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A B S T R A C T

Fuel spray atomization in gas turbine systems significantly impacts the combustion process and thereby emis-
sion formation. Considering the necessity for quantitative description of the influence of operating conditions
on the spray breakup mechanisms, a machine learning (ML) based methodology is introduced to accurately
segment the dispersed liquid from the continuous gaseous phase in shadowgraphy images. The segmented
images subsequently facilitate a high-level statistical analysis of gas-liquid-interface contours and ultimately
instability dynamics. For this purpose, multiple ML models varying in architecture (Semantic FPN and
DeepLabV3+), datasets and augmentations are benchmarked to achieve the best performance. Subsequently,
the best model is validated and used to obtain conditional statistics on the detected spray contours of three
different spray types (jet-in-crossflow, pressure swirl spray and prefilming airblast spray). The model showcases
high robustness, transferability across spray configurations and accuracy along multiple never-seen sprays
thereby illustrating the superiority of deep learning methods for scientific image segmentation tasks. Moreover,
the inferred high-level statistical analysis provides novel quantitative insights into the involved turbulence-
spray interactions aiding the understanding of jet, sheet and film atomization under highly turbulent flow
conditions.
1. Introduction

Fuel spray atomization processes, entailing the disintegration of liq-
uid jets, films, or sheets into ligaments and fine droplets, play a pivotal
role in the performance and achievable emission standards in combus-
tion processes. Inadequate atomization can lead to larger droplets that,
in turn, result in reduced evaporation rates and thereby impede mixture
homogenisation (Hampp et al., 2023). Related mixture stratification
can influence the formation of soot in fuel-rich and NOX in fuel-lean
regions with elevated initial temperatures (Chong and Hochgreb, 2014;
Enagi et al., 2019). With the transition to green and sustainable fuels,
the fuel flexibility requirements of future injection and combustion sys-
tems are increasing accordingly. For liquid fuel gas turbine combustion
across all sectors, this spans from traditional hydrocarbons, biofuels,
oxygenated fuels, and sustainable aviation fuels to ammonia (Anderson
et al., 2020; Stefanizzi et al., 2021; Molière, 2023). This inherently
involves wide variability in terms of physical (e.g. viscosity, surface ten-
sion, phase change behaviour) and chemical properties (e.g. reactivity,
aromatic content). It is well known that physical fuel properties such as
viscosity and surface tension can strongly influence both primary and
secondary atomization (Lefebvre and McDonell, 2017). Consequently,
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atomizer performance and fuel flexibility are particularly pertinent for
future gas turbine combustion systems. The most common atomizer
types for such purposes are arguably multi-hole jet-in-crossflow (JiCF),
variants of pressure swirl (PS), and airblast injection systems (Lindman
et al., 2014; Raghu et al., 2015). In the former two technologies,
pressure is converted into kinetic energy, driving the disintegration of
the liquid jets or PS sheets. Frequently, these systems are subjected to
gaseous oxidiser cross- or coflow that excite Kelvin–Helmholtz instabil-
ities on the gas-liquid-interface surface (Chong et al., 2012; Oshima and
A., 2019; Petry et al., 2022). In airblast systems, typically high shear
stresses within the gaseous flow govern the atomization of liquid films.
Thus, the interaction of the liquid spray and the turbulent oxidiser flow
in its proximity governs the atomization process, fuel placement and
thereby atomizer performance (Koyama and Tachibana, 2012; Kang
et al., 2024). Enhanced fundamental understanding, in particular at
high Reynolds number (𝑅𝑒), of the involved processes is indispensable.

Detailed characterisation of atomization and fuel/oxidiser mixture
formation is essential for the development of future injector technolo-
gies. Spherical droplet size can accurately be measured using tech-
niques such as phase Doppler interferometry (PDI), laser-induced flu-
orescence (LIF) and Mie scattering ratios (Fansler and Parrish, 2015).
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Nomenclature

𝛼 Mass flow rate ratio
(

𝛼 = �̇�𝑙
𝜌𝑔 𝐴 𝑢𝑏

)

𝐴 Cross-sectional area of the flow channel
[mm2]

1 Pixel accuracy for the spray class
𝑑ℎ Hydraulic (nozzle) diameter [mm]
𝑑𝑙 Injector orifice diameter [mm]
1 Jaccard index for the spray class
 Mean Jaccard index (across all classes)
B,1 Boundary Jaccard index for the spray class
𝜅 Instantaneous curvature of the GLI [mm−1]
𝜅 Mean curvature of the GLI [mm−1]
𝜅′ Fluctuation of the GLI curvature [mm−1]
𝑙𝑏 Length of the continuous sheet prior to

breakup [mm]
𝑙𝑚𝑎𝑥 Maximum penetration depth of the de-

tached liquid film [mm]
𝑙𝑚𝑖𝑛 Minimum penetration depth of the detached

liquid film [mm]
𝑙 Mean penetration depth of the detached

liquid film [mm]
𝑙𝑠 Length of the continuous (unrolled) jet prior

to breakup [mm]
𝑙𝑥 Jet penetration length in the 𝑥-direction

[mm]
𝑙𝑦 Jet penetration length in the 𝑦-direction

[mm]
�̇�𝑙 Liquid (fuel or water) mass flow rate [g∕s]
𝜇𝑙 Liquid (fuel or water) dynamic viscosity

[Pa s]
𝜇𝑔 Gas (air) dynamic viscosity [Pa s]
𝑁 Number of instantaneous images
𝛥𝑃𝑙 Pressure drop across the liquid injector [bar ]

𝑞 Momentum flux ratio
(

𝑞 =
𝜌𝑙 𝑢2𝑙
𝜌𝑔 𝑢2𝑏

)

𝑟𝑎 Disturbance amplitude on the GLI [mm]
𝑟𝑎 Mean disturbance amplitude on the GLI

[mm]
𝑟′𝑎 Standard deviation of the GLI disturbance

amplitude [mm]
𝑟𝑏 Radial component of sheet prior to breakup

[mm]
𝑟𝑠 Radial displacement of the instantaneous

GLI [mm]
𝑟𝑠 Mean radial displacement of the GLI [mm]
𝑟′𝑠 Standard deviation of the GLI displacement

[mm]
𝜌𝑙 Liquid (fuel or water) density [k g∕m3]
𝜌𝑔 Gas (air) density [k g∕m3]
𝑅𝑒 Reynolds number
𝑅𝑒𝑔 Gas-phase Reynolds number

(

𝑅𝑒𝑔 =
𝜌𝑔 𝑢𝑏 𝑑𝑙
𝜇𝑔

)

𝑅𝑒𝑙 Liquid (fuel or water) jet Reynolds number
(

𝑅𝑒𝑙 =
𝜌𝑙 𝑢𝑙 𝑑𝑙
𝜇𝑙

)

𝑠𝑖 Instantaneous GLI contour
𝑠𝑡ℎ Instantaneous theoretically undisturbed GLI

𝜎 Liquid (fuel or water) surface tension [N∕m]

𝑇𝑔 Gas (air) temperature [K ]
2

m

𝑇𝑤 Air wall film temperature [K ]
𝜃𝑠 Instantaneous half-spray cone angle [◦]
𝛩𝑠 Instantaneous full-spray cone angle [◦]
𝑢𝑎 Atomization (airblast) velocity [m∕s]
𝑢𝑏 Bulk gas velocity [m∕s]
𝑢𝑐 Coflow velocity [m∕s]
𝑢𝑙 Liquid (fuel or water) jet velocity [m∕s]
 Weighted combination of the segmentation

metrics
𝑊 𝑒 Weber number

(

𝑊 𝑒 = 𝜌𝑔 𝑢2𝑏 𝑑𝑙
𝜎

)

𝑊 𝑒𝑐 𝑟 Critical Weber number
𝑥 Streamwise (or axial) coordinate [mm]
𝑦 Transverse (or radial) coordinate [mm]
𝑦𝑏 Axial component of sheet prior to breakup

[mm]
𝜓 Generic variable (e.g., 𝑟𝑠)
𝜓 Mean of generic variable
𝜓 ′ Fluctuation of generic variable
CV Computer Vision
DNN Deep Neural Network
FN False Negatives
FOV Field of View
FP False Positives
FPN Feature Pyramid Network
GLI Gas-liquid-interface
GT Gas Turbine
JiCF Jet-in-crossflow
LIF Laser-induced fluorescence
ML Machine learning
PDF Probability Density Function
PDI Phase Doppler Interferometry
PS Pressure swirl (spray)
TP True Positives

To measure the intricate breakup dynamics of liquid jets, films, sheets
or ligaments, background illumination shadowgraphy is widely em-
ployed, allowing for the visualisation of spray processes. Adequate
image post-processing can offer a quantitative delineation from primary
atomization (Kang et al., 2024), growth of instabilities (Petry et al.,
2022) to droplet sizing of spherical and non-spherical droplets and
ligaments (Jose and Hampp, 2024) as well as to infer vaporisation
ates (Stöhr et al., 2021).

Depending on the measurement campaign, shadowgraphy often
ields huge amount of data, necessitating accurate and efficient post-
rocessing methodologies to infer physical insights of the atomiza-
ion process (Chaussonnet et al., 2018). Conventional algorithm-based

computer vision (CV) methods have been used for decades in vari-
ous disciplines providing a foundation for scientific image analysis.
Algorithm-based CV techniques are commonly used for object detection
and high- and low-level image processing in various fields, including
combustion (Hampp and Lindstedt, 2017; Stöhr et al., 2021), spray
nalysis (Jose and Hampp, 2024), image enhancement (He et al., 2010)

and foundational image processing steps including background sub-
raction (Kaewtrakulpong and Bowden, 2002; Godbehere et al., 2012).
bject detection (Vaithiyanathan et al., 2019) and tracking (Bradski,

1998) can subsequently be conducted through binary image genera-
tion and segmentation techniques such as thresholding (Otsu, 1979;
Kapur et al., 1985). Many algorithm-based edge detection and seg-
mentation methods have been successfully employed in disciplines like

edical imaging (Zhang et al., 2001; Hoover et al., 2000), remote
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sensing (Pesaresi and Benediktsson, 2001; Li et al., 2010) and au-
onomous driving (Sotelo et al., 2004; He et al., 2004). The detailed

object data gathered through such methods can also be used to create
synthetic datasets for training and validating machine learning (ML)
models (Jose and Hampp, 2024). Traditional CV methods, while effec-
ive, can be computationally expensive and less adaptable to different

domain parameters due to varying imaging conditions and require
dataset specific parameter tuning. An innate issue in this context is
the high sensitivity to aesthetic or structural image features (Szeliski,
2022). Shadowgraphy images are prone to aberrations and intensity
fluctuations, e.g., due degrading window quality impeding optical ac-
cess, light source fluctuations or varying background illumination,
which in turn would necessitate project-specific refactoring of the CV
algorithm (Schäfer et al., 2020).

Machine learning-based methodologies for CV, particularly deep
neural networks (DNNs), are extremely powerful and can offer im-
roved generalisation with equal accuracy in instance or semantic
egmentation tasks. This is attributed to the ability of ML models to
pproximate the mapping function between inputs and outputs. In
ther words, ML models can learn to predict the correct outputs from
he given inputs circumventing the need to hardcode algorithms for
ach use case. ML models are being used effectively in a plethora
f diverse fields such as recommender systems (He et al., 2017),

robotics (Kober et al., 2013) and natural language processing (Touvron
et al., 2023). Recently, deep learning models, i.e., network architectures
with numerous layers or submodules, are being used in complex CV
tasks: high-quality image synthesis using denoising diffusion (Ho et al.,
2020), real-time object detection (Redmon et al., 2016) and high-
uality instance segmentation (He et al., 2020). The large number of
unable parameters, i.e., weights, renders such approaches robust and
eneralisable. In semantic segmentation, where the model can localise
bjects of interest with pixel-wise accuracy, the detected masks can be
sed for highly sensitive CV tasks with utmost accuracy. For scientific
urposes, the accurately detected individual object masks can also be
sed for various statistical data analysis tasks such as edge detection
nd shape analysis offering a detailed delineation of the involved
hysical processes.

Recent studies have used segmentation/classification ML models for
rocessing image data from advanced measurement techniques such

as laser-induced fluorescence (Hu et al., 2019), light-sheet fluorescent
maging (LSFI) (Packard et al., 2017), hydroxyl LIF (Strässle et al.,

2024), shadowgraphy (Jose and Hampp, 2024) and particle image
elocimetry (Chun-Yu et al., 2021). Particularly in combustion science,

several of these ML-based strategies have been applied to flame and
spray analysis. Großkopf et al. (2021) used both instance and semantic
egmentation models for detecting industrial burner flames and Pérez-

Guerrero et al. (2022) used U-Nets to segment flames for extracting
their geometric characteristics for safety analysis. An extension of this
methodology to sprays was presented by Huzjan et al. (2023), who
used an U-Net model variant to segment fuel sprays with the objective
to infer spray cone angle, spray area and penetration depth. Similar
approaches have been also applied to agricultural sprays (Acharya
et al., 2023). All aforementioned studies used a single configuration
and set of domain parameters with their general applicability and
ransferability to different domains not evaluated.

The current work overcomes such limitations and uses modified
semantic segmentation models to accurately analyse three different
sprays visualised via shadowgraphy. The first is a pressure-swirl spray,
where centrifugal forces form a swirling conical liquid sheet that un-
dergoes atomization into ligaments and fine droplets. This promotes
rapid evaporation and mixture homogenisation and is critical for GT
combustion. Second, JiCF sprays operate by injecting liquid jets into
a gaseous crossflow, where atomization is governed by shear forces at
the gas-liquid interface (GLI) driving the growth of instabilities and at-
omization. Such configurations are prevalent in multi-hole variants for
3

GT combustors, internal combustion engines and agricultural sprays.
Third, prefilming airblast atomization utilises high-momentum airflow
o destabilise liquid wall films and realise break-up into ligaments and
roplets at the airblast edge. This method is widely applied in aero-
ngine combustion systems. Although shadowgraphy is the common
echnique used, the images from each of these measurement campaigns
ary aesthetically in their intensity levels, dynamic range, signal-to-
oise ratio and spatial resolution. Apart from the aesthetic features,
hey also significantly vary structurally due to the different types of
njectors and therefore atomization mechanism used. Moreover, the
peration conditions, i.e., Reynolds and Weber numbers, fluid flow
ates and air preheat temperature, as well as physical liquid properties,
.e., water and kerosene, vary in the present study. While this renders
ystematic comparison between the different sprays difficult, it serves
he present purpose of developing a general applicable and transferable
L-based spray detection model. The developed ML-based methods

ught to substitute conventional algorithm-based image binarisation
rocessing steps. The main objectives are highly accurate masks, trans-
erability across datasets and reducing inference (i.e., post-processing)
ime to analyse spray shadowgraphy images from varying experimental
etups and quality. Section 2 describes the three experimental configu-

rations used and Section 3 describes the ML models, training approach
and statistical data analysis. The final ML model, trained solely on jet-
in-crossflow sprays, is subsequently applied to segregate JiCF, hollow
one pressure swirl spray and a prefilming airblast spray in Section 4.

The results show that the model is capable for semantically segmenting
sprays from all three measurement campaigns. Subsequently, the result-
ing masks create the foundation for a statistical analysis on the involved
urbulence-spray interactions, such as gas-liquid-interface disturbance
mplitudes and curvature.

2. Experimental configuration

For all three injectors, the same base canonical flow spray channel,
depicted in Fig. 1 and described in detail by Schäfer et al. (2020), has
been used for the current investigation. The apparatus consists of a
main air intake, a contraction nozzle equipped with flow straightening
elements and an optically accessible measurement section confined
by quartz glass windows. The optical section has a cross-section of
40 × 40 mm2 and a length of 400 mm. For the PS sprays, a separately
controlled wall air film generator is positioned between the contraction
nozzle and the optical section to create a protective coaxial air shield
for the inner quartz glass surface. This reduces surface wetting and
improves the optical access for prolonged measurement time. The
horizontal end of the wall is located 1.0 mm upstream of the atomizer
tip. It is worth mentioning, that the wall air film does not influence
the primary break-up that is the focus of the present study (Schäfer
et al., 2020). Pressurised Howden air is supplied, and the flow rate is
egulated by a mass flow controller (Bronkhorst EL-Flow series). A PID
ontrolled air preheating system with 38 kW electrical power can be
tilised for preheating the air flow. The liquid is supplied by a nitrogen
ressurised stainless steel piston cylinder with the flow rate controlled
ia a liquid mass flow controller (Bronkhorst mini CORI-FLOW M14)
nd guided into the supply system. Downstream of the test section,
he droplet-laden flow is cooled, and the dispersed phase separated by
eans of a wire mesh demister. This infrastructure is used for all three

etups unless specified otherwise.

2.1. Key dimensionless parameters

Prior to describing the specific spray setups, the following parame-
ters are defined that characterise the flow and spray breakup across
various operating conditions. The term liquid is used here for the
tilised working fluids of fuel or water and the term gas is used for

air. The liquid jet velocity 𝑢𝑙 is defined by

𝑢𝑙 =
4 �̇�𝑙

2
, (1)
𝜋 𝑑𝑙 𝜌𝑙
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Fig. 1. Schematic representation of the experimental configuration and the optical
diagnostic setup (shadowgraphy).

where �̇�𝑙 is the liquid mass flow rate, 𝑑𝑙 is the nozzle diameter, and 𝜌𝑙
is the liquid density. The momentum flux ratio 𝑞 is given by

𝑞 =
𝜌𝑙 𝑢2𝑙
𝜌𝑔 𝑢2𝑏

, (2)

where 𝜌𝑔 is the gas density and 𝑢𝑏 is the bulk gas velocity. The Weber
number 𝑊 𝑒 is expressed as

𝑊 𝑒 =
𝜌𝑔 𝑢2𝑏 𝑑𝑙
𝜎

, (3)

where 𝑑𝑙 the injector orifice diameter and 𝜎 is the liquid surface tension.
The gas-phase Reynolds number 𝑅𝑒𝑔 is defined by

𝑅𝑒𝑔 =
𝜌𝑔 𝑢𝑏 𝑑ℎ
𝜇𝑔

, (4)

where 𝜇𝑔 is the dynamic viscosity of the gas and 𝑑ℎ the hydraulic
channel diameter. The liquid jet Reynolds number 𝑅𝑒𝑙 is given by

𝑅𝑒𝑙 =
𝜌𝑙 𝑢𝑙 𝑑𝑙
𝜇𝑙

, (5)

where 𝜇𝑙 is the dynamic viscosity of the liquid. Finally the mass flow
rate ratio 𝛼 is defined by

𝛼 =
�̇�𝑙

𝜌𝑔 𝐴 𝑢𝑏
, (6)

where 𝐴 is the area of cross section of the flow channel.

