shows that the sequence L†LUS is diagonal with re-
spect to the internal degrees of freedom as we promised.

In general, the full time-evolution operator can be obtained
from its matrix elements û� j = 〈�|US | j〉 with respect to the
internal degree of freedom labeled by �, j ∈ {e, g}. However,
usually these matrix elements are intricately coupled. In stark
contrast, in our case the matrix elements solve separate and
decoupled operator oscillation equations with respect to the
external degrees of freedom only, that is,[

d2

dτ 2
+ 2iδ̂±(τ )

d

dτ
+ 1

]
û� j = 0, (16)

where we use the index + for � = e and − for � = g in the
individual elements.

This oscillator equation, Eq. (16), also accounting for the
external dynamics is the key result of this article and will
be applied to various examples in the course of Sec. III.
Furthermore, it is a damped harmonic oscillator where the
damping terms are purely imaginary and their magnitude is
determined by the hermitian detuning operators δ̂±(τ ) which
in general are time dependent. This equation is not entirely
unknown if the external motion is neglected and its solvability
in this case is discussed extensively by Shore, e.g., in Ref. [13]
in terms of the classical theory of special functions resulting
from second-order differential equations.

Note, arriving at this result depends crucially on inverting
the Hamiltonian in the manipulations inbetween Eqs. (10) and
(12). Nevertheless, the only major restrictions we impose with
respect to the starting Hamiltonian and during the derivation
is that the operator part of the potential Q̂ is common to both
internal states and HS is invertible.

Moreover, our calculation holds for arbitrary phase func-
tions φ(τ ) and thus the oscillator equation grants direct access
to treating dynamic driving/laser phase variations or noise
to which we return in Sec. II D. Additionally, Eq. (16) can
serve an excellent basis for a perturbation expansion in cases
where the operator valued detunings are small. The interaction
picture operators contained in the detuning usually do not pose
an obstacle since the interaction picture momentum operator
itself can be expanded perturbatively in various ways without
solving the Heisenberg equation of motion exactly [36,37].

Lastly, for a free particle and in a linear potential the
oscillation equation becomes only momentum dependent and
is hence an easily solvable equation, as shown explicitly in
Secs. III A and III B.

A. Equivalent form of oscillator equations

Our result from Eq. (16) can be cast into a form, where
the first-order derivative term d/dτ û� j is removed. To achieve
this we take inspiration from the transformation theory of clas-

sical second-order equations/Sturm-Liouville problems and
integrating factors [38]. However, in our case we need to
add time/path-ordering since we are working with operator-
valued oscillator equations of the form[

d2

dτ 2
+ 2iδ̂(τ )

d

dτ
+ 1

]
û = 0, (17)

for which it cannot be neglected. Note, that the previous
equation is identical to Eq. (16) if the ± indices are dropped.

As an integrating factor we choose the unitary transforma-
tion defined by

Ŵ = T exp

{
i
∫ τ

0
ds δ̂(s)

}
and û = Ŵ û′, (18)

where the overline signifies antitime ordering leading to
dŴ /dτ = iŴ δ̂(τ ). As a consequence of this transformation
we find the Sturm-Liouville normal form of our operator
equation, which becomes[

d2

dτ 2
+ β̂(τ )

]
û′ = 0 (19)

for the operator û′ with the operator valued and time-
dependent frequency

β̂(τ ) = 1 + δ̂2(τ ) − i
d

dτ
δ̂(τ ). (20)

Equation (19) is free of first-order time derivatives with re-
spect to û′.

When we perform analogous transformations on all in-
ternal states of Eq. (16) we arrive at an operator oscillation
equation without the first derivative terms d/dτ û� j , i.e.,{

d2

dτ 2
+

[
1 + δ̂2

±(τ ) − i

(
d

dτ
δ̂±(τ )

)]}
û′

� j = 0. (21)

This equation is a generalization to arbitrary potentials of
the approach first put forward by Marzlin in Ref. [27] in the
case of a linear potential. We observe that the detuning δ̂±
emerges quadratically in combination with its first derivative
in contrast to Eq. (16) where it only appears linearly and its
derivative is absent.

While fundamentally interesting, this result, as well as
perturbation theory based upon it, is rather cumbersome since
the reference oscillator now explicitly depends on time. In
contrast, in our original approach, the reference oscillator in
Eq. (16) is time independent and has unit frequency. More-
over, we do not need to compute the square of the detuning
operator and its derivative. For example, in the case of de-
tuning operators that are polynomial functions of x̂ and p̂ the
squaring will lead to much more complicated operator de-
pendencies. Another formidable problem is posed by finding
an explicit expression for the time-ordered exponential of the
detuning in the transformation, Eq. (18), which is needed to
link this formulation to the original problem. These reasons
suggest that a generalization of the approach in Ref. [27] is
less suitable for a perturbative analytical treatment in arbitrary
potentials.

In contrast, in our oscillator equation, Eq. (16), the detun-
ing appears linearly and only the interaction picture Doppler
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operator needs to be calculated. This allows for a straight
forward implementation of perturbation theory within the os-
cillation equations as we explicitly show in Sec. III C.

Before we apply Eq. (16) to different potentials in Sec. III it
is useful to analyze its basic properties and implications. More
specifically, it will be helpful to obtain a basic understanding
of the detuning operators, their action, and how they can be
reconnected to the intuitive idea of scalar detunings since
they are the governing elements of the oscillator equations.
Therefore, we will investigate the instantaneous eigenstates of
the detuning operators and analyze the case where in a given
setup the explicit time dependence can be removed completely
or approximately from the oscillation Eq. (16).

B. Generalized detuning eigenspace and algebra

First, we recall from Eq. (14) the detuning operator

δ̂±(τ ) = 1

2

(
∓dφ(τ )

dτ
∓ ν̂S + ωr

)
, (22)

with the interaction picture operator ν̂S = �−1k p̂S/m and
the phase function φ(τ ). In typical treatments of atomic
diffraction, as put forward, for example, in Refs. [26,31],
the resonance condition is typically formulated via energy
momentum conservation in discretized momentum space be-
tween the initial and final atomic state.

In our case we have to consider both detuning operators
and their instantaneous eigenspaces. To treat both simulta-
neously we solve the generalized eigenvalue problem of the
second kind [39] defined by

(
δ̂+ 0
0 δ̂−

)(|ν+〉
|ν−〉

)
= δσz

(|ν+〉
|ν−〉

)
. (23)

The solution of this generalized eigenvalue problem yields
(simultaneous) eigenvectors not only for the detuning operator
but at the same time for the internal spin operator σz.

Physically, the appearance of the operator σz can be traced
back to the fact that before and after the interaction has been
switched on and off the system is in a well-defined spin as well
as motional state. Alternatively, and guided by the math, we
simply chose the eigenbasis of σz as our matrix representation
for the two-level system.

Under the assumption that |ν±〉 are eigenfunctions of ν̂S

with the eigenvalues ν±, we find from Eqs. (22) and (23) the
relation

ν+ = ν− + 2ωr, (24)

or equivalently, in momentum space p+ = p− + h̄k, which
shows, that the momentum change from p− to p− + h̄k is
connected with an internal state transition. Moreover, the limit
δ → 0 and the eigenvalue δ = 0 determines what is usually
called the resonant Doppler frequency ν0 via the (resonance)
condition (

δ̂+ 0
0 δ̂−

)(|ν0 + 2ωr〉
|ν0〉

)
= 0, (25)

or equivalently, in terms of the momentum operator and its
eigenfunctions the resonant momentum p0 via(

δ̂+ 0
0 δ̂−

)(|p0 + h̄k〉
|p0〉

)
= 0. (26)

We emphasize that the resonance condition is fulfilled for
specific pairs of eigenvectors residing in the individual kernels
of the respective detuning operators which can correspond to
multiple or even infinitely many values.

