Passenger Information in Rail Transportation: A Virtual Reality Study

Malte Petersen & Catharina Wasić

German Aerospace Center

Introduction

Background

- Inefficiencies in passenger turnovers on the platform can extend train dwell times at stations, consequently leading to delays throughout the entire rail network (Yuan & Hansen, 2007).
- Enhanced passenger information systems present a promising way for optimizing passenger flow on platforms, thereby minimizing transfer durations (Kattan & Bai, 2018; Drabicki et al., 2021).

Procedure

 In a virtual reality simulation participants completed a scenario of an arriving train at the platform six times.

Method

- Two types of information were displayed in three different modes.
- The information was displayed either at the arriving **train**, on the **platform screen** or on the **smartphone**.
- After every trial, the information was rated in terms of usefulness and usability.
- After completing the 3 scenarios of one information type participants ranked the preferred way of information presentation.

Approach of this study

- Conduction of a virtual reality study to evaluate different kinds of passenger information.
- Two different types of passenger information were focused on:
 - Information on occupancy rates inside the wagons
 - Information on designated doors for on- or offboarding only

Objectives of the study

• Evaluate the passenger information in terms of usefulness, usability and mode of information presentation.

Information Display:

Train

Platform

Smartphone

Occupancy rates for wagons

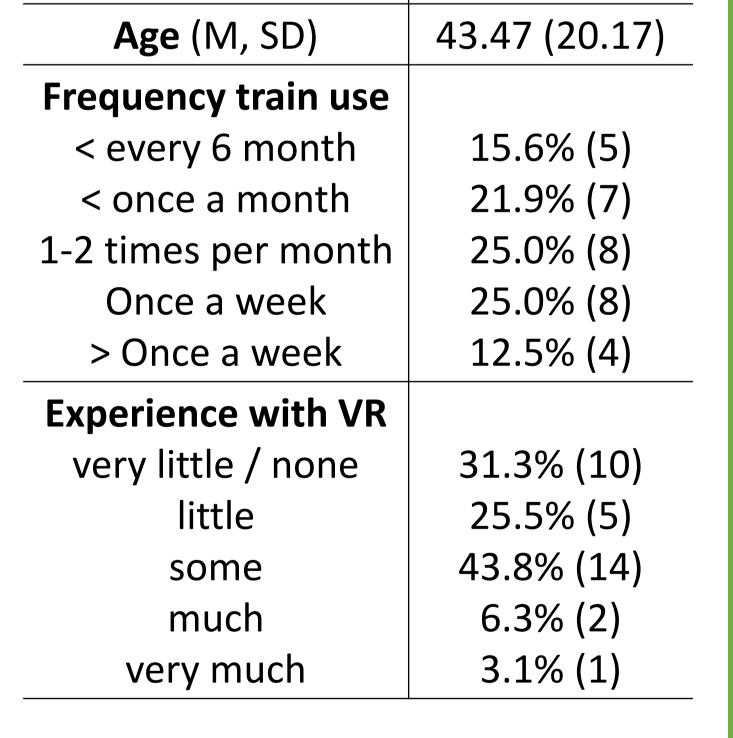
boarding

<u>Sample</u>			
Ν	32		
Gender			
m	59.4% (19)		
W	40.6% (13)		

Results

Usefulness of the information

 Measured with the usefulness scale of the Technology Acceptance Model (Davis, 1985)


Usefulness of the different ways of displaying the information

Usability of the information

• Measured with a short form of the User Experience Questionnaire (Laugwitz et al., 2008)

Usability of the different ways of displaying the information

Very usable

Ranking of the preferred way of displaying the information

Occupancy rates

	Train	Platform	Smartphone
Rank 1	9.4% (3)	31.2% (10)	59.4% (19)
Rank 2	15.6% (5)	53.1% (17)	31.2% (10)
Rank 3	75.0% (24)	15.6% (5)	9.4% (3)

Doors for o	n- or off-b	oarding
-------------	-------------	---------

	Train	Platform	Smartphone
Rank 1	68.8% (22)	9.4% (3)	21.9% (7)
Rank 2	15.6% (5)	31.2% (10)	53.1% (17)
Rank 3	15.6% (5)	59.4% (19)	25.0% (8)

Discussion

Summary

- Overall, both types of information received highly positive evaluations, highlighting a significant demand for passenger information.
- Different kinds of information require distinct presentation methods to ensure optimal effectiveness:
 - Information on occupancy rates inside the wagons should ideally be provided prior to the train's arrival, either via smartphone application or displayed on the platform.
 - Information regarding doors designated exclusively for on- or off-boarding is preferred to be displayed directly on the train.
- Testing of both kinds of information in practice is a promising starting point to further study how to efficiently direct passengers on platforms.

Conclusion

- The results of the present study are in line with previous studies (Petersen & Dotzauer, 2023) on the evaluation of passenger information and confirm that it is
 generally perceived as useful.
- In particular, crowding information can be used at various points in a travel chain (when planning the journey, shortly before the journey or directly on the platform) to guide passengers and prevent overloaded public transportation.
- Information on doors designated for on- or off-boarding also have the potential to make the passenger flow more efficient, but must be accompanied by
 complementary guidance of off-boarding passengers within the vehicle.

Literature

- Davis, F. D. (1985). A technology acceptance model for empirically testing new enduser information systems: theory and results. [Doctoral dissertation, Massachusetts Institute of Technology, Sloan School of Management].
- Drabicki, A., Kucharski, R., Cats, O. & Sarata, A. (2021). Modelling the effects of real-time crowding information in urban public transport systems. *Transportmetrica A: Transport Science*, 17(4), 675-713.
- Kattan, L. & Bai, Y. (2018). LRT passengers' responses to advanced passenger information system (APIS) in case of information inconsistency and train crowding. Canadian Journal of Civil Engineering, 45(7), 583-593.
- Laugwitz, B., Held, T., Schrepp, M. (2008). Construction and Evaluation of a User Experience Questionnaire. In: Holzinger, A. (eds) HCI and Usability for Education and Work. USAB 2008. Lecture Notes in Computer Science, vol 5298. Springer, Berlin, Heidelberg.
- Petersen, M. & Dotzauer, M. (2023). Information on Capacity Utilization in Public Transportation: Useful for Passengers? In: Proceedings of the 8th Humanist Conference. HUMANIST 8th International Conference. Berlin.
- Yuan, J. & Hansen, I. (2007). Optimizing capacity utilization by estimating knock-on train delays. *Transportation Research Part B, 41*, 202-217.

More Information

For more information scan the qr-code or visit:

https://www.dlr.de/de/ts/for schung-undtransfer/projekte/fasan

aufgrund eines Beschlusse des Deutschen Bundestage

Gefördert durch: