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Abstract
Synchronization is a widespread phenomenon encountered in many natural and engineered
systems with nonlinear classical dynamics. How synchronization concepts and mechanisms
transfer to the quantum realm and whether features are universal or platform specific are timely
questions of fundamental interest. They can be studied in superconducting electrical circuits which
provide a well-established platform for nonlinear quantum dynamics. Here, we consider a
Josephson-photonics device, where a dc-biased Josephson junction creates (non-classical) light in a
microwave cavity. The combined quantum compound constitutes a self-sustained oscillator: a
system susceptible to synchronization. This is due to the inherent effect of an in-series resistance,
which realizes an autonomous feedback mechanism of the charge transport on the driving voltage.
Accounting for the full counting statistics of transported charge not only yields phase diffusion, but
allows us to describe phase locking to an ac-signal and the mutual synchronization of two such
devices. Thereby one can observe phase stabilization leading to a sharp emission spectrum as well
as unique charge transport statistics revealing shot noise induced phase slips. Two-time
perturbation theory is used to obtain a reduced description of the oscillators phase dynamics in
form of a Fokker–Planck equation in generalization of classical synchronization theories.

1. Introduction

Since Huygens’s first study of pendulum clocks in 1665 [1] the nonlinear phenomenon of synchronization
has extensively been studied in all fields of science [2–6]. It occurs in systems autonomously undergoing
self-sustained oscillations, i.e. these are not powered by an external periodic drive, but are kept going by
resupplying energy in an incoherent manner, such as by the gravity-driven weight in a pendulum clock or by
a battery. In the absence of any periodic reference oscillation, self-sustained oscillations do not have any
preferred phase which instead will be randomized by noise acting on the system. In the same manner, the
phase will be strongly susceptible to regular external perturbations, so that even a weak injected signal can
entrain one oscillator or a weak coupling can synchronize the motion of two such systems. While the
oscillation spectrum of the free self-sustained oscillator is broad and centered around its natural frequency, it
will be pulled towards the frequency of the injected signal and become very sharp when locked, explaining
the technological relevance of locking and synchronization, e. g. in laser physics [7, 8].

Unsurprisingly, also quantum synchronization has attracted interest recently, both for systems whose
classical counterparts show synchronization behavior with the paradigmatic example of the van der Pol
oscillator [9–16], as well as for systems [17–25], such as small spins, or mechanisms [26–32] without classical
analogue.

Superconducting electrical circuits incorporating Josephson junctions are an ideal platform to study,
both, the fundamental physics of (circuit) quantum electrodynamics as well as the technological exploitation
of nonlinear quantum dynamics. For instance, such circuits can oftentimes bridge all the way from the
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semiclassical to the deep quantum regime. One manifestation of quantum effects is the appearance of shot
noise: fluctuations of the electrical current associated with the granular nature of electrical charges, i.e. of
electrons in a metal or (Cooper-)pairs of electrons in a superconductor. Synchronization physics in such
devices is thus influenced by the quantum mechanical nature of the nonlinear oscillator and the quantum
stochastic nature of the noise affecting its phase.

A perfect system to study such quantum synchronization in the presence of shot noise are
Josephson-photonics devices, where Cooper pairs (CPs) tunneling across a dc-biased Josephson junction
create photons in an in-series microwave cavity [33]. In such devices, the nonlinearity of the Josephson
junction imprints a quantum nature on the microwave generation so that they can be employed to create
entangled light [34], photon multiplets [35], or single-photons [36, 37]. Constituting versatile and bright
quantum light sources they may become an important component for quantum technological applications
[38, 39] in quantum communication, quantum information processing, and for sensing and imaging tasks,
such as envisioned quantum radars [40]. While synchronization in (multi-mode) Josephson photonics has
been observed in a semiclassical regime [41–43] and to some extent theoretically described [44–46], those
devices are also particularly suited to study the deep quantum regimes of strong nonlinearity at the
few-photon level [35, 37, 47], where such fundamental questions as quantum measures of synchronization
[48–50] and synchronization of individual trajectories [26, 31] can be studied.

Here, we present a model for the quantum dynamics of a Josephson-photonics circuit biased by a realistic
voltage source. We show that the system is driven into self-sustained oscillations and describe how it
synchronizes to an external ac-signal or a second circuit. Such phase locking enables an immediate
exploitation of these devices as sources of entanglement, thus dispensing with the elaborate scheme
developed in [34] to characterize the entanglement of a two-mode squeezed state without phase stability, and
opens the door to Wigner state tomography consequently broadening the potential technological impact of
these devices. Moreover, this new platform for quantum synchronization allows studying fundamental
limitations of phase stabilization in a regime, where the quantum shot noise of charge tunneling-events feeds
back into the Hamiltonian and induces phase slips.

2. Quantum synchronization to an external signal

In a Josephson-photonics device CPs tunneling across a dc-biased Josephson junction create photonic
excitations in a microwave cavity connected in series with the junction, see figure 1(a). The energy of CPs is
converted into microwave radiation emitted from the leaky cavity with a frequency, ωJ ≈ 2eVdc/h̄= ωdc,
when the dc-voltage is tuned close to a resonance frequency, ω0 ≈ ωJ, of the cavity. Placing a resistor R0 in
series with junction and cavity promotes a back-action of the CP tunneling on the voltage driving the
tunneling process: the mean dc-current ⟨̂ICP⟩ reduces the effective dc-voltage driving the junction,
ωJ = 2e(Vdc −R0⟨̂ICP⟩)/h̄, while current shot noise is turned into voltage fluctuations assumed here to
exceed thermal or other fluctuations of the voltage source. As we demonstrate in the following, the very same
backaction mechanism can help to avert broadening, if a small ac-locking signal is added to the dc-voltage,
V(t) = Vdc +Vac cos[Ωt+φac]. Increasing the amplitude ε= 2eVac/(h̄Ω), the spectrum will first show an
additional small δ-peak at Ω, while the broadened peak is pulled towards Ω, until eventually most light is
emitted within a very sharp peak in sync with the external locking drive, see figure 1(b). How to model and
simulate these fundamental features of nonlinear quantum dynamics – namely frequency pulling, phase
locking, and the closely related synchronization to a second device, which takes the role of the external
locking signal – is the central result of this work.

2.1. Josephson-photonics system with in-series resistor
A Josephson-photonics device is modeled by the Hamiltonian

HS = h̄ω0â
†â− EJ cos

[
α0

(
â† + â

)
+

2e

h̄

ˆ t

0
V(τ)dτ − φ̂R0

]
, (1)

where â† and â denote creation and annihilation operators of the cavity with zero-point fluctuations
α0 = (2e2

√
L/C/h̄)1/2, EJ is the Josephson energy, and the argument of the cosine follows from Kirchhoff ’s

sum rule. In contrast to ac-driven Josephson microwave devices, such as Josephson parametric amplifiers
[38, 39], the nonlinear Josephson-photonics device is not driven by a periodic force, but by an incoherent
power input from a battery. It thus emulates the textbook dynamical system susceptible to locking and
synchronization, the pendulum clock driven by a weight. This aspect of Josephson-photonics devices is
hidden in the standard description, when a perfect dc-voltage bias V≡ Vdc without any resistance is
assumed, i.e. φ̂R0 = 0, so that a periodic drive term EJ cos

[
2eVdct/h̄+α0(â† + â)

]
results. The oftentimes
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Figure 1. The microwave emission of a Josephson-photonics device (a), consisting of a Josephson junction in-series to a
microwave cavity and a resistance R0, can be locked by adding a small ac-signal (of strength ε and frequencyΩ on top of a
dc-voltage drive). (b) Emission spectra S(ω) are centered around a frequency ωJ determined by the voltage across the junction
but broadened by phase fluctuations. Applying a locking signal [initially detuned by ν0 =Ω−ωJ(ε= 0) ] pulls the emission
frequency towardsΩ, eventually resulting in a sharp emission peak atΩ [here artificially broadened by γ/1000 (FWHM)]. (c)
The counting statistics of CPs transported within a time interval T= 267/γ is directly linked to the statistics of voltage
fluctuations and thus the spectral width. Increasing the locking strength narrows the CP distribution, while shot noise induces
phase slips by∆m= 1/r0. [Parameters: E∗J /(h̄γ) = 20, α0 = 0.1, 2eVdc/h̄= ω0, ν0 = 1.25r0γ, r0 = 1/50.].

neglected fluctuations of the voltage [51] turn the system into a (lockable) self-sustained oscillator. These
fluctuations arise from thermal or external sources, but crucially contain an unavoidable contribution from
the shot noise of the current through the junction. We describe this by considering a resistance in-series with
a perfect voltage source, as visualized in figure 1(a). The integrated voltage fluctuations due to shot noise on
this resistance yield the phase,

φ̂R0 = (2e/h̄)

ˆ t

0
V̂R0dτ = (2e/h̄)R0

ˆ t

0
ÎCPdτ , (2)

appearing in (1).
In general, the current in (2) is a full quantum operator and so is the integral for the phase, which being

proportional to the number of CPsm transferred across the junction in the elapsed time interval
incorporates the effects of coherences between different charge transfer numbers. In a model without
in-series resistance these coherences are limited by the typical number of photons in the cavity and a
resistance will introduce additional decoherence. Instead of retaining the full quantum character of φ̂R0 and a
full microscopic model of the resistance in the Hamiltonian, we can effectively model the resistor phase by
treating the numberm of transferred CPs as a stochastic variable with statistics described by the full counting
statistics of the coherent CP tunneling process. Such a modeling of the driving phase in the Hamiltonian (1)
by anm-dependent c-number, φR0 = 2π r0m, where r0 = R0/RQ is the in-series resistance in units of the
superconducting resistance quantum RQ = h/(4e2), is valid for small r0, where any residual coherences
between charge states would correspond to minute changes of the driving phase. Using them-dependent
Hamiltonian (1) within a quantum master equation for the state of the system, which is conditioned on the
number of tunneled CPs, resembles a feedback-based locking scheme, where the in-series resistance realizes
an inherent autonomous adaptation of the driving phase to a measurement outcome.

The model outlined here comprises two essential components that extend beyond the standard
description of Josephson photonic devices used in previous works. First, a small ac-voltage signal is added on
top of the usual dc-bias and we need to derive the rotating-wave Hamiltonian of the system incorporating
both these voltages. Second, the in-series resistance turns the system into a self-sustained oscillator and we
require an equation governing the time-evolution of the system that accurately reflects the dynamics of the
m-dependent parameter φR0 . These two extensions are covered in sections 2.2 and 2.3, respectively. Together,
this will provide a complete model that can be simulated numerically or simplified through approximations
to a reduced description of the phase.

2.2. Hamiltonian: inclusion of a small ac-voltage signal
Technically, we first move to a frame rotating with the frequency Ω of the ac-signal (introducing a detuning
∆= δdc + δac = (ω0 −ωdc)+ (ωdc −Ω)) while neglecting fast oscillating terms in a rotating wave
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approximation (RWA). The resulting Hamiltonian (cf appendix A), HRWA = h̄∆a†a+ h+ h†, with

h† (m) =
E∗J α0

2
eiψ : ia†

J1
(
2
√
α2
0a

†a
)

√
α2
0a

†a
: +ε

E∗J
4
eiψ : a†2

J2
(
2
√
α2
0a

†a
)

a†a
+ J0

(
2
√
α2
0a

†a

)
:

≈
E∗J α0

2
eiψ ia† + ε

E∗J
4
eiψ

[
α2
0a

†2

2
+
(
1−α2

0a
†a
)]

, (3)

depends on the phase-difference

ψ (t,m) = Ωt+φac − (ωdct− 2π r0m) (4)

between the ac-signal and the cavity oscillation. Here, the Josephson energy is renormalized, E∗J = EJe−α
2
0/2,

and colons signal normal-ordering of the operators. The second line, valid for small zero-point fluctuations
and weak driving, so that all Bessel functions may be expanded, allows easy interpretation of the various
terms: the first term describes direct driving of the cavity by the dc-bias, where each tunneling CP creates a
photon; the second term,∝ a†2 · EJ · ε, accounts for the generation of two photons by one CP and one
ac-drive excitation; and the last term represents one CP tunneling and emitting an excitation into the drive
renormalized by the presence of cavity photons (see also appendix A). The various CP transfer processes
come with different leading powers of the zero-point fluctuations, α0, and accordingly for small α0 the first
term of (3) is dominant (and the approximation leading to the second line is valid). In consequence, if ψ
were to be a fixed external parameter, the photonic state of the cavity would have a trivial dependence on ψ,
which essentially rotates the state space, with only minor corrections stemming from the second term.
Without a locking signal, ε= 0, the photonic state also determines the current, which is independent of the
value of ψ, as seen by invoking energy conservation and the photon loss rate,∝ γ⟨a†a⟩ [47], or by evaluating
the explicitly ψ-dependent current operator, ÎCP =−i2e(h† − h)/h̄, acting on the trivially ψ-dependent
cavity state. The fact, that the current describes changes of the number of transferred CPsm and thus of ψ,
then leads to a driving phase that drifts and diffuses and to the self-sustained oscillator dynamics described
above, cf figure 2 (a).

Turning on an oscillating locking signal, ε> 0, breaks the phase symmetry of such an oscillator and is
generically expected to eventually lead to a state locked to specific constant values of ψ mod 2π. Here, the
locking mechanism can be ascribed to the third CP transfer process discussed above,∝ εEJ · (1−α2

0a
†a),

which - while irrelevant in the Hamiltonian (3) as an energetic shift in the α0 → 0 limit - yields a
Shapiro-like term in the current operator and results in a ψ dependence of the expectation value of the
current. In particular, the ψ-dependence of the CP transfer and thus ofm in (4) can lead to locked solutions,
where dψ/dt= 0 for specific values of ψ mod 2π.

2.3. Time-evolution: adding a feedback-mechanism
The locking mechanism relies on the feedback of the number of transferred CPs into the phase ψ appearing
in the Hamiltonian (3). We can capture this physics by a slight modification of the number-resolved master
equation technique [52], which is routinely used for the counting of incoherent processes, such as photon
emission or other rate processes appearing as Lindblad terms in the time-evolution. To generalize to the
counting of coherent CP transport processes, the density matrix, ρ(t) =

∑
mρm(t) (m are half-integers), is

divided into components according to the number of tunneled CPsm having crossed the Josephson junction
after a time t. As explained in appendix B the half-integer indexing accounts for the coherent nature of the
transfer process. The components are then coupled by CP tunneling amplitudes

ρ̇m = L0ρm − i

h̄
[h† (m− 1/2)ρm−1/2 + h(m+ 1/2)ρm+1/2

− ρm+1/2h
† (m+ 1/2)− ρm−1/2h(m− 1/2)]. (5)

The contribution from L0 which includes photon loss γD[a]ρ= γ(aρa† −{a†a,ρ}/2) with rate γ

L0ρm =−i
[
∆a†a,ρm

]
+ γD [a]ρm , (6)

does not correspond to CP tunneling-events. Different components ρm±1/2 appear in a manner completely
analogous to how counting fields are added with different signs to coherent forward and backward tunneling
terms [53, 54].

Since them-dependence of h(m) is periodic, there exists a natural compactification, when we chose
(without loss of generality)M= 1/r0 ∈ N and set ρM = ρ0. This enables numerical simulations up to such a
long time, that a very large number of CPs has been transported.

4
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Figure 2.Wigner phase-space distributions of the cavity in the steady-state in a reference frame rotating withΩ. (a) Without
locking signal the shot noise diffuses the oscillator’s phase which becomes completely undefined. (c) The injection of a small
ac-signal reduces the phase uncertainty, yielding a state with a sharply refocused phase in the locked regime. (b) In the
intermediate regime shot noise and locking signal compete resulting in a state with partially diffused phase. [Parameters:
E∗J /(h̄γ) = 20, α0 = 0.1, 2eVdc/h̄= ω0, ν0 = 1.25r0γ, r0 = 1/50. Wigner functions are normalized to their maxima.].

With this method (and the quantum regression theorem) the steady-state spectra of figure 1(b) discussed
above were found. These can be compared to the counting statistics of CPs, P(m) = trρm after a finite time T,
shown in figure 1(c). When the ac-signal is absent, the distribution of counted CPs is broad, conforming
with a broad emission spectrum of the cavity. An increase of the strength of the external locking signal
reduces the width in the statistics of counted CPs, pulls the frequency emission towards the locking
frequency, and eventually results in a sharp photon emission spectrum and a sharpened probability
distribution P(m). In the long-time limit the peak of the locked distribution (red in figure 1(c)) will not
become wider, but the distribution will develop many sidepeaks, see appendix B, which as we will show in
the next section, are associated with slips of the phase variable by 2π.

3. Phase diffusion and its constraint by locking

The impact of the in-series resistance and resulting voltage fluctuations, and the effects of the locking signal
can also be studied in a phase-space picture of the cavity dynamics. In figure 2, quantum master-equation
results for the steady-state Wigner distribution are shown for different amplitudes of an injected ac-signal.
The dc-voltage fixed close to resonance drives the cavity quickly into a (near coherent) state with finite
amplitude. However, due to the lack of a reference phase, the imperfect dc-voltage drive across the junction
disperses the neutrally stable phase of this state on the limit cycle (figure 2(a)). The resulting steady state of
the system is diagonal (and hence identical in the lab and the rotating frame) and all information about the
driving phase is lost. The unstable phase-space angle is mirrored by the noise-induced broadening of the
emission spectrum, cf blue spectrum in figure 1(b). Turning on and progressively increasing the amplitude of
the ac-voltage, the completely dephased steady-state distribution contracts and locks the state to a certain
position on the limit cycle (figures 2(b) and (c)). Concomitantly the variance of the phase-space angle is
reduced and a sharpened peak emerges in the emission spectrum (cf figure 1(b)). In the lab frame the state
rotates with the frequency of this emission peak. Notably, in phase-space the effects of synchronization
emerge completely smoothly with increasing strength ε, while the spectral pulling shows remnants of the
classical criticality, see figures 1(b) and 3(c) below.

We will understand and quantify the observed dynamics of the phase-space angle by linking it to the
notion of constrained diffusion. For that purpose, we again turn to the phase difference ψ between the phase
of the locking signal and the phase which drives the cavity (4). The synchronized state will then be
characterized by the phase difference ψ becoming constant in time (modulo 2π), as the cavity emits photons
with frequencies centered sharply about the injection frequency Ω.

4. Reduced dynamics of the phase

The question that now arises is, whether a reduced equation for the dynamics of the phase variable ψ can be
derived in the quantum domain, thus generalizing the Adler-theory of classical synchronization dynamics [2,
45, 55]. Indeed, the quantum master equation (5) can be rewritten as an equation for a density ρ ′(t,ψ) by
first treatingm as continuous and transforming to a moving frame as shown in appendix C. Crucially, the
explicit time dependence of the Hamiltonian (3) is removed by the latter step. Assuming a time scale
separation between the (fast) adaptation of the cavity state to the phase of its driving term and the slow
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Figure 3. Dynamics of the reduced phase in a tilted washboard potential. (a) The injection of a sufficiently strong ac-signal creates
a potential with minima in which periodic steady-state distributions (dashed) are found. (b) Individual trajectories of a phase
particle in the potentials of (a). Long intervals of constant phase in the synchronized state (green) are interrupted by phase slips of
2π, which proliferate (orange) and overlap (blue) in the unsynchronized regime. (c) The steady-states of (a) yield the rate
ν(ε) = ⟨ψ̇⟩ of these slips. For smaller resistance the locking transition becomes more pronounced until for 1/r0 →∞ the
criticality of classical synchronization is recovered. [Parameters: E∗J /(h̄γ) = 10, α0 = 0.1, 2eVdc/h̄= ω0, ν0 = 0.2r0γ,
r0 = 1/300.].

dynamics of the phase ψ, two-time perturbation theory can provide a Fokker–Planck equation for the
dynamics on slow time scales r0t (r0 ≪ 1) of the phase distribution probability [56, 57]

∂

∂t
P(t,ψ) =− ∂

∂ψ
[j(ψ) P(t,ψ)]+

∂2

∂ψ2
[D(ψ) P(t,ψ)] . (7)

The drift coefficient, in the first order of r0, is given by j(ψ) = 2π r0⟨̂ICP/(2e)⟩− δac as derived in appendix C.
In second order one obtains a correction for the drift and a diffusion term which are calculated via the
pseudo-inverse of the system’s Liouvillian. Without locking signal we find free diffusion of the phase with
diffusion constant, D= (2π r0)2SCP/2, determined by the zero-frequency CP shot noise power SCP. Injecting
the ac-signal creates a potential V(ψ) =−

´
j(ψ) dψ for the phase, which develops local minima for

sufficient locking strength, restricting diffusion and stabilizing the phase, see figure 3(a). For small α0 the
potential simplifies to a Shapiro-like tilted washboard V(ψ) = νc cosψ − ν0ψ with νc = π r0εE∗J /h̄. The
diffusion D remains roughly constant in this regime.

The dynamics of a phase particle in this potential is obtained via the Langevin equation corresponding
to (7), see figure 3(b). Deep in the synchronized state (green), plateaus of nearly constant phase appear,
interrupted by rare slips of the phase by 2π. Here, the dynamics may be approximated as an escape process
which yields for α0 ≪ 1 a Kramer’s rate νK =

√
ν2c − ν20 exp{−∆V/[(2π r0)2SCP/2]} with

∆V= 2
√
ν2c − ν20 + 2ν0 arcsin(ν0/νc)−πν0 [58]. Reducing the strength of the locking drive (orange)

accordingly increases the number of slips until the synchronized plateaus are completely absent (blue). How
well a system is synchronized, can be quantified by the rate of such slips. From the steady-state distributions
for the phase ψ, dashed in figure 3(a), we obtain the rate of phase slips, i.e. the mean flow
⟨ψ̇⟩=

´
P(ψ)j(ψ)dψ in figure 3(c). For large R0, the dependence of the phase-slip rate on the locking

strength in figure 3(c) shows a shot noise induced broadening of the locking transition while in the limit
RQ/R0 →∞ shot noise becomes negligible. Then, the Fokker–Planck equation simplifies to the well-known
Adler-equation describing the locking dynamics of a classical phase variable, ψ̇ = ν0 + νc sin(ψ)[45].

5. Synchronization of two quantummicrowave cavities

Instead of the synchronization of a single nonlinearly driven microwave cavity to an external locking signal
investigated above, one can also consider the mutual synchronization of several devices [2, 59]. Dispensing
with the need of a phase-stable ac-signal, the prospect of mutual synchronization of a potentially large
number of devices promises a source of correlated high-intensity emission. The Hamiltonian,

H=Ha +Hb + ϵ
(
a†b+ ab†

)
, (8)

where

Hξ = h̄ω0ξ
†ξ − EJ cos

[
α0

(
ξ† + ξ

)
+ωdc,ξt− 2π r0mξ

]
(9)

describes a scenario (see figure 4(a)), where each device ξ = a,b is biased by a dc-voltage Vξ = h̄ωdc,ξ/(2e)
applied across a resistance R0, and the coupling term stems from a small coupling capacitor and a rotating
wave approximation. We assume identical devices except for differing dc-voltage drives. As before each
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Figure 4. Statistics P(η.ψ) of the phase-sum and -difference of two Josephson-photonics systems (a). (b) The background color
indicates the force on the phase-particle in positive (white) and negative (black) ψ-direction respectively which yields the red
potential shown in the panel above. The simulation shows the endpoints of individual trajectories, initially starting at η = ψ = 0,
after a time T= 170/(r0γ) (one full trajectory is highlighted in yellow with cross at the endpoint). When the oscillators are
uncoupled (blue), the phase diffuses freely in both directions. In the synchronized state (red), the phase diffuses freely along η,
while the potential restricts diffusion in ψ, resulting in the emergence of two sidebands that indicate phase slips of 2π.
Synchronization can be quantified by the maximum of the phase difference in phase-space S= 2πmaxP(ϕ) [28], e.g.
S(ϵ= 0.015h̄γ)= 0.78. (c) Pulling curve of the effective driving frequencies ωJ coinciding with the respective main emission
peaks. [Parameters: E∗J /(h̄γ) = 8, α0 = 0.1, 2eVa/h̄= ω0, 2e(Va −Vb)/h̄= 0.1r0γ, r0 = 1/300, 2000 trajectories.].

device is a self-sustained oscillator subjected to phase-diffusion on its own limit cycle. However, when two
oscillators synchronize with each other, their relative phase becomes constant and stable against noise.
Instead of using the driving phases of each individual oscillator as phase variables, it is therefore useful to
introduce sum and difference variables

η =−2π r0 [(ma +mb)−⟨ma +mb⟩ϵ=0] (10)

ψ = (ωdc,a −ωdc,b) t− 2π r0 (ma −mb) , (11)

so that ⟨η⟩ϵ=0 = 0 and ⟨ψ⟩ϵ=0 drifts with the effective detuning in the uncoupled case.
We again derive a 2d-Fokker–Planck equation for P(η,ψ) by using time-scale separation, see appendix D.

When the systems are uncoupled, the phase particle described by its 2d-position x⃗= (η,ψ) diffuses freely, as
illustrated by the statistics in figure 4. If the initially detuned oscillators are coupled (ϵ> 0) one device will
provide a reference frequency ωJ,a for the second device, which pulls the emission frequency of the second
cavity ωJ,b towards that reference frequency, and vice versa. In the initially flat potential V(η,ψ), minima
form along the ψ direction and in the synchronized state both cavities will emit photons about the same
frequency, such that ⟨ψ̇⟩ ≈ 0. Hence, the statistics of the phase difference ψ becomes sharp. However, shot
noise permits the phase difference to slip by 2π. Notably, the resulting strong correlation between the cavities
is not associated with concomitant entanglement.

6. Context and conclusion

We compare our work to other concepts of quantum synchronization presented in the literature. One
possible approach involves examining systems, that inherently exhibit distinctly quantum mechanical
behavior. These include systems without classical analog like spins [60], nonlinear systems that yield negative
Wigner densities [61], or systems where quantum mechanical uncertainty plays a role [48]. While our model
provides a quantum description where large zero-point fluctuations quantitatively influence the
synchronization behavior, its primary quantum feature is the granularity of charges which yields shot noise
in the phase of the drive. This contrasts with other schemes for quantum self-sustained oscillators, where the
incoherent drive is realized by a Lindblad operator with negative damping rate (van der Pol model).

7
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Furthermore, in our approach, the Josephson photonics device achieves synchronization in a steady-state, in
contrast to quantum systems that synchronize during their transient evolution [62, 63].

Instead of focusing on the quantum properties of the oscillators themselves, one can also investigate how
the synchronization mechanism and the type of coupling influence synchronization dynamics in the
quantum regime. Examples are measurement-induced synchronization [31], nonreciprocal couplings [64],
or nonlinearly driven time crystals [65]. These differ from our work, where we consider only linear drive and
coupling.

Regarding mutual synchronization there are works that directly relate synchronization to quantum
correlations [66, 67] or focus on the complete equalization of the quantum states of two systems [68]. Our
scenario differs from both concepts, since we focus on the regime where a description of φR0 as a c-number is
sufficient: quantum correlations or entanglement are not crucial for the synchronization mechanism and the
two systems only adapt their oscillation frequencies rather than their full quantum states.

To conclude, this paper introduces dc-driven Josephson-photonics devices as a new platform to study
quantum synchronization in the presence of shot noise and the thereby induced phase-slip dynamics.
Mechanism and modeling of quantum synchronization dynamics in such devices differ from heretofore
investigated systems and do not map to the paradigmatic case of a van der Pol oscillator. Nonetheless, the
system can be reduced to its phase dynamics governed by a Fokker–Planck equation with a generalized Adler
potential. Implementing synchronization in Josephson-photonics devices is of technological interest due
their versatility as a source of quantum microwave light, but also promises fundamental insights in a deep
quantum regime, where the nature of phase slips and the potential coexistence and interplay of charge and
phase tunneling [69] can be studied.
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We thank Andrew Armour, Julien Basset, Jérôme Estève, Benjamin Huard, and Ambroise Peugeot for fruitful
discussions and acknowledge the support of the DFG through AN336/17-1 and AN336/18-1 and the BMBF
through QSens (project QComp).

Appendix A. Hamiltonian in rotating wave approximation

The Hamiltonian of the dc-biased Josephson-photonics device with in-series resistance R0 and an applied
voltage V= Vdc +Vac cos(ϕac) (where ϕac =Ωt+φac is the phase of the ac-signal) can be derived from
Kirchhoff ’s laws as

H= h̄ω0a
†a− EJ cos

[
ωdct−φR0 +α0

(
a† + a

)
+ ε sin(ϕac)

]
, (A.1)

where ϕa = ωdct−φR0 (with ωdc = 2eVdc/h̄) is the driving phase of the cavity, and ε= 2eVac/(h̄Ω) is the
amplitude of the ac-signal assumed to be small. We move to a reference frame rotating at ωrf ≈ ωdc with the

unitary operator U= eiϕrfa
†a, where ϕrf = ωrft+ϕ0. The Hamiltonian is then transformed as

Hrf = UHU† + ih̄U̇U. Linearizing the expression in the strength of the ac-signal ε, we find Hrf =H0 + h+ h†

with H0 = h̄(ω0 −ωrf)a†a and

h=−EJe−α
2
0/2

2

{
[1+ iε sin(ϕac)]e

iϕa · eiα0a
†·exp(iϕrf) · e−iα0a·exp(−iϕrf)

}
, (A.2)

where the Josephson energy is renormalized, E∗J = EJe−α
2
0/2. Finally, we perform a rotating wave

approximation, keeping slowly oscillating terms only, resulting in

h≈−
E∗J α0

2
ie−i[ϕrf−ϕa] : a

J1
(
2
√
α2
0a

†a
)

√
α2
0a

†a
:

+ ε
E∗J α

2
0

8
e−i[2ϕrf−ϕac−ϕa] : a2

2 · J2
(
2
√
α2
0a

†a
)

√
α2
0a

†a
2 + ε

E∗J
4
e−i[ϕac−ϕa]J0

(
2α

√
a†a

)
: , (A.3)
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where each infinite series of powers of the annihilation and creation operators was written compactly as
normally-ordered Bessel-functions. After defining the Adler phase ψ as the phase difference between
ac-driving phase and the phase of the cavity ψ = ϕac −ϕa and choosing the rotating frame such that
ϕrf = ϕac, we find the Hamiltonian (3) from the main text.

Appendix B. Coherent Cooper pair (CP) counting

The tunneling of CPs, the process we want to count, appears as part of the coherent time-evolution of the
system, i.e. in the Hamiltonian dynamics contribution to the quantum master equation for the density
matrix. This contrasts with counting emitted photons or any other incoherent process where there is a single,
clear procedure to count: by introducing a counting field in a prefactor eiχ of the photon jump operator of
the Lindblad Master equation to get a generating function from the χ-dependence of the density matrix [53,
70], or fully equivalently by working in the corresponding Fourier domain by ‘number-resolving’ the density
matrix into components corresponding to a certain number of emitted photons, whose dynamic equations
are coupled by photon jumps [52].

Counting is more subtle for coherent processes. In fact, there are various schemes of introducing a
counting field to the Hamiltonian part of the dynamics, which have been linked to different (virtual)
measurement devices and protocols [71]. Here, we start by attaching e±iχ/2 prefactors to all terms in the
Hamiltonian corresponding to the forward/backward transfer of a CP. That Hamiltonian acts from the left
side on the density matrix in the coherent part of the time-evolution corresponding to the forward branch of
a Keldysh contour [53], while acting from the right and residing on the backward branch, χ →−χ̄ is used.
For Josephson-photonics setups where each CP transfer goes along with the creation of a cavity photon
(i.e. purely dc-driven biasing without an ac-component) this method (with χ̄≡ χ) has been shown [54] to
yield a coherent counting statistics identical to the incoherent photon emission statistics in the long-time
limit.

To capture the effect of transferred charges on the voltage drop at the in-series resistance, namely by the
driving phase’s dependence on the number of charges, φR0 = 2π r0, one has to go from χ-space to number
space. The number-resolved quantum master equation (5) introduced in the main text corresponds to
Fourier-transforming with respect to the sum variable, χ+ χ̄ while summing over the different numbers of
transferred charges on both Keldysh branches, so that both, density matrices diagonal in the Keldysh counts
(dubbed ‘classical’ in [72]) and off-diagonal ones contribute to the ρm, 2m ∈ Z. The average of transfers on
upper and lower branch determines the fed-back charge affecting the driving phase. The off-diagonal
contributions have been associated via a picture of interfering paths with negativities making P(m) = trρm a
quasiprobability at short times which, however, do not matter due to the time-scale separation. It can easily
be confirmed, that without the feedback mechanism, i.e. taking r0 → 0, the unresolved quantum master
equation is found by re-summing and that the Fokker–Planck equation derived from the generalized
number-resolved quantum master equation (5) yields the expected current-noise.

The frequency-dependent current noise

SCP (ω) = 2Re

ˆ ∞

0
dτ⟨δI(t+ τ)δI(t)⟩eiωτ (B.1)

in the steady-state (t→∞) with δI= ICP −⟨ICP⟩ is calculated from the full dynamical equations (3) and (5)
shown in figure B1(a). Without locking the noise is the same as for the idealized case of a fixed driving phase.
Due to the nonlinearity of the Josephson-photonics system the transport is slightly sub-Poissonian [73] and
the noise shows (fast) features on the scale of γ in this regime. As the ac-locking signal is switched on, the
slow phase dynamics changes from free diffusion to the drift and diffusion in a periodic potential and the
current-correlations show signatures of this motion as sidepeaks at a frequency |ω|≲ |ν0| (yellow), which
merge and develop into a dip as the phase gets trapped in the potential’s minima. The feedback of the
transferred charges on the driving phase correlates current fluctuations over very long times and
correspondingly suppresses the zero-frequency noise down to a value connected to the total rate of phase
slips. On time scales faster than the phase dynamics, the current fluctuations remain nearly unaffected.

The zero-frequency noise is of course linked to the second cumulant of the CP counting statistics. The
long-time limit of P(m) shown in figure 1(c) of the main text can be more easily calculated from the reduced
phase dynamics, so that P(ψ) (with ψ ∈ R) gained from a histogram of 2000 Langevin trajectories is shown
here in figure B1(b). Without locking the full counting statistics spreads out via free phase diffusion
corresponding to (near-)Poissonian CP transport events as ⟨⟨ψ ⟩⟩ ∝ ⟨⟨m⟩⟩ ∝ Dt, while in the locked regime
ψ is distributed in peaks around the minima of the potential and spreads very slowly between these peaks by
phase-slip processes.
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Figure B1. (a) The noise of the Cooper-pair current in a single Josephson-photonics device is analyzed for various locking
amplitudes ε. At low frequencies, an injection signal initially adds noise for strengths insufficient to achieve locking, but as the
system locks for larger ε, the zero-frequency noise becomes almost entirely suppressed. [Parameters see figure 1.] (b) The
long-time full counting statistic of CP transport is calculated from the distribution of the phase ψ ∈ R gained from simulating
2000 trajectories. The standard deviation∆ψ shows the∝

√
t behavior typical for diffusive processes, where the free diffusion

(blue) is replaced by a much slower phase-slip process in the (weakly) locked case. [Parameters: E∗J /(h̄γ) = 10, α0 = 0.1,
2eVdc/h̄= ω0, ν0 = 0, r0 = 1/300.].

Appendix C. Derivation of the reduced equation for the phase

Starting from the full dynamical equations we first write (5) in terms of the phase φR0 = 2π r0m instead of the
numberm of transferred CP and treat φR0 as a continuous quantity ρm(t)→ ρ(t,φR0 = 2π r0m). We want to
express φR0 in terms of a phase ψ in a moving reference frame, which is defined by the transformation, cf (4),

φR0 (t,ψ) = ψ +ωdct− (Ωt+φac) . (C.1)

Accordingly, the density matrix becomes a new function of t and ψ

ρ ′ (t,ψ) = ρ(t,φR0 (t,ψ)) (C.2)

with the time derivative

∂ρ ′

∂t
(t,ψ) =

dρ

dt
(t,φR0 (t,ψ)) =

∂ρ

∂t
(t,φR0 (t,ψ))+

∂ρ

∂φR0

(t,φR0 (t,ψ))
∂φR0

∂t
(t,ψ) . (C.3)

Introducing the evolution generator Λ(ψ) this yields

∂ρ ′

∂t
(t,ψ) = Λρ ′(ψ) = δac

∂ρ ′

∂ψ
(t,ψ)+L0ρ

′(ψ)− i

h̄
[h†(ψ−π r0)ρ

′(ψ−π r0)

+ h(ψ+π r0)ρ
′(ψ+π r0)− ρ ′(ψ+π r0)h

†(ψ+π r0)− ρ ′(ψ−π r0)h(ψ−π r0)] (C.4)

Note that the Hamiltonian h(ψ) = h(t,φR0(t,ψ)) does not have an explicit time dependence, see (3).
We perform two time-scale perturbation theory (or homogenization) [74, 75] to derive an effective

Fokker-Plank equation for the phase ψ. For that purpose it is assumed that the oscillator dynamics takes
place on a much faster time scale than the phase dynamics. We explicitly introduce a fast time scale t and a
slow time scale τ = r0t and the dependence of the state on these times ρ ′(t,ψ) = ρ(t, τ,ψ). Then, the
derivative of the density matrix becomes

∂tρ
′ (t,ψ) =

d

dt
ρ(t, τ,ψ) = ∂tρ(t, τ,ψ)+ (∂tτ)∂τρ(t, τ,ψ)

= ∂tρ(t, τ,ψ)+ r0∂τρ(t, τ,ψ) . (C.5)

Furthermore, we assume that the fast oscillator dynamics have already relaxed and we study the evolution of
the state ρ(τ,ψ) = limt→∞ ρ(t, τ,ψ), so that (C.4) becomes

r0∂τρ(τ,ψ) = Λρ(τ,ψ) (C.6)

In a next step, we expand ρ(τ,ψ) =
∑∞

l=0 r
l
0ρ

(l) and Λρ= Lρ+ r0∂ψ(Λ(1)ρ)+ 1
2 r

2
0∂

2
ψ(Λ

(2)ρ)+O(r30) in
orders of r0. Taking ρ(ψ ±π r0) = ρ±π r0∂ψ ρ+O(r20) and h(ψ ±π r0) = h±π r0∂ψ ρ+O(r20) results in
the zeroth-order Liouvillian Lρ=− i

h̄ [h+ h†,ρ] +L0ρ and for the next order Λ(1) = δac/r0 − 2πICP/(2e)
with the symmetrized current operator ICPρ= 1

2 (ICPρ+ ρICP).
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We proceed by solving (C.6) order by order. In zeroth order of r0 we obtain

0= L(ψ)ρ(0) (τ,ψ) (C.7)

which determines ρ(0)(τ,ψ) = P(0)(τ,ψ)ρeq(ψ) up to a factor which we interpret as a probability density
P(0)(τ,ψ) for a certain ψ at time τ . To find it, we consider the first order of ρ(τ,ψ) in r0

∂τρ
(0) (τ,ψ) = L(ψ)ρ(1) (τ,ψ)+ ∂ψ

{
[δac/r0 − 2πICP (ψ)/(2e)]ρ(0) (τ,ψ)

}
. (C.8)

Taking the trace yields the desired equation of motion

∂τP
(0) (τ,ψ) = ∂ψ

[
⟨δac/r0 − 2πICP (ψ)/(2e)⟩ρeq(ψ)P

(0) (τ,ψ)
]

(C.9)

which describes a drift of ψ. The second order (see supplemental material) in r0 provides a correction for the
drift and a diffusion term.

Then the equation of motion can be written as the Fokker–Planck equation in (7) with drift

j(ψ) = 2π r0⟨ICP/(2e)⟩ρeq(ψ) − δac + r20⟨(∂ψ2πICP/(2e)R)(δac/r0 − 2πICP/(2e))⟩ρeq(ψ) (C.10)

and diffusion

D(ψ) =−(2π r0)
2 ⟨ICP/(2e)RICP/(2e)⟩ρeq(ψ) (C.11)

whereR is the pseudo-inverse of L. The r20 contribution in the drift term may be neglected for small r0.

Appendix D. Note onmutual synchronization

Two Josephson-photonics devices can be coupled, e. g. , inductively or capacitively, where we here choose to
analyze a capacitive coupling. Since charge and phase are conjugate variables associated with momentum and
position of the cavities, a capacitive coupling will lead to a interaction term of the form Q̂aQ̂b ∝ (a† − a)
(b† − b) in the Hamiltonian. A sufficiently small capacitor will lead in RWA to the Hamiltonian given in the
main text. We further note that a coupling capacitor modifies the eigenfrequencies of the cavities.

As in the case of locking to an ac-signal, a Fokker–Planck equation can also be derived for the
synchronization of two devices. Similar to the case of injection locking, one introduces new phase variables
φ ′
a and φ

′
b which are given by φ ′

a =−(η+ψ)/2 and φb =−(η−ψ)/2. Calculations analogous to
appendix C yield a Fokker–Planck equation for the probability density P(t,φa,φb)

∂

∂t
P=

{
− ∂

∂φ ′
a

ja −
∂

∂φ ′
b

jb +
∂2

∂φ ′2
a

Daa + 2
∂2

∂φ ′
a∂φ

′
b

Dab +
∂2

∂φ ′2
b

Dbb

}
P (D.1)

with drift and diffusion coefficients given in the supplemental material.
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