C. Modifiying the detuning operator and chirping

By adjusting the time dependence φ(τ ) of the phase of
the driving field we can modify and influence the detuning
operator. This procedure [26] is widely known as chirping the
resonance. More specifically, if we force the average detuning
to be constant in time via the condition

d

dτ
〈δ̂±〉 = d

dτ

〈
∓ dφ(τ )

dτ
∓ ν̂S + ωr

〉
= 0, (27)

we arrive at the chirping condition

d2

dτ 2
φ(τ ) = − d

dτ
〈ν̂S〉 = k

m�2

〈
∂V (x)

∂x

∣∣∣∣
x=x̂S(τ )

〉
, (28)

where V (x) is the potential occuring in the external Hamilto-
nian ĤS. More generally, an analogous consideration to our
calculation in three dimensions leads to the general condition

ϕ̈(t ) = k
m

· 〈∇xV (x)|x=x̂S(t )〉, (29)

after using τ = �t and recalling ϕ(t ) = ϕ[τ (t )/�] ≡ φ(τ ).
This condition needs to be paired with appropriate initial
conditions, e.g., ϕ̇(0) = �ω and ϕ(0) = ϕ0. In atom inter-
ferometry experiments the freedom of choosing the phase
ϕ is often used [40] to compensate for the leading-order
(Ehrenfest) contributions of the atomic motion [30] entering
from the detuning operator. More specifically, and as we
show in Sec. III B, in case of a linear potential V̂ = ar the
effect of the potential can be removed completely by choosing
ϕ(t ) = ϕ0 + �ωt + kat2/(2m). In all other cases one needs to
content oneself with an approximate removal of the average
detuning.

D. Laser phase noise

Before moving on to applications we briefly discuss the im-
pact of phase noise, namely, the case where the driving fields
phase ϕ(t ) is replaced via ϕ(t ) �→ ϕ(t ) + δϕt where δϕt is a
stochastic process with appropriate statistics, e.g., a Wiener
process with 〈 d

dt δϕt 〉t = 0 and 〈 d
dt δϕt

d
dt ′ δϕt ′ 〉t = sδ(t − t ′),

where 〈•〉t denotes the time average of a generic function
represented by the placeholder •. Hence it is straight forward
to include laser phase noise in Eqs. (28) and (29), which leads
to a term proportional to δϕ̈t and thus a stochastic violation
of the chirping condition. Note that the second derivative of
the stochastic process is to be understood in a distributional
sense [41] and only makes sense for processes where it is
well defined. However, even in this more complicated case
Eqs. (28) and (29) can be used to determine an on average
valid chirp φ(t ) by stochastically integrating the system with
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its Green’s function as presented for the noisy non-linear
classical oscillator in Ref. [42] or by using other techniques
to integrate this stochastic differential equation [43].

III. APPLICATIONS

In the present section we will apply our oscillator decom-
position, Eq. (16), to three different examples. In particular,
we will begin with the case of a free particle that is the
case of vanishing external potential Q̂ ≡ 0 in Sec. III A. This
example is directly followed by the linear potential Q̂ = aẑ
in Sec. III B. Finally, in Sec. III C, we will treat a weak
quadratic potential Q̂ = εαẑ2 with α being a dimensionful
constant which could correspond to, e.g., a gravity gradient.
In case of the latter we will derive a general scheme on how
to treat arbitrary potentials semi-analytically in a perturbative
scheme.

A. Analytic solution for atomic diffraction without potentials

In the absence of any external potentials we have Q̂ = 0
and as a consequence the Heisenberg momentum operator is
identical to the Schrödinger operator. Thus we have p̂S = p̂.
For the rate of change of the phase φ(τ ) we choose a constant
dφ(τ )/dτ = �ω.

Therefore, the detuning operator, Eq. (14), reduces to the
time-independent operator δ̂± = ∓(�ω + ν̂ ∓ ωr )/2 and we

arrive at the oscillation equation(
d2

dτ 2
+ 2iδ̂±

d

dτ
+ 1

)
û� j = 0. (30)

Since Eq. (30) is governed by a single time-independent her-
mitian operator, namely, the momentum operator p̂, we can
solve it by expanding it in the momentum eigenbasis. As a
consequence we only need to solve a classical equation for
every eigenstate. Alternatively, and even more simple we note
that the operator nature can be disregarded completely here
since the momentum operator commutes with itself at all
times.

