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Task Description

The German Aerospace Center (DLR) is conducting internal research on the "Propulsion
and Coupling" project, focusing on the drive and suspension technology of rail vehicles.
As part of this, the Institute of System Dynamics and Control has a scaled (1:5) run-
ning gear test rig for testing independently rotating driven wheels as part of the “Next
Generation Train” (NGT) research project. Currently, a model of the test rig based on
system identification mostly based on step responses is being used.

Motivation:
So far, there has neither been an analysis of frequency responses nor an analysis of rich
signals (e.g. sine sweeps). These analyses are crucial to fully understand and evaluate
the behavior of the test rig in as many situations as possible. Moreover, these results
would further verify the already identified parameters.

Bachelor’s thesis topic:
The goal of the bachelor’s thesis is to determine and validate the resulted system pa-
rameters based on frequency responses. The data basis for the thesis will be frequency
responses of measurements of sine sweeps that have already been conducted. The fre-
quency responses of the sine sweeps will be fitted to a linear system with regards to
non-linear effects. Once the parameters have been identified, they will be verified by
comparing the simulation results to measurements on the test rig.

Challenge:
As the system has shown non-linear behavior such as hysteresis or variable damping, the
main challenge for the thesis will be to identify the non-linear effects in the frequency
responses and evaluate whether a linear model can capture these effects accordingly.

Tasks:
• Modelling of the 1:5 NGT test rig in Matlab/Simulink
• Modelling and parameter identification of a linear model based on frequency responses
• Evaluation of the linear model with respect to occurring non-linear effects
• Verification of the model through measurements on the test rig

Supervisor at DLR:
Dr. Tobias Posielek
Tobias.Posielek@dlr.de

Professor at DLR:
Prof. Dr.-Ing. Martin Otter
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Abstract

As part of the Next Generation Train (NGT) research project at the German Aerospace
Center (DLR), the Institute for System Dynamics and Control is developing a new
running gear concept for high-speed trains with independently rotating driven wheels
(IRDWs). To investigate the running gear behavior a scaled (1:5) test rig has been de-
veloped. At present, the test rig is simulated by using a model with parameter values
obtained through a system identification based on step responses.

This thesis’ aim is to undertake a system identification based on frequency response to
better understand the frequency-related behavior of the test rig.

The system identification is based on a state space model from prior research. In this
thesis, transfer functions are derived from that model. Measurements with an input in
form of a sine sweep then form the foundation to identify the parameters of the transfer
functions. With this set of parameters, the parameters of the state space model are
determined. The state space model is implemented in MATLAB Simulink to simulate
the test rig. The results of the simulation with identified parameters are evaluated by
comparing them to other measurements and sets of parameters. Following validation of
the linear model, a hysteresis term is introduced to capture non-linear effects observed
in the experimental data, such as oscillations not accounted for in the linear model. The
parameters of the hysteresis term are also identified and evaluated.

The results demonstrate that system identification based on frequency response yields
more accurate parameters for sinusoidal input simulations compared to previous ap-
proaches. Additionally, incorporating hysteresis gives the model the ability to capture
non-linear effects present in the measurements, enhancing the overall fidelity of the sim-
ulation.
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Kurzfassung

Im Rahmen des Forschungsprojekts Next Generation Train (NGT) des Deutschen Zen-
trums für Luft- und Raumfahrt (DLR) entwickelt das Institut für Systemdynamik und
Regelungstechnik ein neues Fahrwerkskonzept für Hochgeschwindigkeitszüge mit mecha-
tronischen Einzelradantrieben. Zur Untersuchung des Fahrwerksverhaltens wurde ein
skalierter (1:5) Prüfstand entwickelt. Derzeit wird der Prüfstand mit Hilfe eines Modells
simuliert, dessen Parameterwerte durch eine Systemidentifikation auf der Grundlage von
Sprungantworten ermittelt wurden.

Ziel dieser Arbeit ist es, eine Systemidentifikation auf der Grundlage von Frequenzgängen
durchzuführen, um das frequenzbezogene Verhalten des Prüfstands besser zu verstehen.

Die Systemidentifikation basiert auf einem Zustandsraummodell aus früheren Unter-
suchungen. In dieser Arbeit werden die Übertragungsfunktionen aus diesem Modell
abgeleitet. Messungen mit einem Eingang in Form eines Sinus-Sweeps bilden dann die
Grundlage für die Ermittlung der Parameter der Übertragungsfunktionen. Mit die-
sen Parametern werden dann die Parameter des Zustandsraummodells bestimmt. Das
Zustandsraummodell wird in MATLAB Simulink implementiert, um den Prüfstand zu
simulieren. Die Ergebnisse der Simulation mit den ermittelten Parametern werden durch
Vergleiche mit anderen Messungen und Parametersätzen evaluiert.
Nach der Validierung des linearen Modells wird das Modell um einen Hysterese-Term
erweitert, um die in den Versuchsdaten beobachteten nichtlinearen Effekte zu erfassen,
wie z. B. Schwingungen, die im linearen Modell nicht berücksichtigt werden. Die Para-
meter des Hysterese-Terms werden ebenfalls ermittelt und evaluiert.

Die Ergebnisse zeigen, dass die auf dem Frequenzgang basierende Systemidentifikation
im Vergleich zu früheren Ansätzen genauere Parameter für Simulationen mit sinusförmi-
gem Eingang liefert. Darüber hinaus ist es durch die Einbeziehung der Hysterese möglich
nichtlineare Effekte in den Messungen zu erfassen, was die Gesamttreue der Simulation
erhöht.
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Chapter 1

Introduction

1.1 Background

The basic concept of railway running gear has not changed in decades. A typical wheelset
consists of two conical, flanged wheels that are connected by a rigid axis. The key benefit
of this system is its self-centering ability, even on curves . However, with this advantage
comes many disadvantages. For example, this conventional running gear is responsible
for high wear of the wheels and tracks [1]. Furthermore, they are loud, especially when
going around curves, and the self-centering ability comes at the expense of a compromise
between stability and comfort, as it limits ride comfort [2]. Hence, the current widely
used concept for railway bogies has many disadvantages and further research is needed
to address these fundamental challenges.
Advancements in mechatronics and control theory, especially in the field of observers,
have given rise to the evolution of a new concept: Independently Rotating Driven Wheels
(IRDWs). The basic concept is to remove the rigid axle between the wheels of a wheelset
and to power each wheel with its own motor [3]. This allows for active steering which
has the benefit of reducing noise and wear [4]. However, there are some drawbacks to
this solution. Primarily, the self-centering ability is lost and has to be compensated for
through control mechanisms, making the system more complex and non-linear [2].
To test the concept of a railway bogie with IRDWs the German Aerospace Center (DLR)
(German: Deutsches Zentrum für Luft- und Raumfahrt) has developed a scaled railway
running gear test rig [5]. Using the scaled test rig, control concepts can be developed
and tested and the system dynamics of the bogie can be explored within a laboratory
setting, making tests repeatable and less expensive than field tests.
Accurate mathematical models are needed to allow for simulations of the test rig and
to provide a deeper understanding of its dynamics, thus enabling its subsequent control.
The existing mathematical model of the rear axis of the system presented in [6] is pri-
marily based on step responses. The objective of this thesis is to develop a model of the
rear axis based on frequency responses in order to provide a deeper understanding of the
frequency related dynamics of the system.

1



2 Chapter 1. Introduction

1.2 State of the Art

This chapter provides an overview of the conventional bogie concepts used in high-speed
trains in Germany, the concept of IRDWs, and the Next Generation Train (NGT) project
led by the DLR. Additionally, it examines ongoing research on railway bogie test rigs and
introduces different forms of system identification. This review establishes the necessary
background for the methodologies applied in this thesis.

1.2.1 Conventional Concept of Bogies for High-Speed Trains in Ger-
many

A conventional railway vehicle is comprised of a vehicle body on top of two bogies with
two wheelsets each [1]. The wheelsets have two wheels with conical treads, the smaller
circumference being on the outside and with a flange on the inside of each wheel [2]. The
wheels are connected by a solid axle, leading to a passive vehicle guidance system [1].
The passive guidance system entails passive centering of the wheelset on the tracks and
the ability to go around curves without the need for active steering. When a train travels
around a curve, the wheels shift on the track to a position where the outside wheel is
being driven on a larger circumference than the inside wheel, leading to a higher longi-
tudinal velocity. This is illustrated in Figure 1.1, where the black wheelset represents
the wheelset on a straight track and the red dotted wheelset shows the wheels’ passive
steering ability on the tracks, as represented by the gray circles. To improve clarity, the
flange has been omitted from the diagram.

Figure 1.1: Conventional wheelset on tracks.

The main advantage of this concept is its passive centering and curving ability. Although
the conventional concept is widespread and has not changed in the past decades, it has
its disadvantages. The main disadvantage is high wear and loud noise when going around
curves, especially tight curves, due to large creep forces [1]. Furthermore, conventional
wheelsets have problems at high speeds due to the hunting oscillation [1]. One way to
mitigate this motion is to connect springs from the wheelset to the bogie or vehicle body.
However, this undermines its natural curving ability as it increases stiffness and can also
cause severe wear of the rails and wheels [2].
The four most common bogies in European high-speed trains are the Alstom CL334, the
Siemens SF500, the Bombardier Flexx Speed Italy, and the Bombardier Flexx Eco5101
[7]. The ICE4, for example, uses a variant of the Bombarider Flexx Eco as its trailing
bogie and a refined version of the Siemens SF500 as its power bogie [8].
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1.2.2 Independently Rotating Driven Wheels

With IRDWs each wheel has its own motor and can rotate independently. By controlling
the torque of the motors, i.e. actively driving the wheel, a lateral and traction control
system can be implemented [3]. If each wheel is independently driven it then becomes
possible to actively drive around a curve by using different speeds for each wheel [1].
The main benefit of IRDWs over conventional wheelsets is the large reduction of rail
and wheel wear, alongside a noticeable reduction of noise in curves [4]. Furthermore,
IRDWs do not have an axle between them, allowing for more space in the train cars [1];
in particular, in double-decker trains. Another benefit of the use of IRDWs is that trains
can be designed with their floor level at the same height as the train station platform.
In addition, controlling the hunting oscillation leads to enhanced rider comfort.
Even though IRDWs have many promising advantages, there are still a number of chal-
lenges associated with them that have to be addressed. Specifically, these systems strug-
gle to automatically return to the track’s center line as they lack the longitudinal creep
forces required for forward motion [3]. This gives rise to the need for a guidance system
[2]. One challenge the guidance system needs to address is that the lateral displacement
of the wheel-rail contact is difficult to measure due to the significant vibrations present
in the environment [1, 2] and proximity to the ground. The later makes it impractical
to use optical sensors due to dirt and weather conditions.
The modeling process for IRDWs is further complicated by the system’s inherent un-
certainty due to variations in vehicle parameters and actuator dynamics. Incorporating
these dynamics would make the model excessively complex; especially given that the
rail vehicle is a highly non-linear system. While simplified models are often used, these
often fail to capture all dynamics [2].
Further barriers to the adoption of IRDWs are high costs, complex electronics, and the
need to meet stringent safety and reliability standards [4]. IRDWs will not replace con-
ventional wheelsets until these drawbacks, especially regarding safety standards, and
the problems associated with the modeling and control of IRDWs, are convincingly ad-
dressed. This is a key driver for further research on IRDWs and a motivating factor for
this thesis.

1.2.3 Next Generation Train

The Next Generation Train (NGT) is a research project that is led by DLR. It brings
together multiple institutes with the objective of creating a novel double-decker high-
speed train and of sharing the project’s outcomes and results with those in the railway
industry [9]. As part of this project, all components of a conventional high-speed train
have been redesigned by nine different institutes at DLR; this includes the chassis, the
wheels, and the bogie [9]. Unlike conventional double-decker trains, the two floors do
not have to be interrupted above the bogies as the use of IRDWs eliminates the need for
an axle between the wheels [10]. The benefits and drawbacks of IRDWs were discussed
above in Subsection 1.2.2.
To test the novel running gear of the NGT, a 1:5 prototype test rig of the NGT bogie
concept was developed at DLR. This is shown in Figure 1.2. Roller rigs offer the
advantage of being more cost-effective than field tests; in addition, they allow for easy
adjustments to the experimental setup and facilitate repeated testing [11]. The test rig
has two separate wheel carriers with different stability characteristics and each wheel has
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Figure 1.2: Picture of the 1-to-5 test rig at DLR and its sensor setup: (1) Laser sensors
for measuring the lateral displacement; (2) Laser sensors for calculating the yaw angle;

(3) Encoders for measuring the angular velocity; (4) Force torque sensors for
quantifying external disturbances in [6].

a directly mounted, permanently-excited synchronous machine that acts as its motor [5,
6]. Through these motors, traction and lateral control can be achieved [10]. The wheels
of each wheelset are connected by an axle bridge [6]. The bogie is placed on top of two
large rollers that simulate its forward (i.e. longitudinal) motion. Furthermore, the rollers
are able to manage the traction control to let the motors of the IRDWs only control the
lateral displacement.
To collect data from the test rig, different sensors are installed on it. There are force
torque sensors and encoders on each wheel, along with four laser sensors to measure
each yaw angle and two laser sensors to measure the lateral displacement of the front
and rear wheelsets [6], as shown in the right-hand image of Figure 1.2. The lasers for
measuring the yaw angles are mounted onto the main frame, with each laser pointing
towards the axle bridge close to a wheel. The yaw angle can then be calculated using the
measured distance from the frame to the respective axle bridge. The other two lasers
are mounted outside the test rig and point to two metal plates attached to the front
and rear of the bogie. These provide measurements that can then be used to calculate
the lateral displacement of the front and rear wheelsets on the rollers. This 1:5 test rig
can be used to test various control algorithms, validate simulation models, and for the
development of sensor setups [10].

1.2.4 Current Research Projects on Other Railway Bogie Test Rigs

The test rig described above is not the only such rig available for conducting research on
IRDWs as there are a number of others in existence in other locations around the world.
In this subsection, four of these alternate test rigs are considered and compared to the
1:5 test rig at DLR that was used to carry out the work described in this thesis. Three
of these are scaled test rigs in university laboratories, while the fourth is a full scale test
rig that is currently being set up at DLR as part of the NGT research project.
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1:3.5 Scaled Test Rig at the Czech Technical University

The test rig located at the Czech Technical University in Prague, Czech Republic can be
used to test IRDWs and conventional wheelsets [11]. This allows for direct comparisons
between these two bogie concepts. It has a two-axle configuration and a scale of 1:3.5
[12]. Like the 1:5 test rig at DLR, it is also mounted on two rollers that represent the
tracks. However, unlike the DLR test rig, it is also able to simulate a curved track.
Furthermore, the wheels are exchangeable, which makes it possible to test wheels of
different conicities. The test rig also has a system to measure wheel roller contact forces,
as well as sensors to measure the displacement, acceleration, torque and force, and the
forces between the axle boxes and the bogie frame.
Contact position transducers are used to measure the lateral positions of the wheelsets
and measurements of the Y forces provide insights into the running dynamics of active
controlled railway bogies. In addition, analysis of the wheel-rail contact forces indicates
the level of wear of the wheels and rails. This test rig can be run at a revolution speed of
up to 700 revolutions/min, which corresponds to a full scale vehicle speed of 230 km/h.
Unlike the DLR test rig, the test rig in Prague does not have the motors directly mounted
onto the wheels, rather they are located in the middle of the bogie and connected via a
toothed belt, linkages, and axle boxes to the wheelsets [12].
Research carried out using this test rig mainly focuses on the application of active control
in the primary suspension and wheelset guidance [12]. Furthermore, the test rig is used
for torsion oscillations research and to attempt to measure adhesion of the wheel-roller
contact [13].

1:10 Scaled Test Rig at the University of Tokyo

The second alternate test rig can be found at the University of Tokyo in Japan. This
1:10 test rig uses active power steering for its independently rotating wheels [11] with
the goal of eliminating steering vibration and realizing close-to ideal steering. Where
possible, it relies on its ability to self-steer along with a small power assist during the
transition from a straight to a curved track. Like the scaled test rig at DLR, it has two
wheelsets with two IRDWs each, with both primary and secondary suspension systems.
It differs from the DLR rig in a number of ways. Firstly, it is at a scale of 1:10 ,
while DLR test rig’s scale is 1:5. In addition, each wheel is connected to the frame
through steering linkages, and has motors that are separate from, and not integrated
into, the wheels. Furthermore, the test rig runs on scaled tracks rather than rollers.
Laser displacement sensors are mounted between the axle box and the rail to measure
the lateral displacement and the yaw angle [14].
Results obtained using this test rig have led to improved stability and steering utilizing
a gyroscopic damper as part of the control method. This allows for passive stabilization
and improvements of the dynamic behavior at high speeds [15].

1:5 Scaled Test Rig at Tongji University

The test rig at Tongji University in Shanghai, China is similar to the one at DLR in a
number of ways. In particular, it has the same scale and two sets of IRDWs. However,
unlike the test rig at DLR, it runs on scaled tracks with straight segments and a curve,
rather than on a roller. In addition, it has both primary and secondary suspension
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systems. Each wheel is connected to a subframe through an axle box, which is, in turn,
connected to a subframe through primary suspension. The bogie is then connected to a
subframe through secondary suspension and it contains a number of onboard devices (e.g.
controllers and power inverters). In contrast to the scaled test rig at DLR, the motors
are connected to the wheels through gear reducers and axle boxes, rather than being
mounted directly on the wheel. In addition, the lateral displacement is also measured
using two laser sensors per axis. These are mounted on the outside of the frames, below
the wheels and point towards the tracks, measuring the distance from the frame to the
tracks at each wheel. Additionally, like the scaled test rig at DLR, it also has laser
sensors to measure the yaw angles and encoders on each wheel to measure their rotation
speed [16].
This test rig is currently being used to test a data-driven multi-agent reinforcement
learning controller to control active guidance. The objective of this work is to improve
the running stability and reduce wheel-rail wear [16].

Full Scale Test Rig at DLR, Oberpfaffenhofen, Germany

The final alternate test rig considered is a new, full-scale test rig being developed at
DLR [17]. It will enable a proof of concept for the developed NGT bogie. In particular,
control concepts developed on the 1:5 test rig at DLR, as presented in Subsection 1.2.3,
can be tested and validated on this full-scale test rig. As it is first and foremost a proof
of concept, it only has one wheelset with two wheels and a maximum velocity of 5 m/s.
Like the 1:5 test rig, and in contrast to all other test rigs considered in this subsection,
the motors are directly mounted onto the wheels. It has sensors to measure forces and
movements in all directions, including 20 laser displacement sensors, as well as sensors
to measure force, inertia, and torque [18].
In this subsection an overview of existing test rigs for evaluation of bogie concepts with
IRDWs was provided. In the following subsection the focus will move to modeling these
systems and, in particular, system identification methods.

1.2.5 System Identification

System identification is a methodology used to develop mathematical models that accu-
rately describe a dynamic system [19]. The basic steps of any system identification are
as follows: First collect data about the system, then determine a model structure that
will most accurately describe the system. The selected model structure is then fitted to
the measurement data and finally, the identified model is then validated [20]. In this
subsection, three approaches to system identification are presented.
These are system identification using learning methods, system identification based on
step responses, and system identification based on frequency responses. Existing work
that uses system identification based on step responses [6] serves as a reference system
for the research on the system based on frequency responses detailed in this thesis.

System Identification using Learning Methods

With the advent of machine learning and super computers, the use of learning methods
for system identification has received more attention in the literature or literature in
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general [21]. The concept that underpins these learning methods is quite straightforward.
A familiar input is given to the to-be-identified system and to a simulation model.
The generated outputs of the system and of the simulation are then compared and the
mathematical model underpinning the simulation is then adjusted in order to reduce the
error (i.e. the differences between its output and that of the system to be identified). In
this way the simulation “learns” from the error. This process is then repeated so that
the simulation iteratively reduces and minimizes this error [22].
Such machine learning techniques are outside the scope of this thesis and will not be
considered in this work, although they do present an interesting direction for future
work.

System Identification with Step Responses

In this method of system identification, the input to the system is a step function and
the response of the system to this input is the step response. This response has certain
characteristics depending on the system to be identified [19]. This method of system
identification has the advantage of using a very simple input signal that can easily be
implemented and analyzed using a number of different methods [23]. One of the oldest
amongst these is that introduced by Karl Küpfmüller in [24]. This formed the basis
for the development of subsequent methods. The form of the step response enables the
structure of the model to be determined and, hence, the transfer function can be found
[23].

System Identification based on Frequency Responses

This method of system identification is an indirect approach [25] that involves the collec-
tion of frequency response data, from which Bode diagrams are created. Bode diagrams
will be discussed in more detail in Section 2.1. A mathematical formula for the transfer
function of the input to output behavior is then determined; this depends on the type
of model structure used and the form of the Bode diagrams. From these diagrams of
the measurement data, the parameters of the transfer function can be determined. The
parameters of the fitted function can then be used to identify the parameters of the sys-
tem as a whole. The great advantage of using frequency responses is their input-output
behavior within a linear system: A sinusoidal input to a linear system will generate a
sinusoidal output of the same frequency. Only the magnitude and phase of the output
will differ to that of the input [26]. This makes it possible to look at changes between
the input and the output by displaying them on Bode diagrams. From this diagram a
transfer function that describes the system can be identified. This method of system
identification is easy to apply in different scenarios, making it ideal for later test and
validating work using the full-scale test rig [1]. However, there is one disadvantage to
system identification through frequency responses that should be noted; namely carrying
out the transformation can give rise to a loss of information. In this thesis the measure-
ments used to carry out the system identification are those obtained using sinusoidal
inputs of different frequencies.

