%, ¢
‘" bg o®
INSTITUT ENSTA
POLYTECHNIQUE 2
DE PARIS ‘N> IP PARIS

Learning and designing shared control skills
from demonstrations for assistive robots

These de doctorat de I'Institut Polytechnique de Paris
préparée a I’Ecole nationale supérieure de techniques avancées

20241PPAE025

Ecole doctorale n°626 Ecole doctorale de I'Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Signal, Images, Automatique et Robotique

NNT

These présentée et soutenue a Palaiseau, le 16/12/2024, par

Gabriel Quere
Composition du Jury :

Paolo Robuffo Giordano Président
Directeur de recherche, Université de Rennes (Inria/IRISA)

Nathanaél Jarrassé Rapporteur
Chargé de recherche, Sorbonne Université (ISIR)

Stefanos Nikolaidis Rapporteur
Associate professor, University of Southern California (ICAROS) Absent lors de la

soutenance

Ayse Kucukyilmaz Examinateur
Assistant Professor, University of Nottingham (CHART)

Adriana Tapus Examinateur
Professeur, ENSTA Paris (U2IS)

David Filliat Directeur de
Professeur, ENSTA Paris (U2IS) these
Freek Stulp Invité

Head of Department, DLR (RMC-KRO)

Joao Silvério Invité
Group leader, DLR (RMC-KRO)

fe
—
S,
O
o,
5
O
g
©
)
O
- -
I—

ii

Dedicated to my family

iii

Remerciements

This thesis is based on my PhD research conducted at the Institute of Robotics and Mechatronics of the
German Aerospace Center in Munich from 2017 to 2024. Throughout this journey, I was fortunate to be
surrounded by remarkable people and learned so much.

I am deeply grateful to Dr. Freek Stulp, who gave me the opportunity to contribute to such a meaningful
project. His enthusiasm, strategic vision, and attention to detail were instrumental in helping me formalize
concepts and make steady progress in my work. I also want to express my thanks to Prof. Alin Albu-
Schiffer for his unwavering interest and support of the EDAN project.

I am thankful to Prof. David Filliat for his guidance and for providing the freedom to explore innovative
solutions for assistance on EDAN. I would also like to extend my gratitude to Dr. Jodo Silvério for always
making time to assist me. I’ll remember fondly our many productive sessions, brainstorming probabilistic
methods, iterating ideas and filling up whiteboards. My thanks to Dr. Franz Steinmetz for his help,
especially in refactoring the Shared Control Templates repository. I am also grateful to Prof. Daniel
Leidner for his early guidance in my work and for leading us to that delightful restaurant in Yokohama
with undulating food. I thank my jury members for the thoughtful feedback and insightful questions.

My deepest appreciation goes to the EDAN team — past and present members — who made these years
truly worthwhile: Jorn, Annette, Maged, Samuel, Jianxiang, Sebi, Miriam, Felix, Ulrike, Elle, Tai, and
all our students. You all made coming to work each day something to look forward to. We shared many
long lab sessions, always with a positive spirit supported by snacks, and achieved great successes together,
with many more to come. I’m also thankful to the ISL group and to Flo, Werner, Max and Antonin for
their invaluable support with hardware and software. A special thank you to Dr. Laura Herlant and the
members of the Personal Robotics Lab, who sparked my interest in assistive robotics.

Thanks to all my colleagues and friends with whom my life is woven. Special mention to the
bouldering crew — Martin, Posi, Susi, Caspar, Sebi, Dave, Antonin, Matthias, Margherita —, the DLR crew
— Marie, Blanca, Laura, Lukas, Adrian, Anna, Kathy, Anton, Ria —, the dancing crew — Vero, Veronika,
Clara, Iro, Joy, Lydia — and those who live far away: Aude, Guillaume, Clem, Antoine, Isabel, Teddy,
Mélanie, Noémie, Alexia, Rahaf, Thibault, Simon, Lucille. Miscellaneous thanks to: Audrey, for seeding
my heart with joy. Alison, for the laughs. Florence, for the template :p Pauline, for the jumps in a
half-frozen lake. Ines, for those sparse but wonderful moments. Juliane, for being there. Ellie, for the
poetic dreams. Lisl, for the unexpected. Noelia, for being colorful. Teresa, for your support.

Finally, I am profoundly grateful to my family for always believing in me and standing by my side.
Thank you.

v

Abstract

Assistive robots, among which wheelchair-mounted robotic arms, hold great potential in supporting
individuals with limited physical abilities by helping them interact with their environment. These robots
can enhance users’ autonomy by assisting with daily activities such as eating, drinking, or opening doors.
However, controlling such robotic arms through accessible interfaces (like joysticks, sip-and-puff devices
or buttons) can be challenging, as these interfaces are lower dimensional than the control space of the robot.
Although autonomous task execution is an active area of research, involving humans in the control loop
increases users’ agency, leverages their situational awareness and improves the robustness of the system.
Therefore, to operate these systems more easily, the development of intuitive controls and effective user
interfaces is essential.

This thesis introduces a new framework called "Shared Control Templates" which provide task-specific
assistance through shared control. It explores methods for designing shared control skills that can reliably
assist users in completing tasks successfully, whilst ensuring ease of use and user control of key motions.
For instance, the user will control the quantity of liquid that is to be poured when preparing a drink, or the
appropriate opening when pulling out a drawer. To achieve this, task-specific skills — acting in task space —
are represented as finite-state machines, with transitions triggered by factors such as distances, wrench
generated from environmental contact, or user triggers. These skills comprise of two key components:
input mappings and active constraints. Input mappings define how user commands translate into robot
motions, while active constraints enforce geometric limits on the robot’s end-effector task space, guiding
the user and maintaining safe operation. For example, when pouring liquid from a bottle, the robot ensures
no spilling by controlling the bottle’s position and partial orientation, while the user determines how much
liquid is poured by controlling the tilt angle.

To facilitate the design of such shared control skills, this research explores semi-automatic learning of
these skills from demonstrated end-effector trajectories. Geometric shapes in Euclidean space are used
as constraints in tasks such as opening drawers or cabinet doors. A library of pre-existing skills is then
leveraged to accelerate the design of new skills by the skill designer. A probabilistic model — Kernelized
Movement Primitives — is investigated to enable the derivation of input mappings and active constraints.
This model additionally allows the adaptation of skills based on user input, enhancing both the design and
execution phases.

This shared control method is integrated with an assistive robot with a world model, user interfaces
and a whole-body coordination of the entire system. It enables able-bodied and motor-impaired people to
accomplish sequences of activities of daily living, in various settings such as a DLR-RMC laboratory,
participants homes or the 2023 CYBATHLON Challenges and 2024 CYBATHLON.

vi

vii

Résumé

De nombreuses personnes sont atteintes de paraplégie, ce qui peut rendre difficile ou impossible des
taches quotidiennes essentielles telles que manger, boire ou ouvrir des portes. Les robots d’assistance,
tels qu’un bras robotique monté sur un fauteuil roulant, présentent un grand potentiel pour aider des
personnes handicapées moteur a interagir avec leur environnement, renforgant leur autonomie. Toutefois,
le contrdle de ces bras robotisés par des interfaces classiques — telle qu’un joystick, "sip-and-puff” ou
boutons — peut s’avérer difficile, car elles ont peu de degrés de liberté comparé a 1’espace de controle
du robot. L’exécution autonome de tiches est un domaine de recherche actif et demande peu d’effort de
la part de I’utilisateur. Cependant, impliquer des utilisateurs dans la boucle de contréle augmente leur
autonomie et tire parti de leur compréhension de la situation, ce qui au final améliore la robustesse du
systeme. De plus, les utilisateurs apprécient en général étre en contrdle du robot, et non uniquement
un récipient passif d’aide. Par conséquent, pour faciliter 1’ utilisation de ces systémes, il est essentiel de
développer une assistance intuitive couplée a des interfaces utilisateur efficaces.

Cette these introduit une nouvelle méthode appelée "Shared Control Templates”, qui fournit une
assistance avec du controle partagé pour des tiches quotidiennes. Elle explore des méthodes de conception
de compétences de controle partagé qui peuvent aider de manicre fiable, transparente et personnalisée des
utilisateurs a effectuer leurs taches, leur garantir une facilité d’utilisation et le contrdle des mouvements
clés. Par exemple, une utilisatrice peut ainsi contrdler la quantité de liquide versé lorsqu’elle prépare une
boisson, ou I’amplitude de 1’ouverture lors de la manipulation d’un tiroir. Pour ce faire, les compétences
spécifiques a la tche sont représentées comme des machines a états finis, avec des transitions déclenchées
par des éléments tels que des distances, des forces générées par des contacts avec I’environnement ou
des pressions de boutons. Ces compétences comprennent deux éléments clés : les correspondances de
commandes utilisateur et les contraintes actives. Les correspondances de commandes utilisateur précisent
comment les commandes de I’ utilisateur se traduisent en mouvements du robot, tandis que les contraintes
actives imposent des limites géométriques a I’espace disponible pour 1’outil du robot, ce qui sert a guider
I’utilisateur et assurer la sécurité des opérations. Par exemple, lorsque 1’ utilisateur déverse le liquide d’une
bouteille, le robot s’assure de ne pas en mettre a coté en controlant la position et I’ orientation partielle de
la bouteille, tandis que 1’utilisateur détermine la quantité de liquide versée en contrdlant I’inclinaison de
la bouteille. L’ assistance est définie par rapport a 1’objet manipulé et indépendante du profile de vitesse
des commandes de 'utilisateur, ce qui en facilite la modélisation par ce dernier.

Pour faciliter la conception de ces compétences de contrdle partagé, cette recherche explore 1’apprentissage
semi-automatique de ces compétences a partir de I’enregistrement de trajectoires du robot lors de nouvelles
taches. Des formes géométriques de 1’espace Euclidien sont extraites des trajectoires par de 1’optimisation
sans gradient. Elles sont ensuite utilisées comme contraintes dans des compétences comme assister
I’ouverture de tiroirs. Une bibliotheque de compétences préexistantes est ensuite exploitée par le designer
de compétences pour accélérer la conception de nouvelles compétences. Un modele probabiliste plus
expressif - Kernelized Movement Primitives - est ensuite étudié, permettant de dériver des correspondances
de commandes utilisateur et des contraintes actives. Ces contraintes forment un Generalized Cylinder,
plus ou moins contraignant suivant les trajectoires démontrées. Ce modele permet également a 1’utilisateur

viii

d’adapter I’assistance en fonction de I’environnement avec I’interface utilisée pour controler le robot, ce
qui facilite les phases de conception et d’exécution.

Cette méthode de contrdle partagé est intégrée au robot d’assistance EDAN de 1’équipe Re-enabling
Robotics du DLR-RMC. EDAN est doté d’un systeme de perception capable de créer un modele
de I’environnement, d’interfaces utilisateur (joystick et électromyographie) et d’une coordination de
I’ensemble du systeme, permettant de controler en méme temps le bras robotique et le fauteuil roulant.
Grace a la méthode d’assistance proposée dans ce travail, des personnes valides et handicapées ont pu
accomplir des séquences de tiches de la vie quotidienne, dans divers contextes tels que un laboratoire
du DLR-RMC, le domicile des participants ou le CYBATHLON Challenges 2023 and le CYBATHLON
2024.

ix

Contents

1

3

Introduction
1.1 Assistive devices i e e e e e e e e e e e
1.2 Wheelchair-mounted robotic manipulators
1.3 Robotassistance L
1.4 Problem statement and contribution Lo
1.5 Outline e
State of the art
2.1 Devices for assistive technology o
2.1.1 Fully integrated assistive robots for people with motor impairments
2.1.2 Human-to-robotinterfaces
2.2 Sharedcontrol e
2.3 User intent estimation and exploitation oL
23.1 Policyblending
24 Input mappings ot e e e e e e e e e e e e e e e
24.1 Directcontrol e e
242 Learnedinput mapping e e
2.5 Activeconstraints Lo e e e e e e
2.5.1 Active constraints with virtual feedback
2.5.2 Learning constraints e e
2.5.3 Constraints forcontrol e
2.5.4 Constraints for planning
2.5.5 Constraints for shared control
2.6 Skill representation as finite-state machine oL
2.7 Interactive imitation learning
2.7.1 Correction with kinesthetic teaching
2.7.2 User corrections via a human-robot interface
2.8 User experiments with assistiverobots
2.8.1 Studies with motor impairedusers
2.8.2 Studies with able-bodiedusers L.
2.9 Simulation e e
2.10 Conclusion e e

Background: EDAN

3.1 Hardware
3.2 Worldmodeling e e
3.2.1 Objectdatabase e e

3.2.2 Object detection and localization

QO =i i

323 Anchoring
3.2.4 World state representation oL L el e e e
3.3 Userinterfaces
3.3.1 EMG-basedinterfaceo
3.3.2 Graphical userinterface
3.4 Real-time Processes v v v it e e e e e e e
3.4.1 Whole-body cartesian impedance control
3.4.2 Virtual workspace boundaries L Lo
3.4.3 Safety trough compliant controlo oo
344 Velocity integration e e e e e
345 Frameinterpolation Lo
3.5 Sharedcontrolunit e
3.5.1 Coordination e e e
3.5.2 Shared Control Templates,
3.5.3 Task inference and user intent estimationo
3.6 Spectrum of autonomyo Lol e e e e e
377 Conclusion
Shared Control Templates
4.1 Introduction L e
4.1.1 Mathematical notations
4.1.2 COreconCeptS v v v v v i e e e e e e e e e e e e
4.1.3 Feature frames
42 Inputmappingo e e e e e e
421 Definition e
4.2.2 Input mappings collection
423 Velocity limits e
4.3 Active constraintso e e e e
43.1 Definition oL e e e e
4.3.2 Constraintdefinition L oL
4.3.3 Complementarity between input mappings and active constraints
44 Finite-state machine L
4.4.1 State cOmpoNents ot
4.4.2 Event types for the finite-state machine
4.4.3 Hierarchical finite-state machine L 0oL
4431 Stateimport e e e e
4432 Skillimport e
4.4.4 Velocity limits for the end-effector target frame
4.4.4.1 Blocking the state transition with the interpolator transition condition .
4.4.4.2 Keeping user agency with restricted motions
4.5 Instantiated SCT execution i v i ittt e e e e e
4.6 Target pose COITECtiON v v v v e i e e e e e e e e e e
47 Conclusion
User experiments
5.1 Study with participants without motor impairments
5.1.1 Studydesign
5.1.2 Quantitativeresults L.

5.1.3 Qualitativeresults

22
22
23
23
23
23
24
25
27
27
27
28
28
28
28
29
30

31
31
31
32
33
33
33
34
35
36
36
36
37
38
38
38
41
41
42
43
45
45
46
47
48

X1

5.1.3.1 Opendrawer L e

5.1.32 Pourwater

5.1.33 Opendoor e

5.1.4 Discussiono e e e

5.2 Activities of daily living with participants with motor impairments
5.2.1 Study with a motor-impaired participant in the DLR-RMC Re-enabling Robotics

laboratory e e e e

5.2.2 Study with participants with motor impairments in theirown home

523 DISCUSSIONot e e e e e e

53 CYBATHLON

5.3.1 2023 CYBATHLON Challenges

532 2024 CYBATHLON e

533 Discussion e e e e e

54 Conclusion e

5.4.1 Evaluating shared control systems

5.4.2 Shared Control Templates analysis

543 Futurework

Learning parameterized SCT active constraints from human demonstrations
6.1 Introduction L

6.2 Constraint representation e it e e e e e e e e e
6.2.1 Parameterized surfaces L
6.2.2 Parameterized volumes L
6.3 Interactive design procedure of parametric constraints from human demonstrations
6.3.1 Data acquisition through robot demonstrations
6.3.2 Segmentation e
6.3.3 Constraints fitting
6.3.4 Finite-state machinedesign.
6.3.5 Transferring knowledge for new shared control skills
6.4 Evaluation
6.4.1 Learning to open a drawer from demonstrations
6.4.2 Learning to open a cabinet door from demonstrations and a known SCT open
drawer e e e
6.4.3 Successful task completion with learned SCTs
6.5 DISCUSSION o e e e e e
6.6 Conclusion e e

Probabilistic learning and adaptation of active constraints

7.1 Introduction L. e e
7.2 Background e e
7.2.1 Kernelized Movement Primitives (KMP)
7.2.2 KMP adaptation using via-points e
7.2.3 KMP adaptation using null space actions
7.2.4 Generalizedcylinder L Lo
7.3 Proposed approach
7.3.1 Deriving active constraints fromaKMP 0.
7.3.2 KMP adaptation with the userintheloop
7.3.3 End-effector displacement as null-space action

7.3.4 Decorrelating adaptations Lo

Xii

7.3.5 Adaptation with multipleactions 81

7.3.6 Deriving an input mapping fromaKMP 83

74 Results. e 83

7.4.1 Learning active constraints for a picking skill 85

7.4.2 Adapting learned active constraints to new conditions 85

7.4.3 Action decorrelation and computational complexity 86

7.4.4 Evaluating performance of new users 86

7.4.5 Orientation learning e 87

7.5 DISCUSSION . . . o v v o e e e e e e e e e e 87

7.5.1 Resultsanalysis 87

7.5.2 Limitations and outlook L Lo 88

7.6 Conclusion 89

8 Conclusion 91

8.1 Achievements 91

8.2 Comparison to the stateof theart L L. 92

8.3 Limitations and future work oL 92

8.3.1 Scope of the EDAN platform and its interfaces 92

83.2 Evaluation e 93

8.3.3 User intent estimation and unknownobjects 93

834 Skilldesign L 94

83.5 Newskill: eating e 94

8.3.6 Manipulability 94

8.3.7 Automatic SCT design 95

8.4 Potential for real-life deployment L L oL oL 95

Bibliography 97

9 Appendix 111
9.1 Toward Seamless Transitions Between Shared Control and Supervised Autonomy in

Robotic Assistance L L e e e 111

9.2 CATs: Task Planning for Shared Control of Assistive Robots with Variable Autonomy . 111

9.3 Guiding Reinforcement Learning with Shared Control Templates 112

9.4 Unknown Object Grasping for Assistive Robotics 112
9.5 Continuous Transitions between Levels of Autonomy based on Virtual Fixtures for

Surgical Robotic Systems e 112

xiii

List of Figures

1.1

2.1

3.1

3.2

33
34

3.5

Assistive robots. Left: The commercially available Stretch 3 from Hello Robots. Cen-
ter: The EDAN robot, with which this thesis contribution is validated. Right: The
commercially available OBI robot from Desin.

Interfaces for assistive robots. Left: A 6D Spacemouse from 3Dconnexion. Center:
A sip-and-puff interface used by the pilot winning the CYBATHLON Challenges 2023.
Source: CYBATHLON Challenges 2023. Right: A Brain-Computer Interface used to
manipulate a robotic arm. Source: [Hoc+12].

The EDAN system. An overview of the system and its four main components. The
EMG-based user interface enables people with severe amyotrophia to perform 3D robot
control, a shared control scheme based on SCT supports the user during complex tasks
with the information from a world model, and whole-body cartesian impedance control
takes care of the coordination of wheelchair and manipulator motion. Adapted from
[Hag+25] e

System diagram, with software infrastructure and control modes. In direct control,
the desired end-effector position and orientation for the whole-body controller (£p) is
determined through velocity integration (£ygr,). In shared control, it is determined through
frame interpolation (praME) based on the desired end-effector pose computed by the
Shared Control Templates (£gcT). Adapted from [Hag+25].

Components of EDAN’s world modeling module.

GUI always available to the user. Shown is the tablet view. A: Device controlled by the
user, cycled through by operating the head-switch: ‘robot control’, ‘tablet’, ‘wheelchair
control’, or ‘nothing’ (user commands have no effect to the system). Furthermore, [WB]
is highlighted if the whole-body control scheme is active. B: Active control scheme
(direct or shared). C: Decoded commands. The green circle provides information if the
activity threshold is exceeded to allow a control input. D: Additional tabs display the list
of control schemes, the list of tasks, and expert information not needed by the participants.
E: World model visualization; shown is the RGB-camera stream augmented with the
localized objects instantiated in the world model. Different colors highlight different
states of the objects, like green, which highlights the target object of the current task. F:
Information regarding the current task and states; shown is the active task as well as the
current state of the task. L oL oL

Tablet GUI, when controlled by the user. Left: Control mode selection. Right: Task
selection. e e e e

3.6

3.7

4.1

4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10

5.1

X1v

Schematic illustration of the whole-body Cartesian impedance control. The coordinate
frames used by the system are highlighted. &C is the camera frame, C the center of the
wheelchair, VW the base of the robotic manipulator, Eypasurep the measured end-
effector frame, Epgsrep the desired end-effector frame. Wt is the current pose of W,
while WO is a static frame initialized to VV at the beginning of a skill. Adapted from

[Hag+25]. . . . e e 26
Three levels of autonomy are available with EDAN, with four means of control: direct
control, shared control, seamless supervised autonomy, and haptic teleoperation. 30

SCT for a pour skill. User inputs come from a joystick, here a Spacemouse. The skill
is represented with three main states, each with its input mapping and active constraints.
Transitions are based on the horizontal distance to the target (between ‘Translational
control’ and ‘Tilt towards target’) and the tilt angle of the grasped object (between ‘Tilt
towards target’ and ‘Pour’). In ‘Tilt towards target’, the orientation is based on the position.
In ‘Pour’, the user controls the grasped object tilt angle — with a specific input mapping
I Mjour — and height. The user can then backtrack in the finite-state machine and exit, or
pour from another angle. 32
Three input mappings. The first and second are directly applied on Egct, while the
third is applied on the tip of a grasped bottle, with f a scalar product between a partial
command vector [ug, uz] and an axis of a frame at the tip of the bottle. 34
Active constraints examples. Left: End-effector constrained to stay within a specific
range in height. Center: End-effector constrained within a cone. As the user gives
forward commands, the end-effector is guided toward a grasp pose. Right: Upper limit

on the orientation of the tip of a bottle, tonot spillover. 37
[lustrative example of the subspace covered by an input mapping and active constraint in
a2Dspace. e 37

State import example. By importing State A, State B uses State A as the default definition. 42
Sub-skill import example This example illustrates a new skill importing a sub-skill
(approach) after flattening the finite-state machine. 44
Transition predicate based on Egcr. Left: Epramr is tracking Egcr. An orientation
constraint, 0.4;cq, 1S applied in state A on Egcr. Right: Depending on the time spent
in A, constraints may not be fully enforced when state B becomes active, affecting the

ASSISLANCE. o v o e 45
Computation of an SCT end-effector target pose without velocity limits ESCT no_velocity_limits
when all predicates to change to another state are True. 46

Ilustration of the effect of different commands while waiting for the interpolator
transition condition to evaluate as True. A command resulting in the transition predicate
from A to B still evaluating to True (red arrow) will be discarded. However, a command
taking Ego back to state A (green arrow) will be applied to provide agency. 46
Pipeline from user commands to robot motion through assistance with Shared
Control Templates. Based on the current active state, user commands move the target
end-effector frame EgcT according to input mappings. Next, active constraints restrict its
pose, with both mappings and constraints subject to velocity limits. The resulting target
pose is then interpolated, and the output is transmitted to the whole-body impedance
controller. e e 47

Photo series of the different phases of the skill Open door with one of the participants.
A: approach and alignment to the door, B-F: open the door and G-H: drive through,
executed using SCTs and whole-body control on the EDAN system with a Spacemouse. . 50

XV

52

53

54

5.5

5.6

5.7

5.8

6.1

6.2

6.3

6.4

Open drawer. Side view of the trajectories resulting from opening the drawer by P-A
during their evaluation trial with an EMG-based interface. The trajectories from the target
SCT pose Egcr (in color) and the measured pose Eneasurep (in grey) are displayed.
In the state ‘Pull open’, Evipasurep follows a parallel trajectory to Egcr due to the
impedance control and the force applied to the drawer handle. 51

Pour water. Timeline of the task Pour water during P-A evaluation trial with an EMG-
based interface. 51

Open door. Top-down and side view of the trajectories resulting from Egct (in color)
and EmEASURED (in grey) during P-A evaluation trial with an EMG-based interface. . . 52

Photo series of opening and driving through a door. The figure shows P-D using the
hybrid interface to perform the open door task with shared control with whole-body control
(SC-WBC); the robot world model, the control scheme, and the times are visualized. A:
Starting the shared control task, with the robotic arm next to the handle. B: The position
and orientation of the arm are guided by the SCT to place the robotic hand above the
door handle. C: Pressing the door handle. D: Opening the door in a circular motion while
the wheelchair follows through the door. E: Releasing the door handle. F: Driving the
remaining path through the door, using direct control. Adapted from [Hag+25] 54

Photo series of the successively executed sequence of tasks using different control
schemes. P-E is shown seated in EDAN while performing the tasks. The time sequence
started from the default robot position. A: Open the drawer using SC-WBC. B: Pick a
mug from the drawer using DC. C: Pick a bottle with SC. D: Pour into the mug with
SC. E: Drink from the mug using SC. F: Release the mug again with SC. Adapted from

[Hag+25]. e 56
2023 CYBATHLON Challenges. The pilot carried out the two tasks within 5 minutes:
picking and biting an apple and taking objects from ashelf. 57

2024 CYBATHLON winning run A: Mailbox. B: Toothbrush. C: Pick up. D: Scarf. E:
Eating. F: Crowd. G: Spice up. H: Door. I: Dishwasher. Source: 2024 CYBATHLON. . 59

SCT design method. A. Gathering of demonstrations via kinesthetic teaching or direct
teleoperation. B. Data segmentation according to contacts or trajectory curvature. C.
Models are selected and fitted to represent the constraints of each task phase. D. Optionally,
information from previously learned SCTs can be used if phases are similar. E. An SCT
is represented as a finite-state machine with state-specific input mappings and active
constraints using the previously learned constraints. 66

Examples of constraints. A. A prismatic motion is needed to open the drawer. B. An
axial rotation is needed to open the cabinet. C. Two phases from the data recorded by
opening the cabinet door, fitted with a cone and a plane, respectively. Those constraints
may not be the optimal fit to build an open cabinet skill and are displayed here as examples. 67

Pipeline for interactive SCT design. A. Demonstration data is acquired. B. Recorded
data is segmented. C. Multiple constraint models are fitted for each segment. D. The
constraints are heuristically ordered based on a cost to help the SCT designer select the
most appropriate. E. Finally, the input mappings and the active constraints of each state
are specified by the SCT designer and assembled as a finite-state machine. 68

Results of the pipeline from Fig. 6.3. We show an SCT - in the form of a finite-state
machine - semi-automatically built from demonstrated data. The SCT consists of four
states with input mappings (IM) and various active constraints (AC). The transitions were
specified by the skill designer. o 69

6.5 Learned SCTs. We show a visualization of the learned open drawer SCT (top), and the
measured trajectories of five executions of opening a drawer (bottom left) and a cabinet
door (bottom right) with a 3 DoFs joystick with EDAN. The colors illustrate the four
states of each SCT. The two SCTs differ only in the fourth state, where an axial rotation
constraint is used for open cabinet door instead of the prismatic motion of open drawer.

6.6 Photo series of the different states of open drawer (D1-D4) and open cabinet door
(C1-C4). The user sitting in EDAN controls the robot with a 3D joystick. D1 & C1
‘Approach’ The robotic manipulator is restricted within a cone to guide the user towards
the target handle. D2 & C2 ‘Push forward’” After reaching the pre-grasp pose, the user
gets to the drawer handle through a prismatic motion. D3 & C3 ‘Push down’ Transition to
the next state is upon contact with the handle. D4 ‘Pull open’ A prismatic constraint leads
the robot to pull open the drawer robustly. C4 ‘Rotate open’ An axial rotation constraint
is in effect to open the cabinetdoor. oL Lo

7.1 Schema of the proposed approach to design SCTs with a probabilistic model: Ker-
nelized Motion Primitives (KMP). A KMP model is fitted to a set of demonstrated
trajectories for each phase of the desired task. Active constraints and/or input mappings
are then derived from the model and used by the skill designer to build an SCT. Finally,
the robot is constrained to successfully complete the task from user commands.

7.2 Left: KMP fitted on example data with mean and covariance. Right: Impact of adding a
via-point on mean and COVarianCe. a e e e

7.3 Effect of null space actions on learned KMPs. Left: Null space action: [-200, 100].
Right: Null space action: [200,-100].

7.4 Model adaptation. If an SCT requires adaptation due to environmental changes or user
preferences, an adaptation mode is entered, where the user can directly adapt the SCT
with their commands. The adapted SCT is thenexecuted.

7.5 Impact of different sets of P on a rectilinear directrix with a Matérn kernel. A:
Single action: P = 1. A slight interference at the base of the deformation is visible. B:
P = 9. Indexes of the additional actions, in relative percentage from the original action:
[0.02,0.04,0.06,0.08], with scaling: [0.7,0.6,0.3,0.1] C: P = 11. Indexes: [0.04,0.06,0.08,
0.10,0.12] with scaling [0.6, 0.4,0.3,0.2,0.1]. D: P =7. Indexes: [0.03, 0.06, 0.09] with
scaling [0.8,0.7,0.6].

7.6 Arbitrary deformations to illustrate the method flexibility. The red dot indicates
the point on the original directrix where the deformation is currently applied. It was
moved along the trajectory to create those deformations, see Fig. 7.8. A: A smooth, wide
deformation. B: Deformations in two different directions. C: Low amplitude deformation
on one side, high amplitude on the other. D: A wide deformation with low amplitude.

7.7 Depiction of an input mapping scaling)\;y; from a cylinder. Going closer to the
cylinder surface slows down the end-effector while going towards the directrix is done at
normal speed. This biases the end-effector to move along the directrix while leaving the
whole task space accessible if the user wishes to depart from the demonstrated trajectories.

7.8 Photo series of the iterative modulation of a learned approach constraint, to ensure the
fingers of the end-effector will not collide with the table with the new cup placement.
User commands are depicted with ablack arrow.

XVi

72

78

83

84

Xvii

7.9

7.10

7.11

Executions of multiple Pick task on EDAN with SCTs with learned constraints, with
end-effector trajectories going from blue to red. In grey, the generalized cylinders
illustrate the KMP active constraints. Left: Pick SCT obtained by fitting a KMP to
demonstrations. Center: Pick SCT adapted with the proposed method (in the ‘Approach’
state) such that the end-effector fingers do not hit the table. Right: A second adapted SCT,
to pick up a taller object. As seen on some trajectories, the SCT execution may start with
the end-effector outside of the constraint, getting smoothly pulled into the constraints due
to the velocity limits, see subsection4.3.2.,
Null space action and decorrelation adaptation. On the left are recorded trajectories
to approach a cup plotted in their x, y and z components, together with a fitted KMP
model represented by its mean and variance. The variance decreases when getting closer
to the target item , reducing the task space available to the end-effector. In each
subsequent column, a null space action is applied to a single dimension. The impact of
modulations, i. e. its amplitude scaled by the variance, can be seen at . The effect of the

proposed decorrelation adaptation can be seen at , where a null space action in a single
dimension has no effect in other dimensions. Notice the correlation effect occurring in
the original NS-KMP formulation [SH23] (dashed black line) with actions on one DoF
deforming other DoFs. L
Comparison of the computation time between null space action and via-points (mean
computation time over 1000 runs) for different values of P (the number of null space
actions) and N (number of given inputs to a KMP). Via-points are specified to match the
result of the applied null space action.

XViil

XixX

List of Tables

5.1 Time to completion of the task Pour water in shared control and direct control by the
participants and the SCT designer. 50

6.1 SCT open drawer models fitting results for the first segment. The selected models are
highlightedinbold. 73
6.2 Comparison of a newly recorded open cabinet trajectory to the SCT skill open
drawer. In bold, the relevant results for components transfer, as states ‘Approach’ and
‘Push forward’ have low costs. Costs from state ‘Push down’ are negligible as there are
no active constraints. L 4o and Lrps4 ac are similar because the default input mapping is
used for each state in this example, but this could change significantly depending on the
chosen input mapping. Costs are high in ‘Pull’ as the trajectories are different, requiring
tofitnew constraints. L. oo 73

7.1 Skill modulation by differentusers. L 87

XX

XX1

Glossary

AC
ARAT
BCI
DLR
DoF
EDAN
EEG
EMG
Etasl
GMM
GP
GUI
M
IMU
iTaSC
KMP
ODB
PDDL
ProMP
RL
RMC
SCT
TSR
WBC
WSR

Active Constraint

Action Research Arm Test

Brain Computer Interface

Deutsches Zentrum fiir Luft- und Raumfahrt (German Aerospace Center)
Degree of Freedom

EMG-controlled Daily AssistaNt
Electroencephalogram
Electromyography

Expression-based Task Specification Language
Gaussian Mixture Models

Gaussian Process

Graphical User Interface

Input Mapping

Inertial Measurement Unit

Iterative Task Specification and Control
Kernelized Movement Primitives
Object DataBase

Planning Domain Definition Language
Probabilistic Movement Primitives
Reinforcement Learning

Robotic and Mechatronic Center
Shared Control Templates

Task-Space Region

Whole-Body Control

World State Representation

XX11

Chapter 1

Introduction

Stroke, spinal cord injuries, and neuromuscular diseases frequently lead to permanent motor impairments,
resulting in long-term disability. Globally, over 15 million people are living with spinal cord injury.
Between 250 000 and 500 000 people are getting afflicted every year, with driving accidents the leading
cause, according to the World Health Organisation [Org]. A large-scale study done in 2013 in the United
States [Arm+16] reported approximately 5.4 million people affected by paralysis, of which the majority
(72%) was younger than 65 years. Performing tasks of daily living can become challenging — even
impossible — with motor impairment, which may lead to a dependence on caregivers for everyday life.
Assistive technologies, referred to by Howard et al. [How+22] as "any product either specially designed
and produced or generally available, whose primary purpose is to maintain or improve an individual’s
functioning and independence and thereby promote their well-being", re-enable those affected by motor
impairments to perform activities of daily living independently. Examples of such activities include
reaching for objects, drinking, eating, scratching, or opening doors [Hol+05; Che+13; Pet+22]. More than
a simple tool, those devices impact how users interact within society and with their social circle and allow
them to live more independently.

1.1 Assistive devices

For people with limited functionality in the upper extremities, devices such as orthoses, prosthetic hands,
arms, or robotic manipulators re-enable physical interaction with the environment, see Fig. 1.1. Various
interfaces have been developed to control those devices, typically measuring biosignals or body motions
[ORR19]. The benefits of using assistive technology include enhancing function and independence,
improved safety, and promoting social inclusion [How+22]. However, there are many challenges to their
adoption, such as cost, low reliability, poor correspondence between device utility and target users’ needs,
lack of user involvement in the design and decision-making process, poor usability, lack of training,
complex maintenance or cleaning, poor customer support and stigmatizing esthetics [ORR19; How+22].
Due to those challenges, abandonment rates are considerably high, with some studies finding their range
between 20% and 70% depending on the context. Therefore, to encourage adoption, assistive devices
should be easy to use, reliable, and personalized, to cater to users’ needs and preferences.

1.2 Wheelchair-mounted robotic manipulators

A well-known example of assistive devices is power wheelchairs, which provide mobility and indepen-
dence for those who can no longer walk. For people with paralysis, a power wheelchair on which is
mounted a robotic manipulator provides mobility and the ability to physically interact with the environment
[KB15].

Chapter 1. Introduction 2

Figure 1.1: Assistive robots. Left: The commercially available Stretch 3 from Hello Robots. Center:
The EDAN robot, with which this thesis contribution is validated. Right: The commercially available
OBI robot from Desin.

Compared to power wheelchairs with two Degrees of Freedom (DoFs), robotic manipulators have
several DoFs — at least six for the end-effector pose plus one for the tool — and are, therefore, significantly
more challenging to control. Additionally, the more severe a person’s motor impairment, the more limited
the control interfaces available to them to operate their assistive technology, with control signals getting
lower in dimensionality and bandwidth. Thus, paradoxically, a greater need for sophisticated assistive
devices is paired with a diminishing ability to control their additional complexity. Assistive robot arms on
the market mostly use the 2D wheelchair joystick interface and are restricted to direct control [Nie+16].
Controlling all available DoFs of the manipulator with such a low-dimensional interface is achieved with
‘mode switching’, in which the user selects different subsets of manipulator DoFs to be directly controlled.
Moreover, target users may no longer be able to operate a mechanical interface such as a joystick and
might, therefore, require alternative interfaces, such as those based on bio-signals or body motions.

While users have demonstrated that the direct control of robotic manipulators re-enables them to
perform challenging tasks [Mah+11], the switching between different control modes is inefficient because
it breaks the flow of motion. Therefore, complex tasks requiring the combination and coordination
of different DoFs of both wheelchair and manipulator, such as opening and going through a door, are
incredibly challenging with direct control using low-DoF interfaces and lead to a high cognitive workload.
This becomes even more crucial when controlling assistive devices with interfaces based on bio-signals,
which often results in noisier commands and low throughput. To overcome those limitations, the system
must provide some level of assistance to the user when doing activities of daily living.

3 1.3. Robot assistance

1.3 Robot assistance

Robots can assist humans in completing tasks. Different levels of assistance can be provided, depending
on the available interface and user preferences. Users should control key decisions, whether abstract
(e. g. selecting an object to pick) or detailed (e. g. adjusting rotational velocity when pouring water). The
coordination of the remaining DoFs — of the wheelchair, arm, and tool — can then be delegated to the
system. Multiple levels of assistance have been proposed in the literature, such as in section 43.3 of
[SKKO8], which outlines three distinct levels of assistance.