Regardless of the way chosen, the solution of Eq. (30) is
identical to the well-known expression for a damped classical
oscillator

û� j = eiδ̂±τ [cos(μ̂±τ )Ĉ1 + sin(μ̂±τ )Ĉ2] (31)

with the effective Rabi frequency operator μ̂± defined by

μ̂± =
√

1 + δ̂2± =
√

1 + (�ω + ν̂ ∓ ωr )2/4. (32)

Moreover, with the help of the initial conditions from Eq. (11)
we can directly obtain the operators Ĉ1 and Ĉ2 and thus arrive
at the expression

US =
(

e−iδ̂+τ 0
0 e−iδ̂−τ

)⎛
⎝cos(μ̂+τ ) + i sin(μ̂+τ ) δ̂+

μ̂+
−i sin(μ̂+τ ) D̂S(0)

μ̂+

−i sin(μ̂−τ ) D̂†
S(0)
μ̂−

cos(μ̂−τ ) + i sin(μ̂−τ ) δ̂−
μ̂−

⎞
⎠ (33)

for the time evolution operator US in the interaction picture.
We emphasize again that the expression D̂/μ̂ is a formal
notation and synonymous with the sequence μ̂−1D̂. After
inspecting Eq. (33), we note the stark similarity to a detuned
Rabi oscillation. However, now with the detuning depending
on quantized external degrees of freedom. The momentum-
dependent matrix elements resulting from Eq. (33) are plotted
in Fig. 1.

Note that, up to now, we are still in an interaction picture
with respect to the external motion. To obtain the evolution
in the laboratory frame evolution we reverse the interaction
pictures via1

U (τ ) = R(τ )S (τ )US (τ ), (34)

with the diagonal operators S (τ ) = e−iν̂2τ/(4ωr ) ⊗ 12 and
R(τ ) = diag(e−iεeτ , e−iεgτ ) accounting for the free external
and internal evolution, respectively. In case of the free particle
each of these matrices can be evaluated efficiently in momen-
tum representation for arbitrary pulse duration. The result in
Eq. (33) is the representation free evolution operator version
of the expressions for single Raman diffraction, previously

1In general, the transformation back into the laboratory
frame, where the evolution starts at τ0 is given by U (τ ) =
R(τ )S(τ )US (τ )S†(τ0)R†(τ0).

obtained in Refs. [26,31] in terms of momentum space proba-
bility amplitudes. In contrast to these treatments the previous
expression can be applied to arbitrary states.

B. Analytic solution for atomic diffraction in linear potentials

Similarly to the case of vanishing potential, in case
of a linear potential with V̂ = aẑ/(h̄�) the Heisenberg
operator for momentum becomes very simple and obeys
p̂S(τ ) = p̂ − a/� τ or equivalently in dimensionless form
ν̂S(τ ) = ν̂ − 2κτ with κ = ka/(2m�2). When we further-
more define the abbreviation κ± = ±κ we arrive at the
oscillator equations

[
d2

dτ 2
+ 2i(δ̂± + κ±τ )

d

dτ
+ 1

]
û� j = 0, (35)

where δ̂± = ∓(�ω + ν̂ ∓ ωr )/2 is identical to the case from
Eq. (30) where no potential was present. In the case of a linear
potential we have [δ̂(τ ), δ̂(τ ′)] = 0 and thus the relevant trans-
formation is Ŵ± = exp[∓i(�ωτ + ν̂τ + κτ 2 ∓ ωrτ )/2].

The solutions of Eq. (35) are given by a combination of
the confluent hypergeometric functions and gamma functions
[27,28,44]. After inserting the initial conditions, Eq. (11), we
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FIG. 1. Solution of the oscillator equation, Eq. (30), with no po-
tential. Density plots of the evolution amplitudes û� j û

†
� j and phase of

the elements uee in (a), ueg in (b), uge in (c), and ugg in (d) as a function
of momentum and pulse time. The left column side shows only the
absolute value of the evolution operator matrix element û� j (ν̂, τ )
on the eigenspace of ν̂. The right column displays the respective
argument of the matrix element. We mapped the transparency to the
absolute value of the element u. Hence, the bright white areas in the
phase diagrams correspond to vanishing amplitude. The dashed lines
mark the π/2 and π pulses, that are of particular interest in most
applications. We chose dφ(τ )/dτ = �ω = ωr = 1 in our examples.
For momenta further from the resonant momentum pair, that is,
ν = 0 for the excited state and ν = −2ωr for the ground state, we
observe faster oscillations as the oscillation frequency is determined
by μ(ν ) =

√
1 + δ2(ν ).

arrive at

û� j = − 2κ±
i2κ± − 1

exp(−2iδ̂±τ − iκ±τ 2)
A(κ±, δ̂±, τ )

B(κ±, δ̂±, τ )
D̂∓

(36)

for � �= j and

û�� = exp(−2iδ̂±τ − iκ±τ 2)
C(κ±, δ̂±, τ )

(2iκ± − 1)G(κ±, δ̂±, τ )
(37)

for the matrix elements of the residual time-evolution
operator.

