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Abstract. Knowledge of humidity in the upper troposphere and lower stratosphere (UTLS) is of special inter-
est due to its importance for cirrus cloud formation and its climate impact. However, the UTLS water vapor
distribution in current weather models is subject to large uncertainties. Here, we develop a dynamic-based hu-
midity correction method using an artificial neural network (ANN) to improve the relative humidity over ice
(RHi) in ECMWF numerical weather predictions. The model is trained with time-dependent thermodynamic
and dynamical variables from ECMWF ERAS and humidity measurements from the In-service Aircraft for a
Global Observing System (IAGOS). Previous and current atmospheric variables within £ 2 ERAS pressure lay-
ers around the IAGOS flight altitude are used for ANN training. RHi, temperature, and geopotential exhibit the
highest impact on ANN results, while other dynamical variables are of low to moderate or high importance.
The ANN shows excellent performance, and the predicted RHi in the UT has a mean absolute error (MAE) of
5.7 % and a coefficient of determination (R?) of 0.95, which is significantly improved compared to ERAS RHi
(MAE of 15.8 %; R? of 0.66). The ANN model also improves the prediction skill for all-sky UT/LS and cloudy
UTLS and removes the peak at RHi= 100 %. The contrail predictions are in better agreement with Meteosat
Second Generation (MSG) observations of ice optical thickness than the results without humidity correction for
a contrail cirrus scene over the Atlantic. The ANN method can be applied to other weather models to improve
humidity predictions and to support aviation and climate research applications.

The atmospheric region of the upper troposphere and lower
stratosphere (UTLS) in the tropics (Dessler and Sherwood,
2009) and the extratropics (Gettelman et al., 2011) plays
a crucial role in the climate system. Within the UTLS, at-
mospheric humidity significantly influences the radiation
budget at the top of the atmosphere (TOA) (Riese et al.,
2012). In fact, water vapor is the dominant atmospheric long-

wave absorber in the context of the global greenhouse effect
(Schmidt et al., 2010). Further, observed increases in strato-
spheric water vapor (Hegglin et al., 2014) contribute to both
stratospheric cooling and tropospheric warming (Forster and
Shine, 2002) and act as positive feedback to surface tempera-
ture (Tao et al., 2023). Relative humidity (RH) over ice (RHi)
> 100 % or ice supersaturation is of major importance for
the formation and persistence of natural cirrus and aircraft-
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induced contrail cirrus (Kédrcher, 2018). Cirrus in this region
can survive for hours if ambient conditions are ice supersat-
urated (Zhao et al., 2023), and they can have a positive cloud
radiative effect on climate (Gasparini et al., 2020). Hence, ac-
curate observations and representations of UTLS water vapor
(Hegglin et al., 2014) are essential for climate and weather
research.

During the past few decades, many in situ humidity mea-
surements from aircraft (Kramer et al., 2009; Diao et al.,
2015; Kaufmann et al., 2018), lidar (GroB3 et al., 2014;
Kriiger et al., 2022), balloon-borne instruments (Heymsfield
et al., 1998; Dickson et al., 2010; Rollins et al., 2014), and
polar-orbiting satellite instruments (Lamquin et al., 2012;
Hegglin et al., 2013) show that high RHi may often occur
in the UT. However, these observations are limited in space
and time, and the uncertainties are relatively high (Gierens et
al., 2020). Important in situ humidity data can also be pro-
vided by in-service passenger aircraft (Petzold et al., 2020;
Reutter et al., 2020), but three-dimensional fields of RHi
and dynamics for large geographic regions are currently only
available from numerical weather prediction (NWP) mod-
els, for instance the Integrated Forecasting System (IFS) at
the European Centre for Medium-Range Weather Forecasts
(ECMWEFE, 2016) and ICOsahedral Non-hydrostatic (ICON;
Ziangl et al., 2015; Seifert and Siewert, 2024) at the German
Weather Service. A wet bias in the RHi of the extratropical
LS has been identified in the operational ECMWF IFS fore-
cast and analysis data, as observed in comparison with in situ
measurements from research aircraft (Kaufmann et al., 2018)
and from Civil Aircraft for the Regular Investigation of the
atmosphere Based on an Instrument Container (CARIBIC)
passenger aircraft flights (Dyroff et al., 2015). In contrast, a
dry bias of RHi is observed in the cloudy UT when compared
with aircraft measurements in the In-Service Aircraft for a
Global Observing System (IAGOS) (Teoh et al., 2022). The
utilization of the saturation adjustment process (Tompkins et
al., 2007), wherein supersaturation relaxes to saturation upon
cloud formation, results in a systematic underestimation of
both the frequency and the magnitude of ice supersaturation
at cruise altitudes within NWPs and global climate models
(Sperber and Gierens, 2023).

There is ongoing debate on the physical explanations of
the NWP humidity bias in the UTLS, which is a crucial fac-
tor to consider for the improvement of atmospheric humid-
ity prediction. According to Kunz et al. (2014), the influ-
ences of dynamical transport processes are challenging for
the simulations of UTLS humidity distribution. Backward-
trajectory analyses reveal a positive relationship between the
moist bias at the aircraft flight level and air masses origi-
nating from high northern latitudes in the LS (Dyroff et al.,
2015). The relationships between uncertainty in atmospheric
mixing and the simulated composition of water vapor in the
LS, as well as the radiative consequences in the UTLS, are
highlighted by Kriiger et al. (2022) and Riese et al. (2012),
respectively. Small-scale stratospheric intrusions, which are
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frequently observed in the UTLS but are unsolved by the
NWP model, are another possible source of moisture bias
(Dyroff et al., 2015). Numerical diffusion, which can easily
smoothen the gradients of humidity across the hydropause,
is also a possible reason for the moist bias in the LS (Stenke
et al., 2008). Interestingly, Woiwode et al. (2020) show that
there is little dependency of the moist bias on temporal or
vertical model resolution in the ECMWF IFS analysis and
forecast data.

The assimilation of observations into NWP models is the
state-of-the-art way to improve weather forecast (Lawrence
et al., 2019; van der Linden et al., 2020). However, as the
primary data source for the assimilation system, calibrating
RH instruments at temperatures below 0 °C is challenging,
with the difficulty increasing as temperatures drop further. A
great deal of effort has also been focused on post-processing
of NWP data to improve the accuracy of atmospheric hu-
midity and ice supersaturation prediction, as well as con-
trail cirrus prediction, utilizing long-term aircraft measure-
ments from IAGOS (Teoh et al., 2020; Wolf et al., 2025).
Teoh et al. (2022) employ in situ measurements from [A-
GOS to formulate a correction method for ERAS RHi fields.
With this method, the probability density function (PDF)
of ERAS5-corrected RHi inside ice supersaturation closely
aligns with IAGOS measurements. Another humidity bias
correction, also aiming to achieve consistency between IA-
GOS and ERAS through a multivariate quantile approach, re-
sults in a notable reduction in the RHi bias (Wolf et al., 2025).

Gierens and Brinkop (2012) investigate the distributions of
the dynamical quantities — divergence, relative vorticity, and
vertical velocity — from ECMWF IFS within and outside ice-
supersaturated regions and notice distinct patterns. Gierens
et al. (2020) postulate that a more accurate prediction of ice
supersaturation in NWP models may be achievable by fur-
ther incorporating dynamical atmospheric fields with ERAS
RHi in a general regression method. Wilhelm et al. (2022)
also suggest the possibility of basing an improved forecast of
persistent contrails not only on the traditional quantities of
temperature and RHi, but also on these dynamical proxies.
In a recent study, Hofer et al. (2024) show that dynamical
proxies taken only at the time and location of the forecast are
insufficient for an improved prediction of ice supersaturation.
However, they note the potential for improving RHi predic-
tions by incorporating additional forecast data from earlier
time points and upstream areas.

When improving the quality of meteorological data, ma-
chine learning techniques are widely used nowadays. Kadow
et al. (2020) have demonstrated the skill of artificial intel-
ligence in reconstructing surface temperatures when com-
bined with climate model data. A machine-learning-based
approach trained directly from historical NWP reanalysis
data is introduced by Lam et al. (2023) to predict hundreds of
weather variables at a remarkable speed. It outperforms the
most accurate operational systems on 90 % of the verification
tests, even without special consideration of vertical transport.
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Teoh et al. (2020) also suggest in their outlook on RHi cor-
rection that further effort can be made to explore machine
learning techniques to improve the accuracy of the ERAS hu-
midity fields.

This paper aims at improving predictions of atmospheric
humidity, in particular RHi and ice supersaturation, in the
UTLS region starting from ERAS fields using machine learn-
ing. The previous humidity corrections of Teoh et al. (2022)
and Wolf et al. (2025) for ERAS model data were based on
regression fitting methods using IAGOS observations but ne-
glected the temporal evolution of dynamical quantities in the
horizontal and vertical directions that led to the humidity
bias. Targeting that gap, we develop an artificial neural net-
work (ANN) model to correct relative humidity (and specific
humidity in the Supplement) from ERAS, leveraging thermo-
dynamic conditions and dynamical quantities from ERAS,
along with measured water vapor data from IAGOS above
the Atlantic Ocean, Europe, and Africa in 2020. The investi-
gation is guided by three specific questions:

1. To what extent do atmospheric states impact the subse-
quent evolution of humidity fields?

2. Isit feasible to develop a dynamic-based machine learn-
ing method to correct the humidity bias in the UTLS?

3. How do the outcomes of the new method influence the
ability to forecast ice supersaturation?

Finally, we apply the improved humidity fields for computing
the optical properties of contrail cirrus in a particular situa-
tion using the contrail cirrus prediction (CoCiP) model and
compare the simulation results to satellite observations.

This paper is outlined as follows: Sect. 2 provides an
overview of the [AGOS humidity measurements (Sect. 2.1),
ERAS data, and IFS data as input to the ANN model and
for the application (Sect. 2.2); the collocation procedure of
the measurement data with ERAS (Sect. 2.3) and the initial
comparison (Sect. 2.4); the contrail cirrus prediction (CoCiP)
model (Sect. 2.5); and satellite remote sensing techniques
for retrieving the microphysical properties of cirrus clouds
(Sect. 2.6). In Sect. 3, the concept of the temporal depen-
dence of RHi on the evolution of meteorological parameters,
the development of the RHi improvement model, and the im-
portance of the selected synoptic variables for RHi prediction
are explained in detail. The evaluation of the RHi improve-
ment model using different metrics is presented in Sect. 4.
The corresponding information for specific humidity is pro-
vided in the Supplement. Thereafter, Sect. 5 assesses the im-
pact of the ANN humidity correction on the simulations of
contrail cirrus in a case study. The conclusions are summa-
rized in Sect. 6.
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Figure 1. Number of IAGOS measurements per 2° x 2° latitude—
longitude grid box between 200 and 400hPa over the Atlantic
Ocean, Europe, and Africa for the year 2020. The measurements
are filtered based on data quality. See the text for details.

2 Data and application approaches

2.1 In-service Aircraft for a Global Observing System
(IAGOS)

The In-service Aircraft for a Global Observing System (IA-
GOS; Petzold et al., 2015) is a European research infrastruc-
ture that implements instruments on long-range aircraft of
internationally operating airlines to provide long-term in situ
measurements of trace gases and meteorological conditions.
These measurements are very valuable for the purpose of this
study as most flight tracks are situated at heights between 9
and 13km in the UTLS region. All aircraft within IAGOS
have been equipped with a platinum sensor for temperature
measurements with an accuracy of £0.5 K and a collocated
capacitive sensor for monitoring RHi with an uncertainty of
5% to 10 % (Petzold et al., 2020). The temperature detected
at the sensor is transferred to the air temperature Tiagos by
accounting for the (incomplete) adiabatic heating and the in-
let heating. RHi is then derived using the measured water
vapor mixing ratio, pressure, and Tiagos based on the satu-
ration water vapor pressure equation from Sonntag (1994).
The uncertainty in RHi increases with decreasing temper-
ature due to a slower response time. In the dry conditions
(RHi < 10 %) of the LS, the sensor has only limited accu-
racy (Rolf et al., 2023), so these data have been excluded for
further evaluation. The temporal resolution of IAGOS mea-
surements amounts to 4 s.

The global distribution of IAGOS data is not uniform in
every region since it is dependent on preferred flight routes
and weather conditions. Western Europe and the eastern
North Atlantic region (NAR) show a high density in IAGOS
data; therefore we focus on this domain (Fig. 1, between
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30°W and 50°E). We did not include the western regions
of NAR, from where humid air is often advected, but in-
stead focused on moisture originating and transported from
lower-atmospheric levels up to cruise altitude. In addition,
we aim to cover the latitude range between 80°N and the
Equator because ice supersaturation occurs very frequently
in the UT of the tropics. The geographic position of the air-
craft, time, data quality flags, ambient pressure, temperature
Tiacos (Berkes et al., 2017), and RHijagos from TAGOS in
the year 2020 are collected to produce the output humidity
data set of the ANNs. We use only the JAGOS measure-
ments that fulfill the following criteria: the IAGOS quality
flag is not “limited” or “invalid”, and measurements are lo-
cated between 0 and 80° N and 30° W and 50° E and between
400 and 200 hPa. The distribution of RHijagos shows high-
density values that gradually decrease starting from 110 %
and drop significantly as they approach 150 % (see Fig. S2 in
the Supplement), a trend consistent with findings in Wolf et
al. (2025, Fig. 3) and Teoh et al. (2024, Fig. S4).

2.2 ECMWEF reanalysis and forecast

Meteorological data for the year 2020 in the same region in
Sect. 2.1 are sourced from the ERAS reanalysis data, ob-
tained from the ECMWF Copernicus Climate Data Store
(Hersbach et al., 2020). The assimilation system takes new
observations and combines them with IFS forecast data from
12h before the given time to make the best estimate of
the current state of the atmosphere. ERAS data are on an
equidistant latitude—longitude grid of 0.25° resolution with
an hourly output on 37 pressure levels. Hourly atmospheric
parameters on pressure levels between 200 and 250 hPa with
a 25 hPa spacing and between 250 and 400 hPa with a 50 hPa
spacing are used for model training. The IFS forecast data
(137 model levels) are used for predicting contrail cirrus (see
Sect. 5). Using pressure level data for ANN training reduces
the size of the training data set and saves model training time.

We use the following thermodynamic parameters from
ERAS as the inputs for the ANN model: temperature Tgras,
RHigras (in the main text), and specific humidity ggras (in
the Supplement). The saturation water vapor pressure equa-
tion from Alduchov and Eskridge (1996) is used here to cal-
culate RHigras from ggras. In addition, specific cloud ice
water content “ciwc” from ERAS is utilized to differentiate
between the cirrus and cirrus-free regions. Here, ciwc repre-
sents the mass of cloud ice particles per kilogram of moist
air, averaged over a grid box. It is estimated using the prog-
nostic equations of the cloud scheme (Tiedtke, 1993; Forbes
and Tompkins, 2011; Forbes and Ahlgrimm, 2014), which
account for cloud ice growth through deposition. As shown
in Table 1, this study also considers dynamical parameters,
including geopotential (z) for adiabatic shifts, vertical veloc-
ity (w) in Pas™! representing vertical air mass motion, di-
vergence (d) indicating air spread or convergence, horizon-
tal wind speed (1 and v) in ms™', and relative and poten-
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tial vorticity (“vo” and “pv”’) characterizing air rotation and
stratosphere—troposphere exchanges. The use of pv specifi-
cally helps identify the dynamical tropopause and distinguish
between UT and LS.

2.3 Data collocation

The ERAS grid boxes that are closest to the IAGOS obser-
vations in both time and space are selected to align with
the TAGOS-measured humidity and temperature data sets be-
tween 400 and 200 hPa. In contrast to other studies (Wolf et
al., 2025; Hofer et al., 2024), this study also uses the tem-
poral evolution of meteorological conditions before the TA-
GOS observation time. Specifically, RHi in the UTLS is in-
fluenced by horizontal and vertical air motions like air mass
uplift (Diao et al., 2015) in convection or frontal systems
and stratospheric intrusions. To account for these, thermo-
dynamic and dynamical data up to 6 h prior to the IAGOS
data acquisition time, with 1 h intervals and within two pres-
sure levels above and below the IAGOS acquisition location,
are linked with RHijagos at the IAGOS acquisition time and
location. These ERAS5 variables are vertically interpolated to
match the IAGOS location based on pressure levels. While
the ERAS data retain their original temporal and spatial res-
olution, the water vapor data measured by IAGOS, which
include several data points within a single ERAS grid box,
are averaged. This averaging reduces the autocorrelation in
the measured data due to the response time of the sensor,
accounts for internal ERAS grid box variability, and main-
tains a proportion of ice supersaturation after averaging. This
collocation of model meteorological variables and measured
humidity values from the year 2020 comprises 3.99 million
individual data points. To ensure that the training set consists
of data from time periods that do not overlap with those used
for either validation or testing, we now use 4 d of data to build
the ANN model, followed by a 1d gap, and then 1d of data
for validation or testing. This method accounts for consid-
erable variability and sharp gradients in the humidity fields
and can thus help to estimate realistic atmospheric humidity
distributions for comparisons and model application.

2.4 Initial ERA5 RHi evaluation using IAGOS

We first compare and quantify the difference between ERAS
and in situ measurements provided by IAGOS with respect to
temperature and specific and relative humidity. RHi in cirrus
clouds in NWP can have a low bias due to the application of
saturation adjustment in cloud parameterizations (ECMWE,
2016); hence we differentiate between model clear (cloudy)
conditions using ciwc equal to zero for all the current and
+2 pressure layers from ERAS. We further distinguish be-
tween UT (LS) dependent on the threshold pv smaller than
2 PVU. This means we consider the dynamical tropopause as
done for instance in Reutter et al. (2020). In the following,
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Table 1. Overview of the variables used in this study. The spatial resolution of ERAS is 0.25°. The vertical resolution of ERAS on pressure
levels is 25-50 hPa. The original temporal resolution of ERAS and IAGOS is 1h and 4 s. Study regions include the Atlantic, Europe, and
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Figure 2. Comparisons of RHigr a5 against RHijpagos in (a) clear-
sky and cloudy UT, (b) cloudy UTLS, (c¢) clear-sky UTLS, and
(d) clear-sky and cloudy LS in the test data set between 200 and
400 hPa over the Atlantic, Europe, and Africa for the year 2020.

we focus on RHi (for comparison of other parameters, see
also Sects. S1 and S4).

Figure 2 shows the comparison of RHigras and
RHijagos separated between upper-stratospheric and lower-
stratospheric conditions or between cloudy and clear-sky
conditions, respectively. Here we use the test data set from
the ERAS-TAGOS collection created in Sect. 2.3, which is

https://doi.org/10.5194/acp-25-2845-2025

Africa.
Variable
Source (*RHi ANN)  Description Unit
*TERAS air temperature K
ciwe specific cloud ice water content  Kg kg_1
*RHigRrA5 relative humidity w.r.t. ice %
gERAS5 specific humidity g Kg71
ERAS (seven conditions) *z geopotential m?s~2
— the current time and level *w vertical velocity Pas~!
— two time lags (—2 and —6h) *d divergency of wind s!
— four ERAS pressure levels *u eastward component of wind ms~!
surrounding the IAGOS cruise level ~ *v northward component of wind ~ ms™—!
(=2, -1, +1,+2) *vo relative vorticity g
pv potential vorticity g1
time h 1
level pressure hPa
TAGOS at the current time *RHijaGOS relative humidity w.r.t. ice 1
TIAGOS air temperature K
pressure air pressure Pa
@ () the same data set used for verifying the ANN model in

Sect. 4.1. In the all-sky UT (Fig. 2a) and the cloudy UTLS
(Fig. 2b), ERAS RHi data show a considerably dry bias com-
pared to IAGOS data, with mean absolute errors (MAEs) of
15.82 % and 16.28 %, respectively. RHi and the magnitude
of ice supersaturation in ERAS are underestimated. In addi-
tion, a partially artificial occurrence accumulation peak ex-
ists in the ERAS data set at RHigras = 100 %. In RHijagos,
a small peak is observed between 100 % and 110 % under
cloudy conditions (Sanogo et al., 2024). However, much of
the accumulation peak in the ERAS data is attributed to the
cloud saturation adjustment in NWP models. Nevertheless,
RHigras > 100 % is also observed, either in partly cloudy
model boxes or in clear-sky boxes, where only a fraction of
the box is cloudy (with RHigra5 = 100 %), and the clear-sky
part is supersaturated due to the time required for the ice nu-
cleation process. Consequently, RHigra5 values greater than
100 % can occur in cloudy conditions as well. In the clear-
sky UTLS (Fig. 2¢) and the all-sky LS (Fig. 2d) regions,
MAE:s are 11.21 % and 9.78 %, respectively. In the all-sky
LS (Fig. 2d), few RHi data > 100 % have been measured by
TAGOS, with most observations concentrated at low RHi val-
ues. In general, the extent and the degree of ice supersatura-
tion underestimated by ERAS are in line with the findings by
Dyroff et al. (2015) for ECMWEF analysis and forecast data.
The comparison of ERAS and IAGOS RHi serves as the mo-
tivation for our study, aiming to improve humidity predic-
tions by NWPs.
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2.5 Contrail cirrus prediction (CoCiP) model

The contrail cirrus prediction (CoCiP) model is used to pre-
dict the contrail cirrus cover and examine the contrail radia-
tive forcing induced by individual flights (Schumann, 2012;
Schumann et al., 2017, 2021b; Voigt et al., 2017, 2022; Teoh
et al., 2024). The contrail model uses traffic data from the
North Atlantic tracks for the Shanwick Oceanic Control area.
When the ambient temperatures fall below the Schmidt—
Appleman criterion threshold (Schumann, 1996) at two suc-
cessive flight waypoints, a contrail segment forms. Contrail
initial water content, width, and depth are determined by air-
craft properties and emissions (non-volatile particulate mat-
ter). Plume dispersion is a function of turbulence, wind shear,
and induced heating. RHi inside contrail plumes is set at sat-
uration, and the ice water content of contrails grows or de-
creases in response to the ambient humidity. A Runge—Kutta
integration simulates the contrail evolution until the end of
its life by ambient drying or particle losses from aggregation
and sedimentation. The contrail life ends when the maximum
contrail lifetime of 24 h is reached, the ice number concen-
tration is less than the background ice nuclei (< 103 m—3),
or the ice optical thickness (IOT) is less than 107°. CoCiP
simulations account for humidity exchange between contrails
and the background air and the overlap of contrails above
or below clouds present in the meteorological data from the
NWP forecast (Schumann et al., 2021a). CoCiP’s limitation
in comparison to general circulation models is its absence
of atmospheric interaction and feedback (Chen et al., 2012;
Burkhardt et al., 2018; Bickel et al., 2020). In Sect. 5 of this
study, we present an exemplary application of the model for
RHi correction derived in this paper to contrail simulations
and show its effect on contrail properties. This is done by per-
forming two CoCiP runs: for the reference run, we use NWP
data from ECMWF IFS for the contrail case on 14 April 2021
over the NAR within the ECLIF3 campaign (Mirkl et al.,
2024); for the second run, we correct the NWP humidity data
with the ANN proposed in this work in the same situation.

2.6 Satellite remote sensing

CoCiP simulations are compared to spaceborne data from the
SEVIRI radiometer (3 km sampling distance at nadir) aboard
the geostationary Meteosat Second Generation (MSG) satel-
lite in Sect. 5. To derive ice cloud properties, Cirrus Proper-
ties from SEVIRI (CiPS; Strandgren et al., 2017) is used. It
consists of a set of ANNs trained on SEVIRI thermal obser-
vations, Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observations (CALIPSO) cloud products, and ECMWF
ERA-Interim surface temperature data and auxiliary data to
retrieve IOT for identified cirrus clouds. Specifically devel-
oped for thin cirrus clouds, CiPS has been validated against
CALIPSO, achieving detection rates of 20 %, 70 %, and 85 %
for ice clouds with IOT values of 0.01, 0.1, and 0.2, respec-
tively. For IOT between 0.35 and 1.8, CiPS demonstrates a
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MAE smaller than 50 %, and MAE increases for IOT values
between 0.07 and 0.35.

3 ANN model development

3.1 The temporal dependence of measured humidity on
individual meteorological parameters

Which meteorological parameters should be chosen and at
which time and pressure level for training the RHi im-
provement model? To answer this question, the dependence
of measured RHi on meteorological variables at preceding
times and surrounding pressure levels is considered by re-
viewing the sources of RHi bias in the UTLS within ECMWF
data. As outlined in Dyroff et al. (2015), this bias is linked to
air masses residing near the aircraft’s flight level of approx-
imately 230 hPa in high northern latitudes, likely influenced
by air mass vertical intrusions and horizontal transport. This
points out the connection between RHi and the temporal evo-
lution of meteorological parameters.

Based on the physical definition of RHi, a negative cor-
relation between RHijagos and Tgras is expected because
RHi is the ratio of the partial vapor pressure of water vapor to
the saturation vapor pressure with respect to ice, the latter of
which increases with temperature. For dynamical variables,
the positive relationship between increased geopotential z
values and RHijsgos is in accordance with the findings of
Wilhelm et al. (2022). In addition, parameters such as verti-
cal wind w, divergence d, horizontal wind speed components
u and v, relative vorticity vo, and potential vorticity pv help
represent the dynamical conditions at a given time and place
that influence relative humidity in the model. For instance,
an upward motion (negative values of w in ERAS5) results in
cooling and a decrease in RHi and promotes ice supersatura-
tion. A relatively strong horizontal air mass movement with
large divergence is typical for ice supersaturation. Large neg-
ative values of vorticity in anticyclonic systems are again also
typical for supersaturation (Gierens et al., 2020). These con-
nections suggest the potential to improve the RHi prediction
by considering not only traditional thermodynamic variables
like temperature but also dynamical proxies and their tem-
poral evolution. Further computations of the Pearson corre-
lation coefficient between RHijsgos and temporal meteoro-
logical variables from ERAS5 and the impact of including data
distributions from hours before the current time on improv-
ing the network prediction are explained in Sect. S2.

To balance information richness and modeling efficiency,
only the current IAGOS humidity fields and ERAS data at
the current time of the JAGOS measurement — and 2 and
6 h time lags prior to IAGOS data acquisition — and %1 to
42 pressure layers from ERAS are selected as input vari-
ables to account for the typical lifespans of water vapor trans-
port mechanisms, including deep convection, warm conveyor
belt uplift regimes, and slowly ascending flows (Wang et al.,
2024). Notably, pv is not provided in ECMWF model-level
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data and is subsequently excluded from the input data set dur-
ing further training of the ANN model. In summary, the ANN
model is trained with the variables shown in Table 1. The rel-
evance of each input atmospheric variable to the RHi predic-
tion model developed in Sect. 3.2 is discussed in Sect. 3.3.