This completes the overview of the state of the art section in relation to IRDWs, test
rigs, and system identification. In the following subsection the objective of this work
will be laid out.
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1.3 Objective of this work

Conventional railway bogies rely on wheelsets that are coupled through a rigid axis;
these create an inherently stable system, but limit the flexibility of the associated con-
trol systems. In addition, they cause high wear of the wheels and tracks, and reduce the
overall ride comfort. Taken together, these disadvantages suggest the need for research
into the development of new concepts for wheelsets. IRDWs offer advantages such as
improved traction control and reduced wear but introduce dynamic challenges, including
non-linear behavior. Scaled railway test rigs allow for the effective study of running gear
dynamics. However, accurate system models are necessary to interpret their behavior
adequately. The current model is mainly based on step responses, which may not fully
capture the frequency-dependent characteristics of the system. Therefore, an improved
methodology to model the test rig is needed to provide a more accurate method to cap-
ture the dynamic behavior of the system. In this thesis frequency response was chosen
as a method of parameter identification, as it focuses on the frequency-related charac-
teristics of the system.
To enable the identification of a more accurate model, the mathematical model of the
rear axis presented in [6] was used as the basis for parameter identification. The recorded
data, including yaw angles, lateral displacement, and the current input, were processed
using Fourier analysis in order to prepare it for system identification. This process uti-
lized the System Identification Toolbox (SIT) in MATLAB [27], where the input used
was the frequency response of the Fourier transform of the measurement data. Addi-
tionally, the transfer functions were manually fitted. This allowed for a comparison of
the SIT output and a manual fit to the measurements and made it possible to choose
the set of parameters that most accurately represented the measurements. The system
identification process then estimated the parameters of these transfer functions, which
in turn enabled the identification of the model parameters.
Using the chosen set of identified parameters, a frequency response-based model to sim-
ulate the system was then constructed in MATLAB Simulink. To verify the accuracy of
the linear model, simulation results were compared with additional measurement data.
Furthermore, the identified parameters were then compared to those from an existing
model, which was primarily derived from step responses [6]. To expand the model, hys-
teresis was introduced and evaluated. Finally, the findings of the work were summarized
and suggestions for future research were made.

1.4 Structure of the Thesis

Following on from the introduction and overview of the state of the art presented above,
this thesis is organized into four chapters focused on system identification of the linear
model. These cover the underlying theory, the simulation work, the practical application
of the model, and, finally, evaluation of the identified model. Chapter 2 introduces the
mathematical model of the 1:5 test rig, based on the work detailed in [6]. It also pro-
vides an overview of the key mathematical and control theory concepts used, including
transfer functions and Bode diagrams. The process of system identification is described
in detail, highlighting the model parameters to be fitted and the underlying algorithms
used for their identification. This leads to a discussion of the simulation approach, which
is implemented using MATLAB Simulink. It shows the theoretically expected results of
the model.
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Following the theoretical and simulation sections, the practical application of the model
is introduced in Chapter 4. It introduces the test rig setup and measurement data used.
Moreover, measures taken to pre-process the measurement data for system identification
are described. The system identification by the SIT is then compared to the manually
found transfer function. The parameter identification of the test rig is finally presented.
Chapter 5 presents an evaluation and discussion of the identified model. In particular, it
compares simulation results with actual measurement data, discussing the accuracy and
validity of the mathematical model and the identified parameters. It also shows mea-
surements of sine sweeps with different amplitudes, introducing a non-linearity of the
test rig. Additionally, the identified parameters are compared to those from an existing
model mostly based on step responses. A discussion of the similarities and differences
of the models is then provided.
To improve the model, hysteresis as a non-linear phenomenon is introduced by expanding
the linear mathematical model and the simulation. The parameters of the hysteresis are
manually adjusted to try to capture the measurements more accurately and the results
of this parameter tuning process are then presented.
The thesis concludes with an assessment of the implications of the research and recom-
mendations for future work.
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Chapter 2

Theory Background on System
Identification and Modeling

This chapter presents the fundamental concepts of frequency analysis and the frequency
response of PT1 and PT2 elements. It then introduces the model utilized in this thesis,
which is based on the model developed in [6, 28]. From this model, the transfer func-
tions are derived, providing the foundation for parameter identification. The theoretical
equations derived in this chapter are then applied in MATLAB Simulink simulations, as
described in Chapter 3, and are also used for the experimental parameter identification
process outlined in Chapter 4.

2.1 Fundamental Transforms and Frequency Analysis

As part of the process of frequency analysis, signals are often Fourier-transformed and
plotted as a Bode diagram. These will be described in more detail in this section.
The input signal used for the work presented in this thesis, the linear sine sweep, is
then introduced. Finally, the Laplace transform is briefly outlined, as it is used when
describing transfer functions.

2.1.1 Fourier Transform

With the Fourier transform a signal can be separated into trigonometric functions with
a continuous amplitude spectrum [29]. One can obtain information about the magnitude
and phase at every given frequency through a Fourier transform. This can then be used
to create Bode diagrams. The Fourier transform is defined in [30] as

F (ω) = 1
2π

∫ +∞

−∞
f(t)e−jωtdt = A(ω)e−jφ(ω); (2.1)

where A(ω) is the continuous amplitude spectrum defined as

A(ω) =
√

(ReF (ω))2 + (ImF (ω))2; (2.2)

and φ(ω) is the continuous phase spectrum with

11
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φ (ω) = arctan ImF (ω)
ReF (ω) . (2.3)

For a linear system with the input A sinωt, the output takes the same form Ã sinωt+ φ.
The only changes from input to output are the magnitude Ã and a phase shift of φ [26].
To transform a discrete signal, the discrete Fourier transform is used, which reconstructs
the full function and then performs the Fourier transform [30].

2.1.2 Bode Diagrams

A Bode diagram consists of two separate plots, one for the magnitude A and one for the
phase φ [31] on the vertical scale. Both are plotted over a logarithmic scale of angular
frequency ω in rad/s. The information for the magnitude A and the phase φ are obtained
by Fourier-transforming the signal of interest, as explained above in Subsection 2.1.1.
The magnitude A expresses the gain and is given in dB and the phase φ can either be
given in radians (rad) or in degrees (◦). To obtain the transfer function from input to
output, the magnitude of the output is divided by the magnitude of the input and the
phase of the input is subtracted from the phase of the output. The magnitudes are
divided to obtain the gain, while the phases are subtracted to determine the phase shift.
Examples of different Bode diagrams can be found in Section 2.2. Bode plots provide
information about stability, the value of break frequencies, and the static gain. This
allows the system’s transfer function to be identified using only the information found
in the magnitude and phase plot.

2.1.3 Linear Sine Sweep

A linear sine sweep is a signal with linear frequency modulation. The frequency of a
sinusoidal signal increases linearly from a start frequency f0 to an end frequency f1 in
the time T . The rate of change of frequency k is defined as k = f1−f0

T . The signal is
described in [32] as

s(t) = rect
(
t

T

)
exp

{
j2π

(
f0t+ k

2 t
2
)}

. (2.4)

Sine signals with time-variant frequency are also referred to as chirp signals. As described
in [32], the amplitude and phase spectrum of the sine sweep can be approximated if the
time-bandwidth product (TBP) is larger than 100. The TBP is calculated as TBP =
T (f1 − f0). In this thesis measurements of the length T = 150 s with a frequency range
from 1 · 10−3 rad/s to 640 rad/s were used. This leads to TBP = 15278.9, which is
significantly greater than the threshold value of 100. Therefore, only the approximated
magnitude and phase of a sine sweep are needed. From [32] they were defined as

|Gchirp(jω)| = 1
k

rect
(

jω

f1 − f0

)
; (2.5a)

∠Gchirp(jω) = −π(jω)2

k
+ π

4 . (2.5b)
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Since a sine sweep measurement covers a given frequency spectrum, the amplitude A and
phase φ of all covered frequencies can be directly obtained from the Fourier transform
of the signal. Therefore, a Bode diagram for the frequencies covered can be created with
just one measurement. This is why sine sweep measurements were used in this thesis as
they are especially convenient and straightforward to use.

2.1.4 Laplace Transform

The Laplace transform as presented in [29] can be used to solve ordinary differential
equations. It does so by transforming the differential equation into an algebraic expres-
sion, which can then be solved. The solution of the differential equation is then derived
by using the inverse Laplace transform. The Laplace transform is defined in [30] as

L {f (t)} =
∫ ∞

0
e−stf (t) dt = F (s) . (2.6)

The transform of a derivative is

L
{
y(n)(t)

}
= snY (s) −

n−1∑
i=0

sn−i−1yi;

where yi is the value of y(i)(0) at t = 0, as defined in [30]. The transfer functions G(s)
in this thesis are Laplace transformed and describe the transfer behavior from input to
output as a function of s.

2.2 Frequency Response of PT1 and PT2 Elements

The equations to describe the introduced transfer behaviors from u to Ψ and from Ψ
to y are of the second and first order, respectively. These will be discussed further in
Section 2.4 of this chapter. In this section the general form of these transfer functions
is introduced. Both are of the form of proportional blocks with lag elements of first or
second order [33].

2.2.1 PT1 Element

A PT1 element is a proportional element with a first order lag with the transfer function
of the standard form described in [26] as

GPT1(s) = k
1

ωb
s+ 1

, (2.7)

where k is the static gain and ωb the break frequency. To look at the transfer function
in the frequency domain, s is replaced by jω. The magnitude |GPT1(jω)| and the phase
shift ∠GPT1(jω) are described by
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|GPT1(jω)| = |k|∣∣∣∣√ω2

ω2
b

+ 1
∣∣∣∣ ; (2.8a)

∠GPT1(jω) = − arctan
(
ω

ωb

)
. (2.8b)

As shown in Figure 2.1, the Bode plot of the magnitude starts with a horizontal line at
|G(jωmin)|dB = 20 log(k) until it reaches the break frequency ωb and from then on follows
a straight line with a gradient of -20 dB/decade. The actual value of the magnitude at
the break frequency ωb is 20 log(k) − 3dB.
The phase of the Bode plot starts at 0° for zero frequency in the case of k > 0 and drops
down to -90° for high frequencies (ω → ∞). It passes -45° at the break frequency ωb
[26].
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Figure 2.1: Bode diagram of a PT2 element with k = 1 and ωb = 1.