2.2. Pressure swirl spray

The first spray configuration investigates a hollow cone pressure
swirl spray. In the current study, a commercial Schlick V121 atomizer
with an orifice diameter of 0.15 mm and nominal spray angles of 60◦

is mounted onto the tip of the central working fluid supply lance,
as shown in Fig. 2. The working fluid supply lance is water cooled
to maintain the temperature and thus physical properties constant
regardless of the operation condition variations. Three different air
coflow conditions (𝑢𝑏) are investigated, while maintaining the liquid
mass flow rate (�̇�𝑙) constant as specified in Table 1. Deionised water is
used as the working fluid for the PS investigations.

2.3. Jet-in-crossflow spray

The same test rig as for the PS investigation is used for the JiCF
spray with three adjustments, see Fig. 3. First, one quartz glass wall
is replaced by a metal plate through which the single plain orifice
injector is inserted. This also allows to remove the centralised fuel
supply lance (i.e., the second alternation). The wall air film nozzle is
removed (third adjustment) to inject the liquid jet directly into a well
defined crossflow. The tip of the single plain orifice injector aligns with
the inner wall surface and exhibit an orifice diameter of 200 μm and
length to diameter ratio of 10. The injection occurs in a 90◦ angle to the
crossflow. The working fluid for the JiCF spray is kerosene (i.e., Jet A-1)
at a liquid temperature of 293 K and the air preheat temperature is set
to 473 K using a PID controlled inline heater. Otherwise, the identical
4

Fig. 2. Schematic representation of the spray channel used for the pressure swirl spray
and the corresponding image obtained from shadowgraphy. The air flow and the liquid
spray is injection from the top towards the bottom. The coordinate system for this spray
configuration is also introduced.

Table 1
Conditions for air coflow and Schlick injection, where 𝑢𝑏 and 𝑢𝑤 are bulk coflow and
wall film velocity, 𝑊 𝑒𝑐 𝑟 the coflow Weber number, 𝑇𝑔 and 𝑇𝑤 the air and wall film
temperatures respectively, �̇�𝑙 the water mass flow rate, 𝑞 is the momentum flux ratio,
𝛼 is the mass flow rate ratio, 𝛥𝑃𝑙 the pressure drop across the injector and 𝑅𝑒𝑔 , the
coflow Reynolds number.

prop. Unit S1 W S2 W S3 W
Air coflow conditions

𝑢𝑏 m/s 20 35 50
𝑇𝑔 K 298 298 298
𝑅𝑒𝑔 ×104 5.1 8.9 12.7
𝑢𝑤 m/s 19.5 34.4 48.9
𝑇𝑤 K 473 473 473
𝑞 – 1342 438 215
𝛼 ×10−1 0.11 0.06 0.4

Schlick injection conditions

𝑊 𝑒 – 1.0 3.0 6.1
𝑊 𝑒𝑐 𝑟 – 8.8 0.3 18
�̇�𝑙 g/s 0.40
𝛥𝑃𝑙 bar 10.0

Fig. 3. Schematic representation of the spray channel used for the jet-in-crossflow
spray and the corresponding image obtained from shadowgraphy. The air flow is from
the top to the bottom, while the fuel jet is illustrated in shadowgraphy image. The
coordinate system for this spray configuration is also introduced.

flow controller setup and liquid fuel supply system of the PS study is
utilised here. A full matrix of the test conditions is provided in Table 2.

2.4. Prefilming airblast atomization spray

The third type of spray investigated is a prefilming airblast spray.
In the present canonical experiment, the entire air inflow section is
replaced by a manifold that allows splitting the air flow into coflow and
atomization air stream, see Fig. 4, both regulated by two independent
mass flow controllers. The optical test section is identical to the PS
study, yet the air wall film duct is also removed. The coflow and
atomization air streams are separated by a flat and polished wall with
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Table 2
Conditions for air crossflow and fuel jet injection, where 𝑢𝑏 and �̇�𝑙 are air crossflow
velocity and liquid fuel mass flow rate, respectively. 𝑞 is the momentum flux ratio, 𝛼
is the mass flow rate ratio, 𝑊 𝑒 is the Weber number and, 𝑅𝑒𝑔 and 𝑅𝑒𝑙 are the gas
and fuel jet Reynolds numbers respectively.

Case 𝑢𝑏 �̇�𝑙 𝑞 𝛼 𝑊 𝑒 𝑅𝑒𝑔 𝑅𝑒𝑙
(m/s) (g/s) – ×10−1 – ×105 ×103

JiCF1J 65 0.5 100 0.06 28 1.0 2.2
JiCF2J 65 1.0 399 0.13 28 1.0 4.3
JiCF3J 65 2.0 1595 0.26 28 1.0 8.7
JiCF4J 99 0.5 43 0.04 64 1.6 2.2
JiCF5J 99 1.0 172 0.08 64 1.6 4.3
JiCF6J 99 2.0 688 0.17 64 1.6 8.7
JiCF7J 133 0.5 24 0.03 115 2.1 2.2
JiCF8J 133 1.0 95 0.06 115 2.1 4.3
JiCF9J 133 2.0 381 0.12 115 2.1 8.7

Fig. 4. Schematic representation of the spray channel used for the prefilming airblast
spray and the corresponding image (side view) obtained from shadowgraphy. The
coflow and airblast air stream, as well as the fuel wall film flow from the top towards
the bottom. The coordinate system for this spray configuration is also introduced. The
top edge of the shadowgraph includes the bottom edge of the prefilmer followed by
the dispersed spray.

an airblast knife edge. The wall separates the optical test section into
two rectangular ducts with cross-sections of 40 × 10.5 mm2 on the
prefilming and coflow side and 40 × 26.5 mm2 on the atomization air
side. The wall length from the injection point to the airblast edge is
120 mm with a thickness of 3 mm. The wall is thickened at the side
walls to 8 mm to allow for sealing against the adjoining quartz glass
windows to avoid fluid exchange upstream of the airblast knife edge.
Here, the two ducts merge into the original channel with 40 × 40 mm2

cross-section.
Prefilming is conducted by means of three 100 μm plain orifice jet-

in-crossflow injectors that are supplied from a common fuel plenum
with the kerosene (Jet A-1) mass flow regulated by same flow controller
setup described above. In the current study, the injection angle is
maintained at 80◦, yet can be also set to 20◦ and 50◦. The rest of the
fuel supply system is identical to the ones described above. The JiCF
prefilming sprays are directed towards the wall, where a thin film is
created, spread out and convected downstream to the airblast edge by
the coflow air velocity (𝑢𝑐). The shear between the airblast air velocity
(𝑢𝑎) and 𝑢𝑐 across the airblast edge leads to atomization of the thin film.
In the current study, the ratio of 𝑢𝑎 and 𝑢𝑐 is varied along with the fuel
mass flow rate (�̇�𝑙) as listed in Table 3. The coflow and airblast air,
fuel and wall temperature are maintained at 293 K.

2.5. Shadowgraphy

Quantitative spray atomization analysis is conducted on the ba-
sis of background illumination shadowgraphy as illustrated in Fig. 1
(right). The second harmonic of a Nd:YAG Spectra Physics Quanta Ray
laser pulse pair (repetition rate 10 Hz, 𝛥𝑡 = 10 μs) is directed onto
a fluorescent screen. In the current work only the first laser pulse
is used, yet the double pulse would facilitate droplet velocimetry.
5

Table 3
Conditions for air coflow and prefilming airblast injection, where 𝑢𝑐 and 𝑢𝑎 are coflow
and atomization air velocities, �̇�𝑙 is the liquid fuel mass flow rate, 𝛩 is the spray angle,
𝛼 is the mass flow rate ratio, 𝑅𝑒𝑔 ,c is the Reynolds number for the coflow air, and 𝑅𝑒𝑔 ,a
is the Reynolds number for the airblast air.

Case 𝑢𝑐 𝑢𝑎 �̇�𝑙 𝛩 𝑅𝑒𝑔 ,c 𝑅𝑒𝑔 ,a 𝛼
(m/s) (m/s) (g/s) (◦) ×103 ×103 ×10−2

A1J 80 80 0.40 80 86 164 0.13
A2J 80 40 0.40 80 86 82 0.17
A3J 80 60 0.40 80 86 123 0.15
A4J 40 80 0.40 80 43 164 0.17
A5J 60 80 0.40 80 64 164 0.15
A6J 100 80 0.40 80 107 164 0.11
A7J 120 80 0.40 80 129 164 0.10
A8J 120 20 0.40 80 129 41 0.15
A9J 80 80 0.20 80 86 164 0.06
A10J 40 80 0.20 80 43 164 0.09
A11J 120 80 0.20 80 129 164 0.05
A12J 80 80 0.60 80 86 164 0.19
A13J 40 80 0.60 80 43 164 0.26
A14J 80 80 0.80 80 86 164 0.26
A15J 40 80 0.80 80 43 164 0.03

Upon excitation at 532 nm, the fluorescent screen produces the de-
sired non-coherent red-shifted background illumination (Stöhr et al.,
2021; Schäfer et al., 2020) with peak emission at 655 nm (FHWM
= 65 nm). The fluorescence decay time, and therefore the image
exposure time, is determined to ∼20 ns. The laser pulse energy has
been adjusted between the different experimental setups to result in
an optimum dynamic range utilisation (e.g., 3000–3500 counts) of the
utilised CCD camera (LaVision Imager SX 9M, double frame, 12 bit,
3360 × 2712 pixels2, minimum shutter time of 42 μs), while avoiding
over-exposure.

To record the shadowgraphy images, the camera is synchronised
with the laser by a programmable timing unit (LaVision PTU-X). The
quantum efficiency of the camera chip (Sony ICX 814) in the wave-
length range of the background illumination is 55 ±10%. The internal
camera gain to electronically amplify the signal is set to the minimum
of 0.0 dB (the default value) to minimise noise. The camera is equipped
with a Nikon macro lens with a focal length of 200 mm and the f-
number is set to f/2.8. For the JiCF, PS and airblast spray the field of
views (FOV) are 13.0 × 10.5mm2, 27.9 × 18.3mm2 and 13.1 × 10.1mm2,
resulting in optical resolutions (measured via a USAF 1951 resolution
target) of approximately 12.4 μm, 26.4 μm and 12.9 μm in the focal
plane, respectively. As shadowgraphy is a line-of-sight integrating mea-
surement technique, out-of-plane objects are also recorded, yet with
degrading optical resolution. In the primary breakup region, i.e., the
focus of the current study, the measured signal-to-noise ratios (SNR) of
the JiCF, PS and airblast sprays are 16, 7.6 and 14, respectively.

3. Methodology

In order to delineate the effect of aerodynamic forces on primary
atomization and to provide a quantitative description of the involved
interactions, precise and accurate segmentation of the sprays from
the surrounding gaseous phase (i.e., background in the shadowgraphy
images) is essential. Subsequently, characteristics such as spray angle,
disturbance amplitudes, break-up length and curvature can be inferred
from the segmented gas-liquid-interface (GLI) contours.

3.1. ML-based method for spray segmentation

ML models are implemented to generalise the segmentation of spray
with varying domain parameters. The approach involves generating
training data and model evaluation. Focus is also given to reduce
annotation effort through automatic labelling. Following this, a com-
prehensive statistical analysis is conducted with the ML-augmented
data analysis framework to evaluate the generalisability and robustness
of the selected model.
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Table 4
Model comparison. SF: Semantic FPN, DL: DeepLabV3+, D1: Dataset made from a single
preliminary JiCF case (JiCF0J: 𝑢𝑏 = 64 m/s, �̇�𝑙 = 0.5 g/s; liquid: Jet A-1), D2: Dataset
made from multiple JiCF spray cases (JiCF0J-JiCF9J: 𝑢𝑏 = 64 m/s, 65 m/s, 99 m/s and
133 m/s; �̇�𝑙 = 0.5 g/s, 1.0 g/s, 2.0 g/s; liquid: Jet A-1).

ML model 1 2 3 4 5

Base model SF SF SF SF DL
Augmentation (Geometric) N N Y N N
Augmentation (Aesthetic) N N N Y N
Dataset used D1 D2 D2 D2 D2

3.1.1. Training data generation
The training data for the ML models are generated from the ex-

perimental raw JiCF spray data due to its aesthetic quality and high
signal-to-noise ratio. These images with spatial dimensions of 3260
×2712 pixels2 are then normalised between 0 and 255 and resized to
024 ×851 pixels2 by pixel binning considering memory constraints

and to preserve the original aspect ratio. Subsequently, the generated
datasets have a total of 1500 greyscale images each accompanied by
the corresponding annotations (ground truths). The following steps are
adopted to generate the training data.

• From the input raw image, the corresponding ground truth mask
is generated using supervised conventional segmentation meth-
ods resulting in a binary image, where the background regions
are represented by zeros and spray regions are represented by
ones (Jose and Hampp, 2024).

• Augmentations, if any, are applied randomly to both input and
ground truth images.

• The input–output pair and the corresponding metadata are saved
to a data file for the model training.

• The above steps are iterated over different input images forming
a complete dataset.

• The dataset is split into training, testing, and validation sets in
the ratios 0.6, 0.3 and 0.1, respectively.

The models are trained using two distinct datasets to optimise per-
formance. The first dataset (D1) consisted of raw images obtained from
 single jet-in-crossflow spray configuration and operation condition,
erving as the primary data source. To further enhance the model’s gen-
ralisation capability, a second dataset (D2) is developed, incorporating
mages of JiCF sprays across multiple operation conditions at varying
omentum flux ratio and Reynolds numbers. It is worth highlighting

hat the training data consist solely of JiCF sprays and the models have
ot seen any PS or airblast sprays in the training process. Generat-
ng high-quality ground-truth annotations is often challenging (Urbán
t al., 2020), primarily because image features — such as noise, camera

artefacts, local intensity fluctuations, and focus irregularities — can
substantially affect segmentation algorithms. In an effort to streamline
the annotation process, we adopt a strategy in which only the most
pristine images (spray cases) are annotated, thereby allowing conven-
tional segmentation methods to perform reliably. To ensure realism and
robust performance in broader contexts, these idealised images are then
augmented synthetically with the aforementioned image features as
outlined in Table 4. This approach preserves annotation accuracy while
ntroducing a variety of real-world perturbations that enhance the

robustness and generalisability of the resulting segmentation models.
he validation dataset is however, replaced by a new set of annotated
alidation data that consists of all three spray conditions to provide a
ore meaningful evaluation of the trained models. See also Section 4.1.

3.1.2. Augmentations
Machine or deep learning is associated with large datasets to fa-

cilitate their comprehension of complex features, better generalisation,
reduced over-fitting, higher prediction accuracy and robustness (Halevy
et al., 2009; Sun et al., 2017). The significance lies in proper sampling
6

t

of the data reducing class imbalance with appropriate representation
of the population. Data augmentations can be used to synthetically en-
large existing datasets and overcome class imbalances and missing data.
Such steps improve feature learning and model generalisation, thereby
enhancing predictions in real world scenarios (Krizhevsky et al., 2012).
n this work, foundational geometric augmentations such as cropping
nd flipping are combined with aesthetic augmentations including
andom brightness and contrast adjustments.

3.1.3. Model selection, training, and evaluation
A thorough investigation of various ML based image segmentation

echniques is conducted. The specific structure of the sprays enables
he use of semantic segmentation models in contrast to instance or
anoptic segmentation models that can necessitate higher model com-
lexity and computational effort. Two state-of-the-art model architec-
ures (i.e., Semantic FPN and DeepLabV3+) are compared in the current
tudy.

3.1.4. Semantic FPN
Semantic FPN (Kirillov et al., 2019) extends the structure of Feature

yramid Network (FPN) (Lin et al., 2017) with a lightweight semantic
ead that produces corresponding segmentations. The general FPN con-
ains two pathways, a bottom up pathway, that downsamples the input
mage progressively producing a pyramid like structure. The second
ne, i.e., top-down pathway, takes the output of the bottom-up pathway
high-level semantic feature maps) and applies progressive upsampling
hile combining them with the corresponding high-resolution feature
aps from the bottom-up pathway through lateral connections. In

ontrast to the top-down pathway of the FPN, in Semantic FPN the
ultiscale feature maps of the pathway are convoluted, upsampled and

hen summed to produce a unified segmentation map. This architecture
ncreases the efficiency and robustness of the model by reducing model
omplexity and incorporating multiscale features with further details
rovided in the supplementary methods and materials (SMM).

3.1.5. DeepLabV3+
DeepLabV3+ (Chen et al., 2018) builds on the popular foundational

eepLab model (Chen et al., 2017a) and later versions (Chen et al.,
2017b) enhancing the performance with depth-wise separable convolu-
tions and an encoder–decoder structure. Former DeepLab models were
characterised by mainly atrous convolutions and atrous spatial pyramid
pooling. In contrast to normal convolutions, in atrous convolutions
certain parts of the kernel are zeroed out. This allows to incorporate
a wider field of view without sacrificing the computational efficiency.
Thus, denser features can be accumulated in the feature maps with
the same parameters as normal convolutions. In the model backbone,
these atrous convolutions are applied in place of conventional kernels.
In order to account for multiscale features spatial pyramid pooling
is used. Here, output feature maps from atrous convolutions with
varying kernel rates are combined into a single feature map. In the
final DeepLabV3+ model, instead of using standard convolutions, first
a depth-wise atrous convolution is applied followed by a pointwise
convolution, thereby reducing the computational complexity. The new
architecture uses DeepLabV3 as the encoder producing input feature
maps for the decoder, which upsamples the input feature maps to
produce segmentation maps with further details provided in the SMM.