3.2 Development and training of the ANN model for
humidity improvement

An ANN is composed of a large number of units that ex-
change information with each other in a similar structure and
function to neural networks in human brains. A basic ANN
model contains three types of layers: an input layer, one or
more hidden layer(s), and an output layer. Each layer is made
up of neurons. Neurons receive the weighted sum of the re-
sults of the previous layer’s neurons, use it as the argument of
an activation function, and forward the results to the follow-
ing layer. The feed-forward ANN used in this study employs
a learning technique called back propagation, where the out-
puts are compared to the target values to calculate the differ-
ences in the form of the loss function. The error is then fed
back to modify the weights and bias of each neuron based on
the optimization method (see, e.g., Ma et al., 2020).

Here, the ANN model for RHi is trained using a large set
of atmospheric variables obtained from ERAS reanalysis and
RHi measured from IAGOS, as explained in the previous sec-
tion. The ANN learns to reproduce the nonlinear statistical
relationships between the selected series of meteorological
variables and humidity fields iteratively, adjusting its param-
eters until it can robustly and accurately predict RHi in the
UTLS. This procedure considers not only RHi> 100 % to
investigate ice supersaturation but also the full range of RHi
to provide sufficient data for model building.

Based on the temporal dependence of measured hu-
midity on individual meteorological parameters discussed
in Sect. 3.1, the input variables for the ANN encompass
RHigrAs, TERAS, 2, W, d, u, v, and vo. They are extracted
from the ERAS fields (Sect. 2.2) at the time of the IAGOS
observation, as well as 2 and 6h prior, at the geographical
and vertical location of the IAGOS measurement, along with
41 to £2 ERAS pressure levels. The output (target) vari-
able of the ANN is RHijsgos. The ANN model consists of
56 inputs, derived from eight meteorological variables across
seven conditions: the current time and level, two time lags
(—2 and —6h) for the current level, and four ERAS pressure
levels surrounding the IAGOS cruise altitude (-2, —1, +1,
+2 levels) for the current time. They are summarized in Ta-
ble 1. We apply min—max normalization to both input and
output data, which prevents features with larger ranges from
dominating and improves convergence speed during model
training. We use three hidden layers, each with 100 neurons
and a He weight initializer (He et al., 2015), along with batch
normalization between layers to improve generalization. The
humidity output is referred to as RHiann. The rectified linear
unit (Relu) serves as the activation function for the hidden
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layers, while a linear function is used for the output layer.
The mean squared error (MSE) is adopted as a loss function,
and the ANN model is optimized using stochastic gradient
descent with a learning rate of 0.001, decay of 10™>, and
momentum of 0.99 after several tests. Training of the ANN
model is executed with batch sizes of 1024 and 100 epochs.
In Sect. 2.3, a period of 4 consecutive days of samples from
the ERAS-TAGOS collection is allocated for model training,
with the following day excluded to avoid overlap with the
continuous weather system and another day reserved for val-
idation, to evaluate the model’s generalization to unseen data
during training, or for testing. The trained model is validated
against the test data set of ERAS and IAGOS, which is used
for comparative analysis in Sect. 2.4. To test the model’s pre-
dictions, the results were transformed back to their original
scale by applying the inverse of the normalization using the
previously saved scaler.

Details on the preparation of training and validation data,
particularly for specific humidity g, are provided in Sect. S3.
Similarly, an ANN for g is implemented, with 300 neurons in
each hidden layer and RHi replaced by g everywhere in both
input and output layers (refer to the Supplement for more in-
formation). The ANN model can then be applied to ERAS
data for humidity correction in the UTLS region. The com-
putational time required for each scene in Fig. 1 is approx. 5 s
on a standard laptop (Intel i5-8250U CPU, 8G memory). This
technique incorporates thermodynamic and dynamical mete-
orological values to account for the vertical and horizontal
transport of water vapor and its temporal evolution and takes
advantage of numerous humidity measurements.

3.3 Importance of the individual variables for the quality
of ANN RHi prediction

The ANN model is interpreted with an investigation of the
relative contributions of input variables to the predicted
RHianN. K is the relative change in loss when one input,
i.e., one feature of ERAS, is set to its mean value for the
complete input data set, but the rest of the input features are
kept unchanged:

L,—L
K, = X 0
Ly

, 1
where L, is the loss (MSE) for the test data set compared
with TAGOS when setting one ERAS feature input to its av-
erage value, and L is the loss for the full test data set. Low
values of K, indicate a small impact of the change in input
quantity on the output accuracy or vice versa.

In Fig. 3, the importance (K ) analysis for all input vari-
ables (the current time and level, —2 or —6h and —2, —1,
+1, 42 levels above/below) in the ANN model reveals that
RHigras, TErAS, and z hold the highest level of significance
and carry considerable weight among all parameters. The
particular relevance of these three variables can be explained
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Figure 3. Relative importance of the individual variables to the
ANN model for predicting RHi.

by the inherent relationship wherein RHi typically rises in re-
gions with decreasing temperature at higher geopotential z in
the troposphere. Water vapor is carried to upper altitudes with
the accompanying adiabatic cooling, which increases RHi.
Thus, the ANN model already captures RHijagos effectively
using RHigras, TErRAS, and z. However, although the other
(dynamical) variables are less important for the prediction of
RHianN, they provide a moderate and non-negligible contri-
bution to the accuracy of the RHi prediction model. In fact, w
and d show K, values of 0.29 and 0.26, while K, values for
u, v, and vo are even higher, at 0.98, 0.75, and 0.74. There is
generally less importance in the contributions of the variables
representing dynamical quantities, aligning with the findings
in Hofer et al. (2024) based on meteorological variables from
the given time.

The fact that dynamical variables, for instance u, v, and vo
in particular, are nearly as important as RHigras, TEras5, and
z for the description of the physical processes that lead to the
decrease/increase in relative humidity in Sect. S2 but at the
same time generally show only a moderate importance in the
ANN model could be attributed to the correlation with other
variables and the significant overlap between the conditional
distributions of RHigra5 on ice supersaturation determined
by RHijagos or not (Hofer et al., 2024). Hofer et al. (2024)
show that RHigras is the most influential predictor for hu-
midity predictions, while the explanatory power of dynami-
cal proxies is insufficient when only using data from the cur-
rent time and level. However, our updated analysis confirms
that incorporating a broader vertical region and the historical
time into the dynamical variables has a more significant im-
pact on the ANN model and contributes to the understanding
of humidity evolution.
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Figure 4. Distribution of (a) RHigras and (b) RHiann versus
RHijagos in the UT in all-sky (clear and cloudy) conditions in the
test data set. The number of data sets (), the mean absolute error
(MAE), and the coefficient of determination (R2) are shown in the
panels.