The first level of assistance is shared control, which enables both the user and the robotic system
to influence the manipulator’s actions in real time. The user provides continuous inputs, while the robot
applies constraints or corrections to ensure safe and efficient execution. For example, for a pick mug task,
the user could decide on the approach velocity and direction of the approach towards the mug. At the
same time, the assistance could constrain the end-effector height and orientation such that tilting the mug
over is impossible. The division of control can change dynamically based on the context.

A second level of assistance is shared autonomy, where the user specify high-level tasks (e. g.
selecting an object to grasp), while the robot autonomously determines and executes the required motion.
By reducing the need for continuous user input, shared autonomy lowers cognitive and physical effort.
For instance, for a pick mug and drink task, the user could select which mug to pick via a voice command
or a graphical interface, let the robot autonomously pick the mug, then input a "bring me the mug for
drinking" command so that the robot brings the mug to their mouth.

A third level of assistance is full autonomy, a system where the robot operates independently, with
little to no human input required for task execution. The user only selects a goal, such as clean the room
or prepare a meal. The robot should then autonomously plan and execute tasks and subtasks, as well as
adapting to unforeseen effects, such as a failed grasp or an object rolling over a table. For instance, the
user would ask: ‘Bring me a glass of cold water,” and the robot would open a fridge to grab a glass, close
the fridge, and then bring the glass to the user. While full autonomy has been demonstrated in laboratory
settings for tasks like feeding [Gal+19], cleaning [Leil9], and cooking [Bee+11], real-world deployment
remains challenging due to environmental variability and human unpredictability.

To provide those different modes of assistance, an assistive robot needs a comprehensive world model
of its environment, appropriate interfaces for human-robot interactions, and the ability to assist users
in achieving their goals. This requires control algorithms that maintain stability and reliability while
coordinating the many robot DoFs, even with inaccurate control signals. An ideal assistive robot should
provide this spectrum of autonomy levels [Che+13] and allow users to effortlessly switch between these
levels based on their preferences and the specific task at hand.

While higher autonomy reduces the cognitive and physical demands on the user, this only holds if
the robot operates reliably, executing tasks safely without causing unintended consequences. Although
advances in autonomous systems in real environments such as warehouses are notable, autonomous
behavior is an active area of research for unstructured environments such as homes. Robot errors, such as
spilling water or breaking a mug, can be difficult or even impossible for target users to correct, leading to
frustration and negatively impacting their quality of life. Involving the user in the control loop increases
users’ agency, leverages their situational awareness, and improves the system’s reliability, which is crucial
for real-world adoption. Moreover, some studies show that users often prefer maintaining control over
robotic systems [Bha+20], even when it increases their workload [Kim+12]. Finally, citing Henry Evans,
a quadriplegic expert user of assistive robots who participated in numerous studies: "It’s very important to
me, from a sense of self-worth, to do things for myself independently whenever I want, even if it is slower.”
For these reasons, this work focuses on shared control, balancing user agency with robotic assistance,
providing support and empowerment.

Chapter 1. Introduction 4

1.4 Problem statement and contribution

The general objective of this thesis is to develop a shared control framework that facilitates the adoption
of user-centered robotic assistive systems. It shall provide people with motor impairments with safe
and easy-to-use technology that enables them to perform activities of daily living independently and
effectively. Therefore, we consider the following problem:

* How to provide shared control assistance that enhances users’ agency, behaves transparently, is
reliable, and personalizable ?

User agency refers to the ability of users to make choices and exert control over their interactions
with robotic systems. It encompasses how users can influence the robot’s behavior, tailor its functions
to meet their needs, and decide how the system assists them in various tasks. User agency is crucial for
promoting independence, enhancing user satisfaction, and ensuring that the assistive technology aligns
with the user’s preferences and goals.

Transparency is defined by Alonso ef al. [AD18] as: "the observability and predictability of the
system behavior, the understanding of what the system is doing, why, and what it will do next". Dragan et
al. [DLS13] further distinguishes between predictability and legibility: predictability involves forecasting
the robot’s trajectory, while legibility refers to the user’s understanding of the robot’s actions or intentions.
Transparent and legible assistance fosters trust and improves usability, whereas inconsistent behavior can
lead to frustration and mistrust.

Reliability: Reliable assistance means that the robot will support the user in successfully performing
their desired tasks safely and consistently without malfunctions or unintended effects on the environment.
Achieving reliability in autonomous robots remains a significant challenge, especially within unstructured
human environments. A robot’s world model is, by nature, an approximation of its real environment, with
factors like friction often only roughly estimated. Moreover, errors in robotics can be costly, as user safety
is paramount. Robots should not diminish the user’s sense of control, particularly when the robots fail, as
they sometimes will. In such cases, the robot must remain safe and offer the user the ability to recover.
Preventing unintended outcomes, such as knocking over objects, is especially critical for users with motor
impairments, for whom cleaning up after such mistakes can be especially challenging.

Personalization is also crucial; the robot should cater to the user’s needs and preferences, which may
change over time. Multiple aspects of the assistance are concerned, such as the interface used. Another
aspect is the level of autonomy of the assistance behavior. For example, users may prefer precise control
for some tasks while opting for higher-level goal selection in others.

Towards this objective, our contributions are:

* The definition of a generic shared control framework, Shared Control Templates (SCT), which
provides a variety of consistent assistive behaviors obtained by tailored mapping of user inputs and
constraining the end-effector while ensuring the user maintains control.

» Two distinct methods for learning task constraints and facilitating skill design. The first approach in-
volves learning a multi-model representation from task trajectory demonstrations and demonstrating
the ability to transfer knowledge from existing SCTs to new ones. The second approach employs a
probabilistic model that applies constraints to the end-effector and allows for user adaptation to
accommodate changes in environmental conditions.

* The validation of this framework through user studies with the ‘EMG-controlled Daily AssistaNt’
(EDAN), an assistive robot developed by the Re-Enabling Robotics team of the Robotic and
Mechatronic Center of the German Aerospace Center (DLR-RMC) [Vog+20b]. Results showed
successful completion of various sequences of activities of daily living, such as pouring, drinking,
and manipulating articulated objects like doors, drawers, and refrigerators.

5 1.5. Outline

Those contributions have been presented in the following publications:

* "Shared control templates for assistive robotics", ICRA 2020 [Que+20]
* "Learning and Interactive Design of Shared Control Templates", IROS 2021 [Que+21]

* "A probabilistic approach for learning and adapting shared control skills with the human in the
loop", ICRA 2024 [Que+24]

1.5 Outline

We begin by reviewing the state of the art in relevant fields in Chapter 2. In Chapter 3 is presented the
assistive robot EDAN. This wheelchair-mounted manipulator possesses a world model with localized
instances of known objects, two possible 3 DoFs interfaces — a joystick or an EMG-based interface —
and a whole-body Cartesian impedance controller that guarantees safety for the user when interacting
with the environment. In Chapter 4, we detail a novel assistance framework we developed — Shared
Control Templates (SCT) — which aims to provide transparent, reliable, and personalizable assistance.
Assistive skills are defined as a finite-state machine, where each state can specify the mapping of user
commands and enforce task space constraints on the end-effector to guarantee safety, guide the user, and
control leftover DoFs. Chapter 5 covers the results from different user experiments with able-bodied and
motor-impaired users and from our participation in the 2023 CYBATHLON Challenges. We show that
employing the SCT framework can be used for sequences of activities of daily living.

Then, we turn to learning from demonstrations to simplify the skill design and to provide personalized
assistance based on user preferences — they might want a skill to behave in a certain way — or needs, such
as a specific task they would like to be assisted with. Chapter 6 covers learning parameterized geometric
constraints and bootstrapping skill design with a library of already known skills. Chapter 7 introduces
a new probabilistic approach using Kernelized Movement Primitives to learn input mapping and active
constraints, which users can then adapt if needed.

Finally, we conclude with Chapter 8, analyzing the advantages and limitations of our methods and
further avenues for research.

Chapter 1. Introduction

Chapter 2

State of the art

2.1 Devices for assistive technology

2.1.1 Fully integrated assistive robots for people with motor impairments

Research on robotic arms as a manipulation aid dates back to the 1970s [CLS79]. The first commercially
available systems, such as the MANUS manipulator, appeared in the 1990s [Kwe+89]. When integrated
with power wheelchairs, robotic manipulators empower individuals with severe physical disabilities
to interact with their surroundings and retain independence. Available wheelchair-mounted robotic
manipulators include the iARM [RSP05] and the JACO arm [Mah+11]. These manipulators are usually
controlled with the same 2D joystick used to control the wheelchair itself [DCC10; Mah+11].

The works above only provide direct control; from a control perspective, the wheelchair and the
arm are independent entities. However, the robotic manipulator should not merely be attached to the
wheelchair; the wheelchair’s DoFs should also be available in the arm’s low-level control scheme. This
concept, known as whole-body control (WBC), has proven beneficial in humanoid robots [Die+12;
KSP08]. Applying WBC to a mobile assistive robot reduces the need for the user to manually coordinate
the wheelchair’s movement with those of the robot arm. Thus, it facilitates the execution of tasks that
require a wide range of motion, such as opening doors or drawers.

2.1.2 Human-to-robot interfaces

Figure 2.1: Interfaces for assistive robots. Left: A 6D Spacemouse from 3Dconnexion. Center: A sip-
and-puff interface used by the pilot winning the CYBATHLON Challenges 2023. Source: CYBATHLON
Challenges 2023. Right: A Brain-Computer Interface used to manipulate a robotic arm. Source:
[Hoc+12].

In assistive robotics, different types of human-to-robot and robot-to-human interfaces exist.

Chapter 2. State of the art 8

The choice of interface depends on the user’s preferences and capabilities, with variations in the
amount of information they provide (number of DoFs, continuous vs. discrete signals) and the quality
of the commands (ranging from a noisy electroencephalography (EEG) to a precisely controlled 2-DoF
joystick). Assistive systems must account for both the interface and user abilities, as a single assistance
method is unlikely to effectively accommodate this wide range of interfaces.

Power wheelchairs are commonly controlled with 2 DoFs commercial joysticks, which are, however,
not adapted to all users. Hence, various interfaces adapted to disabilities have been investigated; see
[ORR19] for a review. We mention a few here.

The first category regroups non-wearable sensors such as:

» Graphical user interface on touchscreens, such as a tablet or a smartphone, evaluated in Chung et al.
[Chu+17].

* Sip-and-puff interface, used for example by Broad et al. to control a hierarchical finite-state machine
[BA16].

* Voice and gesture interface, used for example by Jiang et al. [Jia+16] for feeding and dressing tasks.

A second category is non-intrusive wearable sensors, which monitor motions and biosignals from
different body parts. Inertial Measurement Units (IMUs) have been investigated for individuals who
retain partial or complete control of their neck and shoulders. For instance, Padmanabha et al. [Pad+24]
demonstrated the use of blended shared control to allow a participant to teleoperate the Hello Robot
Stretch RE2 robot for tasks such as blanket manipulation and face wiping with IMUs. Similarly, Jain ef al.
[Jai+15b] combined IMU data with shoulder motion tracking, enabling the user to control the manipulator
speed and switch between a set of available trajectories. Choudari et al. [Cho+19] demonstrated wheelchair
control based on electrooculography, where electrical potentials related to eye motion are measured. Kim
et al. [Kim+13] tracked tongue motions with a magnetic tracker of eleven participants with spinal cord
injury for computer and wheelchair control.

Another common interface is electromyography (EMG), the measurement of muscular activity, which
is used in a wide range of application fields including myoelectrical prosthesis [Fle+21], rehabilita-
tion [BKM16], computer gaming [Nac+11], and teleoperation for space applications [Hag+21]. EMG has
also been used to create control interfaces for robotic manipulators for able-bodied users [VCS11; AK10;
Iso+15].

Several studies have explored multimodal interaction by combining different interfaces. Fall et al.
[Fal+18] combined IMU and EMG-based interfaces for pick-and-place tasks, while Baldi ef al. [Bal+17]
designed a cap integrating both sensor types and tested it on insertion tasks. Nam et al. [Nam+13] tracked
tongue movements, eye movements, and teeth clenching to issue commands to a humanoid robot.

Brain-computer interfaces (BCls), which extract commands from brain signals, have also been
explored as an input method for assistive technologies. BCls are either non-invasive — when the sensors
are placed on the skin, as in [Ras+20] — or invasive — when the sensors penetrate the skin or are permanently
implanted. Among non-invasive methods, EEG is the most widely used approach [OA13], with promising
results demonstrated in robotic arm control [Men+16]. However, controlling systems with many DoFs
remains challenging due to lengthy training times, user fatigue, and the low signal-to-noise ratio of EEG
signals [Abi+19]. In contrast, invasive BCIs offer higher signal bandwidth and spatial resolution [Van+09],
which is advantageous for extracting high-dimensional commands. They also enable more intuitive control
schemes, as demonstrated by Hochberg et al. [Hoc+12], where neural signals related to motor imagery of
a limb were used to control a robotic arm.

Robot-to-human interfaces include displays, sound, or haptic feedback. A display can provide helpful
information to the user, such as world model information, the current controlled device and control mode,
feedback on which commands are being given, etc. See subsection 3.3.2 for an example on EDAN. Using
haptic feedback can be challenging for people with motor impairments when sharing control of a robotic
arm due to reduced sensory perception and increased cognitive load.

9 2.2. Shared control

2.2 Shared control

Shared control of assistive robots involves collaboration between a human user and a robotic system
to achieve a task, with varying levels of control distributed between the two. This approach enhances
the user’s ability to interact with the environment while reducing cognitive and physical burden. Unlike
other levels of autonomy (see section 1.3), shared control allows the user to provide continuous motion
commands to the robot, with various control aspects coming into play. It is possible to assist the control
of the wheelchair [BA16; KD18; Dev+19] or the manipulator.

For the latter, one approach is adaptive authority allocation from a control perspective, such as force-
level control [Bal+20] or multi-level approaches [IDA21]. Another approach is when the assistance system
generates commands combined with the user’s inputs, a process formalized as "policy blending" [DS13].
These commands may be derived from a planner based on specific cost functions or through learning from
demonstration. Another approach involves adjusting the mapping from user commands to end-effector
movements. This can be optimized according to a cost function [HHS16] or to replicate demonstrated
trajectories [Los+22]. It is also possible to enforce task-space restrictions [AM97; AEKO05] by constraining
the position or applying forces and velocities to the manipulator. In teleoperation settings such as surgical
procedures, haptic feedback can also play an essential role [BDB13; Hag+24].

Shared control can also incorporate user intent modeling, predicting the task the user intends to
perform. This can be used, for example, to adjust command blending [JA19; DS13; Jav+18] or impose
task-space restrictions [MHD16; Got+22; IDA21]. The following sections provide a more detailed
exploration of these different aspects.

2.3 User intent estimation and exploitation

An important aspect of realizing shared control is considering the user’s goal or intent when using an
assistive system. Typically, this intent revolves around interacting with specific objects, such as picking
up a mug or opening a door. Once an object is picked, the user may choose to perform different actions,
like drinking from the mug or placing it elsewhere. Various models have been proposed to estimate the
user intent and exploit it in different ways.

One approach is to assist users in selecting actions when multiple options are available. The simplest
approach is to use the distance between the end-effector and objects as a likelihood, then start the assistance
once they are close enough. Naughton ef al. [NH22] proposed structured task predictions for dynamic
environments learned from demonstrations. Instead of directly predicting the desired task, each candidate
task is evaluated on a common scale, and the most relevant ones are presented to the user via a Graphical
User Interface (GUI).

Intent inference can also be employed to restrict the task space. Mehr et al. [MHD16] compute and
enforce simple geometric constraints online during shared control execution of tasks. Iregui et al. [IDA21]
restrict the task space and adjust the mapping of user commands. Muelling ef al. [Mue+17] use intent
inference to select a grasp pose among a set of stable, feasible grasps associated with the target object.
Then, they constrain the end-effector with capture envelopes, a type of active constraint, to guide it to a
grasp.

Intent inference can also be used to adjust the blending of commands between the user and a policy,
as detailed in the following subsection.

2.3.1 Policy blending

Policy blending, formalized by Dragan et al. [DS13], refers to a framework where user commands are
combined with assistive commands from an arbitrary policy, with a trade-off factor often influenced by

Chapter 2. State of the art 10

the estimation of user intent. Assistive commands can take various forms, such as following a trajectory
based on a cost function [Jav+18], providing collision avoidance for dynamic targets using potential fields
[Got+22], following an online trajectory generated through trajectory planning [Haul3], or adhering to a
learned task model [Qia+21; Abi+17].

Jain et al. [JA19] explored user intent estimation and policy blending across multiple control interfaces,
which vary in terms of the continuity and dimensionality of the control signals. Their work highlights
the benefit of incorporating human-agent behavior as goal-directed actions with an adjustable rationality
model tailored to individual users. Another notable approach is presented by Gopinath ef al. [GA20],
where the assistive system is optimized to actively disambiguate the user’s intent, improving the overall
effectiveness of the assistance.

Additionally, Dragan et al. [DS13] evaluated the effect of assistance aggressiveness, noting that strong
assistance can be highly beneficial when correct but detrimental when incorrect. Their study demonstrated
that factors such as the level of aggressiveness, the accuracy of predictions, and the complexity of the
task significantly influence the assistance performance and user acceptance. They also introduced various
metrics to evaluate the trade-off between user and assistive system inputs, such as the probability assigned
to the system’s predictions.

2.4 Input mappings

The end-effector of an assistive robot typically has 7 DoFs in task space, six for the end-effector pose
and one for the gripper. In contrast, most input devices for motor-impaired users usually offer 2 or 3
control DoFs, as seen in subsection 2.1.2. Therefore, mapping these user commands to realize end-
effector velocities and provide intuitive and efficient control is a crucial challenge. Since no standardized
terminology exists, we will refer to this concept as "input mapping" and propose a formal framework for
it in section 4.2.

2.4.1 Direct control

A common approach to controlling an assistive robot’s 7 DoFs is to directly map each DoF of the
user’s input command to a velocity command applied to a specific DoF of the robot’s end-effector. When
controlling only a subset of the end-effector’s DoFs, mode switching can change which subset is controlled.
For instance, with a 3 DoFs control input, users can select different control modes: translational, rotational,
or gripper control. Mode switching is often triggered by a signal, such as a button press. Rotational
control can be referenced either to the robot’s base frame or the end-effector frame, though both methods
tend to be unintuitive for users. Work such as Campeau et al. [Cam+18] proposed a new dynamic frame
(independent from the environment) for more intuitive control and demonstrated improved performance
with 25 able-bodied users. Tijsma et al. [TLHOS] investigated a new method to switch modes and
different frames on which to apply rotational velocity, testing them with able-bodied and motor-impaired
participants. Despite these advancements, direct control is often time-consuming, even for comparably
simple tasks, and tasks that require synchronous motions — in translation and rotation — are challenging to
execute, creating a high mental load.

If the robot can access a world model, task-specific automatic mode-switching becomes possible.
For instance, Herlant ef al. [HHS16] proposed automatically switching the controlled DoFs based on a
time-optimal metric for tasks like dialing a rotary phone, pouring water, and unscrewing a jar, using a
2D joystick. In another example, Muelling ef al. [Mue+17] implemented a system where translational
control was the default, with task-specific switching to rotational velocity mapping for a Pour task, in an
experiment with a BCI interface.

11 2.5. Active constraints

2.4.2 Learned input mapping

Learning from demonstration is a technique in which a robot learns to perform tasks by observing and
imitating human demonstrations rather than being explicitly programmed. This method has also been
explored to facilitate the design of input mappings. For example, Losey et al. [Los+22] utilized a
conditional variational auto-encoder to approximate 6-DoF end-effector trajectories using latent actions
applied on a trained decoder. They formalized the necessary properties of the latent space to reproduce
such trajectories and combined this approach with policy blending and intent estimation. The system was
evaluated across various tasks using 2D joysticks with both able-bodied and motor-impaired users.
They identified four properties for user-friendly latent actions:

» Conditioning: Latent actions should adapt to different contexts. For instance, the user needs control
over different DoFs depending on whether they intend to open a drawer or pour a liquid.

* Controllability: The latent action space should enable the user to move the robot between arbitrary
start and goal states within the demonstrated tasks. This measures how well the user can cover the
range of demonstrated data.

» Consistency: The same latent action should produce similar effects on the robot’s behavior in nearby
states, ensuring predictable outcomes.

* Scalability: Smaller user inputs should result in smaller robot movements, while larger inputs
should cause larger motions. Direct control naturally satisfies both consistency and scalability.

In addition, they aimed for orthogonal commands, enhancing the control interface’s intuitiveness.

Przystupa et al. [Prz+23] argue that an input mapping should be locally linear and orthogonal, and
that learning an input mapping explicitly under these conditions is more advantageous than learning it
implicitly via losses of a latent space. To this end, they proposed ‘action maps’, which conditionally map
user commands to joint velocities commands based on the robot’s joint state. In their comparison of action
maps, direct control, and latent actions on pick and pour tasks, they found that state-conditioned linear
mappings performed better than latent actions. Surprisingly, they also noted that direct control was at least
as effective and was preferred by some users. However, their approach shows drawbacks: the method
offers joint control rather than task-space control, which limits reversibility and generalizability outside
the training distribution.

2.5 Active constraints

Another way to assist the user is by limiting the accessible workspace of the manipulator or its end-
effector, which can be achieved by ‘active constraints’. These constraints are dynamically enforced
and guide or restrict the system’s motion in specific directions or within certain boundaries, making the
task easier or safer to complete. For instance, they can prevent the manipulator from entering the user’s
immediate vicinity to ensure collision-free interactions or keep a grasped glass upright to avoid spilling
water. Additionally, active constraints can support the user by guiding the end-effector towards a desired
position, funneling all possible trajectories toward a pre-grasp pose, or ensuring the end-effector remains
pointed at a target object (e. g. a bottle) when the user’s intent to grasp it is detected.

2.5.1 Active constraints with virtual feedback

There is a substantial body of literature on the use of active constraints. In surgical robotics, users can
either interact directly with the tool-carrying manipulator or teleoperate the system, where haptic feedback
is often employed to enhance control. Active constraints are typically applied to either guide the user
along a specific task pathway or restrict the user to a defined ‘safe’ region.

Chapter 2. State of the art 12

Previous research in the surgical domain, as reviewed by Bowyer et al. [BDB13], identifies three
steps for implementing active constraints on a robot:

* Constraint definition, such as using surface or volumetric primitives, point clouds, or meshes.

* Constraint evaluation, where the system typically determines the closest point on the defined
constraint.

* Constraint enforcement, which can be achieved through methods like proxy-based techniques with
elastic linkages or potential fields.

These constraints can vary widely, depending on the intended application, such as being regional or
guidance-oriented, attractive or repulsive, static or dynamic.

Selvaggio et al. [Sel+18] proposed an active constraints online generation technique based on the
interaction force measurements. Rahal et al. [Rah+19] employed predefined constraints for robotic cutting
and conducted a user study, finding that while performance improved with increased assistance, users
reported disliking feeling more restricted and less in control. Balachandra et al. [Bal+20] implemented
constraints directly at the force level, exploring how constraints can be tuned for better user experience.

2.5.2 Learning constraints

Some studies focus on learning constraints from demonstrations. Ahmadzadeh and Chernova [AC18]
proposed to use generalized cylinders — surfaces with smoothly varying cross-sections — to generate
autonomous behavior from trajectories, which can also be used to constrain the end-effector. Zeestraten et
al. [ZHC18] first learned an assistive policy from demonstrated data. Then, they used policy blending
between user commands and the assistive policy by computing a covariance matrix for both, using a
Gaussian Mixture Model (GMM). An additional Gaussian with high variance is introduced to deactivate
assistance when the system moves away from the demonstrated data. This method was tested on a realistic
use case: unscrewing a cap at CERN. Similarly, Michel ef al. [Mic+21] use learning from demonstrations
with GMM to learn the impedance controller stiffness based on contact forces. In [Rai+18], Gaussian
mixture models encode constraints from demonstrations using precision matrices as a proxy to control
stiftness. The assistance guides the end-effector along multiple virtual guides, selected via the variance
observed in the demonstrations.

Fitting a single parametric model to data can be done with an algorithm like RANSAC [FB81]. More
advanced methods are required for multi-model fitting, a well-known problem in computer vision, as
discussed by Delong et al. [Del+12]. Their proposed energy minimization method iteratively fits multiple
geometric models (such as cones, cylinders, and lines) to the data. Data points are assigned to a model in
each iteration or identified as outliers. Another approach for learning constraints, aimed at simplifying the
recording process, is presented by Subramani et al. [SZG18]. They demonstrate that even if there is a
static offset between the recording and constrained points, constraints such as lines, planes, axial rotations,
or fixed joints can be learned.

2.5.3 Constraints for control

Another line of research using constraints for tasks specifications are the iTaSC — Iterative Task Spec-
ification and Control [Smi+08] — and Etasl — Expression-based Task Specification Language [AD14] —
frameworks. iTaSC is a model-based framework that represents tasks as an optimization problem in terms
of constraints on motion, forces, and control. Bartels ef al. [BKB13] used iTaSC to solve the task of
pancake flipping by defining geometric constraints using differentiable feature functions. eTaSL is a more
generic, flexible, and expression-based framework for task specification. It extends iTaSC by providing
a high-level language for specifying task goals, priorities, and the relationship between different task
parameters.

13 2.6. Skill representation as finite-state machine

2.5.4 Constraints for planning

In the planning domain, Berenson et al. [BSK11] proposed Task Space Regions (TSR), defined as a
volume in SE(3) with tolerance in position and orientation (defined as roll, pitch, yaw) and a static
transformation to a constrained frame. TSR was originally designed for a sampling-based planner and
allows rejection, projection, and direct sampling. Various constraints can be represented for tasks such
as grasping objects or manipulating articulated objects. Another work in this domain is by Chou et
al. [CBO21], who focus on identifying a global constraint shared across tasks. By assuming bounded
suboptimal demonstrations and having access to cost functions and dynamics, the authors explore both
the forward problem (generating new demonstrations) and the inverse problem (recovering constraints).
Aiming for full autonomy in operating articulated objects, Phillips et al. [Phi+16] use demonstrations
represented as Experience Graph [Phi+12] to constrain and thereby expedite the planner’s search.

2.5.5 Constraints for shared control

Finally, some research focuses on the use of constraints for shared control. Vogel et al. [Vog+16] address
pick tasks by assisting with a range of possible grasps, guiding and orienting the end-effector toward
the object, and automating the grasping process once triggered. Muelling ef al. [Mue+17] employed
constraints named ‘capture envelopes’ to guide a BCI-controlled end-effector toward grasping poses.
Perez et al. [PS17] propose C-Learn, a constraints learning algorithm targeted at bimanual robots, where
a multi-model representation is used to build a library of skills from demonstrated data, which can then
be reused. Task Space Regions, posture and trajectory constraints are used. Keyframes, a sparse set of
poses that accomplish a learned task if executed in sequence, are used to segment data. Shared autonomy
is provided in the sense that users can review the motion plan and adjust keyframes offline if necessary.
Works such as Mehr et al. [MHD16] focus on inferring constraints on the fly without making assumptions
about the environment, allowing for real-time adaptability. Iregui ef al. [[IDA21] share a similar goal as
ours for providing assistance and present a reconfigurable, adaptable, and modular assistance method
based on Etasl. The framework considers multiple types of interfaces, user intent estimation, autonomy
level modulation, and reactive control. A comparison between their method and our contribution is
proposed in section 8.2.

2.6 SKkill representation as finite-state machine

Our approach uses some of those constraint models mentioned above in a multi-model representation.
This can be achieved by constraining the end-effector with multiple models at once, for example, on
different DoFs, or by having different skill representations in multiple sections corresponding to different
phases of the task. Our shared control skills are represented as a finite-state machine, a type of graph with
a finite set of states connected by transitions, with one state active at a time.

Finite-state machines are widely used in robotics. Brunner et al. introduced Rafcon [Bru+16], a
graphical interface designed for constructing hierarchical state machines. In the area of human-robot
collaboration, Willibald et al. proposed a collaborative robot programming framework in [WEL20],
which incrementally generates and refines a graph to structure a task’s probabilistically encoded states.
This idea was further developed in [WL22], where they incorporated intention recognition and feature
clustering to infer individual feature constraints for each skill, enabling multimodal anomaly detection
when generalizing the skills to new setups.

Manschitz et al. [Man+14] use a graph structure with merging properties for representing sequences
of robot movements for a lightbulb unscrewing task. Transitions were learned with a Support Vector
Machine. Niekum et al. [Nie+15] used Bayesian non-parametric statistics to detect repeated structures
across multiple task demonstrations, identifying task invariants, key features, and the high-level task

Chapter 2. State of the art 14

structure. These skills were represented with a finite-state machine and executed as Dynamical Movement
Primitives (DMP) on tasks such as pick and place and letter drawing.

Mohseni et al. [Moh+19] learned task structures as hierarchical task networks, while constraints were
captured as TSRs during ongoing vocal interactions with the robot during demonstrations. Zhang et al.
[27720] learned a cloth-folding task in simulation to have full access to the ground-truth data with its
hierarchical structure, which is then executed on a real robot. This skill was represented using an ‘And Or
Graph’, learned through grammar induction. Lastly, Kroemer ef al. [KNK21] extensively reviewed the
literature on learning for manipulation, arguing about the usefulness of a hierarchical representation for
skills and presenting various data segmentation approaches.

Literature on using a graph or finite-state machines for shared control include, for example, the work
of Shafti et al. [SOF19], where gaze estimation along with finite-state machines was used to assist
pick, place, and pour tasks. Broad et al. [BA16] employed a sip-and-puff interface combined with a
hierarchical finite-state machine to offer wheelchair control assistance. Park et al. [Par+20] proposed
feeding assistance in shared autonomy, with three skills — scooping, feeding, and wiping — represented as
a finite-state machine. Hagmann et al. [Hag+24] used shared control skills — represented as a finite-state
machine — with haptic feedback and adaptation of the level of autonomy for two surgery training tasks:
peg transfer and suturing.

2.7 Interactive imitation learning

Several studies on learning from demonstration, also known as imitation learning, have been discussed
in previous chapters. These approaches aim to simplify the design of new robot behaviors through
human instruction. These methods typically consist of two phases. The first is the learning phase, where
demonstrations are recorded, key information is extracted, and assistive skills are developed. The second
is the execution phase, where the learned skills are applied to assist with specific tasks. However, since
user preferences and target environments, such as a user’s home, may change over time, it is also beneficial
to adapt the assistance behavior continually.

Interactive imitation learning is a branch of imitation learning in which human feedback is inter-
mittently provided during the execution of a robot policy, enabling online improvement of the robot’s
behavior or in between executions, providing continual adaptation. This topic was reviewed by Celemin
et al. [Cel+22], where different types of feedback, interfaces, and models were considered. Feedback
can be either absolute (e. g. "this is the best trajectory”) or relative (e. g. "this trajectory is better than the
other"). It can be provided in either the evaluation space (the result of execution) or the policy space (how
to best perform individual actions in specific states). Either the human or the robot may determine the
timing of feedback. Negative reinforcement with counter examples can also be used. We focus on two use
cases in particular: corrections provided through kinesthetic teaching and corrections provided directly by
the target user.

2.7.1 Correction with kinesthetic teaching

One strategy for adaptation is to provide new demonstrations or via-points to a model using learning from
demonstration, for example, generalized cylinders [AC18]. Via-points can also be used with Gaussian
processes (GPs) [RW06]. However, not modeling aleatoric uncertainties makes GPs less attractive to
model constraints. Other probabilistic motion primitive approaches [Par+13] permit via-point adaptation
but require the definition and parametrization of basis functions.

Ewerton et al. [Ewe+16] explored learning ball-reaching trajectories using a 4-DoF elastically actuated
arm. The ball’s position is used as context, and the desired trajectories — represented as torque commands
through Probabilistic Movement Primitives (ProMP) — are iteratively refined. Some studies focus on more

15 2.8. User experiments with assistive robots

complex contexts. For instance, Jain et al. [Jai+13; Jai+15a] proposed a set of features related to the
manipulation task, environment, and the user within the workspace. They developed score functions to
capture user preferences and conducted user studies involving pick, place, and pour tasks and two robots.
They demonstrated that robots could be trained within minutes with only a few incremental kinesthetic
teaching feedbacks from non-expert users.

Related work by Bajcsy ef al. [Baj+17] also examined user corrections, which modify the robot’s
current trajectory. In their framework, the robot optimizes a reward function that balances task completion
while minimizing human effort. Task objective parameters are treated as hidden, with physical interactions
serving as observations to infer these parameters. User corrections help adjust features such as the
orientation of a cup, the distance to a table, or avoiding obstacles. An extension of this work [Baj+18]
proposed that corrections should only affect a single feature to minimize unintended learning by the robot
and ensure smoother task execution.

In assistive robotics, Canal et al. [CAT16] proposed a personalization framework for adaptive robotic
feeding assistance. Their approach starts with a base skill, which is then customized for the user by a
caregiver. Kinesthetic corrections refine a movement primitive modeled as ProMPs, enabling adjustments
to both the feeding position and the distance relative to the user. In the haptic domain, Abi-Farraj et
al. [Abi+17] developed an assistance based on trajectories demonstrations, using Locally Weighted
Regression. The assistance, represented as a virtual spring that generates forces with varying stiffness,
adapts based on the deviation from demonstrated trajectories. Their model is further refined after each
task execution, adapting to user preferences and thereby reducing the operator’s effort over time.

If the system exhibits sensing redundancy, a whole-body contact estimation can be provided, which
enables a sense of touch to the entire robotic structure [IAD24].

2.7.2 User corrections via a human-robot interface

In our use case of assistive robots, adaptive behavior by the users of shared control skills is achievable
only through user interfaces, as kinesthetic teaching is impossible for the target user group. Mehr et al.
[MHDI16] developed an approach to infer end-effector constraints in real-time while the user performs
a task. This method includes a confidence metric that evaluates how well the current constraint fits the
task. It allows the system to adjust when users change their desired goal mid-assistance. Broad et al.
[Bro+17] explored using natural language corrections to adjust planned motions. Selvaggio et al. [Sel+18]
introduced a system where users in a surgical setting can dynamically generate and switch between active
constraints with stiffness adaptation.

Kernelized Movement Primitives (KMP) models can be adapted with via-points, or by external signals
[SH23]. We make use of this property in Chapter 7.

2.8 User experiments with assistive robots

2.8.1 Studies with motor impaired users

There is a substantial body of research involving able-bodied users and motor-impaired users in the context
of assistive robotics. Studies with able-bodied users are usually easier to set up and can provide useful
insights; however, they are not as directly relevant as studies with the target population. Motor-impaired
users have specific needs and interact with assistive systems differently than able-bodied users. For
instance, they may rely on alternative input modalities (e. g. EMG, sip-and-puff or voice) that able-bodied
users might not find necessary. They might also face difficulties such as prolonged task execution time,
increased cognitive load, fatigue, or discomfort during extended use. Hence, studies with motor-impaired
users are essential for validating assistive technologies’ actual effectiveness and applicability.

Chapter 2. State of the art 16

For instance, Maheu et al. [Mah+11] assessed 34 motor-impaired users operating a Kinova JACO
robotic arm using direct control. The tasks included picking and placing objects like bottles, tissues, and
straws, pressing buttons, and pouring. The results demonstrated that, after a brief period of interaction
with the robot and adequate training on its use, all participants (excluding three with interface problems)
could complete all the tasks.

A set of works explores assistive feeding technologies. Bhattacharjee et al. [Bha+20] conducted a
study on user preferences involving ten motor-impaired participants using either a GUI or voice control.
The study examined the use of supervised autonomy during both individual and social dining scenarios.
The assistance was divided into four phases: bite acquisition, bite transfer, bite timing, and bite delivery,
with different strategies available for each phase. Participants tested three levels of supervised autonomy:
high (with no user intervention), low (with the user selecting the strategy at each phase), and medium
(with strategy selection in only two phases). The findings revealed that user preferences varied based
on the context and the severity of impairment. For example, users favored faster assistance and voice
commands in individual dining but preferred slower assistance and GUI-based control in social dining.
The study also received positive feedback about the system’s ability to provide greater independence. One
user remarked, "There is a remarkable amount of independence with this (...) I like to be able to (eat) by
myself". Another expressed interest in more autonomy, stating, "I didn’t like having it do step by step. |
wanna say give me food and have it fly down there and give me food".

Park et al. [Par+20] introduced a system that autonomously performs visually-guided actions to scoop
or stab food and deliver it into a user’s mouth, tested with nine individuals with motor impairments. Users
can choose with a GUI between tasks such as scooping, feeding, or cleaning the spoon as well as adjusting
the food delivery position. The robot can switch utensils depending on the type of food. The system was
evaluated using metrics including task completion time, ease of use, comfort, reliability, and safety. Their
findings highlight the importance of tailoring the system to user preferences, as participants demonstrated
varying preferences regarding aspects such as interface design and operation speed.

Muelling ef al. [Mue+17] evaluates the performance of shared control in combination with a BCI in
the rehabilitation benchmark tasks of the ARAT, box-and-blocks test, door opening, and pouring. Their
system integrated multiple aspects for assistance: a world model, used by the user intent estimation with
maximum entropy inverse optimal control [Jav+18], blended commands with a prediction confidence
of the user’s goal, input mapping for the pour task, capture envelopes as constraints and a compliant
controller for safety. They tried to keep the human operator in control to the largest extent possible and
allow the user to break away from the assistance.