The functions A, B, C, and G are defined in Appendix C
in terms of special functions. The plus and minus signs are
defined via + if � = e and − if � = g. In Fig. 2 we exhibit
density plots of amplitude and phase of the resulting matrix-
elements of the time-evolution operator.

Note that the effect of the linear potential on the Rabi
oscillation can be compensated right out of the gate by setting
�ω �→ −(ν0 + ωr ) − 2κτ , which corresponds to chirping
the phase via setting φ(τ ) = φ(0) − (ν0 + ωr )τ − κτ 2 since
dφ/dτ = �ω where ν0 and ν0 + 2ωr, or equivalently, p0 and
p0 + h̄k are the resonantly linked momenta as shown by
Eqs. (25) and (26), respectively. This laser phase adjustment
corresponds to what is typically done in experiments when
chirping is applied to stay on resonance [45]. The elements
time evolution operator US is shown in Fig. 2.

Lastly, the transformation back into the laboratory frame
is performed analogously to Eq. (34) except for the slightly
different external operator S (τ ) = e−iτ (ν̂2/(4ωr )+2κζ̂ ) ⊗ 12.
Here we make use of the dimensionless position operator
ζ̂ = ẑm�/(h̄k) as introduced in Sec. II.

The exponential in S can be decomposed into individual
exponentials by applying the Baker-Campbell-Hausdorff
formula yielding S (τ ) = e−iκ2τ 3/(12ωr )e−i2κζ̂ τ e−iτ (ν̂−κτ )2/(4ωr )⊗
12. The term that contains the position operator ζ̂ can
be identified as displacements that shift to the classical
momentum, which the particle acquires due to the external
potential acting for the pulse time τ . This effect cannot
be compensated by chirping but is common to both states
and hence in a globally linear potential does not lead to
differential phases.

Finally, we emphasize that Eq. (35) can be mapped into
the result derived by Marzlin et al. in Ref. [27] by a unitary
transformation as sketched in Sec. II A and is thus equivalent
to it. In light of this equivalence we also note that our result
agrees perfectly with the one found by Lämmerzahl et al.
in Ref. [28]. However, again our result is formulated in a
representation free description making it much more widely
applicable.

C. Efficient numerical implementation
of atomic diffraction in potentials

In general potentials the interaction picture operator ν̂S

is time dependent and might mix the Schrödinger operators
ζ̂ and ν̂ arbitrarily. As a consequence an analytic solution
containing only one of the canonical operators, leading to
the simplifications seen in the previous sections, is often not
forthcoming. However, in the case of a weak perturbing po-
tential of the form V̂ = εU (ζ̂ ) to any of the previous cases, a
perturbative scheme can be constructed. The development of
this approach for an initial wave function and its exemplary
application to a weak harmonic potential is the subject of
this section. Here we choose the relatively simple solution of
Rabi oscillations without potentials derived in Sec. III A as a
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FIG. 2. Solution of Eq. (35) for the element uee in (a) and ueg in (b). We show the complex eigenvalue of the element u with respect to the
Doppler operator ν̂ and the time τ . We chose κ = −1, ωr = 0.1 and �ω = 0. The resonance is shifted by the linear potential which changes the
detuning linearly in time. Therefore, the resonant momentum is changed over time which leads to the linear downwards shift of the resonant
momentum.

perturbative basis. This is guided by the fact that numerical
evaluation of the expressions for the free particle solution is
cheaper than the complicated special function expressions in
case of the linear potential solution. Furthermore, instead of
using the oscillation equation for the time evolution operator
we will use the corresponding expressions for the quantum
states instead since this is more accessible to numerics and
interpretation.

The analog oscillation equation for the quantum states fol-
lows directly from considering L†L|ψ〉 = 0 in full analogy
to Sec. II and leads to the same oscillation equation as in
Eq. (16). However, the matrix elements of the time evolu-
tion operator are replaced by the states |ψ±〉 = 〈±|ψ〉 with
respect to the eigenbasis |e/g〉 of σz corresponding to spin-up
(e ↔ +) and spin-down (g ↔ −).