4 Model evaluation and results

4.1 Validation of ANN RHi in clear and cloudy
conditions in the UTLS

This study aims to use the ANN model to resolve biases in-
herent in NWP model output evaluated in Sect. 2.4. To quan-
tify the accuracy of the ANN model, RHigann (and gann in
the Supplement) is evaluated based on the test data set under
four conditions: all-sky UT, cloudy UTLS, clear-sky UTLS,
and all-sky LS. Validation results of RHignn are shown in
Figs. 4, 5, and 6 and gann in Sect. S4.

In the UT all-sky condition, important for cirrus clouds
and contrails, a high number of measurements, comprising
21031 data points, are used for the inter-comparison be-
tween ERAS and the outputs of the ANN model. RHiann
(Fig. 4b) demonstrates better agreement with RHijpagos com-
pared to RHigras (Fig. 4a). In particular, RHiann shows
values consistent with RHijagos at RHi > 100 %, which
is a major improvement in comparison to the ERAS data
set. RHiann exhibits a significant higher correlation with
RHijpgos for all uncertainty parameters (mean absolute
error, MAE; coefficient of determination, R2) compared
to ERAS. The MAE decreases significantly from 15.82 %
(ERA3) to 5.71% (ANN), the R? values increase from
0.66 (ERAS) to 0.95 (ANN), and the root mean spare error
(RMSE) decreases from 20.52 % (ERAS) to 7.88 % (ANN).
Notably, the ANN model also effectively corrects the exist-
ing peak at RHigra5 = 100 % in Fig. 4a and does not show
a peak at RHi ~ 100 %, similar to the IAGOS measurements.
Hence, the ANN exhibits a significant improvement in RHi
that would be beneficial for cirrus and cloud predictions.
For other scenarios, such as the cloudy UTLS, the clear-
sky UTLS, and the all-sky LS between 400 and 200 hPa, the
comparison of RHi is shown in Fig. 5. Notably, also in the
cloudy UTLS, RHiann results (Fig. 5b) exhibit a closer cor-
relation with RHijagos than those in the cloudy region of
RHigras (Fig. 5a). In the cloudy (Fig. 5a-b) and clear-sky
(Fig. 5c—d) conditions in the UTLS, the MAE of the RHi
decreases from 16.28 % and 11.21 % to 5.95 % and 4.28 %,
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Figure 5. Comparison of RHigras (left column) and RHignN
(right column) against RHijpagos in the (a, b) cloudy UTLS, (c,
d) clear-sky UTLS, and (e, f) clear-sky and cloudy (or all-sky) LS
regions in the test data set. The number of data sets (N), the mean
absolute error (MAE), and the coefficient of determination (RZ) are
indicated in the individual panels.

respectively. Moreover, R? increases by 0.30 (0.23) to 0.95
(0.95) for the two scenarios. Again, the peak at 100 % in
the RHigra5 distribution in the cloudy UTLS disappears in
RHiaNN, in line with the IAGOS observations. In particular,
the ANN model shows very good performance in the cloudy
UTLS, and RHiann and RHijagos align close to the 1: 1
line. While the majority of data in the cloudy UTLS is al-
located at RHi > 80 %, some clouds were observed in ice-
subsaturated conditions, or ice particles had sedimented into
drier air.

The ANN model also has strong skills of RHi correction
in the LS; see Fig. Se and f. R? values increase from 0.59
(ERAS) to 0.95 (ANN), similar to the UT region in Fig. 4.
The improvement in RHi prediction by the ANN model is
also documented by the decrease in MAE by 6.07 %. The
ANN model successfully learns interconnections within the
data, as evidenced by its more accurate RHiznN.

Figure 6 presents a detailed relative comparison (mean
bias error, MBE) of either RHigras or RHiann as a func-
tion of RHijagos.- In Fig. 6a, the occurrences of RHigras >
105 % are underestimated compared to the distribution of
RHijagos- In Fig. 6b, the distribution of RHisnn closely re-
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Figure 6. Frequency distribution (a and ¢) and overall mean bi-
ased error (MBE) (%) (b and d) of RHigra5 and RHipnN against
RHijpgos in the clear and cloudy UT (gray) in the test data set.

sembles RHijagos, showing a smoother distribution around
RHi of 100 %. In Fig. 6¢, RHigras shows an increasing dry
bias in the UT, reaching 37 % at RHi > 120 %. The few data
points at RHi > 120 % even exhibit larger deviations by more
than 60 % within ERAS. As opposed to this, Fig. 6d shows
that RHiann and RHijagos have closer agreement, with an
MBE of about 11 % for all UT measurements up to 140 %.
The RHi between 80 % and 130 % in the important range for
cirrus clouds is represented well by the ANN with an MBE
better than &7 %. This suggests that the saturated region of
RHi, which presents a requisite environmental condition for
new ice crystal nucleation and subsequent growth, can be
more accurately parameterized.

Wolf et al. (2025) developed a humidity correction tech-
nique for RHigras using IAGOS measurements through a
multivariate quantile method. The differences between the
corrected ERAS data and RHigra5 in cloudy regions are doc-
umented in their Table 3, with the mean absolute difference
ranging from —2.2 % to 12.08 % depending on cloud frac-
tion. Although not directly comparable within the same time
frame, RHianN also shows good performance, with a MAE
of approximately 5.8 % in the same region of all-sky UT and
cloudy UTLS.

RHianNn also shows better agreement with independent
airborne measurements compared to ERAS data. For de-
tailed information on the humidity data on 21 July 2021 dur-
ing the CIRRUS-HL campaign, refer to Sect. S5, which in-
cludes measured data from an atmospheric ionization mass
spectrometer (AIMS; Kaufmann et al., 2016) instrument and
RHigras and RHipnN.

The investigations related to validating ANNg in clear and
cloudy conditions in the UTLS are shown in Sect. S4.
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4.2 Skill of ANN and ERAS5 in predicting RHi > 100 %
versus IAGOS data

For cirrus clouds and contrails, accurately representing
RHi > 100 %, and thus ice supersaturation, is of great im-
portance. Hence, here we focus on the data sets with
RHi > 100 %. The skill of ice supersaturation prediction
from RHigras and RHianN is evaluated based on the equi-
table threat score (ETS), as described in Gierens et al. (2020).
The ETS measures forecasting performance by assessing
the proportion of correctly forecasted events and is of-
ten used in weather forecast verification (Wang, 2014).
First, events are labeled according to the contingency ta-
ble, with a (Y1acos/YEra5 Or Yiacos/Yann, ice super-
saturation predicted and observed), b (Y1acos/NEras or
Y1acos/NaNN, no ice supersaturation predicted but ob-
served), ¢ (N1acos/YEra5 Of N1agos/YANN, ice supersatu-
ration predicted but not observed), and d (Niacos/NERA5
or Niagos/NaNN ice supersaturation neither predicted nor
observed). Y1agos indicates that the waypoint is in ice super-
saturation based on the IAGOS measurements, while NiaGgos
indicates the absence of ice supersaturation. The same nota-
tions are applied when analyzing the statistics for ERAS and
ANN. The ETS is then calculated using the following equa-
tions:

a—r

BT = hre=r @
with
- (a+b)a+o) 3)

T a+b+c+d’

The ETS value gets larger when the ice supersaturation pre-
diction is closer to the measured values (here IAGOS data).
ETS =1 indicates that all RHijagos values perfectly agree
with RHigras or RHiann. ETS = 0 means a completely ran-
dom distribution, while negative ETS implies a negative cor-
relation.