A motor-impaired user, Henry Evans, participated in the ‘Robots for Humanity’ project, which
spanned several studies [Cio+12; Che+13; GK19]. This project emphasized the value of involving care
recipients and caregivers in the participatory design process. Using a head-tracker cursor as input to a
GUI and varying degrees of autonomy, Evans was able to perform a sequence of tasks with a PR2 robot,
such as grasping a cabinet handle, opening a cabinet door and drawer, retrieving a towel, and navigating
to a designated drop-off point. Assistance was also provided for tasks involving manipulation close to the
user’s body (scratching and shaving), giving candy to children on Halloween, and collision-free navigation.
The researchers concluded that effective training mechanisms, appropriate interfaces, and varying levels
of autonomy are crucial for enabling assistive robots to support with daily living tasks in real homes.

Javaremi et al. [JA20] conducted a study using a Kinova Jaco arm mounted on a table to investigate
how to automatically adjust the autonomy level of assistive robots. The study involved eight motor-
impaired and twelve able-bodied participants and focused on developing metrics based on task difficulty
and the type of interface used. The tasks included placing a butter knife inside a drawer, scooping cereal,
picking and placing a plate, mug, and cereal box, unscrewing a jar, and pouring cereal.

17 2.9. Simulation

2.8.2 Studies with able-bodied users

Although motor-impaired user studies are more directly relevant, able-bodied studies still play a valuable
complementary role in methods and systems development. Belkhale ef al. [Bel+22] evaluated an assistive
feeding system with six able-bodied participants. They proposed a balance between comfort and efficiency,
formalized as heuristics and integrated into motion planning. Their results demonstrated that incorporating
these heuristics significantly impacted the generated trajectories, providing significantly more preferable
trajectories compared to a fixed pose baseline. In Canal et al. [CTA21], 30 healthy participants performed
three tasks: assisted feeding, shoe-fitting, and jacket dressing. In 70% of cases, users could identify
whether their preferences were considered. Incorporating user preferences led to improved robot behavior
and enhanced the overall user experience.

2.9 Simulation

Several simulations for caregiving robots have recently been developed. In addition to typical simulation
challenges, these must address the complexity of having a user in the loop, particularly modeling user
behavior and preferences.

Ye et al. [Ye+22] introduced RCare World, which incorporates high-fidelity user models based
on clinical data, using behavior trees to simulate users’ physiological conditions and behaviors. They
designed a set of tasks, informed by professional occupational therapists, to ensure meaningful assistance:
feeding, bathing, dressing, limb repositioning, opening doors, and lifting toilet lids. The simulation
uses a Kinova Gen3 robot mounted on a wheelchair and provides planning and reinforcement learning
(RL) algorithms. The researchers demonstrated successful skill transfer from simulation to real-world
applications with a bed-bathing task. Assistive Gym by Erickson et al. [Eri+20] is another physics-based
simulation framework for assistive robotics focusing on RL approaches. Its tasks include itch scratching,
bed bathing, drinking water, feeding, dressing, and arm manipulation. Shervedani [She+23] proposed
a simulator focused on human-robot interaction, particularly interacting with the elderly in a home
environment, which they use to train an RL agent. Pascher et al. [Pas+24] used Unreal Engine to simulate
a Kinova arm, incorporating visual cues such as arrows to indicate what the robot intends to do or can do.
While they provide assistance through an adaptive input mapping method, the system does not simulate
grasping physics or robot dynamics.

2.10 Conclusion

From this review, a few design choices were made. The control interface selection was beyond the scope
of this thesis, and we present results using the provided 3D continuous interfaces: a Spacemouse and
an EMG-based interface. Since these interfaces offer a higher number of DoFs than most alternatives,
blended control methods were not required. Instead, on one hand we apply input mappings to make
optimal use of the interfaces. On the other hand, the assistance system does not issue commands but
rather constrains the pose of the end-effector, enabling users to maintain good control over the robot’s
movements and enhancing their sense of agency. Many everyday tasks have an inherent structure with
distinct phases, such as approaching a drawer handle, grasping it, and pulling the drawer open. These
phase transitions can be accurately modeled, which led to our decision to use a finite state machine for
skill representation. Manually designing task constraints can be time-consuming, so we explored two
approaches to learning from demonstration. One of these methods also supports constraint adaptation for
personalization. Lastly, to ensure comprehensive evaluation, the SCT framework was tested with both
able-bodied and motor-impaired users in various environments, including our laboratory, participants’
homes, and CYBATHLON events.

Chapter 2. State of the art

18

Chapter 3

Background: EDAN

m—
EMG-based
Y User Interface

Wbl + L0

raw data trained model

—u
X E E &“(Sz : ‘j —u
—u3

. m Real-Time Processes : g& World Modelling
cartesian) d
RGB-D data

K, Impedance ‘. i

: ‘\/ control £ * -

\) (o o)
‘ whole

: - v
= e P =
D) ~ | ,

scene visualization

" Shared Control Unit

Figure 3.1: The EDAN system. An overview of the system and its four main components. The EMG-
based user interface enables people with severe amyotrophia to perform 3D robot control, a shared
control scheme based on SCT supports the user during complex tasks with the information from a world
model, and whole-body cartesian impedance control takes care of the coordination of wheelchair and
manipulator motion. Adapted from [Hag+25]

EDAN, the ‘EMG-controlled Daily AssistaNt,” serves as a research platform for re-enabling robotics
in areas such as human-robot control interfaces [VH18; HV 18], whole-body control [Isk+19], and assistive
control [Vog+16; Que+20]. This robot is the product of collaborative efforts within the Re-enabling
Robotics group at DLR-RMC, and its various components are illustrated in Fig. 3.1. These components
provide context for my contribution, which focuses on assistance through shared control, explored in
detail in the next chapters.

3.1 Hardware

EDAN consists of a commercially available wheelchair on which a modified DLR Light-Weight Robot IIT
is mounted, of which an overview is presented in Fig. 3.1. The manipulator was modified by adding an

19

Chapter 3. Background: EDAN 20

8th joint at its base. This additional revolute joint increases the reachable workspace, especially in front
of the user’s leg space, so objects can be picked up from the ground and drinks or food brought to the
user’s mouth. The manipulator is equipped, for grasping and manipulating, with either a dexterous torque
controlled five-fingered DLR-HIT hand or a three-fingered DLR-CLASH hand with impedance control
and intrinsic compliance capabilities [FR20]. The wheelchair is equipped with additional magnetic-type
encoders to measure the position of the actuated wheels, providing odometry for the mobile platform. It is
controlled via the proprietary R-NET interface, through which forward-backward and rotational velocity
commands can be sent with an analog signal.

All the computing of the robot software modules is done onboard. A Linux-based real-time computer
(Intel I7 4-Cores) runs the low-level control software. The high-level control software uses another
Linux-based computer (Intel I7 8-Cores). Object detection and localization are performed on an Nvidia
Jetson TX2 embedded GPU in combination with an Azure Kinect RGB-D Camera. Processes for the
DLR-CLASH hand are processed on an additional ATOM-based embedded computer.

An overview of the individual software modules is illustrated in Fig. 3.2 and explained below.

Coordination (Shared Control Unit (World Modelling

<

Task S Object Object L
Inference ¢ Database Detection |~
High-Level active
State Machine task Y Y -
e P cepren oo Aoy fee RS, e ——timooo)
p epresentation) —

Real-Time Processes [telemetry]

EMG-based
Interface
Joystick
Interface

Whole-Body [Wwheell

Impedance [Tges]
Controller
Interpolation | EgraAME Virtual ;@)

Workspace
Boundaries

Feedback
Provider

Figure 3.2: System diagram, with software infrastructure and control modes. In direct control, the
desired end-effector position and orientation for the whole-body controller (£p) is determined through
velocity integration (Eygr,). In shared control, it is determined through frame interpolation (EpraAME)
based on the desired end-effector pose computed by the Shared Control Templates (EgcT). Adapted from
[Hag+25].

[telemetry]

[direct visual feedback]

3.2 World modeling

The system’s world model includes a set of known objects detected in the world and geometric information
required to manipulate them. The world model is linked to an object database, which includes relevant
information for object detection, localization, and shared control tasks. EDAN can dynamically create
a world model from a scene using an RGB-D camera. The objects are instantiated in the world model
based on a two-stage perception pipeline: object detection for class categorization followed by object
localization for precise 6D pose estimation. After that, an Anchoring algorithm assigns symbolic tags
to specific instances. Finally, the world model is aggregated in a world state representation, which the
different modules of the system can query. This process is illustrated in Fig. 3.3.

21 3.2. World modeling

Object database

v !

- Perspective-n-Point

Seen: thermos

N

or RANSAC
(depth images) -> add thermos$0
- Iterative pose Seen: red_mug
refinement -> add red_mug$0
(RGB images)
. World State
L Object detection Pose estimation Anchoring Representation
} RGB
data '

r 2
e - —
= RGB-D k , 5
data) ‘ . o @ - 5
Data Acquisition E‘ | 1 L8

World State display
with highlights Tablet GUI

S Display)

Figure 3.3: Components of EDAN’s world modeling module.

3.2.1 Object database

The Object DataBase (ODB), first introduced by Leidner er al. [LBH12], stores all available object
information accessible to the robot a priori. This includes attributes (e. g. color, mass, length), reference
frames (e. g. the tip of a bottle relative to its origin frame), robot-related properties (e. g. grasp config-
urations), and 3D models. A key feature of the ODB is its object-oriented paradigm: physical objects
(such as EDAN’s red_mug) are derived from abstract classes (such as _mug, which itself inherits from
_container). This enables polymorphism, which is leveraged to store shared control skills as YAML files.
For example, a generic skill — such as releasing a cylindrical container — can be inherited by different
objects (e. g. red_mug and thermos) while being instantiated with specific properties and reference frames.

3.2.2 Object detection and localization

The detection and subsequent pose estimation of target objects are achieved through the following steps:

* Object detection: First, regions of interest are identified using the YOLOV7 convolutional neural
network, which offers real-time and highly accurate performance [WBL23]. The YOLOv7 model
is trained on a combination of artificially generated data using the BlenderProc library [Den+23]
and real images captured in various use case scenarios and environments.

* Pose estimation: The identified regions of interest, along with their respective images, are then
processed using the algorithm proposed by Ulmer ef al. [Ulm+23], which returns a 6D pose
estimation for each detected object. For specific objects that lie on planar surfaces, a plane is first
estimated with the RANSAC algorithm [FB81] on the image depth information. The object’s pose
is then estimated by combining the region of interest with the plane.

* Pose refinement: Finally, the initial 6D pose is refined based on a tracking and refinement algorithm
developed by Stoiber et al. [Sto+23].

Chapter 3. Background: EDAN 22

3.2.3 Anchoring

Coradeschi and Saffiotti define anchoring as "the problem of connecting, inside an artificial system,
symbols and sensor data that refer to the same physical objects in the external world" [CS03]. For a
mobile agent like EDAN, objects with associated symbolic information must maintain consistency and
persistence after the robot performs actions. The anchoring process ensures this by determining whether
an object observed after a robot action or from a new viewpoint (after moving the wheelchair) is the same
as previously detected or a different instance. Similarly, an object temporarily hidden by the manipulator
is still the same. Keeping track of symbolic information is essential to provide useful assistance: if a mug
was used to drink then released on a table, it will hold the ‘used’ and ‘empty’ flags. This indicates to the
user intent estimation process (subsection 3.5.3) that the likelihood of the user wanting to immediately pick
up the mug again is low. Without anchoring, the mug would be detected as a new object and immediately
ready to be picked. With the end-effector close to the mug after just releasing it, the user intent estimation
process would immediately activate the skill, confusing the user. We say of an object that it is anchored
if it has been seen enough times within a time window, with consistent localization. When an object is
anchored, it is assigned a unique ID such as red_mug$0 or drawer_handle$1.

The anchoring process holds an internal state that tracks all the object detections as a list of seen
objects, some of which are anchored. At each new detection, the anchoring checks the closest seen object
of the same class, using Euclidean distance. If this seen object is closer than 5cm to the new detection,
its pose is updated with the latest detection. Otherwise, a new seen object is created from this detection.
A seen object instance holds a variance estimate o of the quality of the detections. If the Euclidean
distance from a seen object instance to the new pose estimate is higher than 20, it is considered an outlier,
discarded, and the variance increases. If not, the new pose estimate is considered valid, added to the seen
object buffer holding pose estimates, and the variance is recomputed. The new object pose is a sum of
the last ten detections, eventually biased towards the more recent pose estimates. If used, weights are
empirically selected based on the rate and stability of new pose estimates. This simple filtering method
provides stable object pose estimates, even with imperfect localization.

This process may create two objects of different classes anchored next to each other or even at the
same spot if two object classes are wrongly detected for the same object. Hence, all anchored objects are
checked pair by pair at every loop to see if arbitration is required, i. e. if they are too close to one another.
In this case, for each object the quality of the pose as well as the number of detections in the last 5 seconds
are taken into consideration. Then, the least likely object is deanchored. Objects not perceived for the
last 8 seconds are also deanchored. Finally, when a request to update the world model is received, the
anchoring process updates the world state representation according to its current list of anchored objects.
A deanchored object keeps its ID: if it gets deanchored due to occlusion by the manipulator but is then
detected at the same spot, it gets reanchored with the same ID.

3.2.4 World state representation

The World State Representation (WSR), also introduced by Leidner et al. [LBH12], contains the
aggregated world model of the robot. As seen in Fig. 3.3, it contains a list of all anchored objects, their a
priori known properties such as size and associated skills, the robot’s belief in their current poses, and
the symbolic properties of the objects — expressed as Planning Domain Definition Language (PDDL)
predicates [Gha+98]. For example, after a grasping action, the red_mug$0 would obtain a predicate
(grasped red_mug3$0 edan_arm).

The WSR is updated by the anchoring process upon request, which can be triggered by the user or
during transitions, such as when shifting from controlling the wheelchair to controlling the manipulator.
This update process provides a static representation, ensuring stable behavior throughout the rest of the
pipeline. The WSR is the central information source for all other components within the shared control

23 3.3. User interfaces

architecture, including the user intent estimation, task inference and shared control processes, see Fig. 3.2.

3.3 User interfaces

Numerous interfaces are available for assistive robots, as outlined in subsection 2.1.2. These interfaces
depend on the users’ abilities, which may change over time due to factors like experience or medical
conditions. Ideally, an assistive device would offer a variety of users — with different preferences and
abilities — interfaces with corresponding support. EDAN provides multiple interfaces. First, a head switch
allows users to toggle between controllable devices such as the robotic arm, the wheelchair, and the tablet.
Second, users can send 3 DoFs continuous inputs and a binary trigger with a joystick or an EMG-based
interface. Third, a graphical interface is displayed on a tablet mounted on the wheelchair.

A joystick is a standard interface as it is already used for controlling wheelchairs, for users with
sufficient finger motor ability. Here, we provide a 3D joystick using a SpaceMouse from 3Dconnexion.
However, as discussed in subsection 2.1.2, alternatives may be necessary, with an EMG-based interface
being one such option.

3.3.1 EMG-based interface

An EMG-based interface is provided on EDAN, see [VH18; HV18]. It interprets muscular activity
measured with surface electromyography to generate a continuous 3D control signal with Gaussian
process regression. Additionally, a binary trigger signal is decoded through a Linear Discriminant
Analysis classifier. This trigger signal can be used in various ways, such as switching between modes
in direct control, starting a release grasped object on surface task with shared control, or automatically
completing a grasp in shared autonomy.

3.3.2 Graphical user interface

A tablet mounted on the wheelchair provides the user with a GUI displaying all relevant information.
Fig. 3.4 illustrates the GUI and its various components (A—F).

By operating the head switch, the user can cycle through different device activations: robotic manip-
ulator, wheelchair or tablet. When the tablet is selected, its interface changes (Fig. 3.5), allowing the
user to choose between different control schemes, such as shared or direct control. Additionally, a list of
all possible tasks — generated based on the current world model — is presented. The user can select and
initiate any task from the list, even if it is not the most likely task according to the user intent estimation.
The EMG-based interface for controlling the robot works similarly when controlling the tablet: the user
navigates by highlighting items with the - and y-components of the control command, while the binary
trigger acts as a click to select the highlighted item, such as control schemes or tasks.

3.4 Real-time processes

Controlling the end-effector uses two primary strategies, as shown in Fig. 3.2. In direct control, velocity
integration is employed, where the user input is converted to a velocity command applied directly to
the end-effector, computing Eygr,. In shared control, a desired pose Egc is first calculated at a rate of
30Hz. A recommendable frame interpolator then computes a smooth trajectory towards this dynamic
target Egot at 1 kHz, complying with predefined velocity limits for translation and rotation. In both cases,
these commands are transmitted to a whole-body controller, which computes coordinated commands
that integrate arm and wheelchair movements. To ensure user safety, a virtual environment is integrated
into the control scheme, limiting the manipulator’s workspace to prevent direct contact between the user

Chapter 3. Background: EDAN 24

Mode A E D
[we

Perception E

’ |
‘ |

P

Shared Control

4.

| active: pour - red_mug$8 F

_‘ state: rotate_the_tip_bottle

Figure 3.4: GUI always available to the user. Shown is the tablet view. A: Device controlled by the user,
cycled through by operating the head-switch: ‘robot control’, ‘tablet’, ‘wheelchair control’, or ‘nothing’
(user commands have no effect to the system). Furthermore, [WB] is highlighted if the whole-body control
scheme is active. B: Active control scheme (direct or shared). C: Decoded commands. The green circle
provides information if the activity threshold is exceeded to allow a control input. D: Additional tabs
display the list of control schemes, the list of tasks, and expert information not needed by the participants.
E: World model visualization; shown is the RGB-camera stream augmented with the localized objects
instantiated in the world model. Different colors highlight different states of the objects, like green, which
highlights the target object of the current task. F: Information regarding the current task and states; shown
is the active task as well as the current state of the task.

and the manipulator. This virtual environment generates repulsive forces, which are converted into joint
torques and added to the control scheme.

3.4.1 Whole-body cartesian impedance control

Assistive robotic systems used in daily support scenarios frequently engage in continuous physical
interaction with their environment. As a result, interaction forces between the robotic system and its
surroundings are expected. Additionally, such a system interacts with humans, primarily its user, for tasks
such as eating and drinking, as well as other humans, e. g. for a hand-over. Accordingly, a compliant
behavior at the robot’s end-effector is essential, i. e. the capability to adjust its motion and interaction
based on external forces or environmental conditions, which can be achieved through active control
[Isk+23]. The EDAN system features a reactive whole-body control that coordinates the movements of
the wheelchair and the robotic arm, as detailed in [Isk+19]. This coordination enables the execution of

25 3.4. Real-time processes

E—— ~_ox Sandoox - Tigarvn

Available Tasks

arm

wxRO>-
OmoUoO=

manual |

\ lwe | 'O) . 7\ wB
‘ | wec |EIYN ‘
[teleop [EEUNELETCCE
\a- S ‘ S » NS -ﬁ' Y

| arm shared |

FetX:3Y:02:2 FedX4Y:12:2

Figure 3.5: Tablet GUIL, when controlled by the user. Left: Control mode selection. Right: Task
selection.

tasks that extend beyond the manipulator’s kinematic reach, such as opening a door.
To ensure passive physical interaction with the environment, we command the joint torques to realize
Cartesian impedance behavior as
T = Timp + Tnull + Tg(q)7 3.1)

where T, is the generated torque to actively realize the Cartesian impedance at the end-effector, the
term 7y, achieves a null space secondary task, and 7,(g) stands for the gravity compensation component
with g the joints values. The Cartesian impedance control action can be formulated as

Timp = — J 7 (q)(K,%(q) + D) (3.2)
z(q) =f(q) — xa (3.3)
z(q) =J(q)q. (3.4)

The mapping f(q) : R” — RS encodes the forward kinematics with n = 8 on EDAN, while x4 €
RS denotes the desired task-space position and orientation. The Cartesian stiffness and damping are
represented by the positive definite matrices K, D, € R6*6 respectively. The controller relies on
the low-level torque control loops to achieve the desired impedance. However, it is assumed that the
torque dynamics are significantly faster, ensuring the intended impedance behavior is realized effectively
[AOHO7; Isk+20; Isk+22]. This whole-body Cartesian impedance control is illustrated in Fig. 3.6.

With this framework of hierarchical whole-body control, the elbow position can be regulated within
the null space. The control action T, is realized in the null space of the main end-effector task as

Toull = —NTe(@)” fo. 3.5)

Here, the task-space null space projector is denoted by N € R"*" and J,(q) € RS*" and f. € RO are
the elbow Jacobian matrix and control wrench, respectively. Similar to the primary end-effector task
mentioned previously, the robot elbow control action is calculated to realize a desired Cartesian stiffness
and damping such that f. = (K &, + D.x.) at the elbow location x.. This control action can vary
depending on the task or the environment [DO19; Die+21], see subsection 4.4.1.

3.4.2 Virtual workspace boundaries

Due to the functional requirements, the user has to be located within the robot’s workspace to perform
tasks such as bringing a filled drinking container to their mouth. To ensure safety, a virtual environment

Chapter 3. Background: EDAN 26

i Y

End effector
virtual stiffness

gMEASURED

Spring
potential

[

Wheelchair motion
activation boundary

Figure 3.6: Schematic illustration of the whole-body Cartesian impedance control. The coordinate
frames used by the system are highlighted. K is the camera frame, C the center of the wheelchair, W
the base of the robotic manipulator, Eypasurep the measured end-effector frame, Epgsrep the desired
end-effector frame. YWt is the current pose of VW, while YWO is a static frame initialized to V¥ at the
beginning of a skill. Adapted from [Hag+25].

is created to constrain the manipulator’s workspace, preventing direct contact between the user and the
manipulator.

This virtual environment generates virtual obstacle forces, which are transformed into joint torques
and integrated into the control scheme. We therefore extend Equation 3.1 with 74 v, which is the desired
joint torque resulting from the virtual environment:

T = Timp + Tnull + T4, VE + Tg(q)'

The virtual environment is composed of planes, spheres, and cylinders that define restricted zones for
the manipulator, which are customized for each user to ensure safety. If the manipulator exceeds the
workspace boundaries, the Cartesian end-effector velocity &, the current end-effector pose x and the the
projected pose on the virtual environment’s surface x4 vE can be used to calculate a workspace boundary
wrench fy; as

fvi = Kvi(x — zq,ve) + DviTi.

Given N workspace boundary wrenches, the resulting torque 74 v generated by the virtual environ-
ment for the workspace limits is defined as

N
T
Tave = Y. I fvi.
i—1

Additional workspace boundaries for other parts of the robot are defined using forward kinematics and the
corresponding Jacobian matrix of the respective joint of the manipulator.

27 3.4. Real-time processes

3.4.3 Safety trough compliant control

EDAN has a built-in safety mechanism, which reacts to unexpected external forces higher than a set
threshold and puts the system in a maximally compliant control mode, in which only gravity compensation
and virtual workspace boundaries are active. In this mode, the robotic arm is assumed to be highly
backdrivable, which is ensured by observer or model-based methods that are employed at the joint level
[WI18; IW19; Sch+24]. As a result, the arm cannot exert force or torque on the environment, providing
safety to the users and the hardware. If the arm is not in contact with the environment, users can trigger a
planned reconfiguration to restore it to its initial joint configuration.

3.4.4 Velocity integration

When using the direct control scheme to operate the manipulator, the user input w is interpreted as a
velocity command applied to the end-effector. Depending on the subset of DoFs being controlled, this
velocity command is integrated into either the translational or rotational component of the end-effector
pose. For grasp selection, however, the user input is treated as a joint velocity command applied directly
to the robotic hand’s joint configuration. The user input w € R3, u € [—1, 1] is a unit-less vector which
is multiplied with the defined maximum control velocities ktrans in m/s, kyot in rad/s or Kgrasp in rad/s for
translational, rotational or grasping motion, respectively.

&q = ku, (3.6)
with k € [ktl"aIl57 Erot s kgrasp] 3.7)

To also account for the workspace limits at the desired position and velocity level, we define the
desired position x4 as

xq = J [Zq — c(fv,zq)]-

0
The state-dependent vector ¢(fv, 4) accounts for hitting workspace limits of the virtual environment by
stopping translational integration of the decoded velocity signal if such a boundary is hit and the velocity
direction points towards the wall:
—fv-ea fv £ -
ATl TAT i = fv-2a>0

c(fv,xq) = { (3.8)

0 ,else
where fy = Y. fy; is the workspace boundary wrench generated by the virtual environment. In other
words, no velocity can be generated towards the virtual boundaries.

3.4.5 Frame interpolation

The integration process ensures the continuity of the robot’s desired pose when using the direct control
mode. However, this continuity is not guaranteed with our shared control approach because a desired
pose Egc for the end-effector is computed at a rate of 30 Hz. This pose cannot be directly applied to the
Cartesian Impedance controller, which operates at 1 kHz. To address this, we employ a frame interpolation
module that achieves two objectives: first, it continuously tracks Egcr provided at a comparably low rate
while sending EpramE at 1 kHz. Second, it ensures that the resulting trajectory respects translational and
rotational velocity limits, guaranteeing safety.

To achieve this, the frame interpolator performs a linear interpolation towards the current SCT desired
frame Egcr. While the translational component can be interpolated straightforwardly, the rotational
component requires spherical linear interpolation using the quaternion representation [Sho85]. Linear

Chapter 3. Background: EDAN 28

interpolation allows for a straightforward integration of a velocity limit by adjusting the interpolation time
T.». To ensure the robot does not exceed the speed of the source signal, we define the final interpolation
time 77, = max(Ty,, Ts) where T = 1/30 Hz is the sample time of the shared control module.

This piece-wise linear interpolation results in discontinuities in the velocities of the resulting trajectory.
A second-order filter is applied to create a smooth trajectory that can be used as input to the Cartesian
impedance controller. Weitschat et al. [WDV16] provides more details on the frame interpolator approach.

3.5 Shared control unit

Assisting users is possible due to the combination of multiple processes: one to coordinate the various
events happening while using the system, one to infer the available tasks and the user’s intent, and one to
assist with shared control.

3.5.1 Coordination

An event-based finite-state machine coordinates EDAN’s software to manage its various system states.
These states include which device the user wants to control (such as the tablet GUI, the arm, the wheelchair,
or none), the type of interpolator in use (frame, velocity, joints), the wheelchair’s control mode (with or
without whole-body control, and whether it handles translations or rotations), the active task, etc. Different
combinations of these control modes define the high-level states that the EDAN robot can be in. These
states can change based on user input, such as selecting a task from the tablet or completing a task like
releasing a bottle. Additionally, processes within the system can trigger state changes; for example, the
task inference can initiate shared control support for a pick task with the frame interpolator when the robot
is near a pickable object.

3.5.2 Shared Control Templates

The SCT framework is the main contribution of this thesis. It is formalized in Chapter 4 and extensions
are presented in Chapters 6 and 7. SCTs provide assistance for the user by guiding and constraining
the end-effector movement during the different subtasks of a task [Que+20]. The provided assistance is
independent of the user intent estimation: the assistance is provided for a single, known task. The user is
always in control, as no robot motion occurs without user input, and they can stop the task at any point or
switch to another task. It takes as input user commands and outputs the SCT target pose Escr.

It is interfaced with the whole-body controller via the frame interpolator, providing safety: even if
the target pose is incorrect for any reason (wrong object detection, edge case in skill definition, etc),
the interpolator outputs a smooth trajectory respecting velocity limits. The whole-body controller, as
described in subsection 3.4.1, expands the workspace of the robot arm to allow for tasks necessitating a
large range of motion, e. g. opening a door. As such, the wheelchair follows the end-effector to maintain
arm manipulability as soon as the end-effector crosses geometric boundaries, which can be defined as
state parameters. For example, when opening the door, the wheelchair moves forward when the arm gets
out of reach, so there is no need to switch to wheelchair control. Similarly, the wheelchair moves back
when the arm gets too close to the user when opening a drawer. With this approach, the user can focus on
controlling the end-effector with shared control guidance. At the same time, the local commands to the
robotic arm and the wheelchair are generated from the whole-body control, reducing the user’s workload.

3.5.3 Task inference and user intent estimation

This process offers two key functions: first, it determines which shared control task can be executed based
on the current state of the world; second, it computes a likelihood that a specific task corresponds to the

29 3.6. Spectrum of autonomy

user intent and automatically activates support once this likelihood is high enough. We use the PDDL to
define skills with specific preconditions and effects, which influence the symbolic state of the world. At a
frequency of 10 Hz, the process assesses which tasks correspond to the objects currently instantiated in
the world and selects those with valid preconditions. The resulting list is then displayed on the tablet GUI,
ordered by likelihood.

The likelihood of starting a task is affected by two factors. The first is the Euclidean distance between
the end-effector and the task target. The second is the distance between the end-effector and its projection
by the active constraints of the first SCT state of a potential task. For example, an approach skill with a
cone constraint in its first state can smoothly guide the end-effector toward a grasp frame. A task will start
automatically as soon as the distance to the target is below a certain threshold and the active constraints
are fulfilled to a certain level, e. g. being close enough to the cone constraints in the case of an approach
skill.

Estimating the user intent operates independently from the shared control execution: the robot either
estimates the user intent or provides assistance. The user can modify the task if the goal estimation is
incorrect. This makes the robot’s state transparent, but it also makes it difficult to deal with a packed
scene such as a full fridge: it will be difficult to estimate the correct target with many objects close to
one another in the scene. Future research will explore more sophisticated methods for calculating the
likelihood of tasks, taking inspiration from existing work in the field [JA19].

If there is no clear target for a task such as placing a grasped object on a table, the task may never
be automatically started. Other tasks, such as putting the manipulator in its parking position, never start
automatically. In this case, the user can either send a trigger to start the most likely task (the highest one
on the available task list) or switch to controlling the tablet GUI and select whichever task they want to
start.

3.6 Spectrum of autonomy

The goal of our system is to provide a spectrum of autonomous capabilities for each task, giving users the
flexibility to choose and adjust the level of autonomy they prefer. These preferences are also expected to
change over time. In addition to the previously discussed direct and shared control methods, Bustamante et
al. [Bus+21] proposed a method that allows for smooth transitions between shared control and supervised
autonomy. When the user activates it during a task, an automaton generates commands based on a cost
function designed to efficiently progress to the next state while avoiding obstacles. For example, a user
might select the direction of approach to a mug and then trigger the automaton to complete the motion of
picking it up.

Finally, in certain situations, the user may be unable to complete a task or may require assistance
due to reasons such as a medical emergency. In these cases, telepresence control by an expert is possible
[Vog+20a]. This approach allows the remote operator to experience a high level of immersion or
transparency, enabling them to perceive the remote environment through their own senses as if they
were physically present at the remote site. Telepresence systems typically provide visual, auditory, and
haptic (kinesthetic and tactile) feedback from the remote environment. The setup may include using a
manipulator as an input device, such as the DLR HUG robot (see [Vog+20a]), or a 6-DoF haptic device. It
also incorporates a head-mounted display with a tracking system for head motion, sensor gloves to control
the robotic fingers, and a 1-DoF haptic primary device that transmits the grasping forces of the robotic
hand back to the operator. For safety, the human operator is connected to the robots via safety clutches
and operates a foot-controlled dead man’s switch. The EDAN robot’s stereo cameras are mounted on a
pan-tilt unit, allowing the operator to actively change their viewing direction using the head-mounted
display’s tracking system.

Chapter 3. Background: EDAN 30

Mode/Level Key Elements Command

Il { } (]

) i T ‘W"l;y% -’Q -G

Direct Control Input Mapping . afs ; User defined Motion
L _/7
|\ @ (2> |
h 3D Command * ;'L‘/n
World Input Active
Representation Mappin Constraints
Shared Control P pping Blended Motion
(] _/7
& o g
3D Command L
. World Input Active
Seamless Supervised Representation Mapping Constraints)
autonomy Autonomous Motion
. \
6D wrench P —>
6D wrench ‘
Haptic Teleoperator defined
teleoperation motion

Figure 3.7: Three levels of autonomy are available with EDAN, with four means of control: direct control,
shared control, seamless supervised autonomy, and haptic teleoperation.

3.7 Conclusion

We introduced the various components of the EDAN assistive robot that enable users to interact with
their surroundings and perform sequences of activities of daily living. Assisting a user involves using
most of the components previously discussed. The perception pipeline is combined with the anchoring to
instantiate a world model, which is then used by the task inference to identify which tasks are currently
feasible. A task will start once likely enough, where Shared Control Templates will support the users.
Meanwhile, users can continuously send 3D commands to the robot through a joystick or an EMG-based
interface. The SCT end-effector frame Egcr is then interpolated and sent to the whole-body impedance
controller, which, in conjunction with virtual workspace boundaries, ensures safe interactions of the robot
with the user and its environment.

The following chapter will provide a detailed overview of the design and capabilities of the Shared
Control Templates framework.

Chapter 4

Shared Control Templates

The results in this chapter have been partially presented at ICRA 2020, see [Que+20].

4.1 Introduction

The purpose of our robot is to assist its users with tasks, such as opening a door or pouring a drink.
Formally, a task represents "an abstract encoding of something that a robotic system is able to perform"
[Lut22]. Tasks can be composed hierarchically. For example, a drinking task can be decomposed into
more granular tasks: grasping a filled container, pouring its contents into a glass, placing the container
back on a table, grabbing the glass, and bringing it to the user’s mouth. A task does not directly link to
functionalities and is, therefore, an abstract representation of how to perform something. Hence, it will
hold domain knowledge such as semantic information (preconditions and effects) but is independent of the
functionalities used to realize the task (e. g. whether one uses autonomy, shared control, or teleoperation).

A skill provides the realization of functionalities for a task. They are linked to concrete implementa-
tions and robot components. For example, a robot could have skills to localize an object with a neural
network and a camera or plan a path with graph search to move the wheelchair from one point to another.
In this work, we focus on shared control skills, which enable the robot to assist the user in realizing tasks.

We developed a novel shared control approach, Shared Control Templates (SCT), to assist users in
activities of daily living in a robust and legible manner. An SCT specifies the information required to
provide a robot with a shared control skill, such as pour from a grasped object into container or grasp a
cylindrical object. An SCT holds references to abstract objects such as grasped object or target object.
Once a task is selected based on user actions, an SCT is instantiated at runtime, and all abstract variables
are bound to specific instances of objects in the world model. It takes user commands u(t) as input,
u € R, n € [[1, 6] and outputs the target SCT pose Escr. Due to the considered user interfaces, n = 3 in
this work, but it might be different for other user interfaces or adjusted explicitly for a user’s capabilities.

4.1.1 Mathematical notations

We follow the definitions from “A Mathematical Introduction to Robotic Manipulation” by Richard M.
Murray. A summary of the notions of interest is presented here.

We are primarily interested in the robot task space, i. e. the space occupied by the end-effector of the
robotic manipulator. The end-effector of a modern robot such as EDAN has 6 DoFs, 3 for its Cartesian
position and 3 for its orientation. Its pose equals its localization in task space and is defined using a
reference coordinate frame — a reference system used to define the position and orientation of objects in
space. By default, we express poses in a coordinate frame static w.r. t. the floor, noted W, set at robot
bootup as the initial pose of the base WV of the robotic manipulator, defined in Fig. 3.6.

31

Chapter 4. Shared Control Templates 32

A point A in space can be defined as p4 € R3. Orientations and rotations in task space can be
represented by matrices belonging to the Special orthogonal group 3: SO(3) = {R e R3*?: RRT =
I,det(R) = +1}. From this is defined the Special Euclidean group SE(3): SE(3) = {(p,R) : p €
R3 R e SO(3)} = R3 x SO(3). Hence, a pose in task space can be represented as an element of SE(3).
An element (p, R) € SE(3) can also express a rigid body transformation, the transformation from one
coordinate frame to another.

One can also use the homogeneous representation of a transformation (pap, Rap) € SE(3), defined
Rsp paB
0 1
homogeneous representation expressed in W, is Vs Hg or simply Hy.

as the 4 x 4 matrix of the form A Hp = [] . Hence, the pose of the end-effector written as a

4.1.2 Core concepts

User input
Uy, Uy, Uz

Finite State Machine

E °
State: o (o e
Translational control = § i eas talc"yget | Four
3 a=g(d) g
it U;
XI <
© £ 2 ' - 4\ E

S U; £ U, ®

< a u - Floy)

A 1 d u; u,
A \ v

= A v =

Figure 4.1: SCT for a pour skill. User inputs come from a joystick, here a Spacemouse. The skill is
represented with three main states, each with its input mapping and active constraints. Transitions are
based on the horizontal distance to the target (between ‘Translational control’ and “Tilt towards target’)
and the tilt angle of the grasped object (between ‘Tilt towards target’ and ‘Pour’). In ‘Tilt towards target’,
the orientation is based on the position. In ‘Pour’, the user controls the grasped object tilt angle — with a
specific input mapping I M, — and height. The user can then backtrack in the finite-state machine and
exit, or pour from another angle.

An SCT encodes skills as finite-state machines, modeling the different phases of a skill as states.
Formally [HU79], a deterministic finite-state machine consists of the following:

1. A finite set called the input alphabet is all possible inputs or commands the finite-state machine can
receive to trigger state transitions, such as sensor data, user commands, or environmental changes,
see subsection 4.4.2.

A finite set of states.

A start state which becomes active when the instantiated SCT is activated.

el

A state-transition function, listing the required predicates to go from one state to another.

5. A set of final states, in our use case consisting of a single state called ‘exit’. If this state is reached,
the execution of an instantiated SCT finishes.

For example, the skill pour water comprises four states: ‘Translational control’, ‘Tilt towards goal’,
‘Pour’ and ‘exit’, see also Fig. 4.1.

33 4.2. Input mapping

Each state can contain input mappings, active constraints, and robot parameters. An input mapping
maps the low-dimensional user inputs (for example, coming from a joystick or EMG-based interface) to
task-relevant motion of the end-effector target pose Egcr. Active constraints additionally constrain Egcr
to guide the user and restrict unsafe motions, such as tilting a filled container when moving it around
or preventing it from hitting a table. Robot parameters can, for instance, relate to end-effector finger
configuration, impedance control, or whole-body control. State transitions depend on distance metrics,
end-effector contact forces with the environment, or user triggers. Skills are object-centric and based on
frames, inspired by the task frame formalism [BD96].

SCTs are specified in human-readable YAML files. This makes it convenient to develop and edit skills
without modifying (or knowing about) the system or control software. An example of skill specification
can be seen in Listing 4.3.

4.1.3 Feature frames

An input mapping or an active constraint can be applied to various frames, such as those representing the
end-effector, the center of a grasped object, or the lid of a container being held. These feature frames,
denoted as F', can be static and typically represent object properties stored in the database, such as "tool
frame" or "tip frame." Alternatively, custom frames can be defined, such as a frame at the tip of a grasped
bottle that always points towards a target object during a pour task, inspired by approaches like the task
frame formalism [Mas81].

A frame’s position and orientation can be specified. It can be subject to a rigid body transformation.
A frame can also be configured to point towards another frame, copy its orientation, or align an arbitrary
axis with a reference frame’s axis. When the frame involves the end-effector, various options are
available, such using as the SCT target Escr, the SCT target at the start of a state EsTART OF_STATE, the
interpolator target frame EpramE (See subsection 3.4.5), or the measured end-effector pose ENEASUREDS
see subsection 4.4.4 for their impact on transitions. These features enable the specification of a wide
variety of frames.

4.2 Input mapping

4.2.1 Definition

An input mapping (IM) is a model constraining the velocity commands applied to the end-effector. It
maps user actions u(t) to the target end-effector frame velocity (). Discrete systems such as EDAN
have a time step duration, A¢. At each time step, an input mapping maps w(t) to a small end-effector
motion, i. e. a displacement, 6 H, which is then applied on the target end-effector pose Escrr.

Formally, at each time step, an input mapping ém first computes a displacement 0 H :

map,,,: R" — SE(3)

w(t) — 6H 1)

For example, the displacement for a translational control input mapping, see Fig. 4.2 top, is written as
map;,, (u) = ktranstAt M with kians the velocity limit in translation (see Equation 3.7) and M a matrix
mapping command DoFs to motion DoFs, here a rectangular identity matrix.

This results in:
Ktrans * U1 * At

Etrans * ug * At
Ktrans * U3 * At
1

0H = (4.2)

o o o=
OO = O
o= O O

Chapter 4. Shared Control Templates 34

Then, this is applied on the SCT target pose Escr, resulting in a new pose Emv:

displace,,,,: SE(3),SE(3) — SE(3)

4.3)
Hegr, 0H — Hg,, (t).

A displacement can be applied either in the local frame of reference, here the end-effector: displace;,,, (Hegop, 0.H)

Hg, . * 0H or the wheelchair frame of reference (i. e. the user perspective): displace;,,(Hggp, 0 H) =
0H * Hg,.. We use an Euler angle representation to compute rotational displacements, as we only
compute incremental rotations.

Elementary input mappings are a 1-to-1 mapping, illustrated in Fig. 4.2, top and middle rows.

(_ _ A
Ly A
v Y Y
t 2 Translational
u9 of . .
o X input mapping
us ¢
Y
L 9=]
|\ J
3D User N
commands [2]
AU3
ul Z 9 Rotational
U2

o input mapping
us *QSy
02
|\ _ - J
(_ - A
x
(Y
b y 2 Pour liquid
Uz b input mapping
u
T
| L ¢= | =il

Figure 4.2: Three input mappings. The first and second are directly applied on EgcT, while the third is
applied on the tip of a grasped bottle, with f a scalar product between a partial command vector [ug, ug]
and an axis of a frame at the tip of the bottle.

Multiple input mappings can be active simultaneously, iteratively applying their displacements on
the end-effector pose. An input mapping might not be directly computed on the end-effector but can be
applied on feature frames F, e. g. at the tip of a grasped bottle, as seen in Fig. 4.2, bottom. Algorithm 1
describes the application of such an input mapping.

4.2.2 Input mappings collection

A 1-to-1 mapping isn’t always the most intuitive way to control a robot. It can be helpful to scale down
commands in directions perpendicular to the primary motion, such as scaling down vertical or lateral
motions when opening a drawer by pulling towards oneself. Additionally, commands might need to be
scaled down in proportion to the distance from a feature frame, such as in an insertion task, to enhance

precision. Implementing a deadzone can help filter out low-intensity, potentially unintentional commands.

These features are particularly relevant when dealing with noisy interfaces such as EMG-based ones.

35 4.2. Input mapping

Algorithm 1 1-to-1 input mapping with feature frame

Input: User input uw, Hgy (t — 1), Input Mapping IM
Output: Displaced target end-effector pose Hg,,, (t)

1: F <« IM.compute_feature_frame(Hgy.(t — 1))

2: // Compute transform from Hp to Hgy,.(t — 1)

3: FHSSCT - HF_ngSCT(t —1)

4: // Compute displacement

5: 0H « euler_to_homogeneous_transformation(u)

6: // If Local: Apply local displacement to the feature frame
7 Hppgppacep < HroH

8: // Update target end-effector pose from the new feature frame
9: Hegp (t) — HFDISPLACEDFHgSCT

10: return Hg,,, (1)

More complex functions can also be beneficial, especially when controlling rotations, such as during
a pouring task. In the current implementation of the pour skill, two DoFs of the input mapping, u; and us,
are used to control the rotation around the tip of a grasped bottle. These DoFs correspond to movements in
the x-y plane during translational control. The rotational displacement is calculated as the scalar product
between the partial command vector [u1, ug, 0] and the frame at the bottle’s tip, where the x-axis points
toward the target, and the z-axis is vertical.

This approach provides intuitive control for the user. As illustrated in Fig. 4.1, during states ‘Approach’
and ‘Tilt toward target’, the user directs [u1, us] towards the target to move closer, with orientation
governed by an active constraint. However, the input mapping shifts in the state ‘Pour,” and the user now
controls the rotation. The user must issue the same commands directed toward the target to continue
tilting. In practice, the user remains unaware of the change in input mapping (or even the state change).
By maintaining consistent commands, the user can seamlessly progress towards completing the task,
pouring into the target container.

It’s important to note that this method grants the user control over the primary DoFs of the task,
allowing them to choose the angle of approach (from the side, from behind) and to decide how much, how
quickly, and at what height to pour. However, they cannot aim anywhere other than the center of the target
container — unless they intentionally enter a correction state using a trigger, see section 4.6.

In summary, an input mapping can be tailored to the desired level of autonomy and the finesse of the
user input. It can vary from following a one-dimensional virtual guide to allowing detailed, multi-DoFs
control.

4.2.3 Velocity limits

It is helpful to subject the end-pose &y resulting from input mappings to velocity limits to not go too
far from the interpolator target frame EpranME. As a user observes ENvipAsURED but their commands are
applied to Egc, transparency is lost if Eypasurep and Egcor diverge. Velocity limits are also relevant
when transitioning from state to state, described in detail in subsection 4.4.4. Therefore, we enforce that
& is subject to the same velocity limits as in velocity control, see Equation 3.7.

Chapter 4. Shared Control Templates 36

4.3 Active constraints

4.3.1 Definition

Active constraints (AC) restrict the task space and guide the user along a task. Complementary to an
input mapping, which applies to velocities, an active constraint affects the position of a frame. We use
active constraints as regional constraints as defined by Bowyer ef al. [BDB13], which keep a desired
end-effector pose within a restricted region of the task space. In this work, this is achieved by projecting
the target end-effector pose (or any other frame of interest) back into the allowed region if constraints are
violated.

For an active constraint ac:

project,,.: SE(3) — SE(3)

4.4
Hg,, (t) — Heg,, (t))

Unlike force constraints in haptic teleoperation, which apply increasing forces as the user violates
them, active constraints cannot be overcome by the user. As with input mappings, an active constraint can
be applied on feature frames /. Changes on [are then reflected on a new Hg,, pose, cf Algorithm 2.

Algorithm 2 Active Constraint

Input: Hg,, (t), Active Constraints ACs

Output: Constrained target end-effector pose Heg, (%)
It He, < Hgp,, (1)
2: for AC in ACs do
3: Hjy — AC.compute_feature_frame(Hg,,)

4 FHe .« Hyr 'Hg,,

5: // Apply constraints on the feature frame

6: H o smoren < Projectyo (Hr)

7: // Update target end-effector pose from feature frame
. F

8: He,. — Hrppoporen Heao

9: end for

10: return Hg, .

Multiple active constraints can be applied iteratively within the same state. In contrast to other
approaches in the literature [AD14], our method does not include a mechanism for detecting conflicting
constraints. However, any model featuring a projection function onto SE(3) can be used, providing
flexibility in defining constraints. The counterpart is that careful design is required from the skill
developer.

4.3.2 Constraint definition

The simplest type of constraint involves fixing a specific DoF to a constant value expressed in the relevant
reference frame. For example, when pushing open a door, the end-effector might be constrained to
maintain a specific height w.r. t. the door handle (see Fig. 4.3). Constraints can also be defined using
functions that compute DoF values involving inequalities, polynomials, additions, scalings, and dot
products. These functions take inputs such as distance metrics and feature frames; for instance, in Fig. 4.1,
the state “Tilt towards target’ is defined by a function where the angle o depends on the distance between
the end-effector and the target. An orientation constraint can also be based on the end-effector position
and possibly learned from demonstration-based approaches (see chapter 7).

37 4.3. Active constraints

z

x Y v

Figure 4.3: Active constraints examples. Left: End-effector constrained to stay within a specific range
in height. Center: End-effector constrained within a cone. As the user gives forward commands, the
end-effector is guided toward a grasp pose. Right: Upper limit on the orientation of the tip of a bottle, to
not spill over.

X‘-—--ff-)(

A prOJect(B)

< A(t+1)
g\, '*— mn P
= = -*— B(t+1) roject(A) 7 o - c
Eho S WM
T “TA(t) = Y pro Jec
o
£ : = 4at)
Y £ i
k
X (b) The available task space for an active constraint
(a) The covered task space for an input mapping such that z < k is independent from the initial
such that § H = [0, uz] depends on the initial posi- position. A is within the regional constraints, while
tion when the state activates. B and C are outside and get projected.

Figure 4.4: Illustrative example of the subspace covered by an input mapping and active constraint in a
2D space.

Position constraints can be defined using 3D Euclidean objects, which are easy to visualize. The
end-effector can be constrained to project onto the surface of these objects, remain within their volume, or
stay outside of it. Lines, planes, cylinders, cones, funnels, cubes, and generalized cylinders are examples
of such objects. Notably, the projection doesn’t have to be onto the nearest point on the surface. For
example, projecting onto a cone along the axis perpendicular to its normal creates a "sliding" effect
towards the cone tip, rather than a "sluggish" approach, where being in contact or not does not affect the
speed of the approach.

As with input mappings, velocity limits are enforced on £5¢, following Equation 3.7.

4.3.3 Complementarity between input mappings and active constraints

Fig. 4.4 shows that, in the case of an input mapping, the accessible task space varies based on the initial
pose of the end-effector. However, the available task space for an active constraint remains unaffected by
the initial end-effector pose.

Some constraints can be modeled either through an input mapping or as an active constraint, such

Chapter 4. Shared Control Templates 38

as when moving along a circle. If the end-effector is already on the circle at time ¢(, an input mapping
can be defined as the tangent direction along this circle. With an ideal discretization, this will restrict the
user to only move along this circle. Alternatively, one could allow 2D translational motion with the input
mapping and then use an active constraint to project Hg, ., onto the circle. In both cases, the resulting set
of possible end-effector poses remains the same, meaning there is no single template definition for the
same task space coverage. The decision to use input mappings or active constraints typically hinges on
the desired behavior, ease of use (it affects the required commands to get the desired behavior), and the
complexity involved in defining the SCT.

4.4 Finite-state machine

4.4.1 State components

A state is a structure optionally composed of input mappings and active constraints. Additionally, while
Shared Control Templates and its modules are robot-agnostic, a successful realization will also require
defining robot-specific parameters. State parameters refer to robot settings that can be relevant for task
execution. These include:

 Desired finger joint position and stiffness.

» Torque safety levels: these thresholds dictate when EDAN switches to safety mode (gravity
compensation control) due to external forces; see subsection 3.4.3. By default, the threshold is set
comparatively low but is increased for tasks requiring significant interaction with the environment,
like opening doors or drawers.

* Stiffness parameters for the impedance control for position and orientation of the end-effector, i. e.
K, see Equation 3.2.

* Whole-body control mode and boundary values: these settings determine when the mode is active
and whether it allows translational motions of the wheelchair, rotational motions, or both, see
Fig. 3.6.

* Elbow target point and associated stiffness: specify a null space attractor in terms of a virtual spring
attracting the elbow of the manipulator via the control action 7,1, see Equation 3.5. This is used
for example to facilitate passing through a door or to keep the elbow away from a surface.

* Desired angle for the first axis: added as a low-priority task to the hierarchical impedance controller
for stability.

Additionally, a range for the maximum allowable force can be defined, specifying the upper limits
of force applied to the environment in each Cartesian direction (x, y, z in robot base coordinates, both
positive and negative). When these thresholds are reached, the latest target end-effector frame (Egc) is
projected onto the plane defined by the last valid SCT target position and the normal direction in which
the robot would otherwise exceed the force limit. This concept is similar to how velocity commands
interact with virtual walls, as discussed in Section 3.4.4 and Equation 3.8.

This approach ensures that excessive force is avoided in undesired directions during tasks where the
manipulator interacts with the environment. For instance, when pulling a drawer handle, enough force
should be applied to open the drawer, but not so much that the fingers could be damaged once the drawer
reaches its fully open position and can no longer move.

4.4.2 Event types for the finite-state machine

Events from the input alphabet can be categorized in various ways. On of those are spatial conditions.
These occur when a specific metric, such as the Euclidean distance between the end-effector and a target

39 4.4. Finite-state machine

object, crosses a predefined threshold. For instance, in the Pour skill illustrated in Fig. 4.1, a transition
from ‘Translational Control” to ‘Tilt Towards Target’ is triggered when the horizontal distance between
the grasped thermos and the target mug drops below a specific value, in this case, 0.3m. Its definition in
the skill YAML file is shown in Listing 4.1. The predicates return True when the value being evaluated is
outside the range, which is in practice a more convenient behavior than the opposite. Another example
is when vertical movement is required after an object is grasped. There, the vertical distance between
the current end-effector position and its position at the start of the state can be used as the metric, with a
transition predicate set for when a displacement of 0.1m is reached.

1 predicates:
2 — aux_fct:
3 function: EuclideanDistance

frame: EE

reference: target
mapping: [1,1,0,0,0,0]
range: [0.3, inf]

N o »n A

Listing 4.1: Definition of the transition from ‘Translational Control’ to ‘Tilt Towards Target’, based on
horizontal Euclidean distance (assuming an upright target). The predicates evaluates to True when the
distance is outside the range, here lower than 0.3m.

Another useful metric is the wrench exerted by the environment on the end-effector, which generally
results from the wrench applied by the end-effector on the environment and varies smoothly during contact
due to impedance control. This smooth variation allows for reliable detection of environmental contact,
such as when releasing an object. Detecting forces to release a grasp is more reliable than using visual
perception (where all surfaces might not be precisely localized, such as a shiny heating plate). Certain
tasks require applying sufficient force to the environment, such as pressing a microwave button or door
handle, or maintaining pressure to stay in contact with a drawer handle while opening it. Although EDAN
lacks a wrist wrench sensor, it estimates the wrench using joint torque sensing and the Jacobian matrix.
However, even with precise calibration, force estimation is never entirely accurate when not in contact
with the environment, typically fluctuating within a range of [-3,3]N. Consequently, transitions can be
based either on the absolute wrench estimate or the measured wrench compared to its value at the start of
the state.

1 predicates:

2 — aux_fct:

3 wrench: EE

4 mapping : [0,0,1,0,0,0]
5 range: [—-inf, 8]

Listing 4.2: Wrench transition. If the force applied on the end-effector pushing downwards in —z direction
is higher than 8N, the transition predicate is True.

End-effector sensor values can also be used. For instance, the finger position and the torque exerted
by the end-effector after attempting a grasp can indicate whether the grasp was successful. Additionally,
time-of-flight sensors embedded in the CLASH hand can detect when a target object is within grasping
range.

Temporal conditions can also serve as triggers for events. However, these are generally avoided to
ensure consistent assistive behavior that is not dependent on the timing of user commands, allowing the
user to complete tasks at their own pace.

External triggers can also be employed to initiate transitions. Typically, users have access to a binary
trigger, which can be activated using EMG-based sensors or an external button, such as one held in the
other hand. This trigger is primarily used when automatic transitions are difficult to specify, to open/close
the gripper or to enter a correction mode, see section 4.6. For instance, during the 2023 CYBATHLON

Chapter 4. Shared Control Templates 40

challenges (see section 5.3), our pilot could control the end-effector in 3D translational mode to select
which apple to pick, then trigger the gripper to close. If the grasp failed, another trigger would reopen the
fingers, transitioning the finite-state machine back to the approach state and allowing the pilot to attempt
the grasp again. This is defined in Listing 4.3.

1 states:

2 approach:

3 parameters:

4 EE_config: {entity: target, config_name: pre_grasp}
5 transitions:

6 - to: close_gripper

7 predicates:

8 - trigger: True

9 input_mapping:

10 - mapping: [tx,ty,tz,0,0,0]

11 active_constraints:

12 # Euler representation for orientation.

13 - mapping: [x,%,%x,3.12, -0.1, 1.38] # x means the DoF is not constrained.

15 close_gripper:
16 parameters:

17 EE_config: {entity: target, config_name: grasp}
18 transitions:

19 - to: grasp_tried

20 predicates:

21 - timeout: 0.5

23 grasp_tried:
24 transitions:

25 - to: lift_apple

26 predicates:

27 — aux_fct:

28 frame: EE

29 reference: {origin_frame: EE.START_OF_STATE}
30 function: EuclideanDistance
31 mapping : [0,0,1,0,0,0]

32 range: [—-inf, 0.1]

33 - to: reposition

34 predicates:

35 - trigger: True

36 input_mapping:

37 - mapping: [tx,ty,tz,0,0,0]

39 reposition:
40 parameters:

41 EE_config: {entity: target, config_name: pre_grasp}
42 transitions:

43 - to: close_gripper

44 predicates:

45 - trigger: True

46 input_mapping:

47 - mapping: [.5tx,.5ty,.5tz,0,0,0]

49 1lift_apple:
50

Listing 4.3: Pick apple, from the 2023 CYBATHLON Challenges. User trigger is used to close or open
the end-effector, allowing retry if the first grasp failed.

41 4.4. Finite-state machine

Other external triggers might involve reaching specific points along a planned trajectory for the
wheelchair or robotic arm. For tasks such as opening and passing through a door, a combination of
wheelchair and arm control ensures smooth operation. The wheelchair follows a planned trajectory,
with the user controlling forward and backward motion along this path. When the user operates the
arm, whole-body control moves the wheelchair along the trajectory. When the wheelchair is controlled,
reaching a via-point on the wheelchair trajectory can serve as an event that returns manipulator control to
the user.

Multiple events might be required for a transition to happen. Multiple transitions with different
conditions are also possible; see Listing 4.4 for an example.

I transitions:
2 — to: released_obiject
3 predicates:

4 - aux_fct:

5 wrench: EE

6 mapping : [0,0,1,0,0,0]
7 range: [-inf, 8]

8 to: released_object

9 predicates:

10 - trigger: True

11 - timeout: 2

Listing 4.4: Object release skill. Two possible triggers: A) either the end-effector applies 8N on the
surface (through the grasped object), or B) the user triggers the release and 2 seconds have passed since
the entry to the current state

The finite-state machine requires careful design. Otherwise, in a skill with two states, A and B,
where two transitions, A->B and B->A, are both True, the active state will oscillate between both states.
The various states and transitions are defined in the same YAML file as the input mappings and active
constraints. Object-related information such as grasp poses and end-effector grasp configurations are
stored separately in the object database, allowing a skill to remain more general, see subsection 3.2.1. For
example, the pick skill for the Spice task of the 2024 Cybathlon belongs to the abstract _spice_container
class and is used for both the oil container and the salt container, but there is a specific grasp configuration
are for each container.

4.4.3 Hierarchical finite-state machine

The inheritance structure of the object database allows for generalization across different object classes.
Moreover, there can be some overlap in behavior among various skills. For instance, the assistive behavior
during an approach phase might be the same for opening a drawer and a door, but the actions after grasping
will differ. It is possible to import a state from one skill into another and from one skill into another to
enhance modularity and minimize code duplication.

4.4.3.1 State import

Let’s first consider importing a state A into a new skill consisting of states B and state C, with a transition
from B to C. When we import state A into state B, the parameters, input mappings, and active constraints
from state A are adopted as defaults for state B. Specifying a parameter in state B will add it to the
parameters list and override any value previously defined by state A. Specifying an input mapping in
state B will replace any input mapping pre-set in state A, as combining input mappings usually is not
desirable. Specifying active constraints in state B will layer them on top of the constraints defined by state
A, meaning that the constraints from state A are applied first, followed by those in state B. Therefore,

Chapter 4. Shared Control Templates 42

any specifications made in state B take precedence over those inherited from state A. An example of this
import process is illustrated in Fig. 4.5.

@tate A

- parameters_A: {key_Al: value Al, key_A2: value A2}
- input_mapping_A: [tx,ty,0,0,0,0]

- active_constraint_A: [x,x,0.5,x,x,x]

-

Ve
State B

: : Resolved State B
- parameters_B: {key Al: value B1} - parameters_B: {key Al: value B1, key A2: value A2}

- input_mapping_B: [0.5tx,0,0,0,0,0] —’ - input_mapping_B: [0.5tx,0,0,0,0,0]
- active_constraint_B: [0.2,X,X,X,X,Xx]

- active_constraint_B: [0.2,x,0.5,x,x,x]

\" import State A

Figure 4.5: State import example. By importing State A, State B uses State A as the default definition.

4.4.3.2 Skill import

Instead of simply importing a state, it is also possible to import a complete skill. Let’s consider a sub-skill,
approach:

1 states:
2 orient:

3 parameters:

4 EE_config: {entity: target, config_name: pre_grasp}
5 transitions:

6 - to: approach

7

8

9

predicates:
- aux_fct:

frame: EE
10 reference: target.pre_grasp_frame
11 function: EuclideanDistance
12 mapping : [1,1,1,0,0,0]
13 range: [—-inf, 0.001]
14 input_mapping:
15 - mapping: [tx,ty,tz,0,0,0]
16 active_constraints:
17 - reference: target.pre_grasp_frame
18 frame: EE
19 mapping: [x,x,%,0,0,0]
20 - explicit_model:
21 name: Cone
22 frame: EE
23 kwargs:
24 point: {origin_frame: target.pre_grasp_frame, axis: position}
25 direction: {origin_frame: target.grasp_frame_down, axis: -Z}
26 aperture_angle: 0.4
27 length: 0.3

29 go_closer:
30 transitions:

31 - to: proceed
32 predicates:
33 - aux_fct:

34 frame: EE

43 4.4. Finite-state machine

35 reference: target.grasp_frame

36 function: EuclideanDistance

37 mapping : [1,1,1,0,0,0]

38 range: [—-inf, 0.001]

39 input_mapping:

40 - mapping: [tx,ty,tz,0,0,0]

41 active_constraints:

2 - explicit_model:

43 name: Line

44 frame: EE

45 kwargs:

46 point: {origin_frame: target.pregrasp_frame, axis: position}

47 direction: {origin_frame: target.pregrasp_frame, orientation_to_frame:
target.grasp_frame, axis: X}

48

49 proceed

Listing 4.5: approach sub-skill.

It consists of a first state ‘orient’, which constrains the end-effector within a cone (lines 20-27) and
aligns it with a specific orientation set by the pre-grasp frame (lines 17-19). This guides the user towards
the tip of the cone, with its position defined by the pre-grasp frame. The finite-state machine transitions to
the ‘go closer’ state once the end-effector is within a millimeter of the pre-grasp frame (lines 6-13). In the
state ‘go closer’, only linear motion is permitted (lines 41-47) until the end-effector reaches the grasp
frame. At that point, the sub-skill concludes, and the finite-state machine is ready to proceed.

This approach behavior can be applied to various tasks, such as interacting with articulated objects
like opening a door or fridge or picking up an object. Constraining the approach this way is similar to
the concept of capture envelopes [Mue+17]. As a result, these skills can incorporate the approach sub-
skill, providing modularity and minimizing code duplication. This also encourages consistent assistance
behavior, enabling the user to develop a reliable understanding of the robot’s actions and fostering trust.

To explain the workings of this import feature, let’s revisit a simple skill composed of two states: A
and B. When importing approach into state A, the finite-state machine is modified: three new states —
A.orient, A.approach, and A.proceed — are created by incorporating the corresponding orient, approach,
and proceed states into state A, while the original state A is removed. As with importing a single state
into another, state A can specify its parameters, input mappings, and active constraints. The transitions
originally defined from A to B are now inserted as transitions from each new state — state A.orient, state
A.approach, state A.proceed — to state B. Additionally, transitions can be defined within state A from any
of the new states (A.orient, A.approach, A.proceed) to any other state (A.orient, A.approach, A.proceed,
B). In summary, our theoretical hierarchical finite-state machine is flattened into a single-layer finite-state
machine with newly defined states. This process is illustrated in Fig. 4.6.

4.4.4 Velocity limits for the end-effector target frame

The decoupling between the SCT target and the controller introduces the need to consider three distinct
frames: the SCT target frame EgcT, which is tracked by the interpolator frame Erganmg, and itself
followed by the actual robot pose EnrasUreD through the whole-body impedance controller.

User safety is already ensured by the virtual workspace boundaries and the interpolator’s imposed
velocity limits; see subsection 3.4.2 and subsection 3.4.4, respectively. However, it is also beneficial for
Escr to comply with these velocity limits. As users observe EypasURED but their commands are applied
to EscT, transparency is lost if Eypasurep and Esor diverge; additionally, constraints might become
unsuited.

Any of those frames can be used to compute transitions, each leading to different outcomes. If
EMEASURED 18 used, some transitions may never occur due to an offset between Escr and EMEASURED

Chapter 4. Shared Control Templates 44

State A State B

- import: approach usertrigger | parameters_B: {end-effector: closed}
- transitions for imported skill:
- 'proceed' to 'state B': True

.
.
.
.

New skill

~%./..

E State orient State go_doser State
Sub-skill - input mapping: translational _’ - input mapping: translational _’ Proceed

- active constraint: cone Near - active constraint: line Near

. pre-grasp grasp

frame frame ,

user trigger

. | State A.orient State A.go_closer :
- input mapping: translational —> | input mapping: translational .
. . i Near . L .
vl active constraint: cone pre-grasp |~ active constraint: line
: frame .
user Near .
Resolved skill trigger user grasp E
: trigger frame :
: State A.proceed :
[State B «— p :
i | - parameters_B: True :
i | {end-effector: closed} —

Figure 4.6: Sub-skill import example This example illustrates a new skill importing a sub-skill (approach)
after flattening the finite-state machine.

when in contact with the environment or in kinematic limits. As a result, EyygaSURED 18 used sparingly
for specific situations, such as requiring the arm to be in specific regions of the task space.

If EscT were used, there would be no guarantee that constraints — such as a specific orientation —
would be enforced before transitioning from one state to another. This is illustrated in Fig. 4.7, left, with
two states, A and B. The user can control the position of EgcT by issuing translational velocity commands,
aiming to move towards state B. In state A, the assistive system imposes a specific orientation 0geg;req ON
Esc, represented by the orientation of the blue arrow. At a particular timestep t + 1, EpramME crosses the
boundary between states A and B (red arrow), triggering the transition condition and making state B the
active state, allowing the task to proceed. The issue with this scenario is that the end-effector’s orientation
in state B may vary depending on the magnitude of the user commands. As illustrated in Fig. 4.7, right,
once in state B, the orientation of EpganME (red arrows) depends on the time spent in state A, sometimes
resulting in undesirable behaviors.

Therefore, ErranmE should be used. In this case, one should determine how to control EgcT while
waiting for Epgame to ‘catch up’. The goal is to ensure that constraints are applied to the end-effector
when transitioning from one state to another, guaranteeing consistent assistive behavior across multiple

45 4.4. Finite-state machine

E FRAM%
Escr(t)
\;edesired
6H State A X

4/)(
INEEEEEEEEESEEEEEEEEEEENER *%— ‘/I"
1 1Low-ve|ocity
S

State B High-velocity
commands

gFRAME(t + 1) commands ‘;;
ES.tQEe..A.. LB N]
Escr(t +1) State B
\ /\-

Figure 4.7: Transition predicate based on Egcr. Left: EpramE is tracking Egcr. An orientation
constraint, Ogesired, 1S applied in state A on Egcr. Right: Depending on the time spent in A, constraints
may not be fully enforced when state B becomes active, affecting the assistance.

executions of the same skill while minimizing restrictions on user control. This is achieved through two
features, explained below: blocking the state transition until the desired active constraints are satisfied and
permitting only motions that keep the robot within state A.

4.4.4.1 Blocking the state transition with the interpolator transition condition

Let’s consider the same scenario where the user gives commands to transition to state B. One should
ensure that EpranMpe achieves the desired orientation 64,44 before state B becomes active. This is
accomplished by blocking the state change until 84,4 is reached.

Assuming the user gives commands towards state B, at a specific timestep t+1, Egcr crosses the
border between states A and B, causing the transition predicate to return True. This predicate will revert
to False either when B becomes the active state or if Egc is controlled back across the boundary between
the states. While the transition predicate remains True, a target end-effector pose, £5cT_no_velocity_limits
is computed without velocity limits. Consequently, the orientation of ESCT no_velocity_limits immediately
aligns with 04cgireq, Whereas Egcr will require additional timesteps to achieve this orientation. This
is illustrated in Fig. 4.8. The state change is blocked until the distance (calculated in SE(3)) between
ESCT _no_velocity_limits and Eprame falls below a defined threshold, named the interpolator transition
condition. While the finite-state machine waits for this condition, user commands are set to 0, preventing
Escr from moving further into state B, which could disrupt the assistive behavior. Once the interpolator
transition condition is met, and if the transition predicate still returns True, state B becomes active.

4.4.4.2 Keeping user agency with restricted motions

Blocking the state transition ensures motion consistency, but the assistive behavior can be further improved.
While the transition predicate from state A to state B returns True, and the system waits for the constraints
to be enforced and the interpolator transition condition to be satisfied, user agency can still be maintained.
Instead of negating all user commands, the assistive system can first compute a candidate position,
ESCT candidate » Which is identical to Esc but not sent the frame interpolator. The transition predicate
is then re-evaluated using £5CT candidate- 1f the predicate returns True, ESCT candidate 15 discarded
(represented by the red arrows in Fig. 4.9). If the predicate returns False, EscT = £SCT candidate- The
user can then move the end-effector freely until the transition predicate evaluates to True again.

In practice, a finite-state machine transition only providing a boolean evaluation can derive a behavior
akin to a constraint enforced on the end-effector as long as the interpolator transition condition is not

Chapter 4. Shared Control Templates 46

ErraME(t)

Motion commanded
by the user at time t

applied on Egcr (1)

State A

State B

SSCT_no_velocity_limits (t + 1)
ErramEe(t +1)

Escr(t+1)

Figure 4.8: Computation of an SCT end-effector target pose without velocity limits £E5cT_no_velocity_limits
when all predicates to change to another state are True.

Escr(t)

Ecandidate Initial motion commanded by the user, where the
transition predicates becomes True

State A

State B

Permissible user motions

2

While the interpolator transition condition
is False, those motions are blocked.

gcandidate 8candidate

Figure 4.9: Illustration of the effect of different commands while waiting for the interpolator
transition condition to evaluate as True. A command resulting in the transition predicate from A to B
still evaluating to True (red arrow) will be discarded. However, a command taking Egcr back to state A
(green arrow) will be applied to provide agency.

satisfied. In this example, commands given towards B are canceled, while commands given towards A are
applied, akin to the behavior of a wall constraint.

One can also use a finite-state machine where transitions explicitly include a projection function to
the transition manifold. Then, for a given £5CT candidate» if the transition predicate evaluates to True,
ESCOT candidate €an be projected back onto the transition manifold and subsequently used as the new Egcr.

4.5 Instantiated SCT execution

This section presents the data flow from user command w and current SCT target pose Egcr to the robot’s
motion. For an active state ¢, we define step, as a succession of operations (here with a single input
mapping and active constraint for clarity):

* Robot status and user commands are read. The end-effector target pose is Hgy (t — 1).

* The end-effector displacement § H is computed: 0 H = map(u(t)), see Equation 4.1.

47 4.6. Target pose correction

Shared -
TCI%ntlr(;l Velocity Velocity
emplates constraints 2 constraints telemet Virtual
§ [te erge ryl g\lork(sjpa_ce
SCT («)E gAC _with_velocity_limits ouncaries

n
<
-

Active state

i F Whole-Body
: Interra:Failon Impedance
u Input Active i Escro P ErrAME_ Controller

mappings constraints : [Waheer] [Tdes]
YA - Y
£ i Input Active . '
SCT(e-1); mappings constraints

Figure 4.10: Pipeline from user commands to robot motion through assistance with Shared Control
Templates. Based on the current active state, user commands move the target end-effector frame Egcr
according to input mappings. Next, active constraints restrict its pose, with both mappings and constraints
subject to velocity limits. The resulting target pose is then interpolated, and the output is transmitted to
the whole-body impedance controller.

* This displacement is applied on the end-effector: Hg,,, (t) = displace(Hgy . (t — 1),0H), see
Equation 4.3.

* Hg,, is updated to satisfy velocity constraints, i.e. pulled back as close to Hgy . (t — 1) as
necessary: Hgy . = apply_velocity_limits(Heg,,, Hegor. (t — 1)).

* The active constraint is then applied: Heg,(t) = project(Hg;\; i1, ver imics (£))> S€€ Equation 4.4.

* The new end-effector target pose is obtained by one again applying velocity limits Hg, . (t) =
apply_velocity_limits(Hg, ., Hegp (t — 1)).

After computing step,, Heg,, (t) is sent to a pose interpolator, which creates a pose trajectory sent to
the whole-body impedance controller. Hg,...(t) is then used as the initial end-effector target pose for the
next iteration. This process is illustrated in Fig. 4.10.

4.6 Target pose correction

If the assistance needs to be improved, the user can be given the ability to adjust it. Subsection 7.3.2
explores the adaptation of a learned SCT skill. Another potential cause of assistance failure is the
perception system; for example, the target object’s pose might be incorrect due to various factors such as
unexpected lighting conditions, occlusions, an inaccurate object model, or camera decalibration. A typical
scenario is pouring, where the tip of a grasped container is constrained to stay above a target object. If,
for example, the target object’s pose is off by 5 cm, the user cannot pour into it using the pour skill. To
address this, a trigger allows the user to switch from an active instantiated SCT skill to a ‘target pose
correction’ mode. In this mode, the end-effector is typically moved with translational control, as in the
pouring example, but this can be task-specific. Any movement applied to the end-effector in correction
mode is applied directly to the target instance. When the user exits this mode, the assistance resumes
from where it left off, but with the updated pose. In the case of pouring, this adjustment aligns the target
object in the world model with the actual object, potentially correcting any position offset. This method
is effective because the assistance is object-centric and time-independent, allowing users to develop an
understanding of the robot’s behavior. Hence, a target misalignment of S5cm can be easily detected based

Chapter 4. Shared Control Templates 48

on the robot’s actions and corrected by the user. Additionally, object instances in the world model are
projected onto the camera image displayed in the user interface, providing visual confirmation of whether
the pose estimate is accurate.

4.7 Conclusion

This section introduced Shared Control Templates, which feature a novel formalization for input mappings
and active constraints, used in conjunction with a frame interpolator. Shared control skills are modeled as
finite-state machines, effectively capturing the various phases of activities of daily living. The framework
decouples assistance from user intent estimation, ensuring consistent behavior and controller independence,
thereby enhancing user safety. The skills are object-centric, time-independent, and repeatable, providing
transparent assistance. A wide range of behaviors can be developed to design robust skills and adapt to
individual user preferences. However, a key limitation so far is the reliance on manually designed skills,
which does not easily scale.

The following sections will show the results of user studies with able and motor-impaired users,
followed by different methods to design skills from demonstrated robot trajectories.

Chapter 5

User experiments

Before describing how to semi-automatically learn SCTs in chapter 6 and 7, we will see in this chapter
how we evaluated the interest of SCT in real applications.

Several studies were conducted during this thesis, primarily focusing on evaluating how effectively
users could utilize the EDAN system to perform activities of daily living. Section 5.1 presents a pilot
study involving participants without motor impairments. In section 5.2, results from a user study focused
on motor-impaired users’ ability to perform activities of daily living using EDAN are highlighted. Finally,
section 5.3 covers the preparation and outcomes of the EDAN team participation in the Cybathlon
Challenges 2023 and Cybathlon 2024 [Jae+23], where a motor-impaired pilot completed tasks of daily
living using EDAN.

For each study, all participants gave written consent to the procedure, which was explained to them
orally and in writing. The studies adhered to the guidelines outlined in the Declaration of Helsinki, and
the ethics committee’s approval was solicited when required.

5.1 Study with participants without motor impairments

The results in this section have been partially presented at ICRA 2020; see [Que+20]. In our first pilot
study, three able-bodied users were asked to perform activities of daily living with the assistance of
Shared Control Templates (SCT). These tests were conducted to illustrate the effect of our approach on
the trajectories of the end-effector.