3.1.6. Training approach
To achieve the maximum performance and faster convergence,

ransfer learning is applied to both architectures. Pre-trained weights
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trained on ImageNet (Deng et al., 2009) and Cityscapes (Cordts et al.,
2016) are used as initiators. The model backbones are frozen during the
transfer training. Apart from the most default configurations from the
models’ literature, hyper-parameters like learning rate (0.00025), batch
size (16) and momentum (0.9) are kept the same for both models for
consistency. Both models are trained for a maximum of 80,000 itera-
tions. To refine masks and thereby enhance the segmentation accuracy,
both models are supplemented by PointRend (Kirillov et al., 2020). The
latter performs pixel-based selective segmentation inferences adapting
to increased segmentation effort for high-quality object boundaries.
This addition significantly improves the models’ ability to capture fine
details and complex shapes, as often present in scientific images, where
precise segmentation is crucial.

3.1.7. Evaluation metrics
Training performance and model stability is inferred from the loss

curves. Periodic validations are carried out using an external dataset
consistent of all three sprays to provide meaningful segmentation met-
rics explained below. The choice of the evaluation metrics is important
considering the diverse parameters and augmentations used in the
study (see Table 4). Intersection over Union or Jaccard index ( )
measures the average overlap between the predicted segmentation
mask and ground truth. Considering the necessity for accurate spray
segmentation, the Jaccard index of the spray class (1) is considered a
significant metric. It is defined as:

1 =
TP1

TP1 + FP1 + FN1
, (7)

where TP1, FP1, and FN1 denotes pixel-wise True Positives, False Pos-
itives and False Negatives for the spray class respectively. To provide
an overall measure of segmentation performance across both the spray
class and the background, the mean Jaccard index, ( ) is calculated as:

 = 1
𝑘

𝑘−1
∑

𝑖=0
𝑖, (8)

where 𝑘 is the number of classes. Since boundary accuracy is critical
for extracting precise spray contours, the boundary Jaccard index for
the spray class (B,1) is also considered.

B,1 =
TPB,1

TPB,1 + FPB,1 + FNB,1
, (9)

TPB,1, FPB,1, and FNB,1 represent the True Positives, False Positives, and
False Negatives along the boundary of the spray class, respectively.
All the above-mentioned metrics are similarity scores between the
ground truth and predictions, where zero indicates no overlap and one
indicates perfect overlap. Additionally, the pixel accuracy for the target
class, 1, i.e., the fraction of correctly classified target class pixels, is
defined as:

1 =
TP1

TP1 + FN1
. (10)

Finally, these metrics are combined into a single weighted mean ():

 = 𝑤1 ⋅ 1 +𝑤2 ⋅  +𝑤3 ⋅ B,1 +𝑤4 ⋅1, (11)

where 𝑤1 = 0.5, 𝑤2 = 0.20, 𝑤3 = 0.15 and 𝑤4 = 0.15. These
weights reflect the relative importance of each metric in the overall
evaluation, with higher weights assigned to metrics that are more
critical for the specific segmentation task. To emphasise accurate spray
segmentation, the largest weight (𝑤1 = 0.5) is assigned to the Jaccard
index of the spray class 1. Since the background class can dominate
overall performance metrics, a high weight on 1 ensures the spray
region itself is captured effectively. Meanwhile, the mean Jaccard index
 gauges the model’s consistency across both spray and background
classes, and the boundary Jaccard index B,1 and pixel accuracy 1 are
included to ensure precise boundary delineation and robust pixel-level
classification, both of which are crucial for accurate GLI detection.
7

Fig. 5. Illustration of the contour extraction process for the binarised images produced
by the ML-model.

3.2. Active filtering

While the model accurately segments vast majority of sprays, do-
main artefacts (like uncut spray contours) are visible in the inferences
of a low number (2%–4%) of PS sprays. This is not related to any
specific spray structure but rather arises due to parameter tuning limita-
tions within our data-analysis framework during post processing of the
binarised images generated by the ML-model. Considering that enough
number of images are available for the current statistical analysis, these
images are considered as outliers and are omitted using active filtering
during post-processing. This ensures the consistency and reliability of
the data.

3.3. Statistical analysis

For the subsequent statistical analysis of the spray atomization char-
acteristics, first an accurate contour of the gas-liquid-interface based
on the binarised images obtained from the ML-model is extracted as
depicted in Fig. 5. It involves the following steps:

• A general contour extraction algorithm is run on the binarised
image followed by eliminating all the contours except the largest
one, which represents the spray contour until primary breakup.

• For both JiCF and PS sprays, the single contour enclosing the
spray is split into two segments. Specifically, for the JiCF into
‘lee’ (leeward side - sheltered from the incoming gas flow) and
‘luv’ (windward side - facing the incoming gas flow) side of the
injector and for the PS into left and right spray cone sheet.

• The contours are trimmed to avoid overlapping and irregularities.

• The instantaneous contours are used for GLI statistical calcula-
tions.

For every spray characteristic (𝜓) and 𝑁 number of instantaneous
sheets (or images), the mean and standard deviation are calculated
based on Eqs. (12) and (13), respectively.

̄ = 1
𝑁

𝑁
∑

𝑛=1
𝜓𝑛 (12)

(𝜓 ′𝜓 ′) = 1
𝑁

𝑁
∑

𝑛=1
(𝜓𝑛 − �̄�)2 (13)

3.3.1. Breakup length calculation
For each instantaneous PS sheet, the breakup length is calculated

based on the Euclidean norm of the trailing sheet position, i.e., 𝑙b =
(𝑟2b + 𝑦

2
b)

1∕2 to facilitate a comparison with Petry et al. (2022). For the
JiCF sprays, the contour curvature is considered and the breakup length
is calculated by the cumulative sum of the Euclidean distances between
consecutive boundary points, i.e., the length of the unrolled spline
(𝑙 ). The latter approach inherently includes jet bending effects and
𝑠
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Fig. 6. Schematic showing the 90◦ rotated PS spray and the detected spray contour
(GLI) with its axial and radial components. The image has been rotated solely for
data analysis purposes to analyse all sprays from left to right. Subsequent results are
transformed back into the original coordinate system defined in Fig. 2.

Fig. 7. Schematic showing the calculation of disturbance amplitudes.

is thus preferred for JiCF sprays. For completion, the breakup length
in jet injection (𝑙𝑥) and crossflow direction (𝑙𝑦) is also determined.
Subsequently, the mean breakup length (𝑙) and its fluctuation (𝑙′) are
calculated.

3.3.2. Spray angle
The PS half spray cone angles for each instantaneous sheet is calcu-

lated using the axial and radial components of the trailing edge position
of the instantaneous sheet (i.e., 𝜃𝑠 = 180∕𝜋 ⋅ ar ct an( 𝑟𝑏𝑦𝑏 )) as illustrated
in Fig. 6. Since the current analysis focuses on the primary break-up
mechanism, the influence of turbulence on spray angle calculations is
minimised by considering only the linear segment of the spray sheet,
before any bending or wrinkling occurs. Thus, differences in the spray
angle can be attributed, in part, to differences in the static pressure
at the injector orifice (Moon et al., 2009). Considering the detected
modest axial asymmetry of the Schlick sprays, the full cone angle is
obtained by, 𝛩𝑠 = 𝜃𝑠,𝑙 𝑒𝑓 𝑡 + 𝜃𝑠,𝑟𝑖𝑔 ℎ𝑡. Subsequently, the mean and standard
deviation of the spray angles are calculated over all instantaneous
images and detections using Eqs. (12) and (13).

3.3.3. Gas-liquid-interface fluctuations
The bounding iso-contour of the spray sheet or jet is exposed to high

momentum turbulent air flow. This leads to corresponding turbulent
fluctuations of the GLI, quantified by the radial distance (𝑟𝑠) between
the instantaneous GLI contour (𝑠𝑖) and the notional spray symmetry
axis passing through the injector orifice. Further its mean (𝑟𝑠 via
Eq. (12)), standard deviation (𝑟′𝑠 via Eq. (13)) are calculated. The spatial
distribution of 𝑠𝑖 can also be referred to as turbulent spray brush
and 𝑟′𝑠 is consequently its fluctuation width. The extent of turbulent
fluctuations is inherently dependent on the aerodynamic forces and
the liquid sheet or jet stability. To quantify this, for the JiCF spray,
𝑟′𝑠 is binned into segments of 2.0 mm width, up to 10.0 mm away
from the injector orifice in the jet direction (𝑥). For the pressure swirl
spray the bin width is reduced to 0.5 mm up to an axial distance (𝑦)
of 2.0 mm. Subsequently, the distribution of the radial fluctuations
(PDF(𝑟′𝑠)) in each bin is evaluated. The PDF spread illustrates the spatial
GLI fluctuation and thus stability towards aerodynamic forces.
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3.3.4. GLI curvature statistics
Turbulent fluctuations on the gas–liquid-interface (GLI) can also be

characterised by the local curvature, 𝜅. In a two-dimensional image
plane, 𝜅 at any point on the GLI contour is formally given by,

𝜅 =
𝑑2𝑥 𝑑 𝑦 − 𝑑 𝑥 𝑑2𝑦
[

(𝑑 𝑥)2 + (𝑑 𝑦)2]
3
2

, (14)

where 𝑥 and 𝑦 denote the coordinates of the GLI contour along with
their derivatives.