We set up the perturbative scheme by expanding the in-
teraction picture detuning operator and the quantum state in
terms of a small parameter ε via

δ̂±(τ ) = δ̂± ±
∞∑

k=1

εk δ̂(k)(ζ̂ , ν̂ ) and |ψ±〉 =
∞∑

k=0

εk|ψ (k)
± 〉.

(38)

After collecting terms of equal powers in ε we arrive at the
infinite set of equations[

d2

dτ 2
+ 1 + 2iδ̂±

d

dτ

]
|ψ (0)

± 〉 = 0,

[
d2

dτ 2
+ 1 + 2iδ̂±

d

dτ

]
|ψ (k)

± 〉 = ∓2i
k−1∑
l=0

δ̂(k−l ) d

dτ
|ψ (l )

± 〉.

(39)

Note that we can solve the lowest-order equation in Eq. (39)
as shown in Sec. III A. To obtain a solution of order k in
momentum space we solve Eq. (39) iteratively by using the
classical retarded Green’s function

G±(τ, τ ′, ν) = θ (τ − τ ′)
2μ±(ν)

e−iδ±(τ−τ ′ ) sin
(
μ±(ν)(τ − τ ′)

)
.

(40)

The wave function of any higher order is obtained by perform-
ing the integration

ψ
(k)
± (ν, τ ) = ∓ 2i

k−1∑
l=0

∫ τ

0
dτ ′ G±(τ, τ ′, ν)

× 〈ν|δ̂(k−l ) d

dτ ′ |ψ
(l )
± (τ ′)〉. (41)

To apply the operators δ̂(k−l )(ζ̂ , ν̂ ) to ψ
(l )
± (ν, s) one can

Fourier transform back and forth between the dual space to
apply terms that contain the position operator ζ̂ or momentum
operator ν̂ efficiently. The perturbative scheme, Eq. (39), and
its solution Eq. (41) are the second central results of this
article.

1. Quadratic potential

In this section we apply the perturbative formalism to a
quadratic potential, i.e., V̂ = εζ̂ 2. By solving the Heisenberg
equations of motion we find

ν̂S = cos (ϕτ )ν̂ + 2ε

ϕ
sin (ϕτ )ζ̂ , ϕ =

√
2ε

ωr
, (42)
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FIG. 3. Left panel (a), (b) Full time evolution of a gaussian wave position wave packet with respect to Eq. (2) in a quadratic potential. After
solving the perturbative set Eq. (39) we apply the evolution of the external potential via decomposing the wave function into the eigenfunctions
of the harmonic oscillator and adding the corresponding phase. The semi-analytical solution for the element uee in (a) and ueg in (b) in presence
of a quadratic potential up to the perturbative order k = 10 via Eq. (39) with ε = 10−3, ωr = 0.5, �ω = −ωr for a Gaussian initial wave packet
centered at ν = 0 with a with of σ = 0.1. Right panel (c), (d) The solution of Eq. (2) for another set of parameters is shown for uee in (c) and
ueg in (d). We solve up to order k = 10 via Eq. (39) with ε = 6 × 10−2, ωr = 0.25, �ω = −ωr and a Gaussian initial wave packet centered at
ν = 0 with a standard deviation of σ = 0.25. The asymmetry in the diffraction process, especially the ongoing population in the ground state
for momenta that are larger than zero can be explained by the combination of resonant diffraction and external motion. In (b) the transition from
ν = 0 to ν = 1 is resonant. Therefore, the slightly more positive momenta gain a higher momentum during the diffraction process. Since the
wave packet is in an external quadratic potential the external motion reduces the momentum, such that the momenta that are larger than ν = 1
move closer to the resonant transition and have an overall lower detuning than momenta that start slightly lower than ν = 0 at τ = 0. Those
parts of the wave function fall even further from resonance when their momentum is reduced in the external potential while being diffracted,
such that they move away from resonance. That is why smaller momenta than ν = 0 are more off-resonant. For the excited state the argument
is the same. However, now the slightly smaller momenta are closer to resonance. This combination of momentum transfer and evolution in the
external potential leads to the deformation of the wave packet into an expanding banana shape.

and therefore, when expanded in orders of ε we obtain

ν̂S = ν̂ +
∞∑

k=1

εk δ̂(�), (43)

with the definition δ̂(�) = g�(τ )ν̂/2 + h�(τ )ζ̂ /2 as well as the
abbreviations

gk (τ ) = (−1)k

(2k)!