5.1.1 Study design

Three everyday life tasks were selected for evaluation: Open drawer, Pour water (see Fig. 4.1) and Open
door. Three able-bodied participants performed these tasks using two continuous, 3 DoFs interfaces:
a Spacemouse and an EMG-based interface. The participants had varying levels of experience with
the system: P-A was an expert user of both the system and the interfaces, P-B had experience with
the EMG-based interface but no prior knowledge of the system or method, and P-C had experience
with neither. Each participant attempted to complete the tasks with shared control four times with the
Spacemouse, then again with the EMG-based interface. For each task and user interface, the first three
trials were used for training, with advice on the task execution being provided, while the final trial —
performed without any external guidance from the experimenter — was used for evaluation. To conclude
the experiment, participants also attempted the Open drawer and Pour liquid tasks using direct control
with a 3 DoFs Spacemouse.

49

Chapter 5. User experiments 50

Figure 5.1: Photo series of the different phases of the skill Open door with one of the participants. A:
approach and alignment to the door, B-F: open the door and G-H: drive through, executed using SCTs
and whole-body control on the EDAN system with a Spacemouse.

5.1.2 Quantitative results

When using the Spacemouse interface, all three participants successfully completed the shared control
tasks. When using the EMG-based interface, P-A completed all shared control tasks successfully (see
Fig. 5.1 for one of the executions), P-B managed to open the drawer and go through the door multiple
times but not pour water, while P-C was unable to complete any trials.

The time taken to complete the task Pour water during the test trials, along with expert user results, is
presented in Table 5.1.

Task: Participants Skill designer
Pour water (Evaluation (last run) average) | (average of 10 trials)
Shared Control 37s 30s
Direct Control 95s 67s

Table 5.1: Time to completion of the task Pour water in shared control and direct control by the participants
and the SCT designer.

Using SCTs consistently resulted in faster task completion than direct control for study participants
and the skill designer. Participants also reported a preference for shared control. We observed that direct
control was particularly time-consuming for less experienced users for two main reasons. First, orientation
control in direct control is challenging since it is difficult to predict in which direction the end-effector will
move from which command DoF, based on the current end-effector orientation. Second, direct control
requires frequent mode switching, with an average of 6.7 switches in the expert trials. Even users familiar
with the task need to alternate between translation and rotation control to properly align the tip for pouring,
because rotational commands in direct control are applied to the tool center point of the end-effector
rather than the tip of the grasped object. In contrast, in shared control of Pour water, the tip of the grasped
object is used as the origin of the rotation axis.

In direct control mode, participants sometimes failed the Open drawer task due to exceeding the
torque safety threshold (see subsection 3.4.3). This was subsequently improved by creating virtual walls
to satisfy maximum allowable forces, as defined in subsection 3.4.4 and subsection 4.4.1. The Open door
task was not attempted in direct control mode, as it is too complex to complete within a reasonable time
frame — especially with EMG — due to the precise coordination required between the wheelchair and
manipulator’s DoFs.

51 5.1. Study with participants without motor impairments

End-effector interpolator target frame
State 'Within cone'

g State 'Push handle'

5 0.3r State 'Pull open'

c State 'Release’

T = = = Shared control not active
§ 0.25F 3y End-effector measured pose
o 1

= I

c 0.2+ v

S =T

~ S

N 0.15& I 1 I I I I I I

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
X (m) in WO coordinates

Figure 5.2: Open drawer. Side view of the trajectories resulting from opening the drawer by P-A during
their evaluation trial with an EMG-based interface. The trajectories from the target SCT pose Egc (in
color) and the measured pose Evipasurep (in grey) are displayed. In the state ‘Pull open’, EMEASURED
follows a parallel trajectory to Egc due to the impedance control and the force applied to the drawer
handle.

Tilt towards - Tilt towards
Pour liquid
goal goal

A A
o-l;iheenrtrzfics)ni t ‘ ! Iz”"».%%ﬁ”/it h h

u =
commend| @ @ ® 22 2 > > > < T <

Time (s) 10 27 31

State

Figure 5.3: Pour water. Timeline of the task Pour water during P-A evaluation trial with an EMG-based
interface.

5.1.3 Qualitative results

We present the results from P-A test trials with the EMG-based interface to illustrate the properties of our
shared control method.

5.1.3.1 Open drawer

According to the users’ feedback, the easiest of the three tasks was the drawer opening, shown in Fig. 5.2.
The input mapping is translational control with state-dependent scaling. During the state ‘Pull open’,
no downward motion is possible and lateral motions are scaled down, resulting in the observed smooth
trajectory, even with a noisy EMG-based interface.

5.1.3.2 Pour water

A timeline of the task ‘Pour water’ is shown in Fig. 5.3. The state ‘Tilt towards target’ constrains the
grasped object’s tilt angle relative to the target’s distance. Additionally, the end-effector is constrained
to be perpendicular to the direction towards the target, ensuring that the pouring motion primarily uses
the wrist joint. This adjustment increases the manipulator’s workspace for this specific task. Once the
thermos’s tip is positioned above the mug, the ‘Pour’ state activates, mapping the user input to enable
the rotation around the tip of the thermos. This assistance creates a smooth trajectory for the bottle’s
orientation, conveying the current task intent to the user (by moving the grasped object pointing towards
the estimated target) while providing intuitive control.

Chapter 5. User experiments 52

5.1.3.3 Open door

As shown in the photo series in Fig. 5.1, the skill execution for Open door is detailed in Fig. 5.4, which
highlights the smooth constraints applied to the end-effector. State ‘Within cone’ keeps the end-effector
within a cone constraint, directed towards the door handle’s grasp frame (cf Fig. 4.3, Center) as well
as enforces an appropriate end-effector orientation for this task. During the ‘Push door’ state, the end-
effector is constrained to follow a cylindrical trajectory, with a limit on the downward force acting in
—z (subsection 4.4.1). The input mapping and whole-body control allow the user to efficiently complete
this complex task using primarily forward arm commands in &. When passing through the door in
whole-body control — with only an 11cm margin — an absolute orientation controller keeps the wheelchair
aligned perpendicular to the door, as described in [Isk+19]. At any point, the user could instead give
backward commands (in), getting the manipulator to close the door and then release the handle and the
wheelchair to automatically move backward. The execution of those different tasks can be seen in the
video accompanying [Que+20].

0.9+ End-effector interpolator target frame
State 'Translational control'
0.8- State 'Within cone'
State 'Push down handle'

o 0.7F State 'Push door"
9 State 'Exit available'
2 06l = = = Shared control not active
° ‘\ End-effector measured pose
o
o _ LY . .
S 0.3 e e N Side view —
2 0l e :
c 0.4 \.wi/ ™
£ 03r
N
> 0.2f

01t [|

'WJ“ gy Top-down view
o & (%L
& —
-0.1& | | T | I I

ar | 1
0.6 0.8 1 1.2 1.4 1.6 1.8
x (m) in WO coordinates

Figure 5.4: Open door. Top-down and side view of the trajectories resulting from Egc (in color) and
EMEASURED (in grey) during P-A evaluation trial with an EMG-based interface.

5.1.4 Discussion

These findings demonstrate that when using SCTs, users control key task actions, such as determining
the amount of water to pour or how far to open a door. At the same time, the robot ensures that no
water is spilled and that the end-effector correctly grasps the various objects. Regardless of the level of
assistance, tasks were completed more quickly with shared control than with direct control. This efficiency
stems from the simplified user control within a constrained workspace and eliminating the need for mode
switches during task execution. One should note that time to task completion is but one metric to evaluate
shared control; for example, although full autonomy might complete tasks faster, users may prioritize
control over speed. Some aspects of the user intention, such as the quantity of water the user might wish
to pour, are also challenging to estimate. Thus, the results suggest that SCTs enable the user to dictate the
manner of task execution to meet their needs better than an autonomous approach could do.

53 5.2. Activities of daily living with participants with motor impairments

The results also indicate that prior experience with the interface significantly impacts task success.
They showcase that an EMG-based interface requires practice for effective use [HV 18], and mastery of
the interface helps to assess the impact of the assistance.

Implementing and testing our method in a realistic environment uncovered several challenges. For
instance, some trials involving direct control failed when the safety torque threshold was exceeded. This
occurred because, in direct control, the robot lacks awareness of the environment it is interacting with,
making it impossible to adjust the safety torque threshold for object interactions: the system cannot
distinguish between intentional contact and safety-critical situations.

The input mapping in the tasks open drawer and open door allows experienced users to adjust for
target pose estimation errors. In contrast, the pour water skill implementation is more constrained. For
the latter, the more complex input mapping creates an implicit workspace manifold (the poses available to
the end-effector according to the input mappings and active constraints) that does not adequately cover
the space of model errors (such as the bottle position in the horizontal plane). One possible option would
be using a different input mapping, with u; and us mapped to horizontal motion while u3 is mapped to
rotation around the tip of the grasped object. This does not rely as much on the object pose estimation, but
as a result, it requires more precise user input and is less intuitive. In practice, the perception is usually
correct, allowing us to guide users smoothly. If the assistance is wrong in the pour water task, the user
has two options: either switch to direct control, or use a target pose correction mode, as described in
section 4.6. The world model can then be adjusted to match the real environment, hence adjusting the
behavior of the assistance.

5.2 Activities of daily living with participants with motor impairments

SCTs were also used in a user study conducted by Hagengruber ef al. [Hag+25], where three motor-
impaired users (P-D, P-E, and P-F) used EDAN.

The goal of this study was to evaluate an assistive device, EDAN, with the actual target group, in
realistic (home) environments (not only in the laboratory, when possible), and on long sequences of
tasks that naturally occur in everyday life (not only on isolated benchmark tests). Three participants did
sequences of activities of daily living with SCT assistance using an EMG-based interface or a hybrid
EMG and joystick interface. The study was conducted for P-D in our laboratory and for P-E and P-F in
their own home. Seat settings and virtual workspace boundaries (subsection 3.4.2) were customized for
each participant.

The study was approved by the ethics committee of the Technical University of Munich, School
of Medicine (approval number: 6/14S). Additionally, all participants provided written consent for the
publication of identifying information, including images and videos, for use in scientific publications.

5.2.1 Study with a motor-impaired participant in the DLR-RMC Re-enabling Robotics
laboratory

The first participant, P-D, suffers from dystrophy Becker-Kiener (Type 43). Residual muscular activity
allows him only limited upper limb movement, while tasks involving load or requiring outstretched arms,
such as drinking from a bottle or opening a door, are not possible. P-D uses a commercial 2D joystick
in daily life to move his wheelchair. In this study, he used a hybrid interface, with two DoFs controlled
with a Spacemouse and one DoF with an EMG-based interface. He had no prior experience with the
EMG-based interface or the EDAN system.

Making use of the full functionality of the EDAN system, P-D was successfully able to do a sequence
of tasks using different control modes: direct control (DC), direct control with whole-body control
(DC-WBCQ), shared control (SC), and shared control with whole-body control (SC-WBC):

Chapter 5. User experiments 54

Figure 5.5: Photo series of opening and driving through a door. The figure shows P-D using the hybrid
interface to perform the open door task with shared control with whole-body control (SC-WBC); the
robot world model, the control scheme, and the times are visualized. A: Starting the shared control task,
with the robotic arm next to the handle. B: The position and orientation of the arm are guided by the SCT
to place the robotic hand above the door handle. C: Pressing the door handle. D: Opening the door in a
circular motion while the wheelchair follows through the door. E: Releasing the door handle. F: Driving
the remaining path through the door, using direct control. Adapted from [Hag+25]

55 5.2. Activities of daily living with participants with motor impairments

1 Open then go through a door (see Figure 5.5) SC-WBC
2 Open a drawer SC-WBC
3 Pick mug from the drawer DC
4 Close the drawer DC
5 Place the mug on top of a kitchen counter DC
5 Open a fridge SC-WBC
7 Pick a bottle SC
5 Close the fridge (with bottle grasped) DC-WBC
5 Drive back to kitchen counter DC
8 Pour liquid into mug SC
9 Place the bottle onto kitchen counter SC

10 Pick the mug SC

11 Drink from the mug SC

12 Place the mug onto kitchen counter SC

5.2.2 Study with participants with motor impairments in their own home

Both participants suffer from spinal muscular atrophy type II. This disease leads to the death of the motor
neurons in the spinal cord, resulting in progressive muscular atrophy, and both were dependent on 24-hour
care. Despite its strong progression, both could evoke voluntary muscle activation at different locations
along their arms, which were measurable with an EMG-based interface.

The participants used the robotic system in their homes in 6 and 5 experimental sessions, respectively.
They had to be familiarized with the interface and the core functionalities provided by the system.
Therefore, the complexity of the tasks performed by all participants increased from session to session.

The aim was to perform a sequence of activities of daily living in the last session:

1 Open a drawer SC-WBC
2 Pick mug from the drawer DC
3 Close the drawer DC
4 Place the mug on top of the cabinet DC
5 Move the wheelchair closer to the cabinet DC
6 Pick a bottle SC
7 Pour liquid into mug SC
8 Place the bottle SC
9 Pick the mug SC
10 Drink from the mug SC
11 Place the mug on the table SC

To get acquainted with the EDAN system, P-E and P-F first performed the subset of tasks 6-11
multiple times with shared control. In the fourth session, they performed this subset in 4:15 min and
3:39 min, respectively. Then, in her sixth session, P-E performed the entire sequence while sitting in
EDAN in 9:18 min, as illustrated in Fig. 5.6 !.

5.2.3 Discussion

This study showed that users with motor impairment were able to execute a sequence of activities of daily
living with the EDAN system assisted by SCTs with whole-body control. See [Hag+25] for details on the
study setup, the results, and their detailed discussion. The discussion on evaluating shared control systems

"Due to a lack of qualified caregivers, P-F could only sit in Edan in a single session, controlling the system remotely from her
bed in the others. For the same reason, session 6 could not be realized for P-F.

Chapter 5. User experiments 56

Figure 5.6: Photo series of the successively executed sequence of tasks using different control schemes.
P-E is shown seated in EDAN while performing the tasks. The time sequence started from the default
robot position. A: Open the drawer using SC-WBC. B: Pick a mug from the drawer using DC. C: Pick a
bottle with SC. D: Pour into the mug with SC. E: Drink from the mug using SC. F: Release the mug again
with SC. Adapted from [Hag+25].

and analyzing the strengths and limitations of SCTs can be read in section 5.4.

5.3 CYBATHLON

CYBATHLON, a non-profit initiative by ETH Zurich, serves as a platform that challenges teams worldwide
to develop assistive technologies suitable for everyday use with and for people with disabilities [Ziir]. At
the heart of CYBATHLON are international competitions and events where teams comprising technology
developers from universities, companies, or NGOs partner with individuals with disabilities to complete
everyday tasks using their latest assistive technologies. Participants demonstrate tasks like tying shoelaces
using a robotic arm prosthesis, balancing on uneven surfaces with a prosthetic leg, or navigating rugged
terrain with an exoskeleton. Beyond the competition itself, CYBATHLON provides a benchmarking
platform to advance research on assistive systems for everyday challenges while fostering public dialogue
to promote the inclusion of people with disabilities in society. The pilot’s active participation is seen as

57 5.3. CYBATHLON

Figure 5.7: 2023 CYBATHLON Challenges. The pilot carried out the two tasks within 5 minutes:
picking and biting an apple and taking objects from a shelf.

crucial in both the competition and development process to ensure that the needs and perspectives of end
users are considered and addressed.

The CYBATHLON takes place every four years, with the third edition scheduled for October 2024. It
features a race where pilots with motor impairments must complete various tasks. Several race categories
are available for the 2024 event: arm prosthesis, vision assistance, brain-computer interface, exoskeleton,
leg prosthesis, wheelchair, functional electrical stimulation bike, and assistive robot. CYBATHLON
Challenges are held between the main events, showcasing a subset of tasks of the main event. The assistive
robot race, which was recently added, involves motor-impaired pilots performing activities of daily living
with an assistive robot. We demonstrated our technology by winning the 2023 CYBATHLON Challenges
and the 2024 CYBATHLON.

5.3.1 2023 CYBATHLON Challenges

The 2023 CYBATHLON Challenges featured two tasks to be completed within a 5-minute time limit.
The first task involved grasping one of three apples from a plate, simulating a bite by bringing the apple
to the pilot’s mouth and returning it to the plate. The second task required grasping four objects from
randomized positions in a shelf: a die, a cube, a tube, and a disk. The pick-up order was revealed during
the event. After each object was placed on top of the shelf, the judge indicated the next object. The pilot
had to drive around the table where the next object was indicated to determine the next object.

SCTs supported the pilot for both tasks. For the pick apple task, he could select which apple to pick
with translational control, then bring it to his mouth, with the end-effector orientation based on its position
relative to the wheelchair. The end-effector was guided to an object-specific grasp pose to pick objects
from the shelf, and once picked, the placement on top of the shelf was automated. The disk was the most
challenging to retrieve because it had to be slid along the shelf and then picked up. Due to its size with
respect to the end-effector maximum opening, no direct grasp was possible. The pilot could initiate a

Chapter 5. User experiments 58

regrasp in case of a failed grasp: he could trigger the opening of the end-effector fingers, reposition the
end-effector, and trigger again to grasp.

The pilot participated in six 3-hour practice sessions at our laboratory to prepare for the event. During
the first session, the wheelchair was adjusted, and virtual boundaries were set for safety, helping him build
confidence in the system. He then practiced picking up the various objects before completing entire trial
runs. SCTs were iteratively refined during those practice sessions based on the pilot’s performance and
his feedback on the assistive behavior.

On the day of the 2023 CYBATHLON Challenges, the pilot completed two runs, successfully
finishing both tasks within the required time limits and winning the challenge, with times of 4:44 and
4:28, respectively. The event’s video recording excerpts are shown in Fig. 5.7. A video can be seen at
www.youtube.com/watch?v=EoER_5vYZsU

5.3.2 2024 CYBATHLON

The 2024 CYBATHLON features ten tasks to be completed within a 10-minute time limit, with points
accorded for each completed task; see also [Ziir]. The tasks are:

* Mailbox: Open a mailbox, extract a parcel, and transport it to a target location.

* Toothbrush: Pick and bring a toothbrush to one’s mouth.

* Pick up: Pick up a bottle from the floor and place it on a table.

» Scarf: Hang a scarf on a clothesline.

» Eating: Pick and bring an apple to one’s mouth.

* Crowd: Pass between individual furniture pieces while avoiding robots roaming the task space.

» Spice up: Pick up two objects (indicated by the judge) from a shelf and set them on a predefined
location.

* Door: Pull open, pass through, and close a door.

* Touchscreen: Navigate a touchscreen and order a predefined food item.

* Dishwasher: Open a dishwasher and take out a plate.

The pilot came to our lab for a 3h session once a week for three months. Although originally we
provided assistance with strong guidance, over time and from our pilot’s feedback, we adjusted the skills
to let the pilot be more in control of the motions, increasing his agency and the robustness of the execution.
Excerpts from our pilot winning the competition can be seen in Fig. 5.8.

5.3.3 Discussion

The CYBATHLON is an interesting alternative to user experiments or simulations for evaluating assistive
devices. Studies involving user experiments typically focus on isolated features or tasks, often conducted
in controlled laboratory environments (though notable exceptions exist, particularly the work with Henry
Evans [Cio+12; Che+13; Par+20]). However, full-fledged systems that handle sequences of everyday
tasks, such as pouring oneself a drink before drinking, are seldom explored.

Another approach is simulated benchmarks for assistive robots. This approach is relatively new and
faces common challenges associated with robotic simulations, compounded by the difficulty of accurately
modeling human behavior, as discussed in section 2.9.

The CYBATHLON involves a single pilot preparing and performing activities of daily living under
stressful conditions (with many spectators cheering), outside the laboratory, and within strict time limits. A
key goal of the event is to ensure the pilot’s active involvement in the development process, incorporating
their perspectives and needs into the system’s design. This had practical implications, such as the pilot
choosing the DLR-CLASH hand over a rigid off-the-shelf gripper because he felt safer using it near his
face, for example, while ‘biting’ into an apple.

www.youtube.com/watch?v=EoER_5vYZsU

59 5.3. CYBATHLON

Figure 5.8: 2024 CYBATHLON winning run A: Mailbox. B: Toothbrush. C: Pick up. D: Scarf. E:
Eating. F: Crowd. G: Spice up. H: Door. I: Dishwasher. Source: 2024 CYBATHLON.

Chapter 5. User experiments 60

When designing skills for the CYBATHLON, a balance has to be found between robustness, speed
(which is crucial in this competition but not so much in daily use), user preferences, and agency. Since
tasks are known beforehand, following along a prerecorded trajectory may sometimes be the fastest
approach. However, it may not be the most robust for everyday use or preferred by the user. Take, for
example, the Mailbox task. Even by only providing assistance with the SCT framework, various designs —
hence behaviors — are available. The most straightforward approach involves two states with translational
control, scaled input mapping, force limits, and a binary trigger to switch between the states to open and
close the end-effector. This approach does not assist the user much and relies on fine motor control and a
good view of the object. A second option with high assistance is to break the task into a series of subtasks,
which can compensate for imprecise perception:

* Set fingers to a hatch grasp configuration and guide the end-effector in the correct orientation
towards the mailbox using cone constraints.

* Scale down commands to slowly press onto the front of the mailbox.

* Move vertically upwards until a high enough force estimate indicates that the fingers are lodged in
the hatch.

¢ Pull the hatch open.

* Once far enough from the mailbox, release the fingers to let the hatch drop open.

* Guide the end-effector above the parcel.

* Press down on the parcel.

« Slide the parcel out slightly to make it easier to grasp.

* Raise the end-effector slightly and open the fingers.

* Lower the end-effector.

* Close the fingers to grasp the parcel.

* Map one input DoF to a displacement in 3 dimensions: -z, z, and 6, to follow a curved trajectory
and smoothly extract the parcel.

A third and currently preferred option is to extract the parcel using scaled translational control, then
grasp it upon user trigger, and finally follow a curved trajectory using the same input mapping as the
last stage of the second option. This minimizes parcel movement and reduces the risk of dropping it.
Additionally, if the grasp fails, the user can reopen the fingers, reposition the end-effector, and attempt to
regrasp, as is the case with other skills mentioned before.

Those design examples highlight the flexibility of behaviors that can be achieved with Shared Control
Templates and the trade-offs involved. For instance, increasing the number of pathways through the
finite-state machine may improve robustness, but it can also make the system less intuitive for the user or
more reliant on perception.

The performances obtained at the CYBATHLON Challenges and the CYBATHLON suggest that the
SCT framework is well-suited for sequences of everyday tasks. It allows for the design of skills that range
from highly constrained to low guidance with high user’s agency. This adaptability is crucial, as aligning
with user preferences is essential, as demonstrated by various studies [CTA21; Bha+20]. However, the
downside of the current design is that this flexibility is an explicit design choice rather than a parameter
that the user can easily adjust themselves, and designing SCTs is labor intensive. Chapters 6 and 7
investigate methods to mitigate this downside by facilitating the design of SCTs.

The CYBATHLON represents a significant step towards the real-world deployment of assistive
technologies. However, this first edition of the assistive robots race had some limitations. First, there
was a lack of diversity in the tasks. Critical activities like eating a meal and drinking, requiring skills
such as scooping or pouring, were not considered. Second, the run itself lacked variability. The 2023
CYBATHLON Challenges task involved picking objects from a shelf. Different objects requiring different
grasp strategies were randomly placed in the shelf and had to be picked in a specific order. In contrast, in

61 5.4. Conclusion

the 2024 edition, the objects of the Spice up task are similar and can be picked with the same assistive
behavior. Those limitations, using known objects and a deterministic environment combined with the time
constraint, encourage highly fine-tuned solutions, which conflict with the goal of "driving research on
assistance systems forward for dealing with daily-life challenges". Introducing more variability to reduce
the reality gap would be an exciting development, such as randomizing the order of tasks or adding tasks
requiring usage of objects, such as scooping food and pouring.

5.4 Conclusion

Those results allow us to draw conclusions about evaluating shared control systems and the advantages
and limitations of the Shared Control Templates framework.

5.4.1 Evaluating shared control systems

The evaluation of robotic systems is a well-known and difficult challenge due to the wide variety of
robots, tasks, and environments encountered [Beh06]. For multiple reasons, these challenges are further
complicated with a human in the loop.

Firstly, the choice of interface and the user’s proficiency with it plays a crucial role, which affects the
comparability of results achieved by different users negatively, as highlighted in Section 5.1. As discussed
in subsection 2.1.2, the wide variety of motor impairments leads to a range of interfaces, each offering
different DoFs and varying levels of ease of use depending on the technology involved. Additionally, every
user is unique, with differing levels of motor control and experience with specific interfaces. Meaningful
evaluation requires users to be assessed with an interface they are familiar enough with. For instance, a
user’s familiarity with an EMG-based interface might require at least several hours of use and can be
assessed using tasks such as the Box and Blocks Test or the ARAT [HV18].

Secondly, there is the question of the evaluation criteria. When comparing two methods, the aim is
not necessarily to determine which one is faster to get used to or allows for faster task completion. What
matters more is typically which method would the users use in their daily life after they have become
accustomed to both methods. These preferences can be influenced by different evaluation criteria, which
may vary in prominence depending on the user. Some criteria are objective, such as reliability (e.g., not
knocking over a glass when grasping it) or task completion time. Others are subjective, including ease of
use, transparency of the robot’s behavior, and the user’s sense of control and agency. Those metrics are
often evaluated with a Likert scale questionnaire. The works cited in section 2.8 provide many different
evaluation metrics, depending on each study’s respective goal.

Moreover, user preferences can evolve over time. Our motor-impaired participants reported prioritizing
being in control over completing tasks quickly. If the robot behaves unpredictably or is not deemed
valuable enough in shared control, users may prefer direct control, even if it takes more time and effort to
complete a task. Long-term studies with devices in home environments are essential to better understand
these preferences, with the results in subsection 5.2.2 a step in this direction.

Lastly, in shared control, the robot’s behavior is shaped by the human’s actions, particularly the
commands given. Still, it can also include other cues such as gaze or opening one’s mouth to receive a
spoonful of food. Simultaneously, users adapt their behavior to the robot’s actions to fulfill their goals,
resulting in co-adaptation and complexifying the analysis. This effect is magnified when assistance
systems consider the history of human actions, such as command history during a task, as done by Javdani
et al. [Jav+18]. SCT’s assistance relies solely on the current state and does not factor in past actions,
thereby limiting this co-adaptive effect.

Chapter 5. User experiments 62

5.4.2 Shared Control Templates analysis

Shared Control Templates have proven effective in assisting users with motor impairments in performing
task sequences in their homes and our laboratory, outperforming direct control. In direct control, users
frequently need to switch between controlling different DoFs of the system, which becomes especially
challenging for tasks requiring a wide range of motion and whole-body coordination, like opening doors
or drawers. In such cases, users may face difficulties such as reaching singularities when fully extending
the manipulator. Integrating shared control with whole-body control significantly helped address these
challenges.

Including a user in the control loop offers a significant advantage for assistive robots. First, it enhances
the user’s sense of agency over their environment. Additionally, the system’s reliability improves thanks to
the user’s situational awareness. Even if the robot assistance functions correctly only 95% of the time, the
user can take over for the remaining 5%, or modify the assistance with target correction mode (section 4.6)
or model adaptation mode (subsection 7.3.2). These two factors could contribute to the practical adoption
of such robots.

According to cognitive psychology theories, a mental model represents how users understand a
system. Explanations help users form a mental model of how the robot, particularly the assistance,
behaves [MZR21]. SCTs rely solely on the robot’s current state and the finite-state machine’s active
state. The user intent estimation and the active state can be visualized on the GUIL. The skill constraints
can also be displayed on the tablet with RViz [Kam+15] for informational purposes, but they are not
intuitive enough to use during task execution. Those features make SCT an explicit representation of an
assistance with predictable behavior. The separation of goal selection from the assistance further promotes
transparency and helps users form a clear mental model of the assistance. This predictability is particularly
advantageous for noisy interfaces, such as EMG-based interfaces. For example, suppose the robot does
not move even though the user wishes it to. In that case, they might be tempted to give stronger signals to
generate commands, which end up counterproductive, with signals outside the Gaussian process training
distribution and hence null. Therefore, clearly understanding how the commands generate robot motion is
crucial for smooth control, which SCTs support with their transparent behavior.

Encoding temporal information is avoided, as it forces the user to follow a pre-determined temporal
behavior. This approach suits tasks like manipulating grasped or articulated objects, where the finite-state
machine accurately matches the different phases of a task with transitions based on poses, forces, or user
triggers. However, other tasks may benefit from incorporating temporal information, such as assistive
dressing [PC17].

Ideally, assistive skills should provide users with maximum agency while ensuring the task cannot
fail. In reality, assistance is imperfect due to the complexity and variability of the real world. SCT allows
for adjustment in the degree of assistance, striking a balance between user agency and task robustness.
Granting greater freedom in task execution might reduce robustness while restricting the user to a single
trajectory might enhance reliability but could lead to frustration. Achieving maximum reliability in
complex or challenging tasks often involves carefully balancing user agency and task space restrictions.

SCT is not meant for dynamic environments, although simple tasks like handovers can be handled.
Generally, commanded motions are relatively slow compared to the robotic arm’s technical capabilities
and sufficient for most activities of daily living. Avoiding damage to the robot and unwanted effects on
the environment is a high priority, second only to user safety. Efficiency in completing tasks is a lower
priority, according to user feedback. Even in competitive settings like the CYBATHLON, where time is
critical, we still operate relatively slowly. While greater autonomy could potentially lead to faster task
completion, the pilot prefers maintaining control, especially regarding motion speed.

It is crucial to gather user feedback on what they would like the robot to do. For instance, a robot could
assist in adjusting bedsheets at night to regulate temperature, eliminating the need to call for help. That’s
one of the benefits of events like the CYBATHLON: with repeated sessions and continuous explanations,

63 5.4. Conclusion

even non-technical users gain a better understanding of what the robot can do, cannot do, and might be
able to do with further research. In return, users can give more informative feedback on what they would
use such an assistive device for. Users who already have wheelchair-mounted arms with direct control
could also provide feedback.

5.4.3 Future work

Obtaining more qualitative and quantitative results would be beneficial, as SCT has not yet undergone
testing with a large group of users. Additional tasks, particularly those identified as important by users —
such as eating [Bha+20] — should be evaluated. SCT could initially be compared to a baseline, for instance,
by evaluating users with an assistive device that lacks shared control and measuring task performance and
user satisfaction for direct control and shared control with SCT. Ideally, various shared control approaches
should also be compared, though this would require users to become proficient in multiple methods,
necessitating significant practice time.

The following two chapters consider the problem of learning skills from demonstrations to facilitate
skill design.

Chapter 5. User experiments

64

Chapter 6

Learning parameterized SCT active
constraints from human demonstrations

The results in this chapter have been partially presented at IROS 2021, see [Que+21].

6.1 Introduction

As previously detailed, SCTs assist with activities of daily living, using components such as input
mappings and active constraints. However, a shortcoming of SCTs as described so far is the reliance on an
expert programmer to manually code a finite-state machine with input mappings, active constraints, and
robot parameters for each task. To address this issue, we investigated learning SCTs from demonstrations,
aiming to facilitate the development of new shared control skills. This chapter introduces a method
for semi-automatically learning active constraints for SCTs from demonstrations with parameterized
constraints fitting, as illustrated in Fig. 6.1. A set of end-effector trajectories is first recorded by kinesthetic
teaching and then segmented based on trajectory curvature or contact forces. Constraints can subsequently
be learned from these segments. The proposed algorithm in section 6.3 aids in determining which models
best represent the constraints underlying the various phases of a task.

Additionally, demonstrations for a new SCT can be compared to a library of existing SCTs to identify
states matching the demonstrations. This allows the transfer of components from existing SCTs to the
new one, achieved using two comparison metrics designed to identify known states that match the new
demonstrations, detailed in subsection 6.3.5. This approach can reduce the number of demonstrations
required to construct an SCT or the number of parameters that need to be manually specified.

To validate our approach, we verified that the SCTs generated from the demonstrations effectively
support users in performing complex tasks of daily living. This evaluation was done on the EDAN robot
and described in section 6.4.

6.2 Constraint representation

Certain activities of daily living involve highly constrained motions, such as pulling open a drawer, which
can be modeled using a prismatic constraint. In contrast, actions like approaching the drawer handle can
be guided by a cone constraint (see Fig. 6.2), providing the user more freedom in moving the end-effector
and allowing the option to switch tasks by moving away. Extensive research on constraint representations
exists [BDB13], from which we employ two types of models: parameterized surfaces and volumes in 3D
Euclidean space.

65

Chapter 6. Learning parameterized SCT active constraints from human demonstrations

66

"

(®Demonstrations

(B)'Segmentation

7

==

Y
”© Constraint [o Skil A
learning transfer
Model collection | Skill library
— || > =
Model selection Comparison to
and fitting known states
Q)\ . 2
¥ Y
User . ~
input |€ SCT
u U3 ,
> Inpu_t u, Active > _
—>»| | mappin |2 ! i
- ppIing 1 constraints

Y

A&

/

Figure 6.1: SCT design method. A. Gathering of demonstrations via kinesthetic teaching or direct
teleoperation. B. Data segmentation according to contacts or trajectory curvature. C. Models are selected
and fitted to represent the constraints of each task phase. D. Optionally, information from previously
learned SCTs can be used if phases are similar. E. An SCT is represented as a finite-state machine with

state-specific input mappings and active constraints using the previously learned constraints.

67 6.3. Interactive design procedure of parametric constraints from human demonstrations

Figure 6.2: Examples of constraints. A. A prismatic motion is needed to open the drawer. B. An axial
rotation is needed to open the cabinet. C. Two phases from the data recorded by opening the cabinet door,
fitted with a cone and a plane, respectively. Those constraints may not be the optimal fit to build an open
cabinet skill and are displayed here as examples.

6.2.1 Parameterized surfaces

Explicit constraints, such as lines or axial rotations, are essential for manipulating constrained objects,
like pulling a drawer or opening a door. These constraints ensure consistent behavior from the user’s
perspective and can be associated with specific semantic meanings, such as whether a drawer is open or
closed. The constraints utilized in this work, along with their respective DoFs, split into translation and
rotation, are: plane (2 translational, 3 rotational), planar (2,1), line (1,3), prismatic (1,0), arc circle (3,0),
and axial rotation (0,1).

6.2.2 Parameterized volumes

A parametric representation of explicit volumes, such as cones, curved funnels, or cylinders, can offer
practical and easily recognizable constraints. These volumes are valuable for guiding user motion while
allowing for some flexibility in fine control, for instance, at the beginning or end of a task. Additionally,
they can be used to restrict the end-effector to safe regions.

The projection function on those volumes can be on the surface, within the volume or outside the
volume, see subsection 4.3.2. The projection type can be specified when designing the skill and depends
on the desired behavior.

6.3 Interactive design procedure of parametric constraints from human
demonstrations

The pipeline for learning and designing a new SCT is depicted in Fig. 6.3 and presented in this section.

6.3.1 Data acquisition through robot demonstrations

To build an SCT, multiple demonstrations of the whole task are first recorded to capture variability within
the task. Typically, five to ten demonstrations are sufficient for the considered constraints. The recorded

Chapter 6. Learning parameterized SCT active constraints from human demonstrations 68

~

(® Demonstrations Segmentation ’FOI' each segkment. . (®) skill design
© Model fitting @ Model selection IM: 3x2 FSM

. X1
Constraint Cost >

cone 0.002 02
curved funnel 0.020 AC: %

cylinder 0.035 o State 4: Pull open
\ X J\ /
7) :)

Figure 6.3: Pipeline for interactive SCT design. A. Demonstration data is acquired. B. Recorded
data is segmented. C. Multiple constraint models are fitted for each segment. D. The constraints are
heuristically ordered based on a cost to help the SCT designer select the most appropriate. E. Finally, the
input mappings and the active constraints of each state are specified by the SCT designer and assembled
as a finite-state machine.

data, composed of end-effector trajectories, can be acquired from teleoperation or kinesthetic teaching.
An object-centric SCT representation is achieved using the target object as the reference coordinate.

6.3.2 Segmentation

The recorded data is segmented to create a set of segments .S, with each segment containing portions of
each trajectory. This segmentation groups data from trajectories influenced by the same constraints, thus
defining different states of an SCT and enabling the modeling of active constraints.

Trajectories are first pre-processed with Dynamical Time Warping [SCO7] to synchronize timestamps.
Segmentation candidate points are then identified in each demonstration, using either sharp turns in the
curvature [Cal09] or contact forces at rising and falling edges while adhering to a minimum segment
length requirement. A segmentation point is retained only if corresponding points are present in all other
trajectories within a close time window.

For instance, the segmentation process yields four segments for the demonstrations of the task "opening
a drawer," as illustrated in Fig. 6.3.B. The first segmentation point arises when the end-effector reaches a
pre-grasp position, the second when it makes contact with the drawer, and the third when it begins to pull
the drawer open. The contact force and its location are detected and estimated using a momentum-based
framework [Isk+21].

6.3.3 Constraints fitting

Once the data is segmented, geometric constraints can be assigned to each segment (see Fig. 6.3.C &
6.3.D). For every segment, the geometric models outlined in subsection 6.2.1 and 6.2.2 are fitted on the
trajectories. The parameters of the parameterized surfaces are learned by fitting these geometric models to
the recorded data, as described in [SZG18]. For the parameterized volumes, models are first initialized on
a few random points. For example, three points are enough to define a plane or a cone constraint. The
constraint is then optimized with the CMA-ES algorithm [HMKO03], which minimizes the cost function
defined below. The best result from M runs is selected for each model to minimize the risk of converging
to a poor local optimum.

