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Task Description

The German Aerospace Center (DLR) is conducting internal research on the "Propulsion
and Coupling" project, focusing on the drive and suspension technology of rail vehicles.
As part of this, the Institute of System Dynamics and Control has a scaled (1:5) run-
ning gear test rig for testing independently rotating driven wheels as part of the “Next
Generation Train” (NGT) research project. Currently, a model of the test rig based on
system identification mostly based on step responses is being used.

Motivation:

So far, there has neither been an analysis of frequency responses nor an analysis of rich
signals (e.g. sine sweeps). These analyses are crucial to fully understand and evaluate
the behavior of the test rig in as many situations as possible. Moreover, these results
would further verify the already identified parameters.

Bachelor’s thesis topic:

The goal of the bachelor’s thesis is to determine and validate the resulted system pa-
rameters based on frequency responses. The data basis for the thesis will be frequency
responses of measurements of sine sweeps that have already been conducted. The fre-
quency responses of the sine sweeps will be fitted to a linear system with regards to
non-linear effects. Once the parameters have been identified, they will be verified by
comparing the simulation results to measurements on the test rig.

Challenge:

As the system has shown non-linear behavior such as hysteresis or variable damping, the
main challenge for the thesis will be to identify the non-linear effects in the frequency
responses and evaluate whether a linear model can capture these effects accordingly.

Tasks:

o Modelling of the 1:5 NGT test rig in Matlab/Simulink

e Modelling and parameter identification of a linear model based on frequency responses
o Evaluation of the linear model with respect to occurring non-linear effects

e Verification of the model through measurements on the test rig

Supervisor at DLR:
Dr. Tobias Posielek
Tobias.Posielek@dlr.de

Professor at DLR:
Prof. Dr.-Ing. Martin Otter
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Abstract

As part of the Next Generation Train (NGT) research project at the German Aerospace
Center (DLR), the Institute for System Dynamics and Control is developing a new
running gear concept for high-speed trains with independently rotating driven wheels
(IRDWs). To investigate the running gear behavior a scaled (1:5) test rig has been de-
veloped. At present, the test rig is simulated by using a model with parameter values
obtained through a system identification based on step responses.

This thesis’ aim is to undertake a system identification based on frequency response to
better understand the frequency-related behavior of the test rig.

The system identification is based on a state space model from prior research. In this
thesis, transfer functions are derived from that model. Measurements with an input in
form of a sine sweep then form the foundation to identify the parameters of the transfer
functions. With this set of parameters, the parameters of the state space model are
determined. The state space model is implemented in MATLAB Simulink to simulate
the test rig. The results of the simulation with identified parameters are evaluated by
comparing them to other measurements and sets of parameters. Following validation of
the linear model, a hysteresis term is introduced to capture non-linear effects observed
in the experimental data, such as oscillations not accounted for in the linear model. The
parameters of the hysteresis term are also identified and evaluated.

The results demonstrate that system identification based on frequency response yields
more accurate parameters for sinusoidal input simulations compared to previous ap-
proaches. Additionally, incorporating hysteresis gives the model the ability to capture
non-linear effects present in the measurements, enhancing the overall fidelity of the sim-
ulation.
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Kurzfassung

Im Rahmen des Forschungsprojekts Next Generation Train (NGT) des Deutschen Zen-
trums fiir Luft- und Raumfahrt (DLR) entwickelt das Institut fiir Systemdynamik und
Regelungstechnik ein neues Fahrwerkskonzept fiir Hochgeschwindigkeitsziige mit mecha-
tronischen Einzelradantrieben. Zur Untersuchung des Fahrwerksverhaltens wurde ein
skalierter (1:5) Priifstand entwickelt. Derzeit wird der Priifstand mit Hilfe eines Modells
simuliert, dessen Parameterwerte durch eine Systemidentifikation auf der Grundlage von
Sprungantworten ermittelt wurden.

Ziel dieser Arbeit ist es, eine Systemidentifikation auf der Grundlage von Frequenzgéngen
durchzufiithren, um das frequenzbezogene Verhalten des Priifstands besser zu verstehen.

Die Systemidentifikation basiert auf einem Zustandsraummodell aus fritheren Unter-
suchungen. In dieser Arbeit werden die Ubertragungsfunktionen aus diesem Modell
abgeleitet. Messungen mit einem Eingang in Form eines Sinus-Sweeps bilden dann die
Grundlage fiir die Ermittlung der Parameter der Ubertragungsfunktionen. Mit die-
sen Parametern werden dann die Parameter des Zustandsraummodells bestimmt. Das
Zustandsraummodell wird in MATLAB Simulink implementiert, um den Priifstand zu
simulieren. Die Ergebnisse der Simulation mit den ermittelten Parametern werden durch
Vergleiche mit anderen Messungen und Parametersiatzen evaluiert.

Nach der Validierung des linearen Modells wird das Modell um einen Hysterese-Term
erweitert, um die in den Versuchsdaten beobachteten nichtlinearen Effekte zu erfassen,
wie z. B. Schwingungen, die im linearen Modell nicht beriicksichtigt werden. Die Para-
meter des Hysterese-Terms werden ebenfalls ermittelt und evaluiert.

Die Ergebnisse zeigen, dass die auf dem Frequenzgang basierende Systemidentifikation
im Vergleich zu fritheren Ansétzen genauere Parameter fiir Simulationen mit sinusférmi-
gem Eingang liefert. Dartiber hinaus ist es durch die Einbeziehung der Hysterese moglich
nichtlineare Effekte in den Messungen zu erfassen, was die Gesamttreue der Simulation
erhoht.

viii



Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor at DLR,
Dr.-Ing. Tobias Posielek and supervisor at TUM, PD Dr.-Ing. habil. Paul Kotyczka
for their invaluable guidance, continuous support, and constructive feedback throughout
the course of this thesis. Their expertise, time, and dedication have been instrumental
in shaping this research.

I would also like to thank the Institute of System Dynamics and Control at the German
Aerospace Center (DLR) for providing the necessary resources and support, as well as
for the opportunity to work on this exciting research topic.

A special thank you to Meriel, Peter, Emma, and my Mum, Adrienne, for their time
and effort in proofreading this thesis.

Lastly, I am grateful to my family and friends for their unwavering support, patience,
and encouragement during this journey. Their belief in me has been a constant source
of motivation.

To all those who have contributed to this work in any way, I extend my deepest grati-
tude.

ix






Contents

Task Description v
Abstract /Kurzfassung vii
1 Introduction 1
1.1 Background . . . . . . . . e 1
1.2 Stateof the Art . . . . . . . . . . . . 2

1.2.1 Conventional Concept of Bogies for High-Speed Trains in Germany 2

1.2.2 Independently Rotating Driven Wheels . . . . . . ... ... ... 3

1.2.3 Next Generation Train . . . . . .. .. ... ... ... ..., 3
1.2.4 Current Research Projects on Other Railway Bogie Test Rigs . . . 4
1.2.5 System Identification . . . . . . . .. ... ... .. ... ... ... 6

1.3 Objective of thiswork . . . . . . .. . . ... ... ... ... ....... 8
1.4 Structure of the Thesis . . . . . . . . . .. ... .. . 8
2 Theory Background on System Identification and Modeling 11
2.1 Fundamental Transforms and Frequency Analysis . . . . . . . ... .. .. 11
2.1.1 Fourier Transform . . . . . . . .. ... ... ... 11
2.1.2 Bode Diagrams . . . . . . . . . ..o 12
2.1.3 Linear Sine SWeep . . . . . . . . . i e e e 12
2.1.4 Laplace Transform . . . . . .. ... ... ... .. 13

2.2  Frequency Response of PT1 and PT2 Elements . . . . ... ... ... .. 13
2.2.1 PTI1 Element . . . . . . ... . e 13
222 PT2Element . . . . . . . . . 14

2.3 Modeling of the 1-to-5 Test Rig . . . . . . . . .. . ... ... ... ... 16
2.4 Transfer Functions . . . . . . . . .. ... L L 19
2.4.1 Transfer Function from wto ¥ . . . . ... ... ... ... ... . 19
2.4.2 Transfer Function from W toy . ... ... ... ... ... .... 20

2.5 Offset Parameters. . . . . . . . . . . . 20

Xi



3 Simulation of the System Dynamics

4 Experimental System Identification and Modeling
4.1 Configuration of the test rig . . . . . . . . . . . .. ... ... ... ....
4.2 Measurement Data . . . . . ... ... Lo oL
4.3 Processing of the Measurement Data . . . . .. .. .. ... ... .....
4.4 System Identification based on Measurement Data . . . . . .. ... ...

4.5 Identified Parameters . . . . . . . . . . .

5 FEvaluation and Discussion of the Linear Model
5.1 Validation of the proposed model . . . . . . . . .. ... ... ... ....
5.1.1 Comparison of Simulation results to other Measurements . . . . .
5.1.2  Validation of Simulation through Complete Transfer Function . . .
5.2 Evaluation and Comparison based on Step Responses . . . ... ... ..
5.2.1 Comparison of Simulations with Different Sets of Parameters . . .
5.2.2  Simulation in Comparison to Measurement with Step Response . .

5.3 Outlook: Frequency Responses for Different Input Amplitudes . . . . . .

6 Extending the Simulation Model to include Hysteresis
6.1 Hysteresis Definition . . . . . . . ... ... oo o
6.2 Augmentation of the Mathematical Model with Hysteresis Dynamics . . .
6.3 Exploring the Effects of Hysteresis Parameters on the Model . . . . . ..
6.4 Calibration of Hysteresis Parameters Using Measured Data, . . . . . . ..

6.5 Evaluation of the Model Including Hysteresis . . . . . .. ... ... ...
7 Conclusion and Outlook

A Notation
A.1 Mathematical symbols . . . . . . ... ... ... ...

A.2 Abbreviations and acronyms . . . . . . . ... ...
List of Figures

List of Tables

xii

23

29
29
30
31
33
35

37
37
37
38
39
39
41
43

47
47
48
50
51
54

55

57
o7
57

61

61



Chapter 1

Introduction

1.1 Background

The basic concept of railway running gear has not changed in decades. A typical wheelset
consists of two conical, flanged wheels that are connected by a rigid axis. The key benefit
of this system is its self-centering ability, even on curves . However, with this advantage
comes many disadvantages. For example, this conventional running gear is responsible
for high wear of the wheels and tracks [1]. Furthermore, they are loud, especially when
going around curves, and the self-centering ability comes at the expense of a compromise
between stability and comfort, as it limits ride comfort [2]. Hence, the current widely
used concept for railway bogies has many disadvantages and further research is needed
to address these fundamental challenges.

Advancements in mechatronics and control theory, especially in the field of observers,
have given rise to the evolution of a new concept: Independently Rotating Driven Wheels
(IRDWs). The basic concept is to remove the rigid axle between the wheels of a wheelset
and to power each wheel with its own motor [3]. This allows for active steering which
has the benefit of reducing noise and wear [4]. However, there are some drawbacks to
this solution. Primarily, the self-centering ability is lost and has to be compensated for
through control mechanisms, making the system more complex and non-linear [2].

To test the concept of a railway bogie with IRDWs the German Aerospace Center (DLR)
(German: Deutsches Zentrum fiir Luft- und Raumfahrt) has developed a scaled railway
running gear test rig [5]. Using the scaled test rig, control concepts can be developed
and tested and the system dynamics of the bogie can be explored within a laboratory
setting, making tests repeatable and less expensive than field tests.

Accurate mathematical models are needed to allow for simulations of the test rig and
to provide a deeper understanding of its dynamics, thus enabling its subsequent control.
The existing mathematical model of the rear axis of the system presented in [6] is pri-
marily based on step responses. The objective of this thesis is to develop a model of the
rear axis based on frequency responses in order to provide a deeper understanding of the
frequency related dynamics of the system.
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1.2 State of the Art

This chapter provides an overview of the conventional bogie concepts used in high-speed
trains in Germany, the concept of IRDWS, and the Next Generation Train (NGT) project
led by the DLR. Additionally, it examines ongoing research on railway bogie test rigs and
introduces different forms of system identification. This review establishes the necessary
background for the methodologies applied in this thesis.

1.2.1 Conventional Concept of Bogies for High-Speed Trains in Ger-
many

A conventional railway vehicle is comprised of a vehicle body on top of two bogies with
two wheelsets each [1]. The wheelsets have two wheels with conical treads, the smaller
circumference being on the outside and with a flange on the inside of each wheel [2]. The
wheels are connected by a solid axle, leading to a passive vehicle guidance system [1].
The passive guidance system entails passive centering of the wheelset on the tracks and
the ability to go around curves without the need for active steering. When a train travels
around a curve, the wheels shift on the track to a position where the outside wheel is
being driven on a larger circumference than the inside wheel, leading to a higher longi-
tudinal velocity. This is illustrated in Figure 1.1, where the black wheelset represents
the wheelset on a straight track and the red dotted wheelset shows the wheels’ passive
steering ability on the tracks, as represented by the gray circles. To improve clarity, the
flange has been omitted from the diagram.

mmmmmm—

Figure 1.1: Conventional wheelset on tracks.

The main advantage of this concept is its passive centering and curving ability. Although
the conventional concept is widespread and has not changed in the past decades, it has
its disadvantages. The main disadvantage is high wear and loud noise when going around
curves, especially tight curves, due to large creep forces [1|. Furthermore, conventional
wheelsets have problems at high speeds due to the hunting oscillation [1]. One way to
mitigate this motion is to connect springs from the wheelset to the bogie or vehicle body.
However, this undermines its natural curving ability as it increases stiffness and can also
cause severe wear of the rails and wheels [2].

The four most common bogies in European high-speed trains are the Alstom CL334, the
Siemens SF500, the Bombardier Flexx Speed Italy, and the Bombardier Flexx Eco5101
[7]. The ICEA4, for example, uses a variant of the Bombarider Flexx Eco as its trailing
bogie and a refined version of the Siemens SF500 as its power bogie [8].
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1.2.2 Independently Rotating Driven Wheels

With IRDWs each wheel has its own motor and can rotate independently. By controlling
the torque of the motors, i.e. actively driving the wheel, a lateral and traction control
system can be implemented [3]. If each wheel is independently driven it then becomes
possible to actively drive around a curve by using different speeds for each wheel [1].
The main benefit of IRDWSs over conventional wheelsets is the large reduction of rail
and wheel wear, alongside a noticeable reduction of noise in curves [4]. Furthermore,
IRDWs do not have an axle between them, allowing for more space in the train cars [1];
in particular, in double-decker trains. Another benefit of the use of IRDWs is that trains
can be designed with their floor level at the same height as the train station platform.
In addition, controlling the hunting oscillation leads to enhanced rider comfort.

Even though IRDWs have many promising advantages, there are still a number of chal-
lenges associated with them that have to be addressed. Specifically, these systems strug-
gle to automatically return to the track’s center line as they lack the longitudinal creep
forces required for forward motion [3]. This gives rise to the need for a guidance system
[2]. One challenge the guidance system needs to address is that the lateral displacement
of the wheel-rail contact is difficult to measure due to the significant vibrations present
in the environment [1, 2] and proximity to the ground. The later makes it impractical
to use optical sensors due to dirt and weather conditions.

The modeling process for IRDWs is further complicated by the system’s inherent un-
certainty due to variations in vehicle parameters and actuator dynamics. Incorporating
these dynamics would make the model excessively complex; especially given that the
rail vehicle is a highly non-linear system. While simplified models are often used, these
often fail to capture all dynamics [2].

Further barriers to the adoption of IRDWs are high costs, complex electronics, and the
need to meet stringent safety and reliability standards [4]. IRDWs will not replace con-
ventional wheelsets until these drawbacks, especially regarding safety standards, and
the problems associated with the modeling and control of IRDWs, are convincingly ad-
dressed. This is a key driver for further research on IRDWs and a motivating factor for
this thesis.

1.2.3 Next Generation Train

The Next Generation Train (NGT) is a research project that is led by DLR. It brings
together multiple institutes with the objective of creating a novel double-decker high-
speed train and of sharing the project’s outcomes and results with those in the railway
industry [9]. As part of this project, all components of a conventional high-speed train
have been redesigned by nine different institutes at DLR; this includes the chassis, the
wheels, and the bogie [9]. Unlike conventional double-decker trains, the two floors do
not have to be interrupted above the bogies as the use of IRDWs eliminates the need for
an axle between the wheels [10]. The benefits and drawbacks of IRDWs were discussed
above in Subsection 1.2.2.

To test the novel running gear of the NGT, a 1:5 prototype test rig of the NGT bogie
concept was developed at DLR. This is shown in Figure 1.2. Roller rigs offer the
advantage of being more cost-effective than field tests; in addition, they allow for easy
adjustments to the experimental setup and facilitate repeated testing [11]. The test rig
has two separate wheel carriers with different stability characteristics and each wheel has
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Figure 1.2: Picture of the 1-to-5 test rig at DLR and its sensor setup: (1) Laser sensors
for measuring the lateral displacement; (2) Laser sensors for calculating the yaw angle;
(3) Encoders for measuring the angular velocity; (4) Force torque sensors for
quantifying external disturbances in [6].

a directly mounted, permanently-excited synchronous machine that acts as its motor [5,
6]. Through these motors, traction and lateral control can be achieved [10]. The wheels
of each wheelset are connected by an axle bridge [6]. The bogie is placed on top of two
large rollers that simulate its forward (i.e. longitudinal) motion. Furthermore, the rollers
are able to manage the traction control to let the motors of the IRDWs only control the
lateral displacement.

To collect data from the test rig, different sensors are installed on it. There are force
torque sensors and encoders on each wheel, along with four laser sensors to measure
each yaw angle and two laser sensors to measure the lateral displacement of the front
and rear wheelsets [6], as shown in the right-hand image of Figure 1.2. The lasers for
measuring the yaw angles are mounted onto the main frame, with each laser pointing
towards the axle bridge close to a wheel. The yaw angle can then be calculated using the
measured distance from the frame to the respective axle bridge. The other two lasers
are mounted outside the test rig and point to two metal plates attached to the front
and rear of the bogie. These provide measurements that can then be used to calculate
the lateral displacement of the front and rear wheelsets on the rollers. This 1:5 test rig
can be used to test various control algorithms, validate simulation models, and for the
development of sensor setups [10].

1.2.4 Current Research Projects on Other Railway Bogie Test Rigs

The test rig described above is not the only such rig available for conducting research on
IRDWs as there are a number of others in existence in other locations around the world.
In this subsection, four of these alternate test rigs are considered and compared to the
1:5 test rig at DLR that was used to carry out the work described in this thesis. Three
of these are scaled test rigs in university laboratories, while the fourth is a full scale test
rig that is currently being set up at DLR as part of the NGT research project.
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1:3.5 Scaled Test Rig at the Czech Technical University

The test rig located at the Czech Technical University in Prague, Czech Republic can be
used to test IRDWs and conventional wheelsets [11]. This allows for direct comparisons
between these two bogie concepts. It has a two-axle configuration and a scale of 1:3.5
[12]. Like the 1:5 test rig at DLR, it is also mounted on two rollers that represent the
tracks. However, unlike the DLR test rig, it is also able to simulate a curved track.
Furthermore, the wheels are exchangeable, which makes it possible to test wheels of
different conicities. The test rig also has a system to measure wheel roller contact forces,
as well as sensors to measure the displacement, acceleration, torque and force, and the
forces between the axle boxes and the bogie frame.

Contact position transducers are used to measure the lateral positions of the wheelsets
and measurements of the Y forces provide insights into the running dynamics of active
controlled railway bogies. In addition, analysis of the wheel-rail contact forces indicates
the level of wear of the wheels and rails. This test rig can be run at a revolution speed of
up to 700 revolutions/min, which corresponds to a full scale vehicle speed of 230 km /h.
Unlike the DLR test rig, the test rig in Prague does not have the motors directly mounted
onto the wheels, rather they are located in the middle of the bogie and connected via a
toothed belt, linkages, and axle boxes to the wheelsets [12].

Research carried out using this test rig mainly focuses on the application of active control
in the primary suspension and wheelset guidance [12]. Furthermore, the test rig is used
for torsion oscillations research and to attempt to measure adhesion of the wheel-roller
contact [13].

1:10 Scaled Test Rig at the University of Tokyo

The second alternate test rig can be found at the University of Tokyo in Japan. This
1:10 test rig uses active power steering for its independently rotating wheels [11] with
the goal of eliminating steering vibration and realizing close-to ideal steering. Where
possible, it relies on its ability to self-steer along with a small power assist during the
transition from a straight to a curved track. Like the scaled test rig at DLR, it has two
wheelsets with two IRDWs each, with both primary and secondary suspension systems.
It differs from the DLR rig in a number of ways. Firstly, it is at a scale of 1:10 ,
while DLR test rig’s scale is 1:5. In addition, each wheel is connected to the frame
through steering linkages, and has motors that are separate from, and not integrated
into, the wheels. Furthermore, the test rig runs on scaled tracks rather than rollers.
Laser displacement sensors are mounted between the axle box and the rail to measure
the lateral displacement and the yaw angle [14].

Results obtained using this test rig have led to improved stability and steering utilizing
a gyroscopic damper as part of the control method. This allows for passive stabilization
and improvements of the dynamic behavior at high speeds [15].

1:5 Scaled Test Rig at Tongji University

The test rig at Tongji University in Shanghai, China is similar to the one at DLR in a
number of ways. In particular, it has the same scale and two sets of IRDWs. However,
unlike the test rig at DLR, it runs on scaled tracks with straight segments and a curve,
rather than on a roller. In addition, it has both primary and secondary suspension
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systems. Each wheel is connected to a subframe through an axle box, which is, in turn,
connected to a subframe through primary suspension. The bogie is then connected to a
subframe through secondary suspension and it contains a number of onboard devices (e.g.
controllers and power inverters). In contrast to the scaled test rig at DLR, the motors
are connected to the wheels through gear reducers and axle boxes, rather than being
mounted directly on the wheel. In addition, the lateral displacement is also measured
using two laser sensors per axis. These are mounted on the outside of the frames, below
the wheels and point towards the tracks, measuring the distance from the frame to the
tracks at each wheel. Additionally, like the scaled test rig at DLR, it also has laser
sensors to measure the yaw angles and encoders on each wheel to measure their rotation
speed [16].

This test rig is currently being used to test a data-driven multi-agent reinforcement
learning controller to control active guidance. The objective of this work is to improve
the running stability and reduce wheel-rail wear [16].

Full Scale Test Rig at DLR, Oberpfaffenhofen, Germany

The final alternate test rig considered is a new, full-scale test rig being developed at
DLR [17]. It will enable a proof of concept for the developed NGT bogie. In particular,
control concepts developed on the 1:5 test rig at DLR, as presented in Subsection 1.2.3,
can be tested and validated on this full-scale test rig. As it is first and foremost a proof
of concept, it only has one wheelset with two wheels and a maximum velocity of 5m/s.
Like the 1:5 test rig, and in contrast to all other test rigs considered in this subsection,
the motors are directly mounted onto the wheels. It has sensors to measure forces and
movements in all directions, including 20 laser displacement sensors, as well as sensors
to measure force, inertia, and torque [18].

In this subsection an overview of existing test rigs for evaluation of bogie concepts with
IRDWs was provided. In the following subsection the focus will move to modeling these
systems and, in particular, system identification methods.

1.2.5 System Identification

System identification is a methodology used to develop mathematical models that accu-
rately describe a dynamic system [19]. The basic steps of any system identification are
as follows: First collect data about the system, then determine a model structure that
will most accurately describe the system. The selected model structure is then fitted to
the measurement data and finally, the identified model is then validated [20]. In this
subsection, three approaches to system identification are presented.

These are system identification using learning methods, system identification based on
step responses, and system identification based on frequency responses. Existing work
that uses system identification based on step responses [6] serves as a reference system
for the research on the system based on frequency responses detailed in this thesis.

System Identification using Learning Methods

With the advent of machine learning and super computers, the use of learning methods
for system identification has received more attention in the literature or literature in
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general [21]. The concept that underpins these learning methods is quite straightforward.
A familiar input is given to the to-be-identified system and to a simulation model.
The generated outputs of the system and of the simulation are then compared and the
mathematical model underpinning the simulation is then adjusted in order to reduce the
error (i.e. the differences between its output and that of the system to be identified). In
this way the simulation “learns” from the error. This process is then repeated so that
the simulation iteratively reduces and minimizes this error [22].

Such machine learning techniques are outside the scope of this thesis and will not be
considered in this work, although they do present an interesting direction for future
work.

System Identification with Step Responses

In this method of system identification, the input to the system is a step function and
the response of the system to this input is the step response. This response has certain
characteristics depending on the system to be identified [19]. This method of system
identification has the advantage of using a very simple input signal that can easily be
implemented and analyzed using a number of different methods [23]. One of the oldest
amongst these is that introduced by Karl Kiipfmiiller in [24]. This formed the basis
for the development of subsequent methods. The form of the step response enables the
structure of the model to be determined and, hence, the transfer function can be found
[23].

System Identification based on Frequency Responses

This method of system identification is an indirect approach [25] that involves the collec-
tion of frequency response data, from which Bode diagrams are created. Bode diagrams
will be discussed in more detail in Section 2.1. A mathematical formula for the transfer
function of the input to output behavior is then determined; this depends on the type
of model structure used and the form of the Bode diagrams. From these diagrams of
the measurement data, the parameters of the transfer function can be determined. The
parameters of the fitted function can then be used to identify the parameters of the sys-
tem as a whole. The great advantage of using frequency responses is their input-output
behavior within a linear system: A sinusoidal input to a linear system will generate a
sinusoidal output of the same frequency. Only the magnitude and phase of the output
will differ to that of the input [26]. This makes it possible to look at changes between
the input and the output by displaying them on Bode diagrams. From this diagram a
transfer function that describes the system can be identified. This method of system
identification is easy to apply in different scenarios, making it ideal for later test and
validating work using the full-scale test rig [1]. However, there is one disadvantage to
system identification through frequency responses that should be noted; namely carrying
out the transformation can give rise to a loss of information. In this thesis the measure-
ments used to carry out the system identification are those obtained using sinusoidal
inputs of different frequencies.

This completes the overview of the state of the art section in relation to IRDWs, test
rigs, and system identification. In the following subsection the objective of this work
will be laid out.
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1.3 Objective of this work

Conventional railway bogies rely on wheelsets that are coupled through a rigid axis;
these create an inherently stable system, but limit the flexibility of the associated con-
trol systems. In addition, they cause high wear of the wheels and tracks, and reduce the
overall ride comfort. Taken together, these disadvantages suggest the need for research
into the development of new concepts for wheelsets. IRDWs offer advantages such as
improved traction control and reduced wear but introduce dynamic challenges, including
non-linear behavior. Scaled railway test rigs allow for the effective study of running gear
dynamics. However, accurate system models are necessary to interpret their behavior
adequately. The current model is mainly based on step responses, which may not fully
capture the frequency-dependent characteristics of the system. Therefore, an improved
methodology to model the test rig is needed to provide a more accurate method to cap-
ture the dynamic behavior of the system. In this thesis frequency response was chosen
as a method of parameter identification, as it focuses on the frequency-related charac-
teristics of the system.

To enable the identification of a more accurate model, the mathematical model of the
rear axis presented in [6] was used as the basis for parameter identification. The recorded
data, including yaw angles, lateral displacement, and the current input, were processed
using Fourier analysis in order to prepare it for system identification. This process uti-
lized the System Identification Toolbox (SIT) in MATLAB [27], where the input used
was the frequency response of the Fourier transform of the measurement data. Addi-
tionally, the transfer functions were manually fitted. This allowed for a comparison of
the SIT output and a manual fit to the measurements and made it possible to choose
the set of parameters that most accurately represented the measurements. The system
identification process then estimated the parameters of these transfer functions, which
in turn enabled the identification of the model parameters.

Using the chosen set of identified parameters, a frequency response-based model to sim-
ulate the system was then constructed in MATLAB Simulink. To verify the accuracy of
the linear model, simulation results were compared with additional measurement data.
Furthermore, the identified parameters were then compared to those from an existing
model, which was primarily derived from step responses [6]. To expand the model, hys-
teresis was introduced and evaluated. Finally, the findings of the work were summarized
and suggestions for future research were made.

1.4 Structure of the Thesis

Following on from the introduction and overview of the state of the art presented above,
this thesis is organized into four chapters focused on system identification of the linear
model. These cover the underlying theory, the simulation work, the practical application
of the model, and, finally, evaluation of the identified model. Chapter 2 introduces the
mathematical model of the 1:5 test rig, based on the work detailed in [6]. It also pro-
vides an overview of the key mathematical and control theory concepts used, including
transfer functions and Bode diagrams. The process of system identification is described
in detail, highlighting the model parameters to be fitted and the underlying algorithms
used for their identification. This leads to a discussion of the simulation approach, which
is implemented using MATLAB Simulink. It shows the theoretically expected results of
the model.
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Following the theoretical and simulation sections, the practical application of the model
is introduced in Chapter 4. It introduces the test rig setup and measurement data used.
Moreover, measures taken to pre-process the measurement data for system identification
are described. The system identification by the SIT is then compared to the manually
found transfer function. The parameter identification of the test rig is finally presented.
Chapter 5 presents an evaluation and discussion of the identified model. In particular, it
compares simulation results with actual measurement data, discussing the accuracy and
validity of the mathematical model and the identified parameters. It also shows mea-
surements of sine sweeps with different amplitudes, introducing a non-linearity of the
test rig. Additionally, the identified parameters are compared to those from an existing
model mostly based on step responses. A discussion of the similarities and differences
of the models is then provided.

To improve the model, hysteresis as a non-linear phenomenon is introduced by expanding
the linear mathematical model and the simulation. The parameters of the hysteresis are
manually adjusted to try to capture the measurements more accurately and the results
of this parameter tuning process are then presented.

The thesis concludes with an assessment of the implications of the research and recom-
mendations for future work.
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Chapter 1. Introduction




Chapter 2

Theory Background on System
Identification and Modeling

This chapter presents the fundamental concepts of frequency analysis and the frequency
response of PT1 and PT2 elements. It then introduces the model utilized in this thesis,
which is based on the model developed in [6, 28|. From this model, the transfer func-
tions are derived, providing the foundation for parameter identification. The theoretical
equations derived in this chapter are then applied in MATLAB Simulink simulations, as
described in Chapter 3, and are also used for the experimental parameter identification
process outlined in Chapter 4.

2.1 Fundamental Transforms and Frequency Analysis

As part of the process of frequency analysis, signals are often Fourier-transformed and
plotted as a Bode diagram. These will be described in more detail in this section.
The input signal used for the work presented in this thesis, the linear sine sweep, is
then introduced. Finally, the Laplace transform is briefly outlined, as it is used when
describing transfer functions.

2.1.1 Fourier Transform

With the Fourier transform a signal can be separated into trigonometric functions with
a continuous amplitude spectrum [29]. One can obtain information about the magnitude
and phase at every given frequency through a Fourier transform. This can then be used
to create Bode diagrams. The Fourier transform is defined in [30] as

F(w) ! /m F)e 79t = A(w)e 7%, (2.1)

:%700

where A(w) is the continuous amplitude spectrum defined as

A(w) = \/(ReF ())? + (ImF (w))’; (2.2)

and ¢(w) is the continuous phase spectrum with

11
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¢ (w) = arctan m. (2.3)

For a linear system with the input A sin wt, the output takes the same form A sin wt + ®.
The only changes from input to output are the magnitude A and a phase shift of ¢ [26].
To transform a discrete signal, the discrete Fourier transform is used, which reconstructs
the full function and then performs the Fourier transform [30].

2.1.2 Bode Diagrams

A Bode diagram consists of two separate plots, one for the magnitude A and one for the
phase ¢ [31] on the vertical scale. Both are plotted over a logarithmic scale of angular
frequency w in rad/s. The information for the magnitude A and the phase ¢ are obtained
by Fourier-transforming the signal of interest, as explained above in Subsection 2.1.1.
The magnitude A expresses the gain and is given in dB and the phase ¢ can either be
given in radians (rad) or in degrees (°). To obtain the transfer function from input to
output, the magnitude of the output is divided by the magnitude of the input and the
phase of the input is subtracted from the phase of the output. The magnitudes are
divided to obtain the gain, while the phases are subtracted to determine the phase shift.
Examples of different Bode diagrams can be found in Section 2.2. Bode plots provide
information about stability, the value of break frequencies, and the static gain. This
allows the system’s transfer function to be identified using only the information found
in the magnitude and phase plot.

2.1.3 Linear Sine Sweep

A linear sine sweep is a signal with linear frequency modulation. The frequency of a
sinusoidal signal increases linearly from a start frequency fy to an end frequency fi in
the time T'. The rate of change of frequency k is defined as k = % The signal is

described in [32] as

s(t) = rect (;) exp {j27r (fot + ];t2> } (2.4)

Sine signals with time-variant frequency are also referred to as chirp signals. As described
in [32], the amplitude and phase spectrum of the sine sweep can be approximated if the
time-bandwidth product (TBP) is larger than 100. The TBP is calculated as TBP =
T(f1 — fo). In this thesis measurements of the length 7' = 150 s with a frequency range
from 1-1073rad/s to 640rad/s were used. This leads to TBP = 15278.9, which is
significantly greater than the threshold value of 100. Therefore, only the approximated
magnitude and phase of a sine sweep are needed. From [32] they were defined as

N Jjw .
‘Gchlrp(]wﬂ = kreCt (fl — f0> ; (2.5a)
F\2
£Gehirp(Jw) = —W(]]:J) + % (2.5b)
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Since a sine sweep measurement covers a given frequency spectrum, the amplitude A and
phase ¢ of all covered frequencies can be directly obtained from the Fourier transform
of the signal. Therefore, a Bode diagram for the frequencies covered can be created with
just one measurement. This is why sine sweep measurements were used in this thesis as
they are especially convenient and straightforward to use.

2.1.4 Laplace Transform

The Laplace transform as presented in [29] can be used to solve ordinary differential
equations. It does so by transforming the differential equation into an algebraic expres-
sion, which can then be solved. The solution of the differential equation is then derived
by using the inverse Laplace transform. The Laplace transform is defined in [30] as

LU= [ i@ d=Fs). (2.6)

The transform of a derivative is

where y; is the value of (7 (0) at ¢ = 0, as defined in [30]. The transfer functions G(s)
in this thesis are Laplace transformed and describe the transfer behavior from input to
output as a function of s.

2.2 Frequency Response of PT1 and PT2 Elements

The equations to describe the introduced transfer behaviors from w to ¥ and from W
to y are of the second and first order, respectively. These will be discussed further in
Section 2.4 of this chapter. In this section the general form of these transfer functions
is introduced. Both are of the form of proportional blocks with lag elements of first or
second order [33].

2.2.1 PT1 Element

A PT1 element is a proportional element with a first order lag with the transfer function
of the standard form described in [26] as

k

G . 2.7
pT1(8) T (2.7)

where k is the static gain and wy, the break frequency. To look at the transfer function
in the frequency domain, s is replaced by jw. The magnitude |Gpr1(jw)| and the phase
shift Z/Gpri(jw) are described by
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. k
(Gom ()| = o (280)
ZGp71(jw) = — arctan (w> (2.8b)
Wh

As shown in Figure 2.1, the Bode plot of the magnitude starts with a horizontal line at
|G (jwmin)|qp = 201og(k) until it reaches the break frequency wj and from then on follows
a straight line with a gradient of -20 dB/decade. The actual value of the magnitude at
the break frequency wy, is 20log(k) — 3dB.

The phase of the Bode plot starts at 0° for zero frequency in the case of k > 0 and drops
down to -90° for high frequencies (w — o0). It passes -45° at the break frequency wy,
[26].

0 T
m -20 - .
e}
i= 40 - i
<
_60,
1072 109 102
w in rad/s
0 g
g 50t |
ASS
_100 | R | L | L
1072 10° 102
w in rad/s

Figure 2.1: Bode diagram of a PT2 element with £k = 1 and wp, = 1.

2.2.2 PT2 Element

In [26] the standard form of a second order differential equation system is described as
i+ 2Ty + T?y = T?ku, with y being the output variable, u being the input variable, ¢
the damping coefficient, T' = w—lb the inverse break frequency, and k represents the static
gain. This leads to a transfer function of the form

_Y(s) _ wik
Grra(s) = U(s)  s2+2Cwps +wi’ (2.9)

To look at the frequency response, s is again replaced with jw. As described in [26] the
magnitude |Gpra2(jw)| and the phase shift ZGpra(jw) are defined as



2.2. Frequency Response of PT1 and PT2 Elements 15
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Just like the Bode plot of the magnitude of a PT1 element, the magnitude of a PT2
element starts with a horizontal line at |Gpra(jwmin)|gg = 20log(k) until it reaches the
break frequency wy, as can be seen in Figure 2.2. At this point, the PT2 element shows
different behavior to the PT1 element, depending on the value of the damping coefficient
(. As will be introduced in Subsection 2.4.1, one of the transfer behaviors discussed in
this work takes the shape of a PT2 element with 0 < ( < 1. This is the oscillating
case in which the two poles of the transfer function are a pair of complex conjugated
values and the magnitude forms a resonance peak around the break frequency wy, and
can get very large [33]. After the resonance peak (w > wy), the magnitude line slopes
downwards with -40 dB/decade [26].

The Bode plot of the phase shift start at 0° for £ > 0 and ends at -180° for w — oo,
reaching -90° at the break frequency wy. The smaller the damping factor (, the steeper
the phase shifts from 0° to -180° [33].

(2.10a)

|Gpra(jw)| = |

ZGpr2(jw) = arctan (2.10b)
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Figure 2.2: Bode diagram of a PT2 element with k =1, ( = 0.1, and wy, = 1.
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2.3 Modeling of the 1-to-5 Test Rig

Current research on the 1-to-5 test rig at DLR focuses on improving existing models
and on developing an observer to estimate the lateral displacement [6, 28]. In [28] an
observer was designed, based on a class of linear systems. Furthermore, a theoretical
model of the rear axis was subsequently considered with regards to non-linearities in [6].
The linear model for the rear axis, as shown in [6], has the form

i = Az + Bu. (2.11)

4T
In the state vector z = {yr U, \IJr} + A 'zog, y, represents the lateral displacement

of the rear axis, ¥, represents the yaw angle of the rear axis, and W, its derivative with

regards to time. It is added to A~'z,g, the inverse of the system matrix A times an
_ T

offset vector z.g = [;Tyov(yf + Yog) O wg\IJOH} . The input of the model is the current

input u.

As this work focuses only on the rear axis of the test rig, the lateral displacement of the
rear axis 3, and the yaw angle of the rear axis W, are displayed without subscripts for
better readability.

The parameter ¢,, introduced in the vector for g is induced by the non-flatness of the
wheel,

2 6% —2 8o + bcos 8p%sin &
g, = 70 COS 0 T COS 0g + 0 COS 0g~ S1n 0; (2'12)

bsin dg

and dependent on the wheel radius rg, the track width b, and the equivalent conicity d&g.
The distance between the wheel carrier and the middle frame is defined through [y, v is
the longitudinal velocity, described in Table 2.1, y; describes the lateral displacement of

the front axis, the parameter wq is
ke
=4/=; 2.13
wo =1/ (2.13)

including the equivalent stiffness k. and the axle bridge inertia with regards to yawing
J.. The offset parameters yo¢ and Vg are further described in Section 2.5 below. The
system matrix A and input matrix B are as follows

7;25”’ VCy 0 0
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The parameters

2J,wo 2J, %
b bk 1 bk,
k — —

r=— = —5;
o) w2 ro JZ% roke

(2.14)

K =

(2.15)

are also introduced to simplify the interpretation of the state space model. They 