(
2

ωr

)k

τ 2k,

hk (τ ) = 2
(−1)k−1

(2k − 1)!

(
2

ωr

)k−1

τ 2k−1 (44)

for the series coefficients.
We solve Eq. (39) order by order numerically via the

evaluation of Eq. (41). Afterwards we transform back to the
laboratory frame by applying S (τ ) = e−iτ (ν̂2/(4ωr )+εζ̂ 2 ) ⊗ 12.
This can be done in various ways: One is decomposing the
wave functions into the eigenfunctions of the quantum har-
monic oscillator. Alternatives are the application of the time
evolution operator for the harmonic oscillator directly in mo-
mentum representation or numerical split stepping methods.
The probability and phase density results for the propaga-
tion of a Gaussian initial distribution with different potential
strengths for α pulses with α ∈ {0, 2π} are shown in Fig. 3

and showcase the combined action of Rabi oscillation be-
tween internal states and the harmonic oscillator potentials.

IV. CONCLUSION

In Sec. II we showed that a laser driven two-level system
with center-of-mass motion in an external potential under the
rotating-wave approximation can be cast into a decoupled
form where everything is diagonalized with respect to the
internal degrees of freedom. Depending on the potential at
hand we then arrive at different driven oscillator equations for
the elements of the time-evolution operator with respect to
the internal states. In Sec. III we applied these generalized
oscillators to the cases, where a potential was absent and a
linear potential where we find agreement with literature and
provide new, representation free analytic solutions for the
time-evolution operator. Finally, we showed how the gener-
alized oscillator can be used for a perturbative analysis of
arbitrary potentials and showcase the efficiency of our ap-
proach for a quadratic potential.

The oscillation equation, Eq. (16), can be an excellent
basis for the analysis of the interaction of matter and light
including the external degrees of freedom of the atom.
Specifically, since in some cases we are able to omit the
operator nature and only have to solve a classical ordinary
differential equation (ODE) for every momentum state. This
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should, in principle, allow for highly parallel computations
and can speed up numerical calculations drastically instead of
split-stepping the full system.

In addition, including laser phase noise becomes straight-
forward once we derive the oscillation equations as only the
derivative of the laser phase function enters the detuning
term. Since the oscillator can be considered as classical for
the cases of linear potentials and free motion, a multitude
of time-dependent functions can be considered by drawing
the analog to the time-dependent damped harmonic oscilla-
tor which is a well-studied system. For many cases analytic
solutions exist [44]. One possibility is modeling laser phase
noise or different pulse envelopes for the laser intensity ana-
lytically in this manner. Moreover, one has the vast and rich
tools available from the study of the mathematics of damped
oscillators [46].

The methods we developed can also be used to describe a
combination of state preparation and blow-away pulses [47]
and can serve as a means to model the resulting imperfec-
tions. Furthermore, they can be employed to determine the
phase-gradients resulting from residual sloshing of the wave
packet inside a trap during a Rabi pulse. Even beyond the
applications to atomic diffraction sketched here our method
is naturally suited to simplify the numerical treatment of res-
onantly driven spin systems in motion as it decouples spin
dynamics and external motion.
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APPENDIX A: DERIVATIVE OF THE UNITARY D

The derivative of the exponential map is given by [33,34]

d

dτ
exp Ô = exp Ô

∞∑
k=0

(−1)k

(k + 1)!
(adÔ)k d

dτ
Ô (A1)

=
( ∞∑

k=0

1

(k + 1)!
(adÔ)k d

dτ
Ô

)
exp Ô, (A2)

with the adjoint adÔẑ = [Ô, ẑ]. In Eq. (13) we have

Ô = ikẑS + iφ(τ ), (A3)

with

d

dτ
Ô = i

dφ(τ )

dτ
+ ik

d

dτ
ẑS (A4)

= i
dφ(τ )

dτ
− k[T̂S, ẑS]. (A5)