A cost value is determined for each class of constraint models, assisting the skill designer in selecting
the most suitable constraints. The cost functions make use of a custom distance metric Dist between two
poses H 4 and Hp, defined as:

Dist(Ha, Hp) = |pa — pal| +a- 0], 6.1)

with the Euclidean distance in meters, the rotation angle # of R4 R~ ! in an axis-angle representation
in radian, and « a weighting term.

69 6.3. Interactive design procedure of parametric constraints from human demonstrations

/Shared Control Template - Finite State Machine Tran s:t/onex,\
Lost contac
State 1: Approach State 4: Pull open)
IM 3D translation IM: 3D translation
: Cone ACs: Prismatic)
;ransf/t/on 12° Erar}és/t/on Transitions,:
ip of cone ack inside ;
re%c hed cone Vertical force
State 2: Push forward h
IM: 3D translation IM: 3D translation
AC: Prismatic constraint AC: None)
Transitions:
\ Horizontal force J

Figure 6.4: Results of the pipeline from Fig. 6.3. We show an SCT - in the form of a finite-state machine
- semi-automatically built from demonstrated data. The SCT consists of four states with input mappings
(IM) and various active constraints (AC). The transitions were specified by the skill designer.

The cost function for a parameterized surface model mg is defined using the project function defined
in Equation 4.4 and Equation 6.1 as

COStgyrface (M) = Z Dist(Hg(n), project,, . (He(n))) (6.2)

n=1
with number of recorded poses N and recorded pose He.
The cost function for a parameterized volume model my is also defined using (4.4) and (6.1) as

Z\H

N
COStyolume (1MV') 2 Dist(Hg(n), project,, , (Hg(n)))

(6.3)
+ 5 : Volume(mv)

with [a regularization factor, leading to higher costs for bigger volumes (otherwise, an infinite volume
would have a null cost with 5 = 0).

After calculating the costs for each geometric constraint, the models are ranked by their costs within
each model class (surfaces and volumes). An example is shown in the results section in Table 6.1. Models
from different classes are not compared with each other, as their costs are derived from distinct cost
functions. These cost rankings, along with visualizations of each model, help the skill designer select the
most appropriate geometric constraint.

6.3.4 Finite-state machine design

Once active constraints have been learned for each state, the skill designer can finalize the skill repre-
sentation. First, transitions between states must be implemented to build the finite-state machine. If the
default translational mapping is not appropriate, the input mapping of each state can then be specified,
for example, by scaling down motions in DoFs perpendicular to the direction of motion. Finally, robot
parameters can be configured (see subsection 4.4.1 for details). This process is illustrated in Fig. 6.3.E.

For the open drawer example, the outcome is shown in Fig. 6.4. In this case, the skill designer defined
the transitions as the distance between the end-effector and the drawer handle (transition between states
1 and 2) and a force threshold (for the others). A translational control with scaled input mapping was
selected for each state, leaving the user unable to control the orientation, which is unnecessary for this
task.

Chapter 6. Learning parameterized SCT active constraints from human demonstrations 70

6.3.5 Transferring knowledge for new shared control skills

Our multi-model finite-state machine representation can optionally be used to bootstrap the learning of
new SCTs from a library of existing SCTs, for example, to reduce the number of required demonstrations
or transfer hand-defined parameters. As a concrete example, after the SCT open drawer has been learned
from demonstrations, it could help build a new SCT open cabinet door.

Although the constraints for the final phase of opening a cabinet door differ, the constraints for the
initial three states, which guide the grasping of the handle, can be transferred from the open drawer SCT.
This is possible because the drawer and cabinet share the same type of handle in our experimental kitchen
setup, as illustrated in Fig. 6.2.

Given a set S of segments from newly demonstrated and segmented data, each segment s is compared
to every state g of a learned SCT of interest with two similarity metrics. The first metric, L 4¢, only takes
the active constraints into account and considers the demonstrated data as a set of poses. A set of N,
poses consists of all poses of all segments of trajectories of s. L ¢ is defined similarly to Equation 6.2:

1 s
Lac(s,4) = 5~ > Dist(Hg(n), project, (Hg (n))) (6.4)

S n=1

The function project, projects the pose onto the workspace permissible by the active constraints. This
metric calculates the average distance between the demonstrated poses of the given segment and those
same poses constrained by the active constraints.

Similarly, we define a second metric L+ 4c Which considers the demonstrated data as a sequence
of displacements between consecutive poses Hg(n) and Hg(n + 1). This metric takes as input a known
state ¢ from an SCT and its associated input mappings and active constraints. For each demonstrated
displacement, it checks whether the user could have commanded this displacement while state ¢ was
active. If not, it identifies the most similar commanded displacement. Hence, this metric evaluates how
closely the demonstrated data can be reproduced under the input mapping and active constraints of state g.
For example, applying this metric to the data used to learn the ‘Approach’ state, with the ‘Approach’ state
itself as the reference, will result in a zero or near-zero cost. Using data from tasks requiring completely
different motions, positions, or orientations will yield a high cost.

Computing this cost involves providing the optimal commands to step, (see subsection 4.3.2) to
reproduce the demonstrated trajectories as closely as possible while adhering to the constraints of state
q. However, these optimal commands are unknown, and the function step, is generally non-invertible,
1. e. there is no direct way to determine the command responsible for a specific displacement between
consecutively recorded poses. To address this, the optimal command to get the closest constrained
displacement is found using an Evolution Strategy (ES) algorithm applied to the command input. The ES
algorithm uses the best command from the computation of the last displacement w* (initialized as [0,0,0]
for the first displacement) to initialize its current solution, retaining only the best-found command at each
step. This process is outlined in Algorithm 3.

A classic black-box optimization algorithm such as CMA-ES could have been used. The proposed
simple black-box algorithm is efficient due to the low DoF of the input, all the input dimensions having
the same order of magnitude, and the low complexity of step,. From this we can define L;pr4 ac(s, ¢):

N,
1 S
Linac(s,q) = N Z Dist(Hg(n), Hclosest_constrained_pose,,) (6.5)
S n=1

Those two metrics provide a similarity measure for each segment s of the demonstrated trajectories,
comparing them to the states of learned SCTs. An example of this is presented in Table 6.2. Those metrics
guide the skill designer in deciding whether to associate a known state g to a newly demonstrated segment.
If so, components such as the input mappings and robot parameters (e. g. end-effector finger configuration)

71 6.4. Evaluation

Algorithm 3 Evolution Strategy: Computes the optimal command to find the closest displacement from
Hg¢(n) to Hg(n + 1), constrained by the input mappings and active constraints of state q.

Input: He(n), He(n + 1), u™, step,
Output: closest_constrained_pose,,, u
l1: 0 =02,u=u*
2: while not_converged do
3: solutions = [soly, sola, ...], sol; ~ N (u, o)

*

4: for sol in solutions do

5: costsl = Dist(step, (sol, He (n)), He(n + 1))

6: end for

7: u = argmin(cost)

8: if successful_mutations_ratio < 0.2 then > Ratio of commands better than the last best u
9: oc=o0x(1-0.6)

10: else

11: oc=o0x(1+0.6)

12: end if

13: end while
14: u* =u
15: Heclosest_constrained_pose,, = step, (u™, He(n))

from ¢ are transferred to a newly created state ¢’ based on the segment s. The active constraints can also
be transferred or retrained on the new data using the same model.

In summary, these two metrics are defined independently of the models used for skill representation,
promoting the reuse of states from relevant known SCTs.

6.4 Evaluation

This evaluation aimed to demonstrate that the extracted SCTs can be used for successful task completion.
We constructed SCTs for two tasks: the first one, open drawer, was learned uniquely from the demonstra-
tions and used to initialize an empty SCT library. The second, open cabinet, showcased an example of
SCT transfer.

6.4.1 Learning to open a drawer from demonstrations

Starting with an empty SCT library, we initially learned the SCT open drawer from three kinesthetic
demonstrations. The trajectories were automatically segmented on high curvature points, producing four
segments per trajectory, as shown in Fig. 6.3.B. Various models were then fitted on those segments with
M =20, « = 0.2, and 8 = 0.4, yielding the results presented in Table 6.1.

The skill designer then selected different models: a cone for the first state to guide the user to a
pre-grasp pose while allowing significant freedom of motion and prismatic constraints for making contact
with the drawer and pulling it. Prismatic constraints were selected instead of a line despite its higher cost
due to the designer knownledge of the task that the orientation should also be constrained. Finally, the
transitions were defined, and scaled translational control was selected as input mapping, with the scaling
depending on the state. The final skill representation is shown in Fig. 6.4 and Fig. 6.5, fop.

6.4.2 Learning to open a cabinet door from demonstrations and a known SCT open
drawer

The second task of interest was opening a cabinet door. One demonstrated trajectory was recorded with
kinesthetic teaching and then automatically segmented. Due to the similarity between the two tasks, the
resulting segments matched the ones used to learn the skill open drawer. Subsequently, for each segment

Chapter 6. Learning parameterized SCT active constraints from human demonstrations 72

—— Approach. AC: within cone —— Approach. AC: within cone
—— Push forward. AC: Prismatic —— Push forward. AC: Prismatic
0.35 Push down. AC: None 0.35 Push down. AC: None
—— Pull open. AC: Prismatic —— Rotate open. AC: Axial rotation
0.30 0.30
0.25 0.25
2z 0207 2z 0.20

0.15 0.15
0.10 0.10

0.05 0.05
0.00

0.00

0 0.45
0.25 0.50

Figure 6.5: Learned SCTs. We show a visualization of the learned open drawer SCT (top), and the
measured trajectories of five executions of opening a drawer (bottom left) and a cabinet door (bottom
right) with a 3 DoFs joystick with EDAN. The colors illustrate the four states of each SCT. The two SCTs
differ only in the fourth state, where an axial rotation constraint is used for open cabinet door instead of
the prismatic motion of open drawer.

of the demonstrated trajectory and each state of open drawer, L ¢ and L4+ ac were computed, yielding
the results shown in Table 6.2.

Guided by these results and their prior knowledge, the skill designer built the first three states of
open cabinet as copies of the SCT open drawer, as they corresponded to grasping an identical handle
(see Fig. 6.2.B), with their associated transitions. Notably, as highlighted in bold in Table 6.2, there were
clear similarities between the first segment and the ‘Approach’ state and between the second segment and
the ‘Push forward’ state. However, the fourth segment did not correspond to any existing state. It was
assigned a new constraint, modeled as an axial rotation to restrict movement in the horizontal plane and
constrain the end-effector orientation.

6.4.3 Successful task completion with learned SCTs

To demonstrate that the SCTs extracted from the demonstrations enabled users to execute tasks even
with low-dimensional command signals, an able-bodied expert successfully performed five executions of
opening both the drawer and the cabinet door while operating EDAN. Command inputs were generated
with a 3 DoFs joystick. As in previous chapters, the user controlled the end-effector while the wheelchair

73 6.5. Discussion

Constraint class Constraint Cost Approach Cost Pull
Parameterized plane 0.022 0.001
Surfaces line 0.051 0.004
planar 0.035 0.004
arc circle 0.051 0.008
prismatic 0.060 0.013
axial rotation 0.063 0.031
Parameterized cone 0.002 0.0006
Volumes curved funnel 0.020 0.009
cylinder 0.035 0.012

Table 6.1: SCT open drawer models fitting results for the first segment. The selected models are

highlighted in bold.
State Approach Push forward Push down Pull
Segment

Lyc: 0.022 Lac: 0.061 Lac: 0 Lac: 0.08

1 L[]\,{+A(7t 0.013 L[]\,,HAct 0.057 L[]\,1+Aci 0.001 L[;\,{JFAci 0.078
Lc: 0.039 L c: 0.005 Lac: 0 Lc: 0.030

2 Lipryac: 0.030 | Lips4ac: 0.005 L1M+AC: 0.002 | Liar4ac: 0.031
Lyc: 0.054 Lac: 0.013 Lac: 0 Lyc: 0.016

3 Linryac: 0044 | Lipsiac: 0.017 | Liaryac: 0.001 | Liasac: 0.013
Lyc: 0.153 Lyc: 0.082 Lac: 0 Lc: 0.062

4 Liyv+ac: 0.1 Linvi+ac: 0.084 | Liyrac: 0.003 | Lias+ac: 0.064

Table 6.2: Comparison of a newly recorded open cabinet trajectory to the SCT skill open drawer.
In bold, the relevant results for components transfer, as states ‘Approach’ and ‘Push forward” have low
costs. Costs from state ‘Push down’ are negligible as there are no active constraints. L 4 and Ly ac
are similar because the default input mapping is used for each state in this example, but this could change
significantly depending on the chosen input mapping. Costs are high in ‘Pull’ as the trajectories are
different, requiring to fit new constraints.

automatically adjusted its position through whole-body impedance control, see subsection 3.4.1. The
execution of those tasks is shown in Fig. 6.6.

The constraints of the skill open drawer and the trajectories generated by executing the learned SCT
are displayed in Fig. 6.5, bottom as well as in the supplementary video linked to [Que+21]. The trajectories
illustrate that some constraints, such as the approach cone, provide more freedom of movement (e.g.
when approaching the drawer handle), while others impose stricter limitations (e.g. the prismatic motion
required to open the drawer).

6.5 Discussion

The method presented in this work accelerates the design of SCTs compared to the purely manual design
presented in previous chapters, particularly by aiding the skill designer in one of the most time-consuming
aspects of an SCT creation: constraint design. This is achieved by fitting and evaluating multiple models,
as well as offering metrics that leverage a library of existing skills to speed up the design of new SCTs.
The calculated costs for the different models may raise the question of why the best model cannot be
automatically chosen based on these costs. This can be explained using, as an example, the trajectory
segments for pulling open a drawer. Although a plane has the lowest cost in this scenario, a prismatic

Chapter 6. Learning parameterized SCT active constraints from human demonstrations 74

State State State State
'Approach' '"Push forward' '"Push down' '"Pull open'

State

'Rotate open'
Figure 6.6: Photo series of the different states of open drawer (D1-D4) and open cabinet door (C1-C4).
The user sitting in EDAN controls the robot with a 3D joystick. D1 & C1 ‘Approach’ The robotic
manipulator is restricted within a cone to guide the user towards the target handle. D2 & C2 ‘Push
forward’ After reaching the pre-grasp pose, the user gets to the drawer handle through a prismatic motion.
D3 & C3 ‘Push down’ Transition to the next state is upon contact with the handle. D4 ‘Pull open’ A
prismatic constraint leads the robot to pull open the drawer robustly. C4 ‘Rotate open’ An axial rotation
constraint is in effect to open the cabinet door.

motion arguably constrains the phase more effectively. Here, the expertise of the skill designer comes into
play. Further refinement of the cost metric, such as incorporating constraints DoFs or negative examples,
could help enhance automation.

While the current number of model classes is limited, the underlying methods can be applied to a
broader range of models. Any methods fitting the definition of input mappings or active constraints can be
used. Notable models include those that can act as active constraints, such as Task Space Regions [BSK11],
Gaussian Mixture Models [ZHC18], Generalized cylinders [AC18]. Others are those that can act as input
mappings, such as state-conditioned latent actions [Los+20] or a linear mapping [Prz+23].

6.6 Conclusion

This chapter presented a method to semi-automatically learn SCTs with a multi-model representation
from demonstrations. An approach that allows transferring knowledge from existing SCTs to new ones
was also introduced. The evaluation of a real-world scenario proved the effectiveness of our method.

The next chapter will cover another method to learn input mapping and active constraints from
demonstrations, Kernelized Movement Primitives. Its formulation allows model adaptation via user
commands to deal with new situations.

Chapter 7

Probabilistic learning and adaptation of
active constraints

The results in this chapter have been partially presented at ICRA 2024, see [Que+24].

7.1 Introduction

As discussed in previous chapters, shared control — combining human input commands with an autonomous
control system to achieve a common goal — empowers users of assistive devices with the ability to interact
with their environment conveniently. Chapter 4 introduced a new framework, Shared Control Templates,
which provides users with robust and transparent assistance. Chapter 5 demonstrated how this framework
could be used by able-bodied and motor-impaired users for activities of daily living in different contexts,
such as our laboratory, participants’ homes, and events like the CYBATHLON. Currently, designing SCTs
requires robotics expertise, but to fully exploit their potential, SCTs should be easier to design and modify.
Chapter 6 took a first step in improving SCTs design by introducing a learning from demonstration method
to learn active constraints and leverage a skill library, accelerating the design of new skills and reducing
redundancy in skills design.

In this chapter, we explore probabilistic learning from demonstration to facilitate the design and
adaptation of SCTs. Namely, we propose that the required constraints to manipulate objects are identified
from demonstrated robot trajectories and modified via user commands when new task conditions arise,
such as an environment change. Leveraging user commands from external devices to correct assistive
models locally is an interesting alternative to providing new kinesthetic demonstrations or haptic feedback,
particularly in settings where motor-impaired users are involved. Given their ability to approximate
continuous functions, measures of uncertainty and strong adaptation properties, probabilistic learning
from demonstration approaches are promising candidates to fulfill such requirements. Thus, we follow a
non-parametric approach using Kernelized Movement Primitives (KMP) [Hua+19], see section 7.2, to
realize the learning and adaptation of SCT constraints with the human in the loop, aiming to make the skill
design intuitive and easy to use. We leverage the fact that KMP encodes the variance and correlations in
the data, which we exploit to define active constraints, providing a generalized cylinder behavior [AC18]
and input mappings. In addition, we build on recent results in uncertainty-aware, computationally-efficient
motion primitive modulation [SH23] to adapt the learned constraints smoothly and locally, directly from
user commands. The result is an interactive imitation learning approach [Cel+22] that does not require
physical interactions with the robot for adaptation. Our contribution is summarized in the following:

* We introduce an approach using Kernelized Movement Primitives (KMP) [Hua+19] to derive active
constraints from the variance of end-effector trajectories, for example demonstrated by kinesthetic

75

Chapter 7. Probabilistic learning and adaptation of active constraints 76

¥ 3D User
g ——— commands
| i /
| /
s 07 - ! R AT
| E— HHHJ’* VU pesirea

050- X } SCT end-effector
N 025 S — Approach | Pose
-

0z0- ! Generalized cylinders acting as v

o 0z ds o5 o8 10 active constraints are derived

Kinesthetié teaching KMP mod;el fitting from the KMP covariance ellipsoid Lift

Figure 7.1: Schema of the proposed approach to design SCTs with a probabilistic model: Kernelized
Motion Primitives (KMP). A KMP model is fitted to a set of demonstrated trajectories for each phase of
the desired task. Active constraints and/or input mappings are then derived from the model and used by
the skill designer to build an SCT. Finally, the robot is constrained to successfully complete the task from
user commands.

teaching, see subsection 7.3.1.

* Making use of KMP adaptation capabilities [SH23], we present an adaptation mode allowing users
to modify SCTs while using EDAN, adapting the assistance provided by the framework to new
environmental constraints and requirements, such as following a different path to complete a task,
see subsection 7.3.2. We show in subsection 7.3.5 how this formulation allows adjustment of the
locality of the adaptation.

* Finally, we derive a scaled translational input mapping from a KMP, see subsection 7.3.6.

Our approach is experimentally validated on EDAN by performing a picking task, see section 7.4 and
Fig. 7.1. We show that, using our approach, multiple able-bodied users are able to not only complete the
task but also adapt the robot’s assistance to new situations.

7.2 Background

7.2.1 Kernelized Movement Primitives (KMP)

KMP [Hua+19] are function approximators used in imitation learning to predict the value of an output
variable £ € R” given observations of an input s € R’ from a set of end-effector trajectories. A
KMP assumes that a reference trajectory distribution {p,,, En}ﬁle, encoding the means, variations and
correlations of £, is available to model P ({|s,,), where s,—1 _ n are N given inputs. In [Hua+19] as
well as in this work, u,, and 3J,, are computed from a GMM. The expectation of the output variable is
computed for a test input s* using:

E[¢(s*)]= k* (K + \3) ' p, (7.1)

k(s1,81) ... k(s1,8n)
where k* = [k(s*, s1),...,k(s* sn)], K =

.], k(si,sj) = k(si,s;)I and
k(sn,s1) ... k(sn,sn)
k(s;, s;) is a kernel function, such as the radial basis function kernel. A\; > 0 is a regularization factor and

m= [ulT, ey HL]T, ¥ = blockdiag (X1, ..., X y), a block-diagonal matrix. Moreover, the covariance
of the output is given by:

Cov[€(s*)]= a (k;** — k(K + A3) ! k;*T) , (72)

where « is a scaling factor, Ay > 0 is a regularization factor and k** denotes the evaluation of the kernel
function at s*, see [Hua+19] for details.

77 7.2. Background

—=—=- kmp orig
—— adapted traj
* via-point

® data
—— kmp orig
variance

-84 4 -84 7

-8 -6 -4 -2 0 2 4 6 -8 -6 -4 -2 0 2 4 6

Figure 7.2: Left: KMP fitted on example data with mean and covariance. Right: Impact of adding a
via-point on mean and covariance.

This model can, for example, learn position based on time, orientation based on position, or velocity
based on pose. An illustration of a KMP fitted on a 2D data can be seen in Fig. 7.2, left.
Two methods for adapting KMP have been proposed and presented in the following sections.

7.2.2 KMP adaptation using via-points

As shown in [Hua+19], KMP provides a principled way for trajectory modulation when new task
conditions arise. Particularly, for a new input 3, adding the pair {jz, X} to the reference trajectory
distribution will ensure that the expected trajectory passes through a desired via-point fz, provided that X
is small enough. While this ensures adaptation, it modifies the covariance profile through ¥ which can
have undesirable effects if the variance (Equation 7.2) is used to represent task space constraints, leading
to excessively constrained motions. An illustration of adding a via-point to a KMP can be seen in Fig. 7.2,
right. Additionally, it requires inverting the term K + A every time a via-point is added, with O(n?)
complexity.

7.2.3 KMP adaptation using null space actions

The original KMP formulation was extended by Silverio et al. [SH23] with a term that locally modulates
the trajectory distribution, enabling a more efficient adaptation with O(n?) complexity, with no impact
on the covariance profile. By defining a desired modulation é at an input S the resulting expectation is
computed as:

E[£(s*)] = K* T p + [k* - k:*\IlK] £ (7.3)

where ¥ = (K + \; 2)71 and k*, K are evaluations of the kernel function at 8, the location where the
null space action is applied. Note that the first term in Equation 7.3 corresponds to Equation 7.1, and ¥
only needs to be computed once.

The second term includes a projector [12:* — kUK] that modulates the original expectation only
locally. This projector is referred to in [SH23] as a soft null space projector since, on the one hand, it

Chapter 7. Probabilistic learning and adaptation of active constraints 78

6 /’\\ I 6 1 N\ == M
—— kmp with Ay —— kmp with
nullspace action / nullspace action

1

1
\
\

Figure 7.3: Effect of null space actions on learned KMPs. Left: Null space action: [-200, 100]. Right:
Null space action: [200, -100].

is the solution to a least squares problem with null space and, on the other hand, it is a ‘soft” projector,
allowing & to modify the original expectation in proportion to the data variance in the neighborhood of s.

7.2.4 Generalized cylinder

Another model relevant to this work is the generalized cylinder, whose application in robotics is discussed
in Ahmadzadeh et al. [AC18]. Consider an ellipse, denoted as p, lying on a 2D plane perpendicular to an
arbitrary smooth curve I" in Cartesian space R?. The 3D surface produced by moving the plane containing
p along the curve I' (referred to as the directrix) while maintaining the perpendicularity of the plane to I
forms a generalized cylinder, see [AC18] for details. Although any smooth, simple closed curve can serve
as p, this chapter focuses exclusively on ellipses (of which the size varies along I).

7.3 Proposed approach

This section introduces an approach to derive active constraints and input mappings from a KMP and adapt
them with external user commands when new task conditions arise. The KMP expectation (Equation 7.1)
is used to define a reference path, which, in combination with the covariance (Equation 7.2) at each
point, allows the derivation of a generalized cylinder behavior [AC18] that constrains the end-effector
only along the directions orthogonal to the reference path (subsection 7.3.1), see Fig. 7.1 for an overview.
Subsequently, we use the approach from [SH23] to modulate the learned active constraints from user
commands u € R” by computing the term é directly from w. Thus, we act on the KMP expectation
through the projector (Equation 7.3) and consequently on the reference path (subsection 7.3.2). Fig. 7.4
illustrates this concept. To mitigate undesired correlations between actions and adjust the adaptation
locality, we introduce extensions of [SH23] (subsection 7.3.4 and subsection 7.3.5). Finally, the derivation
of an input mapping is shown in subsection 7.3.6.

79 7.3. Proposed approach

3D User
commands

Adaptation of approach
active constraints

Adapted

E SCT Desired
| «,//N } Modulated | end-effector
R Approach pose sl
h 4

Lift

Adapted
execution

Figure 7.4: Model adaptation. If an SCT requires adaptation due to environmental changes or user
preferences, an adaptation mode is entered, where the user can directly adapt the SCT with their commands.
The adapted SCT is then executed.

7.3.1 Deriving active constraints from a KMP

Let us assume a set of H demonstrations with M datapoints each {{s, p, £m,h}%=1}hH:1 where s € R is
a normalized time variable aligned across all demonstrations using dynamical time warping [SC07] and
& € R3 is the end-effector position.

Querying a KMP model fit on such a dataset with equally spaced inputs 3?:1,..., ~ € [0, 1] provides
a trajectory distribution over end-effector positions with associated means and covariance matrices
{pr, X }ZJ\L ,- We propose to use the KMP expectation (Equation 7.1), given by the means {y Z-Z\Ll, as
the directrix I' of a generalized cylinder. Additionally, for every point ¢ along I', the covariance matrix X
at an arbitrary variance threshold is treated as an ellipsoid. Its intersection with a plane passing through its
center and perpendicular to the directrix — following the approach described in [Kle12] — creates an ellipse
p, see also Fig. 7.1, center. The set of ellipses computed at every point of T", { p,,}f\i 1> forms a surface with
smoothly-varying cross-sections — a generalized cylinder [AC18].

A generalized cylinder can be computed offline from the KMP and can be used as an active constraint
in Cartesian space, constraining the desired end-effector position within its volume. The . closest to
the end-effector is identified, after which the end-effector is projected to the point of the cylinder volume
spanned by p; with the shortest distance. In practice, for better adaptation performance (see next section),
we sample online the KMP at each SCT project call to get p; and compute the projection. The generalized
cylinder is then only used for visualization.

With this constraint, a high variance (i.e. spanning a wide ellipse) at a specific section of the
demonstrated trajectories provides motion freedom to the user. In contrast, a low variance constrains the
user, e. g. at a specific grasp pose. Example trajectories resulting from using two KMP models are shown
in Fig. 7.1, right. Note that using a generalized cylinder behavior guarantees unconstrained motion along
the direction of I', unlike projecting on a full covariance ellipsoid, which may have low variance along the
direction of motion. The process to build an active constraint with demonstrations and KMP is illustrated
with Algorithm 4.

If the end-effector is at the beginning or the end of the directrix, an additional projection within
a spherical volume — its radius the maximum radius of the associated ellipse — is enforced by default.
Otherwise, the end-effector would not be constrained in the directrix direction.

Now that we have active constraints extracted from demonstrations represented as a KMP, we propose

Chapter 7. Probabilistic learning and adaptation of active constraints 80

Algorithm 4 Constraint extraction from demonstration with a KMP model

1: Initialization
- Set KMP hyperparameters [, A,
2: Learning from demonstrations
- Collect demonstrations {{sy, p,, £n’h}év:1 }thl.
- Extract the reference trajectory distribution with DTW, GMM and GMR {s,,, f,,, 271}5:1-
- Fit a KMP on the reference trajectory distribution.
3: At run time: prediction using KMP (see section 7.2)
- Find p closest to the end-effector.
- Query the KMP with s; and s;, 59, to get u; = E[&(s;)], ¥; = Cov[&(s;)] and the directrix
direction, see Equations (7.1)—(7.2).
- Intersect 337 at an arbitrary variance threshold to get the ellipse p;.
- Active constraint: project the end-effector within the cylinder spanned by p;.

to adapt them with the user in the loop by acting directly on the KMP representation.

7.3.2 KMP adaptation with the user in the loop

Given the limitations of via-point-based KMP adaptation discussed in subsection 7.2.2, we propose to act
on the null space of the KMP (Equation 7.3) and adapt the active constraint directly from user commands
Uu.

Since w usually is used to control the robot’s end-effector, we propose that, when wanting to modulate
the active constraints, the user can select an adaptation mode at any given time tg, see Fig. 7.4. In
this mode, shared control is temporarily deactivated, and user commands are interpreted as desired
modifications to the underlying KMP expectation (Equation 7.1) rather than control actions for the robot.
Hence, in adaptation mode, the modulation term é in Equation 7.3 is calculated directly from w. The
impact of the user commands, i. e. the directrix deformation, is shown in RViz.

For a given location $ in the input space, where the modulation is to be applied, we define a desired
correction starting at ¢y and lasting until ¢; as an accumulation of user commands:

£(3) = ft ! w(t) dt. (7.4)

0

Equation 7.4 can be used generically to define modulations to be applied on a KMP through Equation 7.3,
from external user commands.

In our experiments (section 7.4), a 3D user command w is resolved into two orthogonal components:
the component tangential to the directrix, u|, and the component perpendicular to it, w . We propose
to use uy| to select where the modulation is taking place, $, by moving along the directrix. At the same
time, v modulates the underlying KMP by acting on the directions orthogonal to the directrix. Note that,
despite the decoupling, we have u, u| € R3.

As the directrix continuously changes, there are two ways to compute © and w: using the original
directrix or the most recent one. Using the original directrix ensures that for any u, the adaptation does
not affect the direction of w| at a specific 8. This implies that the resulting adaptation is independent of
the order of the command sequence. While this option is generally intuitive for small deformations, it
becomes unreliable for large deformations.

The alternative option is to use the latest directrix. However, this often leads to deformations not
perpendicular to the initial directrix, which can quickly become counterintuitive.

81 7.3. Proposed approach

7.3.3 End-effector displacement as null-space action

An alternative approach to using user commands as null-space actions is to adapt the KMP model based
on the end-effector motion rather than directly relying on user commands. When an active skill utilizes
a KMP model, the end-effector can be constrained as defined in subsection 4.3.1. However, if &g
(Equation 4.3) is displaced beyond these constraints, the distance between £y and its projection onto the
KMP constraint, Eoc, can be calculated:

£(8) = Dist(En, Eac) (1.5)

The KMP model can then be updated accordingly, which will modify the constraints used in the
following iteration. This allows the KMP model to act as a sort of soft constraint, which will be adjusted
if the user consistently directs the end-effector against it.

7.3.4 Decorrelating adaptations

Being constructed from full covariance matrices, the projector derived in Equation 7.3 considers the
correlations in the training data. In such a case, a desired modulation on a subset of the task space DoFs,
e.g. é = [fl 0 0]" in our 3D case, may affect other DoFs. While this may be a desirable feature in
exploration [SH23], it may lead to unintended effects in shared control scenarios, such as deforming the
directrix in a direction unwanted by the user. Therefore, we propose to decorrelate the result of applying
Equation 7.4.

To this end, u, is decomposed along its D components! {u 1 }]D:l and Equation 7.4 is computed

for each component as é j» with zero entries except at index j. The removal of correlations in the final
modulation is then performed by computing

D
E[¢(s*)] = k*Tp + Y. 5 [k* _ k*\I'K] £, (1.6)
j=1
where S; = blockdiag(S;1,. .., S; n) is a block-diagonal selection matrix formed of D-dimensional

matrices S ;, with zero entries except at (j, j) which is 1.

In this manner, the uncertainty-aware modulation properties of the original projector (Equation 7.3)
are preserved — regions with low or high variance require fewer or more modulation commands to be
adjusted — while ensuring that actions along one DoF do not interfere with other DoFs. This effect is
shown in Fig. 7.10. Alternatively, by removing off-diagonal terms, correlations could be removed directly
from {Zn},]yzl. However, this would also affect the ellipsoids, hence the active constraint, making the
overall framework less expressive.

7.3.5 Adaptation with multiple actions

The ability to modulate the trajectory at multiple points from the same user command helps guarantee
the smoothness of the resulting constraint and a lower burden for the user. Hence, we further modify
Equation 7.3 to allow the application of P corrections from one single action w. For example, from the
original £ computed with Equation 7.4, a set of P desired modulations {&}Z 1 can be computed with the
magnitude of each action decaying linearly from the center 5 P and applied on 31, ..., 8p.

Note that applying multiple actions does not invalidate the decorrelation strategy. Their effect on the

'D = 3 in this work but the proposed formulation is general

Chapter 7. Probabilistic learning and adaptation of active constraints 82

C D

Figure 7.5: Impact of different sets of P on a rectilinear directrix with a Matérn kernel. A: Single
action: P = 1. A slight interference at the base of the deformation is visible. B: P = 9. Indexes of the
additional actions, in relative percentage from the original action: [0.02,0.04,0.06,0.08], with scaling:
[0.7,0.6,0.3,0.1] C: P = 11. Indexes: [0.04,0.06,0.08, 0.10,0.12] with scaling [0.6, 0.4,0.3,0.2,0.1]. D: P =
7. Indexes: [0.03, 0.06, 0.09] with scaling [0.8, 0.7, 0.6].

original KMP can be computed cumulatively as?

,
E[€(s")] = k*®p+ Y, |kF — KIWK] &, (7.7)
=1

Removing the correlations between different DoFs (subsection 7.3.4) is achieved by combining
Equation 7.6 and Equation 7.7, yielding

P D
E[¢(s*)] = k*Tp+ > D 5 [k* - k*\I'K] £ (7.8)
i=1j=1

Equation 7.8 implements the modulations of a KMP at multiple points simultaneously while removing
undesired effects between task space DoFs resulting from correlations in the training data. Note that
the computational complexity® of Equation 7.8 is O(pn?). Consequently, as P — N, the complexity
approaches that of the original via-point-based adaptation approach, O(n?). However, this is unlikely to
occur in practice, as modulations do not require to be added at every sample point around Sccpnzer to have
an impact. It is actually favorable to space and scale them appropriately, providing different deformation
patterns. Three patterns can be seen in Fig. 7.5, next to a single action deformation. The top right pattern
is a good deformation obtained empirically, while the others were selected for illustrative purposes. Any
deformation can be used as a pattern: Fig. 7.6 shows examples of successive deformations, which could
be used as a set of P. In practice, a skill designer would simply select the desired pattern to generate the
associated P deformations for each of their actions.

Applying multiple deformations P in the proposed manner helps mitigate overfitting caused by the
deformation action (which can occur for certain choices of kernel and kernel parameters), by smoothing
the trajectory points away from the center.

A term K ! multiplies é on the left in the original formulation when multiple actions are applied. However, it correlates

83 7.4. Results

A B
o [
{
)
C D
o O

Figure 7.6: Arbitrary deformations to illustrate the method flexibility. The red dot indicates the point
on the original directrix where the deformation is currently applied. It was moved along the trajectory
to create those deformations, see Fig. 7.8. A: A smooth, wide deformation. B: Deformations in two
different directions. C: Low amplitude deformation on one side, high amplitude on the other. D: A wide
deformation with low amplitude.

7.3.6 Deriving an input mapping from a KMP

One can also derive an input mapping from a KMP model, which can be used by itself or concomitantly
with an active constraint derived from the same KMP, as described above. We aim to adjust the scale of
the commands based on their direction to support commands going along or towards the directrix and
hinder commands going perpendicularly away from it. Intuitively, scaling down commands not going
along or towards the directrix will lower the impact of undesired commands (the frequency and amplitude
of which depend on the interface and user control capabilities) while not restricting the reachable space.
In a similar manner as with an active constraint, this is realized by first computing an ellipse at the current
8.

The scaling is based on the size of the ellipses. As before, we have u closest to the end-effector
position, with its associated ellipse p;. Suppose | is going away from p. In that case, it should be scaled
down proportionally to the distance between the end-effector and the surface of the cylinder spanned by
pi, with an arbitrary minimum scaling A, used when the end-effector goes beyond the cylinder:

D(&scr, &py)
D(:U';k’ gpi)

with &, the projection of Escr on the cylinder surface spanned by p;.

Hence, the end-effector slows down more and more when commanded towards the cylinder surface
and can traverse it at minimal speed. This is illustrated in Fig. 7.7. As for active constraints, an input
mapping can also be derived from an adapted KMP model.

AIM = (1 -)\mzn) + Amzn (79)

7.4 Results

We conduct three experiments to validate our contribution: first, we learned an SCT from demonstrated
data, then adapted it to new environmental conditions (new target pose, then new target object), and finally,

modulations at the action level and increases the complexity, with limited benefits for our current use case. Hence, we choose to
treat individual actions independently.
3We neglect the effect of D as the projector does not depend on j.

Chapter 7. Probabilistic learning and adaptation of active constraints 84

distance 4
to cylinder
surfa

/\I.\/:/\mm

EEX

Velocity
scaling
profile

Figure 7.7: Depiction of an input mapping scaling)\, from a cylinder. Going closer to the cylinder
surface slows down the end-effector while going towards the directrix is done at normal speed. This
biases the end-effector to move along the directrix while leaving the whole task space accessible if the
user wishes to depart from the demonstrated trajectories.

C F

Figure 7.8: Photo series of the iterative modulation of a learned approach constraint, to ensure the fingers
of the end-effector will not collide with the table with the new cup placement. User commands are
depicted with a black arrow.

85 7.4. Results

Figure 7.9: Executions of multiple Pick task on EDAN with SCTs with learned constraints, with
end-effector trajectories going from blue to red. In grey, the generalized cylinders illustrate the KMP
active constraints. Left: Pick SCT obtained by fitting a KMP to demonstrations. Center: Pick SCT
adapted with the proposed method (in the ‘Approach’ state) such that the end-effector fingers do not hit
the table. Right: A second adapted SCT, to pick up a taller object. As seen on some trajectories, the
SCT execution may start with the end-effector outside of the constraint, getting smoothly pulled into the
constraints due to the velocity limits, see subsection 4.3.2.

we let able-bodied expert users adapt an SCT on their own. Successful task executions on EDAN are
shown for each experiment.

7.4.1 Learning active constraints for a picking skill

The first experiment aimed to pick up a cup from a table. To this end, we designed an SCT with three
states: ‘Approach’, ‘Grasp’ and ‘Lift’. The user triggered the transition from ‘Approach’ to ‘Grasp’ with
a button click. ‘Grasp’ transitions to ‘Lift’ as soon as the grasp is done. For both the ‘Approach’ and
‘Lift’ states, five demonstrations were recorded by kinesthetic teaching. The number of demonstrations
was empirically chosen: five is diverse enough in this use case. Dynamical time warping on positions
was then used to temporally align the demonstrated data. A KMP was fitted to the data using a GMM
with two components to compute {fty,, EH}gzl, with N = 100, \; = 0.25, Ay = 0.25, a = 0.75, and a
Matérn kernel [RWO06] with p = 2 and length scale [= 0.2, chosen empirically. The KMP was used as an
active constraint, with a standard deviation of 5 to select the covariance ellipsoids. The standard deviation
threshold — chosen empirically — impacts the width of the ellipses, impacting the available task space;
hence, it is considered a skill parameter. A generalized cylinder was derived for visualization and can be
seen in Fig. 7.9, left.

The orientation was set as the orientation of the closest pose from the mean trajectory obtained with
dynamical time warping. A translational input mapping was added in those states. The resulting SCT is
started by an expert user via the GUI, and five successful executions of the task are shown in Fig. 7.9, left.

7.4.2 Adapting learned active constraints to new conditions

For the second experiment, the cup was placed closer to the center of the table to introduce a change in
the environment. The (object-centric) trajectory had to be adapted so that the fingers would not collide
with the table when using an approach trajectory with a low height. This could be achieved by deforming
the KMP, constraining the position in the ‘Approach’ state in adaptation mode, shown in Fig. 7.8. In
this simple scenario with a precise input device, P = 1 was chosen. The red sphere indicates where
the modulation is taking place, i.e. 3, selected with). To make it easier to select §, v is nullified if
lw) [l > [JwL||, so that no modulation would be applied if the user predominantly intended to move along
the directrix. On exit of the adaptation mode, the model was updated, and the SCT reloaded. Then, five
pick tasks were performed successfully, see Fig. 7.9, center.

In a third experiment, a thermos was used as the target object. It required a higher grasp, therefore

Chapter 7. Probabilistic learning and adaptation of active constraints 86

Demonstrations —— Mean trajectory Variance —— Decorr. adaptation x —— Decorr. adaptationy =~ —— Decorr. adaptationz =~ ----- Original NS-KMP
u=1[uy 0 0] u=[0 u, 0] u=1[0 0 uy]
0TS T ; @
—_— —r—— : S A A S S S =
-1.00 : :
Tm—
© ©
N 025 ————————————— [Sl S s s— —_— e v'_/__

Figure 7.10: Null space action and decorrelation adaptation. On the left are recorded trajectories to
approach a cup plotted in their «, y and z components, together with a fitted KMP model represented
by its mean and variance. The variance decreases when getting closer to the target item [A], reducing the
task space available to the end-effector. In each subsequent column, a null space action is applied to a
single dimension. The impact of modulations, i. e. its amplitude scaled by the variance, can be seen at
[B]. The effect of the proposed decorrelation adaptation can be seen at [C|, where a null space action in a
single dimension has no effect in other dimensions. Notice the correlation effect occurring in the original
NS-KMP formulation [SH23] (dashed black line) with actions on one DoF deforming other DoFs.

requiring a second adaptation. Following the same procedure, five executions are shown in Fig. 7.9, right.
In both experiments, the KMP active constraint of the second state could be reached and did not require
adaptation.

7.4.3 Action decorrelation and computational complexity

Fig. 7.10 shows the trajectories recorded for the ‘Approach’ state, and the resulting mean and variance of
a fitted KMP model. Additionally, the impact of a null space action is shown on the original NS-KMP
formulation [SH23] and our proposed approach, illustrating the effect of decorrelating the null space
actions.

Fig. 7.11 shows the computation time resulting from using null space actions or via-points to modulate
the main trajectory. Two approaches to adding via-points are evaluated: either increasing the set of points
of the reference trajectory distribution or replacing points (the closest ones), keeping the set size constant.
As expected, null space actions are efficient as long as P << N.

7.4.4 Evaluating performance of new users

Finally, we evaluated how five other able-bodied expert EDAN users would modulate the original trajectory
in the same setting as the first part of subsection 7.4.2: pick a cup placed closer to the table’s center. They
had no experience with the proposed method but are familiar with SCTs and using a Spacemouse. After
explaining the SCT behavior, they tried the original SCT two to four times, as in the first experiment.
Then, they practiced modulating the KMP model. At their convenience (in practice, within four minutes),
they signaled they were ready to start adjusting the SCT to the new environment and entered the adaptation
mode to do so. Finally, they executed the adapted SCT on the robot, which was successful for each
user on the first try. Table 7.1 shows the time it took each person to modulate the trajectory and the
deformation applied on each trajectory. The applied modulation is measured as the deformed trajectory
length divided by the original trajectory length (which is appropriate in this specific example because the
original trajectory is almost a straight line).

&7 7.5. Discussion

N = 500
3.5 4 .
Null-space actions

50/ ™ Via-points replaced

- Il Via-points added

o

£

c

el

©

5

Q.

€

o

O

P=1 P=10 P=50 P=1 P=10 P=100 P=1 P=10 P=100

Figure 7.11: Comparison of the computation time between null space action and via-points (mean
computation time over 1000 runs) for different values of P (the number of null space actions) and N
(number of given inputs to a KMP). Via-points are specified to match the result of the applied null space
action.

Table 7.1: Skill modulation by different users.

Participant
Expertuser A B C D E
Modulation 30 71 87 79 40 62
time (s)
Deformation % 5 10 34 18 10 20

7.4.5 Orientation learning

In a separate experiment using the same demonstrated data, we learned a KMP model for constraining
the orientation of the end-effector based on its position. The end-effector position was used as input and
the orientation represented through the exponential map as output. The KMP was then sampled every
Smm within the minimum volume 3D rectangular cuboid encompassing all demonstrated positions. This
resulted in a list of pairs (position, orientation) covering the entire space where demonstrations were
recorded. This data was then represented as a k-d tree [Ben75] for a fast query at run time. This provided
a better representation of the orientation than using the directrix.

7.5 Discussion

7.5.1 Results analysis

The results obtained in subsection 7.4.1 and subsection 7.4.2 show that SCTs — particularly their active
constraints — can be successfully learned using our proposed approach and adapted using the same input
device as for task completion. These results are particularly relevant for motor-impaired users who usually
cannot make physical corrections. In subsection 7.4.4, multiple able-bodied users could not only complete
the task but also adapt the assistance the robot provided to a new situation by modulating the demonstrated
constraints. Table 7.1 shows that, even with no prior experience with the method, this adaptation could

Chapter 7. Probabilistic learning and adaptation of active constraints 88

be done in realistic time frames (all within two minutes) and with appropriate deformations (4 out of
5 participants deformed less than 20% of the trajectory). Even if it took longer and required more
deformation than the expert user, it was successful for each participant. These results suggest that the
approach is intuitive and easy to use.

In addition, Fig. 7.10 validates our action decorrelation strategy, showing that individual actions on
one DoF do not affect the others. This is particularly beneficial, as without it, deformations could also
occur along the directrix, potentially giving it a high curvature, which is not desirable for our use case,
and creating an active constraint where the user could become stuck on the ‘folded’ generalized cylinder
surface.

We leveraged the benefits of the efficient modulation offered by Equation 7.3. A non-optimized Python
implementation provided a latency low enough for online model updates, allowing intuitive modulations
for a simple SCT. We did not use via-point adaptation (subsection 7.2.2), as it entails the decrease in the
predicted covariance profile, which we deemed undesirable in our setting.

Using generalized cylinders directly constructed from data as active constraints is also possible.
However, they tend to be less smooth than those generated using a probabilistic model. For example,
sharp turns in the recorded trajectory may be clearly visible on the generalized cylinder, whereas the prob-
abilistic approach smooths out the surface, providing better assistive behavior. Additionally, modifying a
generalized cylinder directly constructed from data requires adapting individual trajectories, while a KMP
provides more general adjustment capabilities with via-points and null space actions.

7.5.2 Limitations and outlook

We propose that KMP models are well-suited for learning input mappings and active constraints for
SCTs, as they meet the requirements of being object-centric and time-independent, ensuring consistent
shared control behaviors. Furthermore, KMP models offer flexibility for adjustments: new trajectories can
always be recorded (through kinesthetic teaching or direct user control), and the model can be retrained.
Additional adjustments can be made through via-points (though this reduces variance and alters the
constraint) or null space actions, providing local adaptation capabilities. This provides multiple design
options for the skill designer and grants users control to fine-tune assistance. SCTs’ modular structure also
supports hybrid approaches, where certain states can incorporate KMP-based properties while others rely
on hand-coded constraints. The proposed mapping to apply adjustments is optimized for 3-DoF inputs,
such as 3D joysticks or EMG-based interfaces, though other input types are also possible.

The impact of 32 on the adaptations, a consequence of the projector used in Equation 7.3, is particularly
noteworthy as it enables more precise control in low variance sections of the demonstrations, which are
likely to be the most critical for reliable task execution. However, a set of trajectories with excessive
variation in 3 (i. e. unintended too high/low variance) may also be unintuitive for the user, as this would
lead to significant variation in the speed at which the deformation happens. A formulation incorporating
a hyperparameter for continuous adjustment between scaling due to 3 and no scaling on the null space
action would be beneficial. Moreover, our approach modulates active constraints by adjusting solely the
expectation of the KMP through Equation 7.3, which also affects the ellipse shape (because it affects
the directrix direction). While this was sufficient for adapting a picking skill in our scenario, exploring a
mechanism to modulate the covariance could be worthwhile.

There are other open avenues for research with this method. One potential direction is exploring
whether contrastive learning could be integrated into the KMP formulation. For instance, negative
examples like repulsive points or constraints [BDB13] could perhaps be used. This also raises the question
of selecting these negative examples, such as being manually defined or derived from failed executions.
Another area of interest is the representation of a skill library. Adapted skills can be stored as new skills,
but skill management strategies might be necessary if frequent adaptations result in a proliferation of
skills.

&9 7.6. Conclusion

Further testing would be beneficial, as with the other methods discussed in previous chapters. The
proposed scenario was chosen as a proof of concept to demonstrate the method’s feasibility. To fully
assess its effectiveness, it will be necessary to experiment with a broader variety of tasks. Additionally,
input mappings generated by KMP also have to be evaluated with participants. Assessing this model
for shared control faces the same challenges as those outlined in subsection 5.4.1. Evaluating constraint
adaptation introduces additional difficulties:

» Users can modify the assistance itself, and effective adaptation depends on the quality of the
resulting assistance, which is measured by various factors (subsection 5.4.1). As a result, no single
metric objective provides a direct assessment of the quality of an adaptation.

* Furthermore, understanding users’ perceptions of these adaptations could be challenging, particu-
larly given the complexity of visualizing a 3D generalized cylinder. While RViz visualizations may
be sufficient for skill designers working with a computer and Spacemouse, they are less appropriate
for target users. Exploring alternative interfaces, such as AR glasses, could offer a more intuitive
skill adaptation, especially when using robot motion to adjust the constraint (subsection 7.3.3).

* Finally, the current method requires a precision that not all target users posses. As with the
assistance, the skill adaptation should be easy enough to use.

7.6 Conclusion

We proposed using probabilistic skill representations to learn and adapt shared control skills. We showed
that using a skill representation with soft null space projectors permits a computationally efficient
modulation of SCTs without decreasing motion freedom for users. Successful executions of a learned
picking task, as well as the skill adaptation to new environment conditions, were shown on the assistive
robot EDAN with able-bodies users. This method can help the skill designer to efficiently design new
skills or adjust them to new situations. The success achieved by new users in completing the task and
adapting the skill suggests that the proposed approach is intuitive and easy to use.

Chapter 7. Probabilistic learning and adaptation of active constraints

90

Chapter 8

Conclusion

This work introduced Shared Control Templates (SCT), a novel framework designed to assist users in
performing activities of daily living with assistive robots. We outlined the variety of possible assistive
behaviors obtained by mapping user commands and constraining the end-effector. Two approaches for
learning task constraints and facilitating skill design were also introduced. The first approach involved
learning a multi-model representation from demonstrations and showing a knowledge transfer from
existing SCTs to a new SCT. The second approach employed a probabilistic model that can impose
constraints on the end-effector and that the user can adapt to accommodate new environmental conditions.
Finally, this framework was integrated into EDAN’s overall control structure, allowing able-bodied and
motor-impaired users to complete sequences of tasks more effectively than by using direct control.

8.1 Achievements

The goal of this work was to develop assistance that is safe, easy to use, provides agency to the user,
transparent, reliable, and personalizable.

Safety was ensured through the use of a whole-body impedance controller and the implementation of
virtual workspace boundaries. At the same time, the user is in control of the most meaningful motions,
and the manipulator remains stationary in the absence of commands. Additionally, the assistance can be
canceled at any time, allowing the user to regain complete control in direct control mode.

The system’s ease of use was demonstrated through winning the 2024 CYBATHLON and the 2023
CYBATHLON Challenges, as well as through user experiments in which participants successfully
performed sequences of activities of daily living.

The SCT framework was specifically designed to prioritize user agency. Input mappings can be
configured to ensure that all Degrees of Freedom (DoFs) from the user commands are used intuitively
and meaningfully. The robot only moves in response to user inputs, ensuring the user remains entirely in
control. Additionally, SCTs can be structured so that, at any stage of a task, the user can either retrace
their trajectory or, at a higher level, backtrack through the finite-state machine, providing flexibility and
control throughout the task execution.

Several factors promote transparent behavior with our assistive system: separating the motion as-
sistance from user intent estimation, using an object-centric framework, and ensuring that assistance
depends solely on the current state, leading to repeatable behavior. For example, in a task such as pouring,
the tilt angle of the grasped object towards a target cup remains consistent (within kinematic limits) at
a fixed distance from this cup, regardless of the cup’s placement, the end-effector’s approach angle, or
the command speed. This approach gives the user a clear understanding of the robot’s state and enables
intuitive control over the end-effector motion.

Reliability was achieved in three main ways. First, by limiting our scope to known objects. Second,

91

Chapter 8. Conclusion 92

through the expressiveness of the methods, which enable a wide range of assistive behaviors, see Chapter 4.
Any number of DoFs can be constrained using different active constraints models. In one scenario, the
user might handle fine manipulation through scaled translational mapping. In another case, providing
approximate forward commands is sufficient to complete the open door task successfully. Third, it
prioritizes the user, who controls the task-relevant motions, with the ability to backtrack and try a different
approach. Additionally, users can adjust the system’s behavior using the "target pose correction" and
"model adaptation”" modes.

Personalization is achieved in several ways. First, the framework’s modular design, featuring a
finite-state machine structure and minimal model requirements for active constraints, provides a broad
range of assistance behaviors. Multiple models can be integrated within a single skill. For example,
active constraints may be manually parameterized in an initial state. In contrast, a second state could
involve fitting a plane to trajectory data, while a third state could use Kernelized Movement Primitives
(KMP) as an active constraint. Additionally, the hierarchical finite-state machine and object database
hierarchy promote skill reuse and enhance generalization. One can also adjust the level of control provided
to the user to balance agency and workload. Finally, to facilitate the design of new skills tailored to
users’ preferences and needs, we explored two approaches for learning from demonstrations: one using
parameterized models such as surfaces and volumes, and the other a probabilistic model with a KMP. The
latter also allows users to adapt a KMP constraint online.

8.2 Comparison to the state of the art

The work most closely related to ours is by Iregui ef al. [IDA21], who propose a reconfigurable, adaptable,
and modular assistance method based on Etasl (Expression-based Task Specification Language [AD14]).
Their approach integrates various interfaces, estimates user intent, modulates autonomy levels, and utilizes
reactive control. They also introduce "sensor interaction models", which define how the robot interacts
with sensor and interface data and support a set of effects, such as applying forces, velocity, and positional
adjustments. In particular, "velocity sensor interaction models" are linear input mappings. Additionally,
their proposed "reactive action model" shares similarities with our active constraints model (detailed in
section 4.3) and is particularly suited to dynamic constraint behaviors. In contrast, our work focuses on
static constraints. Iregui’s results have been demonstrated on pick-and-place tasks, where the skills did
not require structure such as a finite-state machine. Their adaptation capabilities focus on transitioning
between levels of autonomy over decoupled DoFs, whereas our approach enables constraint adaptation
via direct user commands.

8.3 Limitations and future work

8.3.1 Scope of the EDAN platform and its interfaces

The SCT framework has been designed to provide assistance tailored to a user using an assistive robot such
as EDAN. Input mappings and active constraints are defined in task space, which provides transparency
but ignores the robot’s kinematics. If the end-effector target pose Egcr brings the end-effector into a
collision with the known environment, the system will disregard it, and it is up to the user to find an
alternative path. However, the behavior of the manipulator’s joints is not guaranteed, as its movements
are reactive through the whole-body impedance controller. This issue is managed using heuristics, such
as applying an elbow control action to steer away from obstacles, either predefined within a skill or
calculated based on the world model. The behavior is also fine-tuned for the hardware, such as the chosen
end-effector. The number of fingers and the robustness, whether direct drive or with cables, affect the type
of motions and forces one can apply.

93 8.3. Limitations and future work

Furthermore, the SCT framework has been primarily developed with 3 DoFs interfaces in mind, such
as joysticks, and particularly for noisy interfaces, such as EMG-based interfaces. Although it can also
work with continuous interfaces featuring more or fewer DoFs, such as controlling the full pose with a
6D Spacemouse or a 2D joystick, this work focused on providing helpful assistance with the available
EDAN interfaces. As a result, other methods may be better suited for different interfaces. Using more
input DoFs should be relatively straightforward, although it increases the complexity for the user. With a
single DoF, control is limited to moving along a single trajectory. By restricting the task space, most tasks
we have considered can still be performed with 2 DoFs since the majority only require two relevant DoFs:
one along the ‘main trajectory’ and another to adjust the end-effector position, for instance, with motion
perpendicular to this main trajectory. For example, the main DoF might determine how much to pull open
a drawer, while the secondary DoF would control the end-effector’s position on the drawer handle. The
challenge with using 2 DoFs is making the controls intuitive and easy to operate.

8.3.2 Evaluation

As discussed in subsection 5.4.1, evaluating shared control assistance is challenging due to the involvement
of a human and differences in interfaces, robots, and environments. Even with a small sample of tasks
and users, the results in Chapter 5 demonstrate that the interface plays a significant role, and mastering it
is crucial for users. For this work, we focused on providing a proof of concept, showing that a system
such as EDAN can enable users to perform activities of daily living. A more comprehensive evaluation
of the SCT framework, exploring factors such as user enjoyment, their ability to develop an accurate
mental model of the assistance and of its adaptability, and comparisons to other methods, would be highly
valuable. Additionally, a long-term study involving several target group users using such a robot in their
homes over an extended period would be of great interest.

As discussed in Chapter 2, numerous shared control approaches have been proposed. However,
it remains challenging to discern their strengths and weaknesses from the published literature alone.
Reproducing these results is difficult due to variations in hardware and software frameworks, the limited
availability of open-source implementations, and the involvement of a human in the control loop. The
development of simulated benchmarks is promising, see section 2.9. There, similar to reinforcement
learning, multiple shared control algorithms could be applied to a range of assistive tasks. Although
such simulations have limitations, they would enable straightforward comparisons across methods and
facilitate testing multiple approaches on a single robotic platform. Events such as the CYBATHLON and
CYBATHLON Challenges also hold great promise for advancing the field. These competitions, which
require extended preparation with motor-impaired users, encourage rigorous testing, co-development, and
idea exchange between teams.

8.3.3 User intent estimation and unknown objects

An SCT is designed to assist with a known task, which assumes a known target object. Furthermore, the
user intent estimate is not influenced by the number, positioning, or type of objects in the environment.
As aresult, it is not well-suited for tasks involving many objects, such as dealing with a packed fridge.
One approach to address this limitation would be considering all possible tasks when estimating user
intent. Another option would be to initiate assistance when the constraints for two tasks are similar, even
if the final task has not been decided upon yet, using a probability estimate for potential goals inspired
by works such as [Jav+18]. This limitation has not been a significant issue so far, as the focus has been
on activities like eating, drinking, moving objects, and manipulating articulated objects (e.g., doors and
drawers), which typically involve only a limited number of target objects.

Currently, the system does not account for object localization precision. This factor could be incorpo-
rated into user intent inference and assistance behavior, for example, by adjusting the degree of control

Chapter 8. Conclusion 94

based on the localization precision.

Miller et al. [Mil+24] have introduced an initial approach for providing assistance when grasping
unknown objects. Their method combines the user’s intuitive sense of an optimal approach direction with
a shape completion algorithm and a grasp planner to aid in the grasping process.

8.3.4 Skill design

The current skill design process is not intended to be user-driven and relies on the skill designer, as it
remains complex and not user-friendly. While constraints can be visualized and learning constraints
reduce the number of states to define, there is still room for improvement. For instance, methods such as
the automatic segmentation of demonstrated data and learning a finite-state machine, as done by Willibald
et al. [WL22] (see also section 2.6), could streamline the design process. Additionally, a user-friendly
graphical interface to build the event-based finite-state machine, define input mappings, active constraints,
and adjust robot parameters would help. Visualization and legibility of the finite-state machine that
represents the skills are important points for transparency and acceptability of the assistance by the users,
and have not been investigated so far.

The decision to use either input mappings or active constraints for the same behavior is typically based
on which is easier to define. However, this complicates the use of planner, which could otherwise verify in
advance whether the task is achievable within the current world model. Input mappings implicitly limit the
task space, while a planner requires an explicit representation of the accessible task space. Additionally,
there is no current requirement for active constraints to ensure the continuity of the available task space.
The task space within a skill could be structured to be connected and fully explorable to improve autonomy
and the ability to perform feasibility checks. Bustamante ef al. [Bus+24] made some initial progress in
this area.

8.3.5 New skill: eating

Eating, particularly bite acquisition, is an essential daily activity that has not yet been investigated with
the SCT framework. However, some research has addressed the topic with varying levels of autonomy
[HHS16; Gor+23]. Methods with a higher degree of autonomy could contribute to building an SCT. For
example, an SCT could provide translational control up to the point of contact with the plate, then use the
type of food and the plate’s state to determine how to map downwards commands: when near the plate’s
edge, users could control a scooping motion, while for food like spaghetti, they might control a twisting
motion.

8.3.6 Manipulability

Another potential improvement is integrating manipulability metrics [Yos85] for behavior adjustment.
This is particularly relevant for a system such as EDAN, which has joint limitations and a 2 DoFs null
space due to its 8 joints. There are two ways this can be done: first, by optimizing the joints’ configuration
to increase manipulability in the main task direction, which can often be inferred by the shortest path to
the next state in an SCT. Second, by assisting the user when manipulability is lacking. Let’s consider the
case where a user cannot make the end-effector proceed in the intended direction. For example, they pick
up an apple and want to bring it to their mouth. Several options could be considered to deal with the lack
of manipulability:

« If the manipulator is in a singularity (for example, when two joints are aligned), based on heuristics,
a torque could be applied at one of those joints to exit the singularity.

* Ifitis a joint limit, reconfiguration might be necessary. Checking the self-motion manifold [Bur89]
could determine whether the assistance should:

95 8.4. Potential for real-life deployment

— Reconfigure the joints while maintaining the end-effector pose (i.e. remain on the same
self-manifold).

— If that is not possible, reconfigure to the same end-effector pose while staying within the task
space constraints, such as maintaining an upright grasped object.

— If these steps cannot provide manipulability, the system could reconfigure to the closest
transition point after user confirmation.

8.3.7 Automatic SCT design

Another approach to successfully resolve tasks is to check whether they are feasible before starting them,
such as investigated by Bustamante et al. [Bus+24]. In future work, an SCT could be derived automatically
from a representation suitable for planning that incorporates constraints for articulated objects and world
physics. This approach could identify where users should be given autonomy (e. g. approaching an object
or choosing how much to open a drawer) and where constraints should be enforced. This has potential for
tasks with 3D translational control, while it is expected to be more challenging to make it intuitive for
tasks with 2D or rotational control (such as pouring).

8.4 Potential for real-life deployment

One of the key challenges in deploying assistive systems in real-world settings is ensuring they are
intuitive to use. Providing reliable assistance for only a few fundamental daily activities — such as eating,
drinking, or handling objects like doors, drawers, or blankets — could have a significant impact compared
to current market offerings. The SCT framework addresses these needs by emphasizing user control and
adapting to individual preferences while the robot’s compliance ensures safety. The framework relies on a
predefined object database and a competent skill designer. Overcoming these limits will be essential in
bringing assistive technology to people needing it.

Chapter 8. Conclusion

96

Bibliography

[Ben75]

[CLS79]

[HU79]

[FB81]

[Mas81]

[Sho85]

[Yos85]

[Bur89]

[Kwe+89]

[BD96]

[AM97]

[Gha+98]

Jon Louis Bentley. “Multidimensional binary search trees used for associative searching”.
In: Communications of the ACM 18.9 (1975), pp. 509-517.

Kevin Corker, John H Lyman, and S Sheredos. “A preliminary evaluation of remote medical
manipulators”. In: Bulletin of prosthetics research 10.32 (1979), pp. 107-134.

John E. Hopcroft and Jeffrey. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Series in Computer Science and Information Processing.
Addison-Wesley, 1979. 1ISBN: 9780201029888.

Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography”. In: Communications
of the ACM 24.6 (1981), pp. 381-395.

Matthew T Mason. “Compliance and force control for computer controlled manipulators”.
In: IEEE Transactions on Systems, Man, and Cybernetics 11.6 (1981), pp. 418-432.

Ken Shoemake. “Animating rotation with quaternion curves”. In: Proceedings of the 12th
annual conference on Computer graphics and interactive techniques (SIGGRAPH) (1985),
pp. 245-254.

Tsuneo Yoshikawa. “Manipulability of robotic mechanisms”. In: The international journal
of Robotics Research 4.2 (1985), pp. 3-9.

Joel W Burdick. “On the inverse kinematics of redundant manipulators: Characterization
of the self-motion manifolds”. In: Advanced Robotics: 1989: Proceedings of the 4th Inter-
national Conference on Advanced Robotics Columbus, Ohio, June 13—15, 1989. Springer.
1989, pp. 25-34.

H. Kwee, J. J. Duimel, J. Smits, A. T. D. Moed, J. A. V. Woerden, L. W. V. D. Kolk, and
J. C. Rosier. “The Manus wheelchair-borne manipulator: System review and first results”.
In: 1989 IARP Proceedings, 2nd Workshop on Medical and healthcare Robotics (1989),
pp- 385-395.

Herman Bruyninckx and Joris De Schutter. “Specification of force-controlled actions in the
“task frame formalism’-a synthesis”. In: IEEE transactions on robotics and automation 12.4
(1996), pp. 581-589.

Peter Aigner and Brenan McCarragher. “‘Human integration into robot control utilising
potential fields”. In: 1997 IEEE International Conference on Robotics and Automation
(ICRA) 1 (1997), pp. 291-296.

Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. “PDDL - The Planning Domain Definition Lan-
guage”. In: Technical Report, Yale Center for Computationnal Vision and Control (1998).

97

Bibliography 98

[CS03]

[HMKO3]

[AEKO5]

[Hol+05]

[RSPO5]

[TLHOS]

[Beh06]

[RWO06]

[AOHO7]

[SCO7]

[KSPO8]

[SKKO08]

[Smi+08]

[Cal09]
[Van+09]

[AK10]

[DCC10]

Silvia Coradeschi and Alessandro Saffiotti. “An introduction to the anchoring problem”. In:
Robotics and Autonomous Systems 43 (2003), pp. 85-96.

Nikolaus Hansen, Sibylle Miiller, and Petros Koumoutsakos. “Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)”. In:
Evolutionary computation 11.1 (2003), pp. 1-18.

Daniel Aarno, Staffan Ekvall, and Danica Kragic. “Adaptive virtual fixtures for machine-
assisted teleoperation tasks”. In: 2005 IEEE International Conference on Robotics and
Automation (ICRA) (2005), pp. 1139-1144.

PJ Holliday, A Mihailidis, R Rolfson, and G Fernie. “Understanding and measuring powered
wheelchair mobility and manoeuvrability. Part I. Reach in confined spaces”. In: Disability
and rehabilitation 27.16 (2005), pp. 939-949.

G.R.B.E. Romer, Harry JA Stuyt, and Albér Peters. “Cost-savings and economic benefits
due to the assistive robotic manipulator (ARM)”. In: 2005 9th International Conference on
Rehabilitation Robotics, (ICORR) (2005), pp. 201-204.

Hylke A Tijsma, Freek Liefhebber, and Just L Herder. “A framework of interface improve-
ments for designing new user interfaces for the MANUS robot arm”. In: 9th International
Conference on Rehabilitation Robotics, 2005. ICORR 2005. IEEE. 2005, pp. 235-240.

Sven Behnke. “Robot competitions-ideal benchmarks for robotics research”. In: Proc. of
IROS-2006 Workshop on Benchmarks in Robotics Research. Institute of Electrical and
Electronics Engineers (IEEE) New Jersey. 2006.

C.E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. Cambridge,
MA, USA: MIT Press, 2006.

Alin Albu-Schiffer, Christian Ott, and Gerd Hirzinger. “A Unified Passivity-based Control
Framework for Position, Torque and Impedance Control of Flexible Joint Robots™. In:
International Journal of Robotics Research (IJRR) 26.1 (Jan. 2007), pp. 23-39.

Stan Salvador and Philip Chan. “Toward accurate dynamic time warping in linear time and
space”. In: Intelligent Data Analysis 11 (2007).

Oussama Khatib, Luis Sentis, and Jae-Heung Park. “A unified framework for whole-body
humanoid robot control with multiple constraints and contacts”. In: European Robotics
Symposium 2008 (2008), pp. 303-312.

Bruno Siciliano, Oussama Khatib, and Torsten Kroger. Springer handbook of robotics.
Vol. 200. Springer, 2008.

Ruben Smits, Tinne De Laet, Kasper Claes, Herman Bruyninckx, and Joris De Schutter.
“itasc: A tool for multi-sensor integration in robot manipulation”. In: Int. Conf. Multisensor
Fusion and Integration for Intelligent Systems. IEEE. 2008, pp. 426—433.

Sylvain Calinon. Robot programming by demonstration: A probabilistic approach. 20009.

Marcel Van Gerven et al. “The brain-computer interface cycle”. In: Journal of neural
engineering (JNE) 6.4 (2009), p. 041001.

Panagiotis K Artemiadis and Kostas J Kyriakopoulos. “EMG-based control of a robot arm
using low-dimensional embeddings”. In: IEEE Transactions on Robotics (T-RO) 26.2 (2010),
pp. 393-398.

Brad E Dicianno, Rory A Cooper, and John Coltellaro. “Joystick control for powered
mobility: Current state of technology and future directions”. In: Physical medicine and
rehabilitation clinics of North America 21.1 (2010), pp. 79-86.

99

Bibliography

[Bee+11]

[BSK11]

[Mah+11]

[Nac+11]

[VCS11]

[Cio+12]

[Del+12]

[Die+12]

[Hoc+12]

[Kim+12]

[Kle12]

[LBH12]

[Phi+12]

[BKB13]

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mosenlechner, Dejan
Pangercic, Thomas Riihr, and Moritz Tenorth. “Robotic roommates making pancakes”. In:
2011 11th IEEE-RAS International Conference on Humanoid Robots. IEEE. 2011, pp. 529—
536.

Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. “Task space regions: A frame-
work for pose-constrained manipulation planning”. In: International Journal of Robotics
Research (IJRR) 30.12 (2011), pp. 1435-1460.

Veronique Maheu, Julie Frappier, Philippe S Archambault, and Francois Routhier. “Evalua-
tion of the JACO robotic arm: Clinico-economic study for powered wheelchair users with
upper-extremity disabilities”. In: 2011 IEEE International Conference on Rehabilitation
Robotics (ICORR) (2011), pp. 1-5.

Lennart Erik Nacke, Michael Kalyn, Calvin Lough, and Regan Lee Mandryk. “Biofeedback
game design: using direct and indirect physiological control to enhance game interaction”.
In: Proceedings of the SIGCHI conference on human factors in computing systems (2011),
pp- 103-112.

Jorn Vogel, Claudio Castellini, and Patrick van der Smagt. “EMG-based teleoperation and
manipulation with the DLR LWR-III". In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2011), pp. 672-678.

Matei Ciocarlie, Kaijen Hsiao, Adam Leeper, and David Gossow. “Mobile manipulation
through an assistive home robot”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (2012), pp. 5313-5320.

Andrew Delong, Anton Osokin, Hossam N Isack, and Yuri Boykov. “Fast approximate
energy minimization with label costs”. In: International journal of computer vision 96
(2012), pp. 1-27.

Alexander Dietrich, Thomas Wimbock, Alin Albu-Schiffer, and Gerd Hirzinger. “Reactive
whole-body control: Dynamic mobile manipulation using a large number of actuated degrees
of freedom”. In: IEEE Robotics & Automation Magazine (RAM) 19.2 (2012), pp. 20-33.

Leigh R Hochberg et al. “Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm”. In: Nature 485.7398 (2012), pp. 372-375.

Dae-Jin Kim et al. “How Autonomy Impacts Performance and Satisfaction: Results From a
Study With Spinal Cord Injured Subjects Using an Assistive Robot”. In: IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans (T-SMCA) 42.1 (2012),
pp- 2-14.

Peter Paul Klein. “On the ellipsoid and plane intersection equation”. In: Applied Mathematics
3.11 (2012), pp. 1634-1640.

Daniel Leidner, Christoph Borst, and Gerd Hirzinger. “Things are made for what they are:
Solving manipulation tasks by using functional object classes”. In: 2012 IEEE International
Conference on Humanoid Robots (HUMANOIDS) (2012), pp. 429-435.

Mike Phillips, Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. “E-graphs: Boot-
strapping planning with experience graphs”. In: Proceedings of the International Symposium
on Combinatorial Search. Vol. 3. 1. 2012, pp. 188-189.

Georg Bartels, Ingo Kresse, and Michael Beetz. “Constraint-based movement representation
grounded in geometric features”. In: 2013 IEEE International Conference on Humanoid
Robots (HUMANOIDS) (2013), pp. 547-554.

Bibliography

100

[BDB13]

[Che+13]

[DLS13]

[DS13]

[Haul3]

[Jai+13]

[Kim+13]

[Nam+13]

[OA13]

[Par+13]

[AD14]

[Man+14]

[Iso+15]

[Jai+15a]

[Jai+15b]

[Kam+15]

Stuart A Bowyer, Brian L Davies, and Ferdinando Rodriguez y Baena. “Active constraints/vir-
tual fixtures: A survey”. In: IEEE Transactions on Robotics (T-RO) 30.1 (2013), pp. 138—
157.

Tiffany L Chen et al. “Robots for humanity: using assistive robotics to empower people with
disabilities”. In: IEEE Robotics & Automation Magazine 20.1 (2013), pp. 30-39.

Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. “Legibility and predictability
of robot motion”. In: 2013 8th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE. 2013, pp. 301-308.

Anca D Dragan and Siddhartha Srinivasa. “A policy-blending formalism for shared control”.
In: International Journal of Robotics Research (IJRR) 32.7 (2013), pp. 790-805.

Kris Hauser. “Recognition, prediction, and planning for assisted teleoperation of freeform
tasks”. In: Autonomous Robots 35.4 (2013), pp. 241-254.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. “Learning trajectory
preferences for manipulators via iterative improvement”. In: Advances in neural information
processing systems 26 (2013).

Jeonghee Kim et al. “The tongue enables computer and wheelchair control for people with
spinal cord injury”. In: Science translational medicine 5.213 (2013).

Yunjun Nam, Bonkon Koo, Andrzej Cichocki, and Seungjin Choi. “GOM-Face: GKP, EOG,
and EMG-based multimodal interface with application to humanoid robot control”. In: /IEEE
Transactions on Biomedical Engineering 61.2 (2013), pp. 453-462.

Alexis Ortiz-Rosario and Hojjat Adeli. “Brain-computer interface technologies: from signal
to action”. In: Reviews in the Neurosciences 24.5 (2013), pp. 537-552.

A. Paraschos, C. Daniel, J. Peters, and G. Neumann. ‘“Probabilistic Movement Primitives”.
In: Advances in Neural Information Processing Systems (NeurlPS). 2013, pp. 2616-2624.

Erwin Aertbelién and Joris De Schutter. “eTaSL/eTC: A constraint-based task specification
language and robot controller using expression graphs”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2014, pp. 1540-1546.

Simon Manschitz, Jens Kober, Michael Gienger, and Jan Peters. “Learning to sequence
movement primitives from demonstrations”. In: Int. Conf. Intelligent Robots and Systems.
IEEE. 2014, pp. 4414-4421.

Mark Ison, Ivan Vujaklija, Bryan Whitsell, Dario Farina, and Panagiotis Artemiadis. “High-
density electromyography and motor skill learning for robust long-term control of a 7-DoF
robot arm”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering
(TNSRE) 24.4 (2015), pp. 424-433.

Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. “Learning prefer-
ences for manipulation tasks from online coactive feedback™. In: The International Journal
of Robotics Research 34.10 (2015), pp. 1296-1313.

Siddarth Jain, Ali Farshchiansadegh, Alexander Broad, Farnaz Abdollahi, Ferdinando Mussa-
Ivaldi, and Brenna Argall. “Assistive robotic manipulation through shared autonomy and a
body-machine interface”. In: International Conference on Rehabilitation Robotics (ICORR)
(2015), pp. 526-531.

Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim. “Rviz: a toolkit for
real domain data visualization”. In: Telecommunication Systems 60 (2015), pp. 337-345.

101

Bibliography

[KB15]

[Nie+15]

[Arm+16]

[BKM16]

[BA16]

[Bru+16]

[CAT16]

[Ewe+16]

[HHS16]

[Jia+16]

[MHD16]

[Men+16]

[Nie+16]

[Phi+16]

[Vog+16]

lTosif Papadakis Ktistakis and Nikolaos G Bourbakis. “A survey on robotic wheelchairs
mounted with robotic arms”. In: 2015 National Aerospace and Electronics Conference
(NAECON). IEEE. 2015, pp. 258-262.

Scott Niekum, Sarah Osentoski, George Konidaris, Sachin Chitta, Bhaskara Marthi, and
Andrew G Barto. “Learning grounded finite-state representations from unstructured demon-
strations”. In: International Journal of Robotics Research (IJRR) 34.2 (2015), pp. 131-
157.

Brian S Armour, Elizabeth A Courtney-Long, Michael H Fox, Heidi Fredine, and Anthony
Cahill. “Prevalence and causes of paralysis”. In: American journal of public health (AJPH)
106.10 (2016), pp. 1855-1857.

Siddharth Bhardwaj, Abid Ali Khan, and Mohammad Muzammil. “Electromyography in
physical rehabilitation: a review”. In: National Conference on Mechanical Engineering—
Ideas, Innovations & Initiatives (NCMEI3) (2016), pp. 64—69.

Alexander Broad and Brenna Argall. “Path planning under interface-based constraints for
assistive robotics”. In: Twenty-Sixth International Conference on Automated Planning and
Scheduling. 2016.

Sebastian G. Brunner, Franz Steinmetz, Rico Belder, and Andreas Domel. “RAFCON: A
graphical tool for engineering complex, robotic tasks”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2016), pp. 3283-3290.

Gerard Canal, Guillem Alenya, and Carme Torras. “Personalization framework for adaptive
robotic feeding assistance”. In: Social Robotics: Sth International Conference, ICSR 2016,
Kansas City, MO, USA, November 1-3, 2016 Proceedings 8. Springer. 2016, pp. 22-31.

Marco Ewerton, Guilherme Maeda, Gerrit Kollegger, Josef Wiemeyer, and Jan Peters.
“Incremental imitation learning of context-dependent motor skills”. In: 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids). IEEE. 2016, pp. 351-358.

Laura V Herlant, Rachel Holladay, and Siddhartha Srinivasa. “Assistive teleoperation of
robot arms via automatic time-optimal mode switching”. In: The Eleventh ACM/IEEE
International Conference on Human Robot Interaction (HRI) (2016), pp. 35-42.

Hairong Jiang, Ting Zhang, Juan P Wachs, and Bradley S Duerstock. “Enhanced control of
a wheelchair-mounted robotic manipulator using 3-D vision and multimodal interaction”. In:
Computer Vision and Image Understanding 149 (2016), pp. 21-31.

Negar Mehr, Roberto Horowitz, and Anca D Dragan. “Inferring and assisting with constraints
in shared autonomy”. In: 2016 IEEE 55th Conference on Decision and Control (CDC) (2016),
pp. 6689-6696.

Jianjun Meng, Shuying Zhang, Angeliki Bekyo, Jaron Olsoe, Bryan Baxter, and Bin He.
“Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks”.
In: Scientific Reports 6.1 (2016), pp. 1-15.

Giinter Niemeyer, Carsten Preusche, Stefano Stramigioli, and Dongjun Lee. In: Springer
handbook of robotics: Telerobotics. Springer, 2016, pp. 1085-1108.

Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim Likhachev. “Learning to plan for
constrained manipulation from demonstrations”. In: Autonomous Robots 40 (2016), pp. 109—
124.

Jorn Vogel, Katharina Hertkorn, Rohit U Menon, and Maximo A Roa. “Flexible, semi-
autonomous grasping for assistive robotics”. In: Int. Conf. Robotics and Automation (ICRA).
IEEE. 2016, pp. 4872-4879.

Bibliography 102

[WDV16]

[Abi+17]

[Baj+17]

[Bal+17]

[Bro+17]

[Chu+17]

[Mue+17]

[PS17]

[PC17]

[AC18]

[AD18]

[Baj+18]

[Cam+18]

[Fal+18]

Roman Weitschat, Alexander Dietrich, and J6rn Vogel. “Online motion generation for
mirroring human arm motion”. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016), pp. 4245-4250.

Firas Abi-Farraj, Takayuki Osa, Nicol6 Pedemonte Jan Peters, Gerhard Neumann, and
Paolo Robuffo Giordano. “A learning-based shared control architecture for interactive task
execution”. In: 2017 IEEE international conference on robotics and automation (ICRA).
IEEE. 2017, pp. 329-335.

Andrea Bajcsy, Dylan P Losey, Marcia K O’malley, and Anca D Dragan. “Learning robot
objectives from physical human interaction”. In: Conference on robot learning. PMLR. 2017,
pp. 217-226.

Tommaso Lisini Baldi, Giovanni Spagnoletti, Mihai Dragusanu, and Domenico Prattichizzo.
“Design of a wearable interface for lightweight robotic arm for people with mobility im-
pairments”. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE.
2017, pp. 1567-1573.

Alexander Broad, Jacob Arkin, Nathan Ratliff, Thomas Howard, and Brenna Argall. “Real-
time natural language corrections for assistive robotic manipulators”. In: The International
Journal of Robotics Research 36.5-7 (2017), pp. 684—698.

Cheng-Shiu Chung, Hyun W Ka, Hongu Wang, Dan Ding, Annmarie Kelleher, and Rory A
Cooper. “Performance evaluation of a mobile touchscreen interface for assistive robotic
manipulators: A pilot study”. In: Topics in spinal cord injury rehabilitation 23.2 (2017),
pp. 131-139.

Katharina Muelling et al. “Autonomy infused teleoperation with application to brain com-
puter interface controlled manipulation”. In: Autonomous Robots 41.6 (2017), pp. 1401—
1422.

Claudia Pérez-D’ Arpino and Julie Shah. “C-learn: Learning geometric constraints from
demonstrations for multi-step manipulation in shared autonomy”. In: 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2017, pp. 4058-4065.

Emmanuel Pignat and Sylvain Calinon. “Learning adaptive dressing assistance from human
demonstration”. In: Robotics and Autonomous Systems 93 (2017), pp. 61-75.

S Reza Ahmadzadeh and Sonia Chernova. “Trajectory-based skill learning using generalized
cylinders”. In: Frontiers in Robotics and AI 5 (2018), p. 132.

Victoria Alonso and Paloma De La Puente. “System transparency in shared autonomy: A
mini review”. In: Frontiers in neurorobotics 12 (2018), p. 83.

Andrea Bajcsy, Dylan P Losey, Marcia K O’Malley, and Anca D Dragan. “Learning from
physical human corrections, one feature at a time”. In: Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction. 2018, pp. 141-149.

Alexandre Campeau-Lecours, Ulysse Coté-Allard, Dinh-Son Vu, Francois Routhier, Benoit
Gosselin, and Clément Gosselin. “Intuitive adaptive orientation control for enhanced human—
robot interaction”. In: IEEE Transactions on robotics 35.2 (2018), pp. 509-520.

Cheikh Latyr Fall, Francis Quevillon, Martine Blouin, Simon Latour, Alexandre Campeau-
Lecours, Clément Gosselin, and Benoit Gosselin. “A multimodal adaptive wireless control
interface for people with upper-body disabilities”. In: IEEE transactions on biomedical
circuits and systems 12.3 (2018), pp. 564-575.

103

Bibliography

[HV18]

[Jav+18]

[KD18]

[Rai+18]

[Sel+18]

[SZG18]

[VH18]

[WI18]

[ZHC18]

[Abi+19]

[Cho+19]

[Dev+19]

[DO19]

[Gal+19]

Annette Hagengruber and J6rn Vogel. “Functional tasks performed by people with severe
muscular atrophy using an SEMG controlled robotic manipulator”. In: 2018 40th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(2018), pp. 1713-1718.

Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha Srinivasa, and J] Andrew
Bagnell. “Shared autonomy via hindsight optimization for teleoperation and teaming”. In:
International Journal of Robotics Research (IJRR) 37.7 (2018), pp. 717-742.

Ayse Kucukyilmaz and Yiannis Demiris. “Learning shared control by demonstration for
personalized wheelchair assistance”. In: IEEE transactions on haptics 11.3 (2018), pp. 431-
442.

Gennaro Raiola, Susana Sanchez Restrepo, Pauline Chevalier, Pedro Rodriguez-Ayerbe,
Xavier Lamy, Sami Tliba, and Freek Stulp. “Co-manipulation with a Library of Virtual
Guiding Fixtures”. In: Autonomous Robots (2018), pp. 1573-7527.

Mario Selvaggio, Giuseppe Andrea Fontanelli, Fanny Ficuciello, Luigi Villani, and Bruno
Siciliano. “Passive virtual fixtures adaptation in minimally invasive robotic surgery”. In:
IEEE Robotics and Automation Letters 3.4 (2018), pp. 3129-3136.

Guru Subramani, Michael Zinn, and Michael Gleicher. “Inferring geometric constraints in
human demonstrations”. In: Conference on Robot Learning. PMLR. 2018, pp. 223-236.

Jorn Vogel and Annette Hagengruber. “An sEMG-based interface to give people with
severe muscular atrophy control over assistive devices”. In: 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2018),
pp. 2136-2141.

Sebastian Wolf and Maged Iskandar. “Extending a dynamic friction model with nonlinear
viscous and thermal dependency for a motor and harmonic drive gear”. In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2018, pp. 783-790.

Martijn J A Zeestraten, loannis Havoutis, and Sylvain Calinon. “Programming by demon-
stration for shared control with an application in teleoperation”. In: IEEE Robotics and
Automation Letters (RA-L) 3.3 (2018), pp. 1848-1855.

Reza Abiri, Soheil Borhani, Eric W Sellers, Yang Jiang, and Xiaopeng Zhao. “A compre-
hensive review of EEG-based brain—computer interface paradigms”. In: Journal of neural
engineering (JNE) 16.1 (2019), p. 011001.

Ajit M Choudhari, Prasanna Porwal, Venkatesh Jonnalagedda, and Fabrice Mériaudeau. “An
electrooculography based human machine interface for wheelchair control”. In: Biocybernet-
ics and Biomedical Engineering 39.3 (2019), pp. 673-685.

Louise Devigne, Francois Pasteau, Tom Carlson, and Marie Babel. “A shared control
solution for safe assisted power wheelchair navigation in an environment consisting of
negative obstacles: a proof of concept”. In: 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC). IEEE. 2019, pp. 1043-1048.

Alexander Dietrich and Christian Ott. “Hierarchical impedance-based tracking control of
kinematically redundant robots”. In: IEEE Transactions on Robotics 36.1 (2019), pp. 204—
221.

Daniel Gallenberger, Tapomayukh Bhattacharjee, Youngsun Kim, and Siddhartha S Srinivasa.
“Transfer depends on acquisition: Analyzing manipulation strategies for robotic feeding”. In:
Int. Conf. Human-Robot Interaction (HRI). IEEE. 2019, pp. 267-276.

Bibliography 104

[GK19]

[Hua+19]

[Isk+19]

[IW19]

[JA19]

[Leil9]

[Moh+19]

[ORR19]

[Rah+19]

[SOF19]

[Bal+20]

[Bha+20]

[Eri+20]

[FR20]

[GA20]

Phillip M Grice and Charles C Kemp. “In-home and remote use of robotic body surrogates
by people with profound motor deficits”. In: PloS one 14.3 (2019), e0212904.

Yanlong Huang, Leonel Rozo, Joao Silvério, and Darwin G Caldwell. “Kernelized movement
primitives”. In: The International Journal of Robotics Research 38.7 (2019), pp. 833-852.

Maged Iskandar, Gabriel Quere, Annette Hagengruber, Alexander Dietrich, and J6rn Vogel.
“Employing whole-body control in assistive robotics”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 5643-5650.

Maged Iskandar and Sebastian Wolf. “Dynamic friction model with thermal and load
dependency: modeling, compensation, and external force estimation”. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 7367-7373.

Siddarth Jain and Brenna Argall. “Probabilistic human intent recognition for shared auton-
omy in assistive robotics”. In: ACM Transactions on Human-Robot Interaction (THRI) 9.1
(2019), pp. 1-23.

Daniel Sebastian Leidner. Cognitive reasoning for compliant robot manipulation. Springer,
2019.

Anahita Mohseni-Kabir et al. “Simultaneous learning of hierarchy and primitives for complex
robot tasks”. In: Autonomous Robots 43 (2019), pp. 859-874.

Juan F Orejuela-Zapata, Sarita Rodriguez, and Gonzalo Llano Ramirez. “Self-help devices
for quadriplegic population: A systematic literature review”. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering 27.4 (2019), pp. 692-701.

Rahaf Rahal, Firas Abi-Farraj, Paolo Robuffo Giordano, and Claudio Pacchierotti. “Haptic
shared-control methods for robotic cutting under nonholonomic constraints”. In: 2079
IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE. 2019,
pp- 8151-8157.

Ali Shafti, Pavel Orlov, and A Aldo Faisal. “Gaze-based, context-aware robotic system
for assisted reaching and grasping”. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 863—8609.

Ribin Balachandran, Hrishik Mishra, Matteo Cappelli, Bernhard Weber, Cristian Secchi,
Christian Ott, and Alin Albu-Schiffer. “Adaptive authority allocation in shared control of
robots using Bayesian filters”. In: 2020 IEEFE International Conference on Robotics and
Automation (ICRA) (2020), pp. 11298-11304.

Tapomayukh Bhattacharjee, Ethan K Gordon, Rosario Scalise, Maria E Cabrera, Anat Caspi,
Maya Cakmak, and Siddhartha S Srinivasa. “Is more autonomy always better? exploring
preferences of users with mobility impairments in robot-assisted feeding”. In: Proceedings
of the 2020 ACM/IEEE international conference on human-robot interaction. 2020, pp. 181—
190.

Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C Karen Liu, and Charles C Kemp.
“Assistive gym: A physics simulation framework for assistive robotics”. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 10169—
10176.

Werner Friedl and Maximo A Roa. “CLASH—A Compliant Sensorized Hand for Handling
Delicate Objects”. In: Frontiers in Robotics and Al 6 (2020), p. 138.

Deepak E Gopinath and Brenna D Argall. “Active intent disambiguation for shared control
robots”. In: IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE)
28.6 (2020), pp. 1497-1506.

105

Bibliography

[Isk+20]

[JA20]

[Los+20]

[Par+20]

[Que+20]

[Ras+20]

[Vog+20a]

[Vog+20b]

[WEL20]

[2Z720]

[Bus+21]

[CTA21]

[CBO21]

Maged Iskandar, Christian Ott, Oliver Eiberger, Manuel Keppler, Alin Albu-Schiffer,
and Alexander Dietrich. “Joint-level control of the DLR lightweight robot SARA”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020),
pp- 8903-8910.

Mahdieh Nejati Javaremi and Brenna D Argall. “Characterization of assistive robot arm tele-
operation: A preliminary study to inform shared control”. In: arXiv preprint, arXiv:2008.00109
(2020).

Dylan P Losey, Krishnan Srinivasan, Ajay Mandlekar, Animesh Garg, and Dorsa Sadigh.
“Controlling assistive robots with learned latent actions”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 378-384.

Daehyung Park, Yuuna Hoshi, Harshal P Mahajan, Ho Keun Kim, Zackory Erickson, Wendy
A Rogers, and Charles C Kemp. “Active robot-assisted feeding with a general-purpose
mobile manipulator: Design, evaluation, and lessons learned”. In: Robotics and Autonomous
Systems 124 (2020), p. 103344.

Gabriel Quere, Annette Hagengruber, Maged Iskandar, Samuel Bustamante, Daniel Leidner,
Freek Stulp, and Jorn Vogel. “Shared control templates for assistive robotics”. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA) (2020), pp. 1956-1962.

Mamunur Rashid, Norizam Sulaiman, Anwar PP Abdul Majeed, Rabiu Muazu Musa, Fakhri
Ab. Nasir, Bifta Sama Bari, and Sabira Khatun. “Current status, challenges, and possible
solutions of EEG-based brain-computer interface: a comprehensive review”. In: Frontiers in
neurorobotics (2020), p. 25.

Jorn Vogel et al. “An ecosystem for heterogeneous robotic assistants in caregiving: Core
functionalities and use cases”. In: IEEE Robotics & Automation Magazine 28.3 (2020),
pp- 12-28.

Jorn Vogel et al. “Edan: An emg-controlled daily assistant to help people with physical
disabilities”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 4183-4190.

Christoph Willibald, Thomas Eiband, and Dongheui Lee. “Collaborative Programming
of Conditional Robot Tasks”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2020, pp. 5402-5409.

Zhenliang Zhang, Yixin Zhu, and Song-Chun Zhu. “Graph-based hierarchical knowledge
representation for robot task transfer from virtual to physical world”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 11139-
11145.

Samuel Bustamante, Gabriel Quere, Katharina Hagmann, Xuwei Wu, Peter Schmaus, Jérn
Vogel, Freek Stulp, and Daniel Leidner. “Toward seamless transitions between shared control
and supervised autonomy in robotic assistance”. In: IEEE Robotics and Automation Letters
6.2 (2021), pp. 3833-3840.

Gerard Canal, Carme Torras, and Guillem Alenya. “Are Preferences Useful for Better
Assistance?: A Physically Assistive Robotics User Study”. In: ACM Transactions on Human-
Robot Interaction (THRI) 10.4 (2021), pp. 1-19.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. “Learning constraints from demonstra-
tions with grid and parametric representations”. In: The International Journal of Robotics
Research 40.10-11 (2021), pp. 1255-1283.

Bibliography 106

[Die+21]

[Fle+21]

[Hag+21]

[IDA21]

[Isk+21]

[KNK?21]

[Mic+21]

[MZR21]

[Qia+21]

[Que+21]

[Bel+22]

[Bus+22]

[Cel+22]

Alexander Dietrich, Xuwei Wu, Kristin Bussmann, Marie Harder, Maged Iskandar, Johannes
Englsberger, Christian Ott, and Alin Albu-Schéffer. “Practical consequences of inertia
shaping for interaction and tracking in robot control”. In: Control Engineering Practice 114
(2021), p. 104875.

Aaron Fleming, Nicole Stafford, Stephanie Huang, Xiaogang Hu, Daniel P Ferris, and
He Helen Huang. “Myoelectric control of robotic lower limb prostheses: a review of elec-
tromyography interfaces, control paradigms, challenges and future directions”. In: Journal
of neural engineering (JNE) 18.4 (2021), p. 041004.

Annette Hagengruber, Ulrike Leipscher, Bjoern M Eskofier, and J6rn Vogel. “Electromyog-
raphy for Teleoperated Tasks in Weightlessness”. In: IEEE Transactions on Human-Machine
Systems (T-HMS) 51.2 (2021), pp. 130-140.

Santiago Iregui, Joris De Schutter, and Erwin Aertbelién. “Reconfigurable Constraint-Based
Reactive Framework for Assistive Robotics With Adaptable Levels of Autonomy”. In: IEEE
Robotics and Automation Letters (RA-L) 6.4 (2021), pp. 7397-7405.

Maged Iskandar, Oliver Eiberger, Alin Albu-Schiffer, Alessandro De Luca, and Alexander
Dietrich. “Collision detection, identification, and localization on the DLR SARA robot with
sensing redundancy”. In: 2021 IEEFE International Conference on Robotics and Automation
(ICRA) (2021), pp. 3111-3117.

Oliver Kroemer, Scott Niekum, and George Konidaris. “A review of robot learning for
manipulation: Challenges, representations, and algorithms”. In: Journal of machine learning
research 22.30 (2021), pp. 1-82.

Youssef Michel, Rahaf Rahal, Claudio Pacchierotti, Paolo Robuffo Giordano, and Dongheui
Lee. “Bilateral teleoperation with adaptive impedance control for contact tasks”. In: IEEE
Robotics and Automation Letters 6.3 (2021), pp. 5429-5436.

Sina Mohseni, Niloofar Zarei, and Eric D Ragan. “A multidisciplinary survey and framework
for design and evaluation of explainable Al systems”. In: ACM Transactions on Interactive
Intelligent Systems (TiiS) 11.3-4 (2021), pp. 1-45.

Calvin Z Qiao, Maram Sakr, Katharina Muelling, and Henny Admoni. “Learning from
demonstration for real-time user goal prediction and shared assistive control”. In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 3270-3275.

Gabriel Quere, Samuel Bustamante, Annette Hagengruber, J6rn Vogel, Franz Steinmetz, and
Freek Stulp. “Learning and Interactive Design of Shared Control Templates™. In: 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2021),
pp. 1887-1894.

Suneel Belkhale, Ethan K. Gordon, Yuxiao Chen, Siddhartha Srinivasa, Tapomayukh Bhat-
tacharjee, and Dorsa Sadigh. “Balancing Efficiency and Comfort in Robot-Assisted Bite
Transfer”. In: 2022 IEEE International Conference on Robotics and Automation (ICRA)
(2022).

Samuel Bustamante, Gabriel Quere, Daniel Leidner, Jorn Vogel, and Freek Stulp. “CATs:
Task Planning for Shared Control of Assistive Robots with Variable Autonomy”. In: 2022
International Conference on Robotics and Automation (ICRA). IEEE. 2022, pp. 3775-3782.

Carlos Celemin et al. “Interactive imitation learning in robotics: A survey”. In: Foundations
and Trends® in Robotics 10.1-2 (2022), pp. 1-197.

107

Bibliography

[Got+22]

[How+22]

[Isk+22]

[Los+22]

[Lut22]

[NH22]

[Pet+22]

[WL22]

[Ye+22]

[Den+23]

[Gor+23]

[Isk+23]

[Jae+23]

[Pad+23]

Alberto Gottardi, Stefano Tortora, Elisa Tosello, and Emanuele Menegatti. “Shared Control
in Robot Teleoperation With Improved Potential Fields”. In: IEEE Transactions on Human-
Machine Systems (T-HMS) 52.3 (2022), pp. 410-422.

Jonathan Howard, Zoe Fisher, Andrew H Kemp, Stephen Lindsay, Lorna H Tasker, and
Jeremy J Tree. “Exploring the barriers to using assistive technology for individuals with
chronic conditions: a meta-synthesis review”. In: Disability and rehabilitation: Assistive
technology 17.4 (2022), pp. 390—408.

Maged Iskandar, Christiaan van Ommeren, Xuwei Wu, Alin Albu-Schiffer, and Alexander
Dietrich. “Model predictive control applied to different time-scale dynamics of flexible joint
robots”. In: IEEE Robotics and Automation Letters 8.2 (2022), pp. 672—679.

Dylan P Losey, Hong Jun Jeon, Mengxi Li, Krishnan Srinivasan, Ajay Mandlekar, Animesh
Garg, Jeannette Bohg, and Dorsa Sadigh. “Learning latent actions to control assistive robots”.
In: Autonomous robots 46.1 (2022), pp. 115-147.

Matthias Lutz. “Composable Coordination for Service Robots: A Model-Driven Approach”.
PhD thesis. Technische Universitdt Miinchen, 2022.

Patrick Naughton and Kris Hauser. “Structured Action Prediction for Teleoperation in Open
Worlds”. In: IEEE Robotics and Automation Letters (RA-L) 7.2 (2022), pp. 3099-3105.

Laura Petrich, Jun Jin, Masood Dehghan, and Martin Jagersand. “A quantitative analysis
of activities of daily living: Insights into improving functional independence with assistive
robotics”. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE.
2022, pp. 6999-7006.

Christoph Willibald and Dongheui Lee. “Multi-level task learning based on intention and
constraint inference for autonomous robotic manipulation”. In: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 7688—7695.

Ruolin Ye, Wengiang Xu, Haoyuan Fu, Rajat Kumar Jenamani, Vy Nguyen, Cewu Lu,
Katherine Dimitropoulou, and Tapomayukh Bhattacharjee. “Rcare world: A human-centric
simulation world for caregiving robots”. In: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 33-40.

Maximilian Denninger, Dominik Winkelbauer, Martin Sundermeyer, Wout Boerdijk, Markus
Wendelin Knauer, Klaus H Strobl, Matthias Humt, and Rudolph Triebel. “Blenderproc2: A
procedural pipeline for photorealistic rendering”. In: Journal of Open Source Software 8.82
(2023), p. 4901.

Ethan Kroll Gordon, Amal Nanavati, Ramya Challa, Bernie Hao Zhu, Taylor Annette Kessler
Faulkner, and Siddhartha Srinivasa. “Towards general single-utensil food acquisition with
human-informed actions”. In: Conference on Robot Learning. PMLR. 2023, pp. 2414-2428.

Maged Iskandar, Christian Ott, Alin Albu-Schéffer, Bruno Siciliano, and Alexander Dietrich.
“Hybrid force-impedance control for fast end-effector motions”. In: IEEE Robotics and
Automation Letters 8.7 (2023), pp. 3931-3938.

Lukas Jaeger et al. “How the CYBATHLON competition has advanced assistive technolo-
gies”. In: Annual Review of Control, Robotics, and Autonomous Systems 6.1 (2023), pp. 447—
476.

Abhishek Padalkar, Gabriel Quere, Franz Steinmetz, Antonin Raffin, Matthias Nieuwen-
huisen, Jodo Silvério, and Freek Stulp. “Guiding Reinforcement Learning with Shared
Control Templates”. In: 40th IEEE International Conference on Robotics and Automation,
ICRA 2023. 1EEE. 2023.

Bibliography 108

[Prz+23]

[She+23]

[SH23]

[Sto+23]

[Ulm+23]

[WBL23]

[Bus+24]

[Hag+24]

[IAD24]

[Mil+24]

[Pad+24]

[Pas+24]

[Que+24]

Michael Przystupa, Kerrick Johnstonbaugh, Zichen Zhang, Laura Petrich, Masood Dehghan,
Faezeh Haghverd, and Martin Jagersand. “Learning State Conditioned Linear Mappings
for Low-Dimensional Control of Robotic Manipulators”. In: 2023 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2023, pp. 857-863.

Afagh Mehri Shervedani, Siyu Li, Natawut Monaikul, Bahareh Abbasi, Barbara Di Eugenio,
and Milo§ Zefran. “An end-to-end human simulator for task-oriented multimodal human-
robot collaboration”. In: 2023 32nd IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). IEEE. 2023, pp. 614-620.

Jodo Silvério and Yanlong Huang. “A Non-parametric Skill Representation with Soft Null
Space Projectors for Fast Generalization”. In: Proc. IEEE Intl Conf. on Robotics and
Automation (ICRA). 2023, pp. 2988-2994.

Manuel Stoiber, Mariam Elsayed, Anne E Reichert, Florian Steidle, Dongheui Lee, and
Rudolph Triebel. “Fusing Visual Appearance and Geometry for Multi-modality 6DoF Object
Tracking”. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2023, pp. 1170-1177.

Maximilian Ulmer, Maximilian Durner, Martin Sundermeyer, Manuel Stoiber, and Rudolph
Triebel. “6d object pose estimation from approximate 3d models for orbital robotics”. In:
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.
2023, pp. 10749-10756.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors”. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2023, pp. 7464-7475.

Samuel Bustamante et al. “Feasibility Checking and Constraint Refinement for Shared
Control in Assistive Robotics”. In: IEEE Robotics and Automation Letters (2024).

Katharina Hagmann, Anja Hellings-Kuss, Florian Steidle, Freek Stulp, Daniel Leidner, and
Julian Klodmann. “Continuous Transitions between Levels of Autonomy based on Virtual
Fixtures for Surgical Robotic Systems”. In: 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2024. IEEE. 2024.

Maged Iskandar, Alin Albu-Schiffer, and Alexander Dietrich. “Intrinsic sense of touch for
intuitive physical human-robot interaction”. In: Science Robotics 9.93 (2024), eadn4008.

Elle Miller, Maximilian Durner, Matthias Humt, Gabriel Quere, Wout Boerdijk, Ashok M
Sundaram, Freek Stulp, and J6rn Vogel. “Unknown object grasping for assistive robotics”.
In: 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2024,
pp. 18157-18163.

Akhil Padmanabha, Janavi Gupta, Chen Chen, Jehan Yang, Vy Nguyen, Douglas J Weber,
Carmel Majidi, and Zackory Erickson. “Independence in the Home: A Wearable Interface
for a Person with Quadriplegia to Teleoperate a Mobile Manipulator”. In: Proceedings of the
2024 ACM/IEEE International Conference on Human-Robot Interaction. 2024, pp. 542-551.

Max Pascher, Felix Ferdinand Goldau, Kirill Kronhardt, Udo Frese, and Jens Gerken.
“AdaptiX-A Transitional XR Framework for Development and Evaluation of Shared Control
Applications in Assistive Robotics”. In: Proceedings of the ACM on Human-Computer
Interaction 8 .EICS (2024), pp. 1-28.

Gabriel Quere, Freek Stulp, David Filliat, and Jodo Silvério. “A probabilistic approach for
learning and adapting shared control skills with the human in the loop”. In: 2024 IEEE
International Conference on Robotics and Automation (ICRA) (2024).

109

Bibliography

[Sch+24]

[Hag+25]

[Org]

[Ziir]

Philipp Scholl, Maged Iskandar, Sebastian Wolf, Jinoh Lee, Aras Bacho, Alexander Diet-
rich, Alin Albu-Schiéffer, and Gitta Kutyniok. “Learning-based adaption of robotic friction
models”. In: Robotics and Computer-Integrated Manufacturing 89 (2024), p. 102780.

Annette Hagengruber, Gabriel Quere, Samuel Bustamante, Jianxiang Feng, Daniel Leidner,
Alin Albu-Schiffer, Freek Stulp, and Jorn Vogel. “An assistive robot that enables people
with amyotrophia to perform sequences of everyday activities”. In: Scientific reports (2025).

World Health Organization. Spinal cord injury. https : //www .who . int /news -
room/fact-sheets/detail/spinal-cord-injury. Accessed: 2024-09-23.

CYBATHLON ETH Ziirich. Cybathlon. https : / / cybathlon . ethz .ch/en/
cybathlon. Accessed: 2024-09-23.

https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury
https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury
https://cybathlon.ethz.ch/en/cybathlon
https://cybathlon.ethz.ch/en/cybathlon

110
Bibliography

Chapter 9

Appendix

A few works have made use of the Shared Control Templates framework.

9.1 Toward Seamless Transitions Between Shared Control and Supervised
Autonomy in Robotic Assistance

Abstract by Bustamante ef al. [Bus+21]:

" Assistive robots aim to help humans with impairments execute motor tasks in everyday household
environments. Controlling the end-effector of such robots directly, for instance with a joystick, is often
cumbersome. Shared control methods, like Shared Control Templates (SCTs) , have therefore been
proposed to provide support for robotic control. Moreover, depending on factors such as workload, system
trust or engagement, users may like to freely adjust the level of autonomy, for instance by letting the robot
complete a task by itself. In this letter, we present a concept for adjustable autonomy in the context of
robotic assistance. We extend the SCT approach with an automatic control module that allows the user to
switch between Shared Control and Supervised Autonomy at any time during task execution. As both
support modes use the same action representation, transitions are seamless. We show the capabilities of
this approach in a set of daily living tasks with our wheelchair-mounted robot EDAN and our humanoid
robot Rollin’ Justin. We highlight how automatic execution benefits from SCT features, like task-related
constraints and whole-body control."

9.2 CATs: Task Planning for Shared Control of Assistive Robots with
Variable Autonomy

Abstract by Bustamante et al. [Bus+22]:

"From robotic space assistance to healthcare robotics, there is increasing interest in robots that offer
adaptable levels of autonomy. In this paper, we propose an action representation and planning framework
that is able to generate plans that can be executed with both shared control and supervised autonomy, even
switching between them during task execution. The action representation - Constraint Action Templates
(CATs) - combine the advantages of Action Templates and Shared Control Templates. We demonstrate
that CAT's enable our planning framework to generate goal-directed plans for variations of a typical task
of daily living, and that users can execute them on the wheelchair-robot EDAN in shared control or in
autonomous mode."

111

Chapter 9. Appendix 112

9.3 Guiding Reinforcement Learning with Shared Control Templates

Abstract by Padalkar et al. [Pad+23]:

"Purposeful interaction with objects usually requires certain constraints to be respected, e.g. keeping
a bottle upright to avoid spilling. In reinforcement learning, such constraints are typically encoded in
the reward function. As a consequence, constraints can only be learned by violating them. This often
precludes learning on the physical robot, as it may take many trials to learn the constraints, and the
necessity to violate them during the trial-and-error learning may be unsafe. We have serendipitously
discovered that constraint representations for shared control — in particular Shared Control Templates
(SCTs) — are ideally suited for guiding RL. Representing constraints explicitly (rather than implicitly in
the reward function) also simplifies the design of the reward function. We evaluate the advantages of the
approach (faster learning without constraint violations, even with sparse reward functions) in a simulated
pouring task. Furthermore, we demonstrate that these advantages enable the real robot to learn this task in
only 65 episodes taking 16 minutes."

9.4 Unknown Object Grasping for Assistive Robotics

Abstract by Miller et al. [Mil+24]:

"We propose a novel pipeline for unknown object grasping in shared robotic autonomy scenarios.
State-of-the-art methods for fully autonomous scenarios are typically learning-based approaches optimised
for a specific end-effector, that generate grasp poses directly from sensor input. In the domain of assistive
robotics, we seek instead to utilise the user’s cognitive abilities for enhanced satisfaction, grasping
performance, and alignment with their high level task-specific goals. Given a pair of stereo images, we
perform unknown object instance segmentation and generate a 3D reconstruction of the object of interest.
In shared control, the user then guides the robot end-effector across a virtual hemisphere centered around
the object to their desired approach direction. A physics-based grasp planner finds the most stable local
grasp on the reconstruction, and finally the user is guided by shared control to this grasp. In experiments on
the DLR EDAN platform, we report a grasp success rate of 87% for 10 unknown objects, and demonstrate
the method’s capability to grasp objects in structured clutter and from shelves."

9.5 Continuous Transitions between Levels of Autonomy based on Virtual
Fixtures for Surgical Robotic Systems

Abstract by Hagmann et al. [Hag+24]:

"Nowadays, telemanipulation robotic systems are present in many operating rooms. The exploitation
of autonomy for minimally invasive robotic surgery remains an open field of research as it is non-trivial to
provide meaningful assistance. This work presents a novel virtual fixture providing haptic augmentation
for shared control as well as task-level autonomy, while ensuring continuous transitions of control between
the robotic system and the surgeon. Transitions between levels of autonomy are based on information about
the robotic system and its environment. The proposed method is evaluated through experiments which
show the successful completion of surgeon training tasks, namely peg transfer and suturing, exploiting
shared control and task-level autonomy."

LYT
<0 EC&

° 1

5 2 | ECOLE

2 . | DOCTORALE
W ~

@
‘" bg o

Titre : Apprentissage et conception de compétences de controle partagé pour robots d'assistance

Mots clés : Controle partagé, Robots d'assistance, Apprentissage de compétence
Résumé :

Les robots d'assistance, tels qu'un bras robotique monté sur un fauteuil roulant, offrent
une aide précieuse aux personnes handicapées moteurs en les aidant a effectuer des
taches quotidiennes comme manger ou ouvrir une porte. Cependant, l'utilisation de ces
robots peut s'avérer difficile en raison de leur complexité. Cette thése présente une
nouvelle approche qui aide 1'utilisateur pour ses taches tout en lui permettant de garder le
controle sur les actions clés - comme décider de la quantité d'eau a verser d'un thermos
alors que le robot évite les déversements - assurant une plus grande fiabilité dans
I'exécution de ces taches. De nouvelles compétences peuvent étre acquises a partir de
I'enregistrement de trajectoires du robot pour de nouvelles taches. Des expériences
menées avec notre robot d'assistance, EDAN, ont montré que des utilisateurs valides et
handicapés étaient en mesure d'accomplir avec succes des activités de la vie quotidienne.

Title : Learning and designing shared control skills from demonstrations for assistive robots
Keywords : Shared control, Assitive robots, Skill learning
Abstract :

Assistive robots, such as wheelchair-mounted robotic arms, offer valuable support to
individuals with limited physical capabilities by helping them perform everyday tasks like
eating or navigating through doors. However, operating these robots using interfaces such
as joysticks can be difficult due to the system complexity and variety of possible
movements. This thesis presents a new approach that provides task-specific assistance
while keeping the user in control over key actions - such as deciding how much water to
pour from a thermos while the robot ensures no spilling - providing greater reliability in
task execution and enhancing users' abilities to interact with their environment. New skills
can be learned from recorded task executions and users can adapt skills to new conditions.
Experiments using our assistive robot, EDAN, showed that able-bodied and motor-impaired
users were able to successfully perform daily life activities.

Institut Polytechnique de Paris
91120 Palaiseau, France

<
bg o®