2.2.2 PT2 Element

In [26] the standard form of a second order differential equation system is described as
ÿ+ 2ζT ẏ+ T 2y = T 2ku, with y being the output variable, u being the input variable, ζ
the damping coefficient, T = 1

ωb
the inverse break frequency, and k represents the static

gain. This leads to a transfer function of the form

GPT2(s) = Y (s)
U(s) = ω2

bk

s2 + 2ζωbs+ ω2
b
. (2.9)

To look at the frequency response, s is again replaced with jω. As described in [26] the
magnitude |GPT2(jω)| and the phase shift ∠GPT2(jω) are defined as
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|GPT2(jω)| = |k|∣∣∣∣∣∣
√(

1 − ω2

ω2
b

)2
+

(
2ζ ω

ωb

)2
∣∣∣∣∣∣
; (2.10a)

∠GPT2(jω) = arctan

 2ζ ω
ωb

1 −
(

ω
ωb

)2

. (2.10b)

Just like the Bode plot of the magnitude of a PT1 element, the magnitude of a PT2
element starts with a horizontal line at |GPT2(jωmin)|dB = 20 log(k) until it reaches the
break frequency ωb, as can be seen in Figure 2.2. At this point, the PT2 element shows
different behavior to the PT1 element, depending on the value of the damping coefficient
ζ. As will be introduced in Subsection 2.4.1, one of the transfer behaviors discussed in
this work takes the shape of a PT2 element with 0 < ζ < 1. This is the oscillating
case in which the two poles of the transfer function are a pair of complex conjugated
values and the magnitude forms a resonance peak around the break frequency ωb and
can get very large [33]. After the resonance peak (ω > ωb), the magnitude line slopes
downwards with -40 dB/decade [26].
The Bode plot of the phase shift start at 0° for k > 0 and ends at -180° for ω → ∞,
reaching -90° at the break frequency ωb. The smaller the damping factor ζ, the steeper
the phase shifts from 0° to -180° [33].
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Figure 2.2: Bode diagram of a PT2 element with k = 1, ζ = 0.1, and ωb = 1.
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2.3 Modeling of the 1-to-5 Test Rig

Current research on the 1-to-5 test rig at DLR focuses on improving existing models
and on developing an observer to estimate the lateral displacement [6, 28]. In [28] an
observer was designed, based on a class of linear systems. Furthermore, a theoretical
model of the rear axis was subsequently considered with regards to non-linearities in [6].
The linear model for the rear axis, as shown in [6], has the form

ẋ = Ax+Bu. (2.11)

In the state vector x =
[
yr Ψr Ψ̇r

]T
+ A−1xoff , yr represents the lateral displacement

of the rear axis, Ψr represents the yaw angle of the rear axis, and Ψ̇r its derivative with
regards to time. It is added to A−1xoff , the inverse of the system matrix A times an
offset vector xoff =

[
c̄y

2l0
v(yf + yoff) 0 ω2

0Ψoff
]T

. The input of the model is the current
input u.

As this work focuses only on the rear axis of the test rig, the lateral displacement of the
rear axis yr and the yaw angle of the rear axis Ψr are displayed without subscripts for
better readability.

The parameter c̄y, introduced in the vector for xoff is induced by the non-flatness of the
wheel,

c̄y = 2r0 cos δ0
3 − 2r0 cos δ0 + b cos δ0

2 sin δ0
b sin δ0

; (2.12)

and dependent on the wheel radius r0, the track width b, and the equivalent conicity δ0.
The distance between the wheel carrier and the middle frame is defined through l0, v is
the longitudinal velocity, described in Table 2.1, yf describes the lateral displacement of
the front axis, the parameter ω0 is

ω0 =
√
kc
Jz

; (2.13)

including the equivalent stiffness kc and the axle bridge inertia with regards to yawing
Jz. The offset parameters yoff and Ψoff are further described in Section 2.5 below. The
system matrix A and input matrix B are as follows

A =


−vc̄y

2l0
vc̄y 0

0 0 1

0 −ω2
0 −2Dω0

 , B =


0

0

Kω2
0

 .
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The parameters

D = kd
2Jzω0

= kd

2Jz
kc
Jz

; (2.14)

K = b

r0Jzω2
o

kτ = bkτ

r0

1
Jz

kc
Jz

= bkτ

r0kc
; (2.15)

are also introduced to simplify the interpretation of the state space model. They contain
the equivalent damping parameter kd and the motor constant kτ , as well as previously
introduced parameters and constants.

This leads to

x =
[
y Ψ Ψ̇

]T
+ A−1xoff

=


y

Ψ

Ψ̇

 +


− 2l0

vc̄y
−4l0D

ω0
−2l0

ω2
0

0 −2D
ω0

− 1
ω2

0

0 1 0




c̄y

2l0
v(yf + yoff)

0

ω2
0Ψoff



=


y

Ψ

Ψ̇

 +


− 2l0

vc̄y

c̄yv
2l0

(yf + yoff) − 2l0
ω2

0
Ψoff

− 1
ω2

0
ω2

0Ψoff

0



=


y − yf − yoff − 2l0Ψoff

Ψ − Ψoff

Ψ̇

 .

(2.16)

One interesting thing to note about the state vector x is that the first row is dependent
on Ψoff . This is further discussed in Section 2.5 below.
The constants and parameters are presented in Table 2.1 and Table 2.2, respectively,
and the sensor measurements are illustrated in Figure 2.3. It should be noted that the
values of the parameters will be determined later through parameter identification.

Table 2.1: Constants for the state space model.

Notation Description Value Unit
v longitudinal velocity 1 m/s
r0 wheel radius 0.1 m
b track width 0.3 m
kτ motor constant 0.27 N m/A
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Figure 2.3: Illustrations of the test rig’s laser sensors, variables and states. The red
lines illustrate the direction of the laser sensors. The illustration on the left shows the

nominal state without lateral displacement and yaw angle. The illustration on the
right shows the change in variables for a non-zero lateral displacement and yaw angle.

All quantities are highly exaggerated for clarity. Illustrations taken and customized
from [6].

Table 2.2: Parameters for the state space model.

Notation Description Unit
l0 distance wheel carrier and middle frame m
δ0 equivalent conicity rad
yoff offset lateral displacement m
Jz axle bridge inertia w.r.t yawing kg m2

kc equivalent stiffness N/m
kd equivalent damping N s/m
Ψoff offset yaw angle rad

Substituting (2.16) into the state space model presented in (2.11) leads to the following
expression for ẋ:

ẋ =

ẏ − ẏf
Ψ̇
Ψ̈

 =

−vc̄y

2l0
(y − yf − yoff − 2l0Ψoff) + vc̄y(Ψ − Ψoff)

Ψ̇
−ω2

0(Ψ − Ψoff) − 2Dω2
0Ψ̇ +Kω2

0u

 . (2.17)

To avoid a Dirac delta function in the transfer function from u to Ψ, Ψ̃ is introduced,
with Ψ̃ = Ψ − Ψoff . Hence, the third row of ẋ (2.17) becomes

¨̃Ψ = −ω2
0Ψ̃ − 2Dω2

0
˙̃Ψ +Kω2

0u. (2.18)



2.4. Transfer Functions 19

It should be noted that Ψoff is time-invariant, meaning ˙̃Ψ = Ψ̇ and ¨̃Ψ = Ψ̈. (2.18) will
be used to obtain the transfer function from u to Ψ̃ as shown in Subsection 2.4.1 below.

In addition, the first row of (2.17) forms the basis for the transfer function from Ψ to
y as will be introduced in Subsection 2.4.2. As this model only looks at the rear axis
yf = 0, and using ỹ = y − yoff , the expression for ˙̃y becomes

˙̃y = −vc̄y

2l0
(ỹ − 2l0Ψoff) + vc̄yΨ̃. (2.19)

2.4 Transfer Functions

There are two methods to find the transfer functions. They can either be derived from
the differential equation system in (2.17), or they can be found through the formula
G(s) = C(sI − A)−1B [31], where the matrices A and B are those of the state space
model (2.11) and C is the output matrix. In this section the transfer function from u to
Ψ will be derived through the differential equation, while the second transfer function
from Ψ to y will be obtained through the formula for G(s).

2.4.1 Transfer Function from u to Ψ

The transfer function from u to Ψ can be derived from (2.18). First (2.18) has to be
Laplace-transformed, leading to

s2Ψ(s) = −2Dω2
0sΨ(s) − ω2

0Ψ(s) +Kω2
0U(s);

which gives

(s2 + 2Dω2
0s+ ω2

0)Ψ(s) = Kω2
0U(s);

where Ψ(s) is the Laplace-transformed output and U(s) the Laplace-transformed input.
From this the transfer function can be obtained:

G(s) = Ψ(s)
U(s) = Kω2

0
s2 + 2Dω2

0s+ ω2
0
. (2.20)

This transfer function is of the form of a PT2 element as introduced in (2.9) with k = K,
ωb = ω0, and ζ = D substituting (2.13) – (2.15), (2.9), and (2.20), such that

k = K = bkτ

r0kc
⇒ kc = bkτ

r0k
; (2.21a)

ωb = ω0 =
√
kc

Jz
⇒ Jz = kc

ω2
b

; (2.21b)

ζ = D = kd

2Jz

√
kc
Jz

⇒ kd = 2ζJz

√
kc

Jz
. (2.21c)
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2.4.2 Transfer Function from Ψ to y

The transfer function found with G(s) = C(sI − A)−1B with C =
[
1 0 0

]
is the

transfer function from u to y,

Guy(s) = vc̄yKω0(
s+ vc̄y

2l0

) (
s2 + 2Dω0s+ ω2

0
) . (2.22)

Guy(s) can then be divided by the transfer function from u to Ψ, presented previously in
Subsection 2.2.2, to receive the overall transfer function [31]. Consequently, the transfer
function from Ψ to y is

GΨy(s) = Guy(s)
GuΨ(s) = vc̄y

s+ vc̄y

2l0

. (2.23)

The parameters l0 and δ0 can be identified from this transfer function. As δ0 is part of
trigonometric functions of higher orders in the equation for c̄y (2.12), it will be numer-
ically estimated using the Newton method as described in [29]. Comparing the form of
the transfer function for PT1 elements (2.7) with (2.23) yields

k = 2l0 ⇒ l0 = k

2 ; (2.24a)

ωb = c̄yv

2l0
⇒ c̄y = 2l0ωb

v
. (2.24b)

To identify δ0, (2.12) has to be rearranged into the form f(δ0) = 0 where

f(δ0) = (2r0 cos δ0
3 − 2r0 cos δ0 + b cos δ0

2 sin δ0)v
b sin δ0

− 2l0ωb
v

. (2.25)

To solve this equation the MATLAB function fzero [34] is used, which is based on
an algorithm found in [35]. It finds the nearest value of x to a starting value where
the function has a sign change. In this case the starting value is assumed to be x0 =
2.4 · 10−2 rad, as this is the nominal value presented in [6].

2.5 Offset Parameters

In the model presented in (2.11), there are two offset parameters, Ψoff and yoff , that can
both be identified using the stationary version of Equation (2.17). Stationary means
all derivatives of the states y and Ψ are identical to zero, i.e. y(t) = ystat for all t in
a time interval with ystat, ψstat ∈ R. First, Ψoff has to be found through (2.18). With
¨̃Ψ = ˙̃Ψ = 0 this leads to

Ψoff = Ψstat. (2.26)

All other terms cancel out. With this knowledge, the stationary case of the differential
equation of y (2.19) can be analyzed, as yoff is dependent on Ψoff . This means ˙̃y = 0.



2.5. Offset Parameters 21

Furthermore, ˙̃yf = ỹf = 0, as the front axis is not being considered. Canceling out all
terms as described leads to

yoff = ystat − 2l0Ψoff . (2.27)

The introduced state space model in (2.11) forms the foundation for the rest of this work.
Furthermore, the mathematical concepts of frequency analysis, presented in Section 2.1,
are used in the following chapters. The transfer functions (2.20) and (2.23) are used to
identify the parameters of themselves through fits of measurement with inputs in the
form of sine sweeps. The parameters of the transfer functions are then used to calculate
the parameters of the state space model with the equations presented in this chapter.
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Chapter 3

Simulation of the System
Dynamics

To simulate the model presented in Chapter 2, it is implemented in MATLAB Simulink
(2023b) [36] shown in the block diagram in Figure 3.1. As set out in Section 2.3, this
model only considers the rear axis leading to yf = 0. Furthermore, examining the
nominal values introduced in Table 3.1 shows that both Ψoff and yoff are zero in the
nominal case. Looking at the block diagram with this in mind, the transfer functions
from u to Ψ and from Ψ to y can be found directly.