Note that the Heisenberg equation of motion enters here. The
appearing commutator can be reduced to

[T̂S, ẑS] = 1

m�h̄
p̂S[ p̂S, ẑS] = − i

m�
p̂S. (A6)

Finally, we arrive at

d

dτ
Ô = i

dφ(τ )

dτ
+ i

k

m�
p̂S. (A7)

Consequently, the action of the adjoint yields

(adÔ)0 d

dτ
Ô = i

dφ(τ )

dτ
+ i

k

m�
p̂S (A8)

and

(adÔ)1 d

dτ
Ô =

[
ikẑS, i

k

m�
p̂S

]
= −i

h̄k2

m�
. (A9)

Obviously all higher orders of sequentially applying the ad-
joint operation yields zero, as (adÔ)1 d

dτ
Ô is a c-number

commuting with all operators. Therefore, we only have con-
tributions for k = 0 and k = 1 thus the sum reduces to

∞∑
k=0

(−1)k

(k + 1)!
(adÔ)k d

dτ
Ô = i

dφ(τ )

dτ
+ i

k

m�
p̂S − i

h̄k2

2m�
.

(A10)

APPENDIX B: ACTION OF THE DISPLACEMENT
ON OPERATORS

For the displaced Doppler operator we find

D̂†ν̂D̂ = ν̂ + 2ωr, (B1)

D̂ν̂D̂† = ν̂ − 2ωr. (B2)

The detuning operators fulfill the following algebraic proper-
ties under the displacement:

D̂†δ̂+D̂ = −δ̂−, (B3)

D̂δ̂−D̂† = −δ̂+. (B4)
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APPENDIX C: SOLUTIONS FOR LINEAR POTENTIAL

For the linear potential, the solution of Eq. (35) contains the functions [44]

A(κ±, δ̂±, τ ) = H

(
1

2iκ±
− 1, i

δ̂± + κ±τ√
iκ±

)
1F1

(
2iκ± − 1

4iκ±
,

1

2
,
−δ̂2

±
iκ±

)

− H

(
− i

2κ±
− 1, i

δ̂±√
iκ±

)
1F1

(
2iκ± − 1

4iκ±
,

1

2
,
−(δ̂± + κ±τ )2

iκ±

)
, (C1)

B(κ±, δ̂±, τ ) = 2
√

iκ±H

(
− i

2κ±
− 2, i

δ̂±√
iκ±

)
1F1

(
2iκ± − 1

4iκ±
,

1

2
,
−δ̂2

±
iκ±

)

+ 2iδ̂±H

(
− i

2κ±
− 1, i

δ̂±√
iκ±

)
1F1

(
3

2
− 1

4iκ±
,

3

2
,
−δ̂2

±
iκ±

)
, (C2)

C(κ±, δ̂±, τ ) = 2
√

iκ±(8iκ± − 1)H

(
− i

2κ±
− 2, i

δ̂±√
iκ±

)

− 4δ̂±κ±H

(
− i

2κ±
− 1, i

δ̂±√
iκ±

)
1F1

(
1

2
− 1

4iκ±
,

1

2
,
−(δ̂± + κ±τ )2

iκ±

)

+ 4κ±δ̂±H

(
1

2iκ±
− 1, i

δ̂± + κ±τ√
iκ±

)
1F1

(
1

2
− 1

4iκ±
,

1

2
,
−δ̂2

±
iκ±

)

− 2iδ̂±(1 − 8iκ±)H

(
1

2iκ±
− 1, i

δ̂± + κ±τ√
iκ±

)
1F1

(
3

2
− 1

4iκ±
,

3

2
,
−δ̂2

±
iκ±

)
, (C3)

G(κ±, δ̂±, τ ) = 2
√

iκ±H

(
1

2iκ±
− 2, i

δ̂±√
iκ±

)
1F1

(
1

2
− 1

4iκ±
,

1

2
,
−δ̂2

±
iκ±

)

+ 2iδ̂±H

(
1

2iκ±
− 1, i

δ̂±√
iκ±

)
1F1

(
3

2
− 1

4iκ±
,

3

2
,
−δ̂2

±
iκ±

)
. (C4)

We use the following definitions: H(a, x) is the Hermite polynomial of degree α depending on the variable x and 1F1(a, b, x)
is the confluent hypergeometric function.
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