In our implementation, the contour points
{

(𝑥𝑛, 𝑦𝑛)
}

are first
smoothed using a filter (e.g., Savitzky–Golay) to reduce noise. Sub-
sequently, the mean and standard deviation of the curvature are
calculated over all instantaneous images and detections using Eqs. (12)
and (13).

3.3.5. Disturbance amplitude
To quantify the intricate interactions between gas phase turbu-

lence and the spray sheet or jet, the growth of disturbance ampli-
tudes (e.g., Kelvin–Helmholtz) on the gas-liquid-interface are delin-
eated. While 𝑟′𝑠 includes bulk motions of the continuous liquid sheet
or jet, 𝑟𝑎 is the disturbance amplitude defined as the absolute distance
of an instantaneous GLI contour (𝑠𝑖) peak to a theoretically undisturbed
sheet or jet (𝑠𝑡ℎ), as illustrated in Fig. 7. To robustly define 𝑠𝑡ℎ, a re-
gression model with high-order polynomial fitting to identify spurious
disturbance peak points is applied, following the method established
by Petry et al. (2022). The amplitude between the injector orifice and
the first zero crossing (𝑟𝑎0) is omitted due to its negligibly small values
and the low signal-to-noise ratio near the nozzle exit. Absolute 𝑟𝑎 are
categorised into a predefined bins based on their axial distance from
the injector orifice. The mean disturbance (𝑟𝑎) and its fluctuation (𝑟′𝑎)
in each bin are calculated using the Eqs. (12) and (13), respectively.

3.3.6. Atomization characterisation in prefilming airblast sprays
Prefilming airblast sprays operate by using a high-speed airflow to

atomize a liquid film into ligaments and fine droplets. Subsequent to the
spray detection via the ML-models, the methodology of Chaussonnet
et al. (2018) is applied to analyse the atomization process. For this
purpose, the following steps are adopted:

• A precise and closed contour of the liquid film detached from the
airblast wall and penetrating into the high shear air flow is ob-
tained defining the gas-liquid-interface. Disconnected ligaments
or droplets are excluded from the present analysis.

• As the contour also includes part of the edge of the airblast
prefilmer wall, images are cropped to only include the detached
liquid film regions. This is indicated by the red line in Fig. 8.

• The complete contour is then divided into segments of 0.3 mm
width resulting in 40 bins along the airblast knife edge direction
(𝑥), see coloured segments in Fig. 8.

• For each instantaneous image, the minimum (𝑙𝑚𝑖𝑛) and maximum
value (𝑙𝑚𝑎𝑥) for the liquid film penetration as well as their arith-
metic mean (𝑙) are determined as labelled in Fig. 8. The detached
liquid film area in each bin is also calculated.

• Subsequently, the mean and standard deviation of these proper-
ties is calculated using Eqs. (12) and (13).

4. Results and discussion

In the following, first the ML-based semantic segmentation models
are evaluated in Section 4.1 and subsequently applied to the three
types of spray to delineate the interaction between the liquid jets
(Section 4.2), sheets (Section 4.3) or films (Section 4.4) with the high
momentum air flow.
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Fig. 8. Illustration of the quantities extracted from each image, where 𝑙𝑚𝑎𝑥, 𝑙𝑚𝑖𝑛 and
𝑙 represent the maximum, minimum, and average penetration of the detached liquid
film in each bin. The red line shows the airblast wall edge.

Fig. 9. The illustrated images show model predictions on never-seen data. Minute, yet
for the present analysis significant, differences can be observed on the detected masks.
For instance, ML1 and ML4 fail to identify certain spray features, while ML2 and
ML5 overestimate coverage by including out-of-focus regions. Conversely, ML3 exhibits
predictions that closely align with the ground truth.

Fig. 10. Segmentation metrics of the tested models. 1 is the Jaccard index of the
spray class,  is the mean Jaccard index, B,1 is the boundary Jaccard index of the
spray class, 1 is the pixel accuracy of the spray class, and  is the weighted mean
score (see Eqs. (7)–(11)). The metrics identifies ML3 as the best performing model.

4.1. Model evaluation

For model evaluation, a dataset comprised of diverse sprays is
curated manually. For this purpose, first spray masks are generated
9

Fig. 11. Scatter plot (a) showing the primary breakup length (𝑙𝑠) as well as the axial
(𝑙𝑥) and radial (𝑙𝑟) fuel jet penetration depth as well as their standard deviations for
different values momentum flux ratio (𝑞). The heatmap (b) shows the same but for
different values of air crossflow velocity (𝑢𝑏) and fuel mass flow rate (�̇�𝑙).

using conventional CV methods. A random sample of the most accurate
masks from all three spray types is collected and annotated to create
the validation dataset. The latter is used for periodic evaluation against
the metrics outlined in Section 3.1.7 and the best performing model is
selected based on  as defined in Eq. (11). As inferred from Fig. 9, ML3
performs the best in terms of mask quality. ML1 and ML4 tend to overfit
and produce porous or incomplete masks. In contrast, ML2 and ML5
tend to predict broadened masks and increasingly include background,
out-of-plane structures or droplets. The differences between the models
are subtle, but are highly relevant for the subsequent contour-based sta-
tistical analysis. These observations are further assured and quantified
in Fig. 10, where the validation metrics mentioned in Section 3.1.7 are
compared for all the models. The metrics as well as the observations
on the predicted masks render ML3 the most suitable model for the
present purpose. Therefore, ML3 is used for the detailed investigations
on turbulence-spray interaction and primary spray atomization.

4.2. Jet-in-crossflow (JiCF) spray

Nine different JiCF sprays with varying momentum flux ratio,
i.e., air crossflow velocity (𝑢𝑏) and fuel mass flow rate (�̇�𝑙), are
analysed using the selected ML-model and the results are shown in
Figs. 11 to 14. Fig. 11(a) depicts the primary breakup length (𝑙𝑠) as
a function of momentum flux ratio along with the axial (𝑙𝑥) and radial
jet penetration (𝑙𝑟). Fig. 11(b) indicates the same for different values
of air crossflow velocity and fuel mass flow rate. As observed from
previous studies (Birouk et al., 2003; Ragucci et al., 2007) it can be also
seen from Fig. 11(a) that the breakup length increases with momentum
flux ratio. The effect of the crossflow velocity variation on 𝑙𝑠 is more
diverse and depends on the liquid jet Reynolds number. For the 𝑢𝑏-
variation from 65 to 133 m/s at �̇�𝑙 = 0.50 g/s (i.e., low 𝑅𝑒𝑙), the
breakup length decreases with increasing 𝑢𝑏 by more than 30%. At low
𝑅𝑒𝑙, the enhanced crossflow velocity leads to elevated jet bending, see
also the plots of 𝑙𝑥 and 𝑙𝑟 in Fig. 11, and advance jet breakup. For the
interim case with �̇� = 1.0 g/s, the length of the unrolled jet surface on
𝑙
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Fig. 12. Normalised probability density functions (PDFs) of the turbulent GLI fluctu-
tion (𝑟′𝑠) for JiCF sprays. The top row illustrates the influence of different fuel mass
low rates (�̇�𝑙), with panels arranged (from left to right) as cases JiCF4J, JiCF5J, and
iCF6J. The bottom row shows the effect of varying air crossflow velocities (𝑢𝑏), for

panels arranged (from left to right) as JiCF2J, JiCF5J, and JiCF8J. In all cases, 𝑞
represents the momentum flux ratio.

the luv side varies only within 5%. Thus, the reduced length of the jet
ore is approximately balanced by the enhanced jet surface wrinkling.
y contrast, at �̇�𝑙 = 2.0 g/s with high 𝑅𝑒𝑙 and thus momentum flux
atio, the breakup length increases with 𝑢𝑏 by almost 20%. At high 𝑅𝑒𝑙,

the trend reversion is attributed to enhanced fuel jet surface wrinkling
as also shown by the elevated curvature statistics in Fig. 14.

The bulk motion of the fuel jet is illustrated in Fig. 12 by means
f the probability density function of the spatial GLI displacement

fluctuation (PDF(𝑟′𝑠)). With increasing �̇�𝑙, the jet becomes less prone
o the turbulent flow motion of the gaseous crossflow as illustrated
y the narrowing PDF(𝑟′𝑠) in the top row of Fig. 12. With increasing
xial distance (𝑦) the jet fluctuation increases noticeably for all �̇�𝑙 as
bserved by the enhanced spread of PDF(𝑟′𝑠). As expected, an increase
n air crossflow bulk velocity results in enhanced spatial turbulent jet
luctuations (Birouk et al., 2003), where differences are more strongly
ronounced with increasing injection point distance, see bottom row of