ω2
0

u

Kω2
0

Ψ̈ Ψ̇

Ψoff

Ψ

vc̄y
ẏ − ẏf

yoff

vc̄y
2l0

2Dω0

−
−

− −
− y − yf − yoff

Figure 3.1: Block diagram of the state space model.

First, the simulation was used to generate Bode diagrams of the transfer functions by
using the nominal values of the parameters presented in [6] and shown here in Table 3.1
and the values of the constants introduced in Table 2.1. The parameters K (2.15), ω0
(2.13), D (2.14), and c̄y (2.12) have to be calculated using their respective equations
with the relevant nominal parameters.
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Table 3.1: Nominal Parameters.

Parameter Nominal
l0 in m 2.5 · 10−1

δ0 in rad 2.4 · 10−2

yoff in m 0
Jz in kg m2 8.0 · 10−1

kc in N/m 66.0
kd in N s/m 6.6 · 10−1

Ψoff in rad 0

A sine sweep, as described in Subsection 2.1.3, was used to obtain a Bode diagram from
one simulation. The Bode diagrams are derived from the magnitudes A and phases φ
which were obtained through the fast Fourier transform command fft in MATLAB [37]
of the outputs Ψ and y of the simulation data. The MATLAB command fft uses the
Fourier transform as described in Subsection 2.1.1.
Figure 3.2 shows the frequency response of the simulation data of Ψ in the range from
4 · 10−2 rad/s to 100 rad/s. The magnitude takes the general shape of a PT2 element, as
outlined in Subsection 2.2.2. Noteworthy are the slight increase in magnitude starting
shortly before 1 rad/s, the stark decrease in magnitude at 1·102 rad/s, and the slope after
the resonance peak not being −40 dB/decade. The decrease in magnitude at 1 ·102 rad/s
is the result of numerical errors. The other two are due to the influence of the input data
u on the output. Looking at the phase, it is clearly not continuous, exhibiting frequent
large jumps of 360◦.
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Figure 3.2: Frequency response of simulation data of Ψ.

Comparing Figure 3.3 to Figure 2.1 in Section 2.2 shows that the form of the magnitude
would be expected to not have a resonance peak like a PT2 element. Although a decrease
of −20 dB/decade would be expected, no decrease is seen. Both phenomena are due to
the influence of the input data Ψ on the output y. Similar to Figure 3.2, the phase is
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also discontinuous and displays jumps of 360◦.

10!1 100 101 102

! in rad/s

-150

-100

-50

A
in

d
B

10!1 100 101 102

! in rad/s

-200

0

200

?
in

/

Figure 3.3: Frequency response of simulation data of y.

The conclusion from the Bode plots in Figure 3.2 and Figure 3.3 is that they have to be
normalized to obtain the transfer functions. This means to divide the magnitude of the
output by the magnitude of the input, leaving the gain. The phase of the input has to
be subtracted from the phase of the output to show the phase shift. The resulting Bode
diagrams of the normalized transfer functions are presented in Figure 3.4 and Figure 3.5
together with the Bode diagrams of the transfer functions directly determined through
the nominal parameters.

The Bode diagram of the transfer function from u to Ψ in Figure 3.4 shows clear PT2
element behavior, as introduced in Subsection 2.2.2. Furthermore, it can be seen that
the damping factor lies between 0 and 1, as the magnitude has a resonance peak before
declining −40 dB/decade. Although the overall phase is now continuous with an expected
phase shift from 0◦ to −180◦, individual data points still appear to be out of phase
by 360◦. This problem is solved by using the MATLAB command unwrap [38] for the
phase. The command unwrap(P) adjusts the phase angles in the vector P by eliminating
any discontinuities. Multiples of ±2π are added to the angles whenever the difference
between consecutive values is greater than or equal to πrad, ensuring the jump between
consecutive angles is smaller than π [38].
In addition, the Bode diagram of the transfer function of the simulation data is the same
as the Bode plots of the transfer function with nominal parameters. The only difference
is the set of phase data points that are shifted due to effects of the Fourier transform.
As the Bode diagrams are equivalent, this validates the simulation of the model.
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Figure 3.4: Bode diagram of transfer function of nominal values and simulation data
from u to Ψ.
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Figure 3.5: Bode diagram of transfer function of nominal values and simulation data
from Ψ to y.

Figure 3.5 displays the transfer function from Ψ to y and has the expected appearance
of a PT1 element, as introduced in Subsection 2.2.1. The overshoot that was visible
in Figure 3.3 is removed by the normalization. Moreover, the slope after the break
frequency is now −20 dB/decade. The phase is mostly continuous, shifting from 0◦ to
−90◦, with a few data points being out of phase, as in Figure 3.4. The phase is made
continuous by using the MATLAB command unwrap [38].



27

The Bode plot of the simulation data also fits accurately over the Bode diagram of the
transfer function with nominal parameters, further validating the simulation.
To allow for later use of the identified parameters instead of the nominal ones, the param-
eters of both transfer functions (2.20) and (2.23) described in Section 2.4 are identified
through system identification of measurement data of sine sweeps. The parameters from
the transfer functions are then used to calculate the parameters of the state space model,
outlined in Table 2.2. In addition, the offset parameter Ψoff can be identified by taking
the mean of the measurement data of Ψ. Then yoff can be determined by taking the
mean of the measurement data of y, taking into account the term including Ψoff , as
presented in (2.27).
In this chapter the simulation of the state space model was presented, validated, and
numerical errors that occur were introduced. The focus of this thesis now moves to
filtering, pre-processing, and identifying the data and this is presented in Chapter 4.
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Chapter 4

Experimental System
Identification and Modeling

This chapter contains the practical application of the previously introduced theory. The
measurement data is Fourier transformed to identify the parameters of the state space
model. The Fourier transforms of the input and output data are then used to estimate
a transfer function, which, in turn, is used to identify the parameters of the state space
model. The data selection and how it is prepared for the transfer function fit is presented
in this chapter.

4.1 Configuration of the test rig

Figure 4.1: 1:5 test rig with raised axle.

The mathematical model presented in Section 2.3 only represents the rear axis. There-
fore, isolated measurements of the rear axis are needed for system identification of the
model. To take these isolated measurements of the rear axis, the front axis was raised
to eliminate contact between the front wheels and the rollers, as depicted in Figure 4.1.
As the rear axis is open-loop stable, it possible to have a sine sweep of the form (2.4)
as current input and receive a stable output. The velocity of the front wheels was set
to zero, so that they would not turn, when running experiments. The velocity of the
rear wheels was set by the rollers, while the motor of the wheels controlled the lateral
movements, as explained in Subsection 1.2.3. Additionally, the raised front and rear axis
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on the rollers were manually adjusted to minimize the lateral displacement of the axis at
the beginning of each experiment. This was done for multiple reasons. Firstly, to try to
get the most comparable measurements by having the same starting position. Secondly,
to avoid the lateral displacement of the front axis having an influence on the rear axis
and thirdly, to try to minimize the contact between the flanges of the rear wheels and
the roller, by having the contact points of the wheels and the roller centrally on the
roller surface.

4.2 Measurement Data

For this system identification, sine sweeps, as described by (2.4) were used as current
input u for the measurements. The benefit of sine sweeps is that Bode plots can be
generated directly from the data, as a complete frequency spectrum is covered by one
measurement. Moreover, linear systems that have a sinusoidal input produce a sinu-
soidal output, with only two parameters changing, the magnitude A and the phase φ
[31].

A series of measurements were conducted using sinusoidal inputs at varying frequencies.
For each input frequency, the system response was recorded, and a Fourier transform
was applied to extract the gain at the corresponding frequency. The extracted gain
values from multiple measurements were then compiled and plotted in a Bode diagram.
This Bode diagram was then compared to a Bode diagram of a sinusoidal input with a
frequency sweep like (2.4) to validate the direct use of a sine sweep instead of multiple
measurements at different frequencies. The Fourier transform of both types of measure-
ments directly overlap at the corresponding frequency. Thus, sine sweep measurements
can be used instead of having to take numerous measurements with different frequencies.
Furthermore, different frequency ranges were tested to find appropriate ranges that de-
liver the best results for the fits of the transfer function. First measurements showed
that the break frequency of the transfer function from u to Ψ was in the range between
10 rad/s − 15 rad/s. They also showed that noise increased drastically at frequencies
larger than 80 rad/s for the transfer function from u to Ψ, visible in Figure 4.2a, mak-
ing these measurement points not usable for accurate transfer function estimation. For
the fitting of the transfer function from Ψ to y, including small frequencies starting at
1 · 10−3 rad/s turned out to be invaluable to specifically show the correct value for the
stationary gain. Noise levels for this transfer function already increased at frequencies
greater than 30 rad/s, shown in Figure 4.2b. In addition, different lengths of time were
tested to decide on a length of measurement that still accurately depicts the sine sweep.
A further restriction was the magnitude of y, as too large amplitudes lead to flange con-
tact. Flange contact leads to highly non-linear effects that are not in the scope of this
thesis. Thus, a measurement of a logarithmic sine sweep in the range of 1 · 10−3 rad/s to
640 rad/s and of duration t = 150 s was used as foundation for the system identification,
by cutting of larger frequencies as described in Section 4.3.

The overall shape of the magnitude plots in Figure 4.2 are to be expected when com-
pared to the Bode diagrams from the simulation that were presented in Figure 3.4 and
Figure 3.5. Figure 4.2a takes the shape of a PT2 element with a damping coefficient
0 < ζ < 1, due to the visible resonance peak of the magnitude. Its phase shift is not in
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(a) Input u and output Ψ.

100 102

! in rad/s

-60
-40
-20

0
20
40

A
in

d
B

100 102

! in rad/s

-500

0

500

?
in

/

(b) Input Ψ and output y.

Figure 4.2: Bode diagrams of transfer functions of normalized measurement data.

the expected range and will need adjusting as explained in the proceeding Section 4.3.
The expected form of the gain of a PT1 element can be seen in Figure 4.2b. Here again,
the phase shift will have to be adjusted. Apart from more noise at higher frequencies,
the phase shift for both transfer functions, as seen in Figure 4.2, is not in the expected
range, due to the Fourier transform finding phase shift values that are out of phase by
360◦.

4.3 Processing of the Measurement Data

As described in the last section, the acquired data has to be prepared to be able to be
used for the system identification. For this, different measures were taken. From Chap-
ter 3, it was expected that the measurement data had to be normalized and the phase
shift had to be brought into the right range. Noise at large frequencies was unexpected,
as well as having to adjust the range of the phase.

Firstly, the data was transformed using the fast Fourier transform command in MAT-
LAB [36]. This delivers the magnitude, phase shift and frequency of the data. As already
seen in Chapter 3, to receive the magnitude and phase data of the transfer functions
have to be normalized. Therefore, the phase of the input is subtracted from the phase of
the output. Likewise, the gain is found by dividing the magnitude of the output by the
magnitude of the input. The normalized data of the transfer function from u to Ψ can
be seen in Figure 4.2a and the transfer function from Ψ to y is visible in Figure 4.2b.