Table 2 shows ETS values for both the ERAS- and the
ANN-predicted ice supersaturation across all test data sets
in Sect. 2.4. The scores for ERAS in all-sky UT, cloudy
UTLS, and all-sky LS classes are 0.23, 0.21, and 0.14, re-
spectively, indicating limited predictive skill, particularly in
the all-sky LS region. In contrast, the ANN model signifi-
cantly enhances the ice supersaturation prediction, yielding
scores of 0.71, 0.70, and 0.52 for the respective regions. This
represents an approximate 0.44 increase in ETS across all
classes, thereby facilitating related studies on the formation
and persistence of cirrus clouds. The clear-sky UTLS region
is not discussed here, as we are focusing on RHi > 100 %.
According to Fig. 5c, few ERAS data points fall within the
ice supersaturation region in the clear-sky data sets.

Teoh et al. (2022) developed a statistical approach to cor-
rect the ERAS humidity fields, in particular for ice supersat-
uration, with the aim of adjusting the PDF of RHigras in
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order to achieve a similar PDF to RHijsgos. After applying
this humidity correction method, the ETS for ice supersatura-
tion in the all-sky UTLS reached a value of 0.424 when com-
pared to IAGOS measurements in 2019, as shown in their Ta-
ble S4. This statistical method outperforms RHigras in pre-
dicting ice supersaturation, as the latter achieves an ETS of
approximately 0.2. In a recent study, Hofer et al. (2024) use
RHigras, TErA5, and dynamical proxies only from the given
time in several regression models to predict RHi > 100 % and
find the best regression with an ETS of 0.378 for 16588
flights of the Measurement of Ozone and Water Vapour on
Airbus In-service Aircraft (MOZAIC) between 2000 and
2009. While not directly comparable within the same time
frame, RHiann excels in forecasting ice supersaturation rel-
ative to ERAS and methods from Teoh et al. (2022) and Hofer
et al. (2024), demonstrating a higher accuracy with an ETS
as high as 0.71.

5 CoCiP predictions and MSG contrail cirrus
observations

As an application, this section investigates the impact of
improved humidity prediction in the UT on the estimation
of contrail cirrus optical thickness using CoCiP simulations
(Sect. 2.5) and compares the results with retrieved IOT from
MSG observations using the CiPS algorithm (Sect. 2.6). The
selected case is from 10:00 UTC on 14 April 2021 (during
the ECLIF3 campaign) over the North Atlantic region (NAR;
Sect. 2.1), representing a typical contrail cirrus situation just
off the coast of Ireland. The MSG observation scene is from
09:45UTC, as SEVIRI scans from the south, taking about
12 min per scene and reaching the upper edge (near the NAR)
around 09:56 UTC, which is more consistent with the Co-
CiP simulation time. For the CoCiP simulations, specific hu-
midity girs and other atmospheric trace gas profiles from
the ECMWEF IFS model-level data between level 73 (about
190 hPa) and level 90 (about 400 or 410 hPa) are used as in-
put to the ANN model to produce gann profiles. We perform
two CoCiP experiments: the girs and the resulting gaANN pro-
files serve as input for CoCiP, while other parameters, partic-
ularly cloud liquid water content and ciwc, are kept constant
using IFS values to include the same natural cloud effects in
both CoCiP simulations.

Figure 7 provides a comparison of the spatial distributions
and frequency of occurrence (histogram) of CoCiP-simulated
and MSG-observed IOT. In the MSG scene (Fig. 7a), con-
trails and contrail cirrus, represented by linear structures with
10T ~0.3-0.5 (Wang et al., 2023), are situated above the At-
lantic Ocean, extending from west to east and surrounded by
thicker cirrus clouds with higher IOT (even exceeding 1.0).
The simulated IOTs (Fig. 7b and c¢) show patterns of higher
IOT surrounded by lower IOT cirrus, as in the MSG observa-
tions, although the single structures are not directly compa-
rable. In addition, due to satellite detection limitations, CiPS
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Figure 7. Distributions of IOT for contrails and cirrus retrieved from (a) MSG observations using the CiPS algorithm and simulated using

the CoCiP model with (b) gann or (¢) grps at 10:00 UTC on 14

April 2021. The IOT distribution for contrails from CoCiP simulations

is shown in (e) and (f). The linear structures of contrails correspond to the associated flight tracks. The IOT frequencies (histograms) for

contrail cirrus and contrails are shown in (d) and (g), respectively.

Table 2. ETS values for the prediction of RHi > 100 % from RHigras5 and RHipny in the test data set between 200 and 400 hPa over the

Atlantic, Europe, and Africa in 2020.

Scenarios Y1AGos/YErA5  Y1AGOS/NERAS  N1AGOS/YERA5  Niacos/Neras ETS
Clear and cloudy UT 66.34 % 3.31 % 19.42 % 1094% 0.23
Cloudy UTLS 54.61 % 4.99 % 24.06 % 16.34% 0.21
Clear and cloudy LS 97.48 % 0.21 % 1.96 % 036% 0.14
Clear-sky UTLS 95.43 % 0.05 % 423 % 028% 0.06
Scenarios Y1aAGos/YaANN  Y1AGOS/NANN  NiaGcos/YANN  Niagos/Nann  ETS
Clear and cloudy UT 67.07 % 2.57 % 4.57 % 2579% 0.71
Cloudy UTLS 56.26 % 3.34 % 4.95 % 3544% 0.70
Clear and cloudy LS 97.29 % 0.40 % 0.89 % 142% 0.52
Clear-sky UTLS 94.99 % 0.49 % 2.07 % 244 % 047

cannot capture the thinnest ice clouds. For these reasons, a
quantitative pixel-to-pixel comparison between the CoCiP
simulations and the MSG observation is not meaningful in
this context, and we thus rather consider frequency distribu-
tions of IOT in the following. In general, the simulated IOT
using gann (Fig. 7b) is closer to CiPS-retrieved IOT com-
pared to the CoCiP simulation with gigs (Fig. 7c). The his-
togram (Fig. 7d) shows decreasing frequencies of occurrence
with increasing IOT. Better agreement is also exhibited be-
tween IOT from CiPS and the CoCiP simulation using gann
than that using gips. For natural cirrus, larger IOT (~0.75)
is observed, while the smaller IOT (< 0.5) for contrails is
of particular interest. In the lower panels showing only con-

https://doi.org/10.5194/acp-25-2845-2025

trails, the simulation with increased humidity exhibits larger
IOT (Fig. 7e) compared to that without humidity correction
(Fig. 7f). Higher 10T up to 0.85 from CoCiP with gann,
compared to IOT values below 0.5 with grrs, is due to the
growth of contrail ice crystals from the increased amount of
available water vapor in gann and is also evident in the fre-
quency analysis (Fig. 7g).

In general, the model results demonstrate increased con-
sistency with MSG observations when gann is incorporated
in CoCiP. Given that ice supersaturation typically exhibits
large horizontal but shallow vertical extensions (Spichtinger
et al., 2003), a minor adjustment in cruising altitude, avoid-
ing regions of high humidity, can potentially reduce contrail
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radiative forcing. An improved representation of humidity
thanks to an ANN approach is thus crucial for more accurate
predictions of the contrail cirrus cover and radiative effect
(Kaufmann et al., 2024).

6 Summary and conclusions

The distribution of relative humidity in the UTLS from NWP
models, which plays a vital role in the parameterizations of
natural cirrus and contrail cirrus properties, is subject to large
uncertainties. In this study we propose a humidity bias cor-
rection method for relative humidity from ERAS, RHigras,
particularly for ice supersaturation in the UT, using an ANN
technique. The novelty of this study lies in the incorporation
of thermodynamic and dynamical atmospheric quantities for
the given time and height together with atmospheric prop-
erties from previous times and nearby altitudes. The atmo-
spheric humidity improvement method consists of an ANN
developed using atmospheric variables from ERAS, along
with collocated measurements of water vapor from IAGOS.
The ERAS data include temporal and vertical dependencies
of humidity on meteorological conditions, combining not
only the historic data (—6, —2 h) and current time but also 2
ERAS pressure layers around the flight latitude of IAGOS.
The target region covers the Atlantic, Europe, and Africa,
spanning 0 to 80° N and 30° W to 50°E and pressure levels
from 400 to 200 hPa.

The analysis of biases between collocated RHigras and
RHijagos reveals an underestimation of RHigras within the
UT and an RHi occurrence peak near 100 % due to the cloud
saturation adjustment by ECMWF NWP. The ERA5-IAGOS
collocated data are processed and the variables for training
the ANN model for humidity correction are selected based
on the discussion of the temporal evolution of meteorological
variables. Humidity, temperature, and geopotential (as a vari-
able for the altitude) have the biggest impact on the RHiann
results, while other meteorological variables, including hor-
izontal wind speed, relative vorticity, vertical velocity, and
divergence, have a high or moderate to minor but measurable
influence.

Using this ANN humidity correction, the MAE of RHiann
compared to RHijagos, relative to RHigras and RHijagos,
is reduced from 15.82 % to 5.71 % in all-sky UT, 16.28 % to
5.95 % in cloudy UTLS, 11.21 % to 4.28 % in clear UTLS,
and 9.78 % to 3.71 % in all-sky LS regions, respectively, pre-
senting remarkable improvements, particularly in the all-sky
UT and cloudy UTLS regions. A previously existing occur-
rence peak at RHi= 100 % in RHigras, which is caused by
the cloud saturation adjustment in NWP, has been removed
completely by the ANN.

The representation of ice supersaturation in RHigras and
RHianN with respect to RHijagos was assessed with the cal-
culation of the ETS value. The dynamic-based humidity cor-
rection leads to an increase in ETS from 0.23, 0.21, and 0.14
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(ERAS) to 0.71, 0.70, and 0.52 by the ANN, respectively,
in the all-sky UT, cloudy UTLS, and all-sky LS regions. The
skill of ice supersaturation prediction improves considerably.

The forecast of optical and radiative properties of cirrus
and contrail cirrus, based on the ANN humidity correction,
is exemplarily assessed with CoCiP simulations using IFS
weather data and the ANN-corrected data and MSG satellite
observations for one case between 35 and 60°N (over the
NAR) at 10:00 UTC on 14 April 2021. The result shows bet-
ter agreement in ice optical thickness between model simu-
lations with humidity correction and satellite observations in
this contrail situation.

Teoh et al. (2022) and Wolf et al. (2025) utilize IA-
GOS measurements to correct RHigr o5 with statistical meth-
ods. Our study shows the potential of the emerging field of
machine-learning-based weather prediction post-processing,
in which forecast outputs are improved using historical ob-
servations and analysis data. How the current atmospheric
states influence the future development of humidity patterns
has been highlighted. One issue in the existing model data,
where the frequency and degree of ice supersaturation in the
UT are consistently underestimated due to the practice of
cloud saturation adjustment, has been successfully addressed
by the ANN model. The method demonstrates competitive
performance, as seen by the decreased MAE and larger ETS
compared to the accuracy of the aforementioned statistical
methods.

Incorporating more water vapor data from the fleet-wide
observations of humidity within the UTLS can further im-
prove this method. Our findings suggest potential applica-
tions for aircraft diversion strategies to avoid ice supersat-
uration regions and reduce contrail cirrus climate impact.
Further research on applying humidity correction methods
to weather forecasts is vital for improving our understand-
ing of the global cloud radiation budget. Our improved hu-
midity predictions could serve as benchmarks for the further
measurements of aircraft campaigns, as the assimilation or
reference data set for NWP or climate models for a better pa-
rameterization of ice supersaturation. The method could also
be applied to other weather forecast models, including those
from ECMWF and national weather services. Additionally,
increased resolution of NWP models at the tropopause is
required for better cirrus and contrail forecasting. Combin-
ing modeled meteorological conditions and their temporal
changes, along with measured humidity from long-term data
sets, is essential for a more realistic representation of RHi,
subsequent processes like cloud and contrail formation in the
UTLS, and their climate impact.

Data availability. IAGOS measurements are available at
https://doi.org/10.25326/20 (Boulanger et al., 2020). The ERAS
and IFS atmospheric profiles can be obtained from the Climate
Data Store (https://doi.org/10.24381/cds.bd0915¢c6, Hersbach et
al., 2023) or ECMWF directly. The SEVIRI data are provided
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by the European Organisation for the Exploitation of Mete-
orological Satellites (EUMETSAT). The CoCiP model code
can be accessed from https://doi.org/10.5281/zenodo.7776686
(Shapiro et al., 2023). The machine learning technique imple-
mentation is based on the open-source platform TensorFlow
(https://arxiv.org/abs/1603.04467, Abadi et al., 2016). The required
software packages are Python (van Rossum and Drake, 2009),
Keras (Gulli and Pal, 2017), and Scikit-learn (Pedregosa et al.,
2011).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-2845-2025-supplement.
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