Fig. 12.
Fig. 13 illustrates mean and root mean square (rms) values of

disturbance amplitudes (𝑟𝑎, as described in Section 3.3) along the GLI
of the jet surface in injection direction (𝑥). Selected cases with varying
air crossflow velocity and fuel mass flow rate are shown. As expected,
due to the excitation by aerodynamic forces, the perturbations on the
GLI increase with distance from the injector orifice. This is indicated by
the positive slope of the linear regression as well as the increasing bar
height illustrating a higher disturbance variance. With increasing fuel
mass flow rate (�̇�𝑙, top row of Fig. 13) the growth rate of the GLI dis-
urbances is dampened, yet the jet core penetrates significantly deeper
nto the crossflow domain. The former is inferred from the reduced
lope and the dampened growth from the bar height. Consequently,
he disturbances on the GLI surface of a liquid fuel jet with low 𝑅𝑒𝑙
s more sensitive to aerodynamic forces of the crossflow. By contrast,
n increase in crossflow velocity in the range 65 ≤ 𝑢𝑏 (m/s) ≤ 133 (see
ottom row of Fig. 13) results in disturbance amplitudes being excited

more effectively, leading to elevated mean growth rates (i.e., slope
ncrease > 100%) and disturbance amplitude fluctuations (i.e., bar
eight). This indicates faster growth of Kelvin–Helmholtz instabilities
nd thereby advanced jet breakup into ligaments and droplets. The p-
alues in the plots are obtained from the linear regression analysis and
ests the null hypothesis that there is no linear relationship between

the independent and dependent variables. The low p-values indicate
10

e

Fig. 13. Mean (marker) and rms (bars) of the GLI disturbance amplitudes (𝑟𝑎) for JiCF
prays. The top row illustrates the influence of different fuel mass flow rates (�̇�𝑙), with
anels arranged (from left to right) as cases JiCF4J, JiCF5J, and JiCF6J. The bottom
ow shows the effect of varying air crossflow velocities (𝑢𝑏), for panels arranged (from
eft to right) as JiCF2J, JiCF5J, and JiCF8J. In all cases, 𝑞 represents the momentum
lux ratio. The solid line shows the fitted regression model with a slope 𝑚.

Fig. 14. Mean GLI curvature (𝜅) along the axial fuel jet penetration direction (𝑥) for
JiCF sprays for different fuel mass flow rates (�̇�𝑙) (left with cases JiCF4J, JiCF5J and
JiCF6J) and air crossflow velocities (𝑢𝑏) (right with cases JiCF2J, JiCF5J and JiCF8J).
The shaded area illustrates the curvature fluctuation (𝜅′).

that the observed associations are statistically significant.
Last, the curvature (𝜅) on the GLI interface is depicted in Fig. 14

and analysed. As evident from the mean curvature illustrated by the
markers, it is evident that the difference in jet-bending with increasing
̇ 𝑙 and thus 𝑅𝑒𝑙 exhibits a marginal effect on 𝜅 and is only visible in the
irst 2.0 mm away from the injector orifice. However, with increasing
𝑅𝑒𝑙 the inherent wrinkling of the turbulent jet surface becomes ap-
parent in the prompt increase of GLI curvature fluctuations (widening
of the shaded area), at a given position 𝑥. This can contribute to the
domination of bag breakup at higher liquid jet and crossflow Weber
numbers (Birouk et al., 2003). While the disturbance amplitudes (𝑟𝑎)
continuously grow with increasing distance from the injector orifice,
the mean curvature and its fluctuation approach a constant value.
Moreover, 𝑟′𝑎 are noticeably higher for low jet Reynolds numbers,
while 𝜅′ approaches very similar levels for all �̇�𝑙 cases. For the air
crossflow velocity variation from 65 ≤ 𝑢𝑏 (m/s) ≤ 133, slightly stronger
differences in 𝜅 are visible. Yet, the strongest effect is also apparent
n the curvature fluctuations as illustrated by shaded area, where 𝜅′

ncreases with 𝑢𝑏, in particular with increasing distance from the in-
ector orifice (i.e., 𝑥 ≥5 mm). Consequently, at high crossflow velocity
he disturbance amplitudes, its fluctuation and curvature fluctuations
re highest, indicating a highly convoluted GLI surface and strong

xcitation of instabilities.
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Table 5
Summary of breakup length (𝑙𝑏) and spray angle (𝛩𝑠)
for Schlick V121 spray analysis.
Case 𝑙𝑏 [mm] 𝛩𝑠 [◦]

𝜓 𝜓 ′ 𝜓 𝜓 ′

S1 W 2.61 0.45 77.3 6.30
S2 W 2.51 0.47 80.3 5.50
S3 W 2.33 0.48 85.2 6.73

Fig. 15. Normalised probability density function of the turbulent GLI fluctuation (𝑟′𝑠) of
the PS spray sheet at various axial lengths along water injection direction and different
bulk flow velocities (𝑢𝑏).

4.3. Pressure swirl spray

In a next step, the ML3 model is applied to segregate the continuous
iquid sheet of the PS injector, followed by a statistical analysis on
he detected GLI to infer the water spray angle and breakup length,
ummarised in Table 5, as well as a detailed description of disturbance
mplitudes and curvatures. It is evident that with the increase in coflow
elocity, the spray angle widens and the breakup length decreases.
his is consistent with the algorithm based analysis on the identical
prays conducted by Petry et al. (2022) and with observations in

previous studies (Schäfer et al., 2020; Enderle et al., 2018). In this
context, it is important to note that the extent of spray angle widening
depends on the length of the liquid sheet segment considered in the
analysis. In the present study, the linear portion of the liquid sheet
pray segment is used. Longer spray segments are more influenced by
erodynamic forces, experience greater bending, and arguably provide

a more representative measure of the spray dispersion angle, which
directly impacts spatial fuel distribution.

Fig. 15 shows the distribution of the water spray sheet fluctuations
at various axial lengths. In the injector orifice proximity, the PDF(𝑟′𝑠)
is rather narrow indicating low fluctuations of thick spray sheets,
while the sheet fluctuations increase with axial distance (𝑦) leading to
broadened PDF(𝑟′𝑠). This is particularly prominent for the last segment
in the range 1.5 ≤ 𝑦 (mm) < 2.0, where the sheets are thin and most
prone to the turbulent fluctuations of the coflowing air. Moreover, as
the coflow air velocity is gradually increased from 20 m/s to 50 m/s,
the sheet fluctuations are intensified as illustrated by the broadening of
PDF(𝑟′𝑠) for a given axial positions 𝑦. This is attributed to the enhanced
turbulent intensity of coflowing air.

Fig. 16 shows the mean and rms values of the absolute disturbance
amplitudes (𝑟𝑎) along the water sheet spray surface. It is worth noting
hat the data in Fig. 15 include the bulk fluctuation of the sheet, while
n Fig. 16 the local sheet disturbance (i.e., excited Kelvin–Helmholtz
nstabilities) are analysed. In general, the disturbances get excited with
ncreasing distance from the injector orifice as shown by the bar height

in Fig. 16, yet diminish at the far end. The latter can be attributed to
he decreasing number of data points in the corresponding sampling
ins and must be treated with care. Moreover, the absolute disturbance
mplitudes do not vary significantly between the different cases. This
inks directly into the constant physical liquid properties and injection
omentum (i.e., constant �̇� ). Thus, a disturbance of certain amplitude
11

𝑙

Fig. 16. Mean (marker) and rms (bars) of the GLI disturbance amplitudes (𝑟𝑎) for PS
prays in water injection direction for different coflow air velocities (𝑢𝑏). The solid line
hows the fitted regression model with a slope 𝑚.

Fig. 17. GLI curvature (𝜅) along the axial water sheet penetration direction (𝑥) for PS
sprays for different air coflow velocities (𝑢𝑏). The shaded area illustrates the curvature
fluctuation (𝜅′).

leads to breakup. Nonetheless, the high coflow velocity case (𝑢𝑏 =
50 m/s), and to some degree the case with 𝑢𝑏 = 35 m/s, exhibit higher
disturbance amplitudes earlier on. This implies that thicker liquid sheet
experience stronger instability excitation by the present aerodynamic
forces. The reduction in sheet length with increasing 𝑢𝑏, listed in
Table 5, is also apparent from the availability of data points in 𝑥-
irection in Fig. 16. The inclining regression fit indicates the gradual

disturbance amplitude growth that is in line with Fig. 15.
The curvature statistics on the water sheet GLI are shown in Fig. 17

for the different coflow velocities (𝑢𝑏). The mean curvature (𝜅), shown
by the solid lines, is increasing modestly with 𝑢𝑏 due to the incremental
widening of the spray cone angle. By contrast, the curvature fluctuation
is enhanced distinctly with 𝑢𝑏 as illustrated be widened shaded area, in
particular relatively close to the injector orifice (i.e., low 𝑥-values). In
combination with the disturbance amplitudes 𝑟𝑎, this shows the exis-
tence of relatively high and convoluted disturbance amplitude peaks in
the presence of highly turbulent gaseous coflow.

These physical results, except 𝜅-statistics, have broadly been dis-
ussed by Petry et al. (2022), yet the repeated analysis using the present
emantic FPN segmentation has shown various benefits to use such

ML-based methods for object detection. Firstly, the ML-models have
been trained on the JiCF sprays, highlighting the general transferability
and applicability of such approaches. Second, in the current work the
aw data in absence of any spatial filtering have been used in the
nalysis. This facilitates the detection of higher disturbance ampli-
udes in comparison to algorithm CV-based approach by Petry et al.