Secondly, as presented in Figure 4.2, both considered transfer functions have frequencies
after which noise gets to large to deliver accurate results. Therefore, all data from the
Fourier transforms of the measurement data relevant for the transfer function from u to
Ψ were cut at the closest frequency data point to 80 rad/s, see Figure 4.3a. All data from
the Fourier transform of the measurement data relevant for the transfer function from
Ψ to y were cut at the closest frequency data point to 30 rad/s, depicted in Figure 4.3b.
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In special cases, the Fourier transform data had to be cut to even smaller ranges, as the
phase experienced jumps that were not suited for fitting. Other data was not usable for
that reason, as they had regular phase jumps that made cutting the data to a range that
was still usable for fitting impossible.
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(a) Input u and output Ψ.
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(b) Input Ψ and output y.

Figure 4.3: Bode diagrams of transfer functions of normalized and cut measurement
data.

Like the simulation results in Chapter 3, the phase shift has to be made continuous by
using the unwrap command in MATLAB [38].
The measurement data for both transfer functions with the use of the unwrap command
is to be seen in Figure 4.4.
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(a) Input u and output Ψ.
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(b) Input Ψ and output y.

Figure 4.4: Bode diagrams of transfer functions of normalized, cut, and unwraped
measurement data.

Despite having a continuous phase after using this command, the Bode plots of the phase
shifts still do not look like the to be expected phase shifts of the PT elements. They
often start at values other than the 0◦ expected value at low frequencies. Furthermore,
the difference between the value of the first phase shift data points and the last are



4.4. System Identification based on Measurement Data 33

not the expected −90◦ for a PT1 element or −180◦ for a PT2 element, as explained in
Section 2.4. To adapt the phase shift data, first the difference between the mean of the
first 15 phase shift values and the last 15 data points is found. All data points are then
scaled by the factor of 180 for PT2 elements or 90 for PT1 elements divided by (mean of
first 15 data points - mean of end 15 data points). To then shift the phase to start at 0◦,
the value of the first data point is subtracted from all phase data points. The resulting
Bode diagrams are presented in Figure 4.5. They depict the adjusted measurement data
that was used for the parameter identification of the transfer functions.
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(a) Input u and output Ψ.
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(b) Input Ψ and output y.

Figure 4.5: Bode diagrams of transfer functions of normalized, cut, unwraped, and
adjusted measurement data.

4.4 System Identification based on Measurement Data

To use the SIT [27] in MATLAB, the input and output have to be of the form of the
Fourier transform Aejφ (2.1), with A representing the magnitude and φ the phase shift.
The relevant input and output data in frequency-domain form is loaded into an iddata
object [39] together with the sample time Ts = 5 · 10−3 s, given by the test rig, and an
array containing the corresponding frequencies. The iddata object can then be used to
estimate a transfer function using tfest of the SIT [27] by setting the correct number of
zeros, in this case zero for both and correct number of poles. The transfer function from
u to Ψ as described in (2.20) has two poles and the transfer function from Ψ to y, pre-
sented in (2.23) has one pole. The command tfest then yields the transfer function of
the set form together with the quality of the fit, given in percent by performing the algo-
rithm described in [40]. As described in Chapter 3, the parameters can then be identified.

Apart from using the SIT, the parameters were also fitted manually by setting the pa-
rameters of the transfer functions, k, ζ, and ωb for the transfer function from u to Ψ and
k and ωb for the transfer function from Ψ to y by hand. For both transfer functions,
first the static gain k was adjusted to fit the measurement. For transfer function from
Ψ to y, the value of the static gain was then subtracted by 3 dB to find the intersection
between this value and the measurement data. The frequency of the intersection was
used to determine the break frequency ωb. For the transfer function from u to Ψ, the
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break frequency ωb was adjusted to be in the right range, before changing ζ to match the
size of the resonance peak. The transfer functions were then plotted against the Bode
diagrams of the Fourier transform of the measurement data, by using (2.8) and (2.10)
to calculate the magnitudes and phase shifts of the transfer function from Ψ to y and
from u to Ψ, respectively. By performing a grid search for all parameters, the transfer
functions with the most resemblance to the measurement data were be identified. The
identification by hand was mostly done by fitting the magnitude plot and verifying the
results through the phase plot, as the magnitude only had to be normalized, while the
measurement data for the phase had to be further processed to be of use.

The higher magnitudes of the transfer function from u to Ψ are captured more accurately
by the manually found transfer function than the SIT, as can be seen in Figure 4.6.
In addition, the manually found transfer function from Ψ to y is visibly closer to the
measurement data than the transfer function found through the SIT, as to be seen in
Figure 4.7. These fits lead to the conclusion that the manually found transfer functions
are even closer to the Fourier transform of the measurement data than the estimated
transfer functions found through tfest. The SIT uses the Fourier transforms of the
input and output, including both the values for the magnitude A and the phase φ to
identify the transfer functions. As described in Section 4.3, the phase data had to be
adjusted to make it usable. In contrast, the manual fit of the parameters could focus on
accurately fitting the magnitude and then use the phase to verify the estimation instead
of taking it into account for the fit. Therefore, manually fitting the transfer function to
the Fourier transforms of the measurement data was able to lead to more accurate fits.
As described in Section 2.5, the offset parameters are identified through the Fourier
transform of the output data itself and not through the transfer functions. Therefore,
the transfer functions are not relevant for the identification of these two parameters.
Moreover, they have to be identified by directly using measurement data.
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Figure 4.6: Bode diagram with input u and output Ψ comparing measurement to
transfer function by tfest to transfer function of identified parameters.
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Figure 4.7: Bode diagram with input Ψ and output y comparing measurement to
transfer function by tfest to transfer function of identified parameters.

With the gathered information, the parameters of the state space model can be identified
with the equations derived in Chapter 2. The identified parameters of the transfer
functions are used to determine the parameters of the state space model, as described
in Section 2.4. The transfer function from u to Ψ is used to identify the parameters kc,
Jz, and kd with (2.21a) – (2.21c). The transfer function from Ψ to y is used to identify
l0 through (2.24a) and then identify δ0 with the method presented in Subsection 2.4.2.
The offset parameters are calculated by taking the mean values of Ψ and y, and inserting
them into (2.26) and (2.27).

4.5 Identified Parameters

The calculated parameters are presented in Table 4.1 together with the nominal values
and identified ones found mostly through step responses in [6]. The identified parameter
l0 is of exactly the same value as the nominal one and the identified parameters Jz, kc,
and kd are in the range between the nominal and identified parameters found in [6].
The identified offset parameters yoff and Ψoff are also in the same order of magnitude
as the nominal values. The only identified parameter that does not fit the range is
the equivalent conicity δ0. As described in Subsection 2.4.2, δ0 is identified by using
the MATLAB command fzero [34]. It describes the curving profile of the wheel with
regards to the hunting motion [41]. Therefore, a negative value is impossible. Thus,
from here on the nominal value is used for the simulation.
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Table 4.1: Nominal vs. identified parameters.

Parameter Nominal Identified in [6] Manually Identified
l0 in m 2.5 · 10−1 2.8 · 10−1 2.5 · 10−1

δ0 in rad 2.4 · 10−2 5.0 · 10−2 −1.5 · 10−1

yoff in m 0 −6.0 · 10−4 1.9 · 10−4

Jz in kg m2 8.0 · 10−1 2.8 · 10−1 5.6 · 10−1

kc in N/m 66.0 98.8 81.0
kd in N s/m 6.6 · 10−1 21.0 2.0
Ψoff in rad 0 −1.8 · 10−3 1.6 · 10−3

As the manually identified transfer functions lead to more accurate fits of the Fourier
transforms of the measurement data, the parameters of the state space model found
through the manually identified parameters of the transfer functions will be used from
here on as identified parameters. As described above, the value for δ0 will be the nominal
value.



Chapter 5

Evaluation and Discussion of the
Linear Model

To validate the identified parameters, the simulation results are compared to other sets of
sine sweep measurements as well as to the full transfer function from u to y as described
in (2.22). Furthermore, the results of the simulation with identified parameters are com-
pared to the simulation with other sets of parameters. By simulating and comparing a
step response, a different form of measurement is used for validation and comparison.
To conclude this chapter, an outlook is given on measurements with different amplitudes
leading to non-linear phenomena.

To quantify the evaluation of the identified parameters the root mean square error
(RMSE) quantity is employed. It calculates the difference between the simulation data
set Fi and measurement data Ai by taking the square root of the sum of the squares
of the differences divided by the number of data points n. In this thesis it will be used
through the MATLAB command rmse, which is defined by [42] as

E =

√√√√ 1
n

n∑
i=1

|Ai − Fi|2. (5.1)

The closer the error RMSE is to zero, the better the fit is considered.

5.1 Validation of the proposed model

5.1.1 Comparison of Simulation results to other Measurements

To validate the results of the simulation when using the identified parameters, it is di-
rectly compared to measurement data with sine sweep inputs with alternative frequency
ranges. For this, the values of Ψ and y are plotted over time and the Bode diagrams
are used. The Bode diagrams allow the comparison of the transmission behaviors from
u to Ψ and from Ψ to y of the simulation to the measurements to validate the iden-
tified parameters relevant for the transfer functions. The measured values of Ψ and y
in comparison to the data generated by the simulation is used to compare the directly
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measurable values as well as validate the offset parameters Ψoff and yoff .

To validate the identified parameters, the magnitude of the transfer functions from u to
Ψ and from Ψ to y were compared to other measurements in Figure 5.1. The two sets
of measurements chosen are linear sine sweeps of different frequency spectrum. They
also differ in frequency spectrum to the measurements used for parameter identification.
This shows that the linear model accurately depicts sine sweeps of different ranges. As
the phase data of the measurements had to be adjusted to be of use, it was left out
in this comparison. Figure 5.1 on the left shows that the break frequency ωb of the
simulation lies at the same frequency as the measurements and the damping coefficient
ζ was also chosen accurately. A difference between the simulation and the measurements
is the slope after the break frequency ωb. The magnitude of the simulation is smaller
than the measurement. Furthermore, the measurement from 6.3 · 10−1 rad/s has large
oscillations at small frequencies, making it difficult to evaluate the exact value of k.
The magnitude of the Bode diagram for Ψ to y, depicted in Figure 5.1 on the right,
validates the parameter identification shown in Section 4.5, as the frequency response
of the simulation has the same declining slope after the break frequency ωb and shows
increasing noise at frequencies larger than 20 rad/s.
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Figure 5.1: Bode diagrams for left: input u and output Ψ, and right: input Ψ and
output y to validate parameters of simulation through measurements.

5.1.2 Validation of Simulation through Complete Transfer Function

The parameters were identified by fitting the transfer functions from u to Ψ and from
Ψ to y. However, the complete system as described in Section 2.3 has the input u and
output y. Therefore, to validate the parameters, the transfer function from u to y,
presented in (2.22), will be compared to the same measurement of a sine sweep as was
used to identify the parameters. Figure 5.2 depicts the simulation results and transfer
function of the measurement data. One can observe that both the magnitude A and
phase φ fit well over one another, showing the same effects, including the position of the
break frequency and slope after the break frequency for the magnitude and similar start
and end values for the phase, as well as the shift at the same speed and incline. Thus,
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the simulation and the measurement show close enough results to verify the model in
terms of correctly displaying the transfer behavior from input u to output y. The model
is further validated by looking at the RMSE presented in (5.1) for the magnitude A and
phase φ. The RMSE of the magnitude equates to 4.29 · 10−4, confirming an accurate
fit of the identified parameters to the measurement data. The RMSE of the phase is
5.6 ·10−1. As expected, the fit of the phase is not as accurate as the fit of the magnitude,
as the phase data needed adjusting before it was usable, as expained in Section 4.3.
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Figure 5.2: Comparison of the Bode diagram of the transfer function from u to y of the
measurement vs. the simulation with identified parameter.

5.2 Evaluation and Comparison based on Step Responses

5.2.1 Comparison of Simulations with Different Sets of Parameters

As seen in Table 4.1, the parameters that were identified using frequency response are
all in an expected range, apart from δ0. The results of the simulation when using the
nominal parameters, the parameters used as reference that were identified in [6], and the
parameters identified through frequency response are compared in this section. It has
to be noted that for the set of identified parameters, the nominal value of δ0 was used,
as described in Section 4.5.

Figure 5.3 presents the Bode diagrams for the transfer function from u to Ψ obtained
from simulations with the identified parameters from Section 4.5 in comparison to the
nominal parameters and the reference parameters from [6]. The most noticeable dif-
ference in Figure 5.3 is between the data with the parameters that were identified in
[6] and the other simulations, for both the magnitude A and phase φ. On the one
hand, the nominal parameters and the parameters that were identified in Section 4.5
show underdamped behavior, while on the other hand the identified parameters from
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[6] show overdamped behavior. Comparing the parameters with underdamped behav-
ior, the nominal parameters lead to a smaller damping coefficient and a smaller break
frequency than the parameters that were identified in Section 4.5.
When comparing the phase φ, the two sets of parameters with underdamped behavior
show a fast shift from 0◦ to −180◦, as expected, while the phase of the parameters iden-
tified in [6] show a very slow shift, associated with a high damping coefficient.

10!1 100 101

! in rad/s

-80

-60

-40

-20

A
in

d
B

10!1 100 101

! in rad/s

-200

-150

-100

-50

0

?
in

/

Nominal parameters
Reference parameters
Identi-ed parameters

Figure 5.3: Bode diagram of simulation data of the transfer function from u to Ψ using
different sets of parameters.

Figure 5.3 shows the Bode diagrams of the transfer function from Ψ to y for simulations
with the identified parameters, nominal parameters, and reference parameters from [6].
In contrast to Figure 5.3, Figure 5.4 shows similar results for all sets of parameters, with
the parameters from Section 4.5 being very close to the results of the nominal parameters.
This was expected and will be due to l0 being identified as the exact nominal value and
using the same δ0. The most noticeable difference can be found between the set of
nominal parameters in comparison to both sets of identified parameters. Both sets of
identified parameters show oscillations that increase in magnitude with higher angular
frequency ω. The set of identified parameters in [6] oscillates with larger amplitudes and
a different frequency than the identified parameters from Section 4.5. This will be due
to numerical effects.
Looking at the phase φ, all sets of parameters show the expected behavior of shifting from
0◦ to −90◦, but both sets of identified parameters show oscillations, with the identified
parameters in [6] oscillating with larger amplitudes and a higher frequency than the set
of parameters identified in Section 4.5.
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Figure 5.4: Bode diagram of simulation data of the transfer function from Ψ to y using
different sets of parameters.

To evaluate the sets of parameters, they were compared against the measurement data
that was used for system identification as described in Section 4.4. The RMSE, as
described in (5.1), was used with the MATLAB command rmse [42] to quantify the
quality of the parameters. Comparing the RMSE for the nominal, reference, and identi-
fied parameters shows that the set of identified parameters has the smallest error for the
magnitude and phase from u to Ψ. The error is marginally smaller for the magnitude of
the nominal parameters than the identified ones and the same for the phase. The results
are presented in Table 5.1.

Table 5.1: RMSE of the nominal, reference, and identified parameter sets for
magnitude and phase.

Nominal Reference Identified
u to Ψ Magnitude 1.4 · 10−2 7.0 · 10−3 1.9 · 10−3

u to Ψ Phase 6.7 · 10−1 9.8 · 10−1 4.9 · 10−1

Ψ to y Magnitude 3.2 · 10−2 3.3 · 10−2 3.3 · 10−2

Ψ to y Phase 5.3 · 10−1 6.2 · 10−1 5.3 · 10−1

5.2.2 Simulation in Comparison to Measurement with Step Response

A simulation of a step response was taken as validation of a different type of measure-
ment. The input was defined with the Heavyside’s step function θ(t − a) and a = 180
from [43] as

u(t) = 0.6θ(t− 180) =
{

0, x < 180
0.6, x ≥ 180

.

Figure 5.5 shows that the simulation with reference parameters is closer to the step
measurement than the simulation with identified parameters. This was to be expected, as
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the reference parameters were mostly identified through measurements of step responses.
The step response of the data with identified parameters show oscillations during the
transient phase that are neither visible for the simulation with reference parameters
nor for the measurement data. Furthermore, the offset of the identified parameters is
not correct and the overall step size is too large. This shows that the set of reference
parameters is able to simulate other forms of measurements more accurately than the
identified parameters.
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Figure 5.5: Comparison of the simulation with identified and reference parameters to a
measurement step response of Ψ with a step size of 0.6.

To compare the fit of the step response with reference parameters to the step response
with identified parameters, the offset between the measurements was eliminated by de-
ducting the offset before the step from the reference parameters to the identified param-
eters from the identified parameter step. This made it possible to evaluate the different
sets of parameters using the MATLAB command rmse [42] as described in (5.1). The
transient phase is of particular interest, as it shows oscillations for the identified param-
eters. Therefore, the compared time frame was cut to between 180 s and 184 s. This
resulted in an RMSE of 1.6 · 10−3 for the reference parameters and 3.0 · 10−3 for the
identified parameters. As the reference parameters were identified mostly through step
responses, it is to be expected that they fit a step response better than the parameter
set identified using frequency response. In conclusion, the reference parameters from [6]
are more accurate for measurements with steps. Therefore, future research may find a
way to combine the reference and identified parameter sets to create a model that is able
to simulate all forms of measurements.
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5.3 Outlook: Frequency Responses for Different Input Am-
plitudes

In a linear system one would expect Bode diagrams of the same system stimulated with
sine sweeps of the same frequency range but with different amplitudes to look exactly
the same. The Bode diagram, as described in Section 2.1, displays the gain. This should
always be the same factor, regardless of the actual value of the amplitude of the input.
This also holds for the Bode plot of the phase. This displays the shift of the phase of
the output in comparison to the input and is in a linear system is not dependent on and
should not change with a change of the amplitude of the input.

When changing the amplitudes of the sine sweep input for the measurements, the non-
linear characteristics of the system become apparent when looking at the magnitude A of
the Bode diagram of the transfer function from u to Ψ, as shown in Figure 5.6. This shows
measurements of a set of sine sweep inputs of different amplitudes that used the same
frequency range and the same length of measurement. As described, the expected result
of a linear system would be the same magnitude plot for all measurements, regardless
of amplitude.
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Figure 5.6: Magnitude of measurement data with inputs of different amplitudes, input:
u, output: Ψ.

For the magnitude plot from u to Ψ, displayed in Figure 5.6, firstly the static gain
increases with growing amplitudes. Secondly, the resonant peak occurs at smaller an-
gular frequency with increasing amplitude up to A = 1.00. While the resonance peak
for the measurement with A = 0.25 is visible at around 42 rad/s, it occurs at 26 rad/s
for A = 0.5, at 19 rad/s for A = 0.75, and at 12 rad/s for A = 1.0. Surprisingly, the
resonance peak shift back to higher frequencies for amplitudes larger than 1 and is to
be seen at 12 rad/s for A = 1.25 and at 14 rad/s for A = 1.50. Secondly, the resonance
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peak becomes smaller in size with decreasing magnitude, suggesting a higher damping
coefficient with smaller amplitudes. Lastly, the high frequency region after the respective
break frequencies appears to be the same for all amplitudes in respect to slope. The dif-
ferences in magnitude suggest that the parameters kc, kd, and Jz change with amplitude.

The magnitude plot of the transfer function from Ψ to y, to be seen in Figure 5.7, depicts
no clear differences between the measurements with different amplitudes, validated by
comparing the manually fitted transfer function to the different measurements. Only the
level of noise seems to change, which is due to difficulties in measuring high frequencies
with small amplitudes, which is especially obvious for A = 0.25 at frequencies larger than
1 rad/s. This is consistent with expectations, as the parameters l0 and δ0, representing
the distance between the wheel carrier and the middle frame and the equivalent conicity,
respectively, will not change with changes in amplitude.
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Figure 5.7: Magnitude of measurement data with inputs of different amplitudes, input:
Ψ, output: y.

To understand the effects of the varying amplitudes on the identified parameters, all
measurements of different amplitudes were fitted through the same method as described
in Section 4.4. The results are presented in Table 5.2. The MATLAB SIT function once
more did not deliver satisfying results, so the transfer functions were fitted manually
to calculate the presented parameters of the state space model. As stated, l0 and δ0
do not change, but there are significant changes especially of kc and kd. The larger
the amplitude up to A = 1, the smaller kc and kd. The equivalent damping parameter
kd seems to decrease in a linear manner, to be seen on the left side of Figure 5.8 for
amplitudes up to 1, while the parameter for equivalent stiffness kc seems to decrease
exponentially, see middle plot Figure 5.8, but also stops changing for amplitudes larger
than 1. At the same time, the offset parameter Ψoff , depicted in Figure 5.9 on the
left side slightly increases with increasing magnitude, while the offset parameter yoff ,
presented in Figure 5.9 on the right side seems to vary randomly from measurement to
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measurement. Surprisingly, looking at the plot on the right side of Figure 5.8, Jz first
increases with growing amplitude, but then declines, showing no correlation between it
and the amplitude A. It is surprising that Jz changes at all, as it would be expected to
stay the same, regardless of measurement input. It is assumed that kd and kc change
due to non-linearities, while yoff could also be a result of the lateral displacement at
t = 0.

Table 5.2: Parameters depending on amplitude.

Nominal A = 1 A = 0.75 A = 0.5 A = 0.25
l0 in m 2.5 · 10−1 2.5 · 10−1 2.5 · 10−1 2.5 · 10−1 2.5 · 10−1

δ0 in rad 2.4 · 10−2 −1.5 · 10−1 −1.5 · 10−1 −1.5 · 10−1 −1.5 · 10−1

yoff in m 0 1.9 · 10−4 1.9 · 10−4 4.2 · 10−3 2.0 · 10−2

Jz in kg m2 8.0 · 10−1 5.6 · 10−1 5.6 · 10−1 6.0 · 10−1 4.6 · 10−1

kc in N/m 66.0 81.0 202.5 405.0 810.0
kd in N s/m 6.6 · 10−1 2.0 5.3 7.8 11.6
Ψoff in rad 0 1.6 · 10−3 −1.3 · 10−4 −7.9 · 10−4 −1.4 · 10−3
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Possible further research should include exploring the reason for the changing ampli-
tudes and expanding the linear model to include the non-linear effects of the changing
amplitudes by incorporating amplitude dependent parameters.



Chapter 6

Extending the Simulation Model
to include Hysteresis

Chapter 2 to Chapter 4 above described the system identification of a linear model to
simulate the test rig. This chapter extends that model to include the non-linear effects
of hysteresis. The extended simulation is done to try and better fit the measurements.
First, a general definition of hysteresis is provided, followed by an introduction to the
Bouc-Wen model of hysteresis, the model applied in this thesis. The simulation model
from Chapter 3 is then expanded by the introduction of a hysteresis term. The extended
model is subsequently used to examine the effects of each parameter of the hysteresis
term in greater detail. Finally, an attempt is made to fit the parameters of the hysteresis
term to the same measurement that was previously used in Chapter 4.

6.1 Hysteresis Definition

Hysteresis in this system means that the relationship between the input and output
includes memory effects. In mechanical systems, hysteresis is a natural property of
materials that generates restoring forces to counteract movements and deplete energy. In
these cases, hysteresis describes the memory-like behavior of inelastic materials, where
the restoring force is influenced not only by the current deformation but also by the
history of past deformations [44, 45].
There are different mathematical models to describe hysteresis. In this work, the Bouc-
Wen model will be used, as it was used in [6]. This keeps the different forms of system
identification of the same model comparable. Moreover, the Bouc-Wen model has a low
number of variables, making manual fits possible. The hysteresis term of the Bouc-Wen
model introduced in [6] is defined as

fhyst(Ψ, zHyst) = ω2
0Ψ − ω2

0(aBoucΨ + (1 − aBouc)zhyst); (6.1)

with zHyst described in [6] by the differential equation

żhyst = ABoucΨ̇ − βBouc
∣∣∣Ψ̇∣∣∣ |zhyst|nBouc−1 zhyst − γhystΨ̇ |zhyst|nBouc ; (6.2)

47



48 Chapter 6. Extending the Simulation Model to include Hysteresis

and the parameter aBouc ∈ [0, 1] denotes the ratio of the stiffness between the back and
front at the yield value. Furthermore, ABouc ∈ R, βBouc > 0, γBouc, and nBouc ∈ N are
dimensionless parameters responsible for how the model behaves [6].

6.2 Augmentation of the Mathematical Model with Hys-
teresis Dynamics

Extending the mathematical model presented in Section 2.3 with (6.1) leads to

¨̃Ψ = −ω2
0Ψ̃ − 2Dω2

0
˙̃Ψ +Kω2

0u+ fhyst( ˙̃Ψ, zhyst). (6.3)

This, in turn, leads the block diagram of the state space model to be as presented in
Figure 6.1. The function block for fhyst contains (6.1) and (6.2) is embedded in the
function block for żhyst.

ω2
0

u

Kω2
0

Ψ̈ Ψ̇

Ψoff

Ψ

vc̄y
ẏ − ẏf

yoff

vc̄y
2l0

2Dω0

−
−

− −
− y − yf − yoff

żhyst

fhyst

zhyst

Figure 6.1: Block diagram of the state space model with hysteresis.

The hysteresis parameters identified in [6] and presented in Table 6.1 are used as reference
and will be called Set R. Set R is used as starting point to understand the influence of
the parameters on the transfer function.

Table 6.1: Bouc-Wen parameters. Set R was identified in [6]; Set B fits the break
frequency; Set P fits the resonance peak.

Name ABouc aBouc βBouc γBouc nBouc
Set R 1 4.8 · 10−1 7362 -7164 1
Set B 1 7.5 · 10−1 7400 -7400 1
Set P 2.5 · 10−1 7.5 · 10−1 7700 -7700 1

The Bode diagrams for the transfer functions from u to Ψ and from Ψ to y, depicted
in Figure 6.2 and Figure 6.3, respectively, show the influence of the parameter Set
R in comparison to the simulation of the linear model without hysteresis. The small
oscillations found in both transfer functions with hysteresis parameters in Figure 6.2 and
Figure 6.3 are noteworthy. Furthermore, Figure 6.3 shows that the hysteresis parameters
do not have any influence on the break frequency of the transfer function from Ψ to y
and only a small influence on its static gain. By contrast, by adding the hysteresis term
the break frequency of the transfer function from u to Ψ is reduced and the static gain
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increases slightly. Presumably, the hysteresis term leads to a smaller damping coefficient
in comparison to the simulation of the linear model, as seen in Figure 6.2.
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Figure 6.2: Bode diagram comparing the simulated transfer function from u to Ψ with
to without hysteresis parameters.
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Figure 6.3: Bode diagram comparing the simulated transfer function from Ψ to y with
to without hysteresis parameters.
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6.3 Exploring the Effects of Hysteresis Parameters on the
Model

To understand better the effects of the parameters on the simulation results, all param-
eters were increased and decreased individually, while keeping all other parameters at
their respective reference values from Table 6.1, see Set R. The results were compared by
looking at the Bode diagram of u to Ψ for Set R in comparison to the changed parameters.

This showed that βBouc has an influence on the amplitudes of Ψ and y: increasing βBouc
leads to smaller amplitudes, whereas decreasing βBouc leads to larger amplitudes. At
the same time, the transfer behavior of an increased βBouc lead to a larger resonance
peak with a slightly smaller break frequency. Decreasing βBouc leads to a later break
frequency, a smaller static gain and no resonance peak. Decreasing βBouc also leads to a
smaller phase shift with more noise, while a larger βBouc results in a larger phase shift.
This behavior was the same for βBouc, ABouc, and γBouc and is therefore represented by
Figure 6.4. Figure 6.5 shows that increasing aBouc leads to a shift of the break frequency
to a larger angular frequency, less oscillations and a smaller static gain. Decreasing
aBouc presents a smaller break frequency, but more oscillations and a larger static gain.
Furthermore, aBouc has an influence on the offsets and changes the phase shift, with
smaller values of aBouc also leading to more oscillations in the phase. but a smaller
phase shift.
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Figure 6.4: Measurement and simulation with reference hysteresis Set R in comparison
to a smaller and larger βBouc.



6.4. Calibration of Hysteresis Parameters Using Measured Data 51

100 101

! in rad/s

-100

-80

-60

-40
A

in
d
B

100 101

! in rad/s

-200

-100

0

?
in

/

Set R
Larger aBouc

Smaller aBouc

Bode diagram of multiple data sets

Figure 6.5: Measurement and simulation with reference hysteresis Set R in comparison
to a smaller and larger aBouc.

6.4 Calibration of Hysteresis Parameters Using Measured
Data

Having examined the influence of the different parameters as well as how the hysteresis
parameter set R changes the transfer behavior, the parameters can now be adjusted to
obtain a more precise fit of the Bode plots with hysteresis to the manual fit of the linear
system presented in Section 4.4. The individual Bouc-Wen parameters are systemati-
cally increased and decreased to determine their influence on the Bode diagrams of the
transfer functions from u to Ψ and from Ψ to y. Changing the hysteresis parameters
only has an influence on the oscillations and the magnitude of noise at higher frequencies
for the transfer function from Ψ to y, to be seen in Figure 6.7. Therefore, the focus of
analyzing the influence of the hysteresis parameters is done by regarding the changes to
the Bode diagram of the transfer function from u to Ψ. By increasing aBouc, the break
frequency ωb also increases. The hysteresis parameters βBouc and γBouc have similar
effects on the Bode diagram. Increasing them leads to a higher resonance peak, while
decreasing them leads to a smaller resonance peak, but higher break frequency. ABouc
has small influences on the size of the resonance peak and value of the break frequency,
but the effects of βBouc and γBouc seem to mostly outweigh the influence of ABouc. Lastly,
increasing nBouc has little effect on the Bode diagram. Therefore, it was decided to set
nBouc = 1, to simplify the hysteresis term. In conclusion, a combination of increasing
βBouc and decreasing γBouc was tested. The goal is to increase the break frequency while
maintaining the size of resonance peak.

After systematically changing βBouc and γBouc, it was decided that ABouc and aBouc will
also have to be changed to achieve the desired result of fitting the transfer function with
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hysteresis as close as possible to the measurement data. This poses a challenge and
after testing various different combinations of these parameters, two best sets of param-
eters were identified, presented in Figure 6.6. It was not possible to tune manually the
parameters to represent both the proper break frequency and height of the resonance
peak. Therefore, two sets of parameters were found: one to fit the break frequency with
a resonance peak that is too small and one set with a resonance peak close in size to the
measurement but with a too low break frequency.

The values of all parameter sets are presented in Table 6.1. The measurement data used
as comparison is the same data that was used to fit the parameters of the linear model
in Chapter 4.
The first set, referred to as Set P, exhibits the correct height for the resonance peak,
however, the break frequency is too low. The second set, designated Set B, achieves an
appropriate break frequency, but the resonance peak is too small. At the same time,
all sets of parameters fit the magnitude plot of the Bode diagram depicting the transfer
function from Ψ to y in Figure 6.7. Due to further non-linearities, discussed in Chapter 7,
the phase plot of the measurement does not show the expected shift from 0◦ to −90◦.
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Figure 6.7: Measurement and simulation with hysteresis of left: Ψ and right: y over
time. Set R: hysteresis values from Table 6.1, Set P: hysteresis parameters set to fit

resonance peak, Set B: hysteresis parameters set to fit break frequency.

In Figure 6.8 the simulations of the different parameter sets are compared to the mea-
surement data of Ψ and y over time. The amplitude of parameter Set R are too large
for both Ψ and y. Set P appears to have the most accurate amplitudes of all three sets.
In addition, both Set P and B have the same offsets for Ψ and y that do not fit the
measurement data, but are closer than Set R.
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Figure 6.8: Measurement and simulation with hysteresis of top: Ψ and bottom: y over
time. Set R: hysteresis values from Table 6.1, Set P: hysteresis parameters set to fit

resonance peak, Set B: hysteresis parameters set to fit break frequency.
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6.5 Evaluation of the Model Including Hysteresis

When quantifying the error by using the RMSE, the values presented in Table 6.2 are
calculated. These show that the magnitude and phase for u to Ψ of Set P and Set B are
closer to the measurement than Set R. In comparison to the identified parameters of the
state space model without hysteresis from Section 4.4, the magnitude of u to Ψ of Set R,
Set P, and Set B have a larger error. This is to be expected, as there was no hysteresis
parameter set found that accurately fit the break frequency and resonance peak. The
RMSE of the phase from u to Ψ is smaller for Set B than for the Set P or Set B and
marginally smaller than for the identified parameters. The RMSE for the magnitude
and phase from Ψ to y are very similar for all sets and the identified parameters without
hysteresis. Although the RMSE does not give a clear direction, visually comparing the