(2022). The latter involved spatial filtering that inherently dampens
high frequency peak values. Consequently, the current ML-based image
segmentation approach can arguably also maintain the original spatial
image resolution to a higher degree and facilitates the inference of a
more physical description.
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Fig. 18. Scatter plot with cases arranged A10J, A4J (top left to right) and A13J, A15J
(bottom left to right) showing the maximum instantaneous penetration depth (𝑙𝑚𝑎𝑥) of
a detached fuel film segment into the gaseous environment for different fuel mass flow
rates in the range 0.20 ≤ �̇�𝑙 (g/s) ≤0.80 and constant air flow conditions of 𝑢𝑐 = 40 m/s
and 𝑢𝑎 = 80 m/s. The distribution of the dots illustrates the homogeneity of the 𝑙𝑚𝑎𝑥
occurrence along the knife edge, i.e., 𝑥-direction. The colour coding of the dots depicts
the area of total film detached from the airblast edge of the corresponding instantaneous
snapshot. The orange line shows the mean detached film penetration while the purple
line shows the mean of the maximum film detachment. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

4.4. Prefilming airblast sprays

Last, the ML3 model is applied to segregate 15 different cases of
the prefilming airblast spray and the results of selective cases are
analysed and discussed below. In the current context, the detached film
is defined as the continuous liquid body downstream from the airblast
edge, that is divided into segments by the predefined bins. The scatter
plot in Fig. 18 illustrates the relationship between maximum detached
film segment lengths of an instantaneous image at position 𝑥 for varying
fuel mass flow rate 0.20 ≤ �̇�𝑙 (g/s) ≤0.80. The area of the detached
liquid film is indicated by the colour coding of each sampling point,
where each sample point represents a single instantaneous image of the
in total 500 images analysed for each case. The film coflow (𝑢𝑐) and
airblast (𝑢𝑎) air velocities are maintained constant at 40 and 80 m/s,
respectively. For all cases, a certain spatial inhomogeneity is observed
that is modestly improved with increasing �̇�𝑙. The statistical maximum
detached film segment penetration depth (𝑙𝑚𝑎𝑥, purple line) increases
with fuel mass flow rate along with the underlying area of the detached
film as illustrated by colour coding. However, while the maximum pen-
etration depth of individual film segments is approximately constant,
its occurrence frequency is increasing with �̇�𝑙. This allows to infer that
in the current setup the atomization and film stripping mechanism are
dominated by air shear flow. This is confirmed by separately conducted
phase Doppler interferometry (PDI) droplet size measurements (not
included here), where the Sauter mean diameter (𝑑32) varies below
10%.

The curvature of the continuous detached liquid fuel film penetrat-
ing into the gaseous environment is shown in Fig. 19. With increasing
fuel mass flow rate, the mean curvature (𝜅) increases by ∼ 1.1 mm−1

with every 0.2 g/s increase in fuel mass flow rate. At the same time,
the average curvature fluctuation, i.e., 𝜅′, increases more steeply ∼
3 mm−1 towards larger fuel mass flow rates as illustrated by the shaded
area. This is attributed to the elevated detached film penetrate depth,
where it is exposed to the gaseous flow shear forces leading to a
higher curvature on the GLI. It is also worth noting, that the spatial
inhomogeneity of the maximum detached film segment distribution
and the GLI curvature (compare Figs. 18 and 19) align. This implies
that with increasingly detached film segments length, its GLI becomes
more wrinkled prior to the formation and breakup into ligaments and
droplets.
12
Fig. 19. Curvature (𝜅) along the gas-liquid-interface in 𝑥-direction (i.e., airblast knife
edge) with cases arranged A10J, A4J (top left to right) and A13J, A15J (bottom left to
right) for different fuel mass flow rates in the range 0.20 ≤ �̇�𝑙 (g/s) ≤0.80 and constant
air flow conditions of 𝑢𝑐 = 40 m/s and 𝑢𝑎 = 80 m/s. The symbols and line shows the
mean curvature (𝜅), while the shaded area illustrates the curvature fluctuation (𝜅′).

Fig. 20. Scatter plot with cases arranged A4J, A5J (top left to right) and A1J, A6J,
A7J (bottom left to right) showing the maximum instantaneous penetration depth (𝑙𝑚𝑎𝑥)
of a detached fuel film segment into the gaseous environment for different air coflow
velocities in the range 40 ≤ 𝑢𝑐 (m/s) ≤120 and constant atomization air velocity (𝑢𝑎 =
80 m/s) and fuel mass flow rate (�̇�𝑙 = 0.40 g/s). The distribution of the dots illustrates
the homogeneity of the 𝑙𝑚𝑎𝑥 occurrence along the knife edge, i.e., 𝑥-direction. The
colour coding of the dots depicts the area of total film detached from the airblast
edge of the corresponding instantaneous snapshot. The orange line shows the mean
detached film penetration while the purple line shows the mean of the maximum film
detachment. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Similar to Fig. 18, Fig. 20 illustrates the relationship between max-
imum detached fuel film segment penetration depth for varying air
coflow velocity from 40 ≤ 𝑢𝑐 (m/s) ≤120. The airblast velocity is
maintained at 𝑢𝑎 = 80 m/s and the fuel mass flow rate at �̇�𝑙 = 0.40 g/s.
With increasing 𝑢𝑐 the statistical penetration depth first increases up to
𝑢𝑐 = 𝑢𝑎 = 80 m/s and then decreases modestly as illustrated by the
vertical translation of the purple line. The same trend holds for the
mean film penetration (orange line) and thereby also the area of the
detached fuel film. It is also worth noting that the spatial homogeneity
follows the same behaviour, where inhomogeneous distributions are
observed for the two limiting cases.

Fig. 21 shows the curvature statics of the GLI for the corresponding
𝑢𝑐 variation. Once more, detached fuel films penetrating deeper into
the gaseous flow environment become more wrinkled, with the highest
curvature and fluctuation observed for in the case 𝑢𝑐 = 𝑢𝑎 = 80 m/s.
Albeit this case exhibits no nominal shear, the turbulent intensity of
the individual gas streams cause the observed GLI wrinkling with high
curvature fluctuation. Increasing the aerodynamic shear forces leads
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Fig. 21. Curvature (𝜅) along the gas-liquid-interface in 𝑥-direction (i.e., airblast knife
dge) with cases arranged A4J, A5J (top left to right) and A1J, A6J, A7J (bottom

left to right) for different air coflow velocities in the range 40 ≤ 𝑢𝑐 (m/s) ≤120 and
onstant atomization air velocity (𝑢𝑎 = 80 m/s) and fuel mass flow rate (�̇�𝑙 = 0.40 g/s).
he symbols and line shows the mean curvature (𝜅), while the shaded area illustrates
he curvature fluctuation (𝜅′).

to advanced film breakup, thereby reducing the detached fuel film
enetration depth of segments with reduced curvature. It is further
orth noting, that both ligament and bag breakups are observed in all

cases, while ligament breakup is more prominent in cases where the
fuel mass flow rate and coflow air velocity are both low. This coincides
with previous studies on airblast sprays (Chaussonnet et al., 2018).
Moreover, fragmented detached films with deep penetration and high
urvature are not necessarily advantageous for atomization into fine
roplets. For the latter, high shear between 𝑢𝑎 and 𝑢𝑐 is arguably the
riving force, while a minimum coflow velocity is required to augment
he film distribution on the airblast wall.

5. Conclusions

The overarching objective of the current work is to develop and
apply a general applicable and transferable semantic segmentation
model without parameter tuning to segregate the shadowgraphy sig-
nal of technical sprays from the gaseous background. Thereby, the
present ML-based image segmentation replaces conventional threshold-
ing methods for creating binary masks. For this purpose, two different
training datasets and machine learning architectures are evaluated. The

odels are trained on one specific kind of spray, yet the selected model
L3 is able to accurately generalise to unknown spray types. Automatic

nnotation methods are applied, thereby reducing the corresponding
ffort which is a major bottleneck in most ML pipelines. The best
erforming ML model, based on the Semantic FPN architecture, is

subsequently integrated to an in-house data analysis framework and
used to analyse shadowgraphy data of jet-in-crossflow, pressure swirl
and prefilming airblast sprays.

The transferability of the ML segmentation model across different
spray configurations without parameter tuning has been demonstrated
successfully. This offers a distinct reduction in the post-processing
time of experimental shadowgraphy images. Moreover, the accuracy
of the extracted spray contours in absence of spatial filtering facili-
tates the delineation of high-level statistical properties such as cur-
vature, fragmentation, and growth of Kelvin–Helmholtz instabilities
along gas-liquid-interfaces on an instantaneous image basis. This allows
to provide a quantitative description of the involved turbulence-spray
interactions and the leading mechanism causing primary breakup of
liquid jets, sheets or films. Consequently, it is expected that the present
data can provide a valuable validation set for numerical simulation
that target primary atomization of technical sprays at high Reynolds
13
number. With minimal effort, the presented segmentation techniques
an also be extended to other optical spray measurement techniques
hat aim to isolate spray contours, including advanced X-ray diagnos-

tics (MacPhee et al., 2002; Mayhew et al., 2020; Tekawade et al., 2020).
pplying this method allows a precise isolation of the dense spray core
nd a subsequent quantitative description of the breakup processes.

Although the model accurately segments raw data, some artefacts
s discussed before are visible. While the number of such aberrations is
ot significant to statistically skew the results of the present study, great
are must be taken when using such models as black box, in particular
or datasets where the number of data points is scarce. Related effects
an arguably be mitigated, for example, by using advanced augmenta-
ions in addition to the steps applied here, reinforcement learning, or
ase-dependent and in-situ parameter tuning, which is subject to future
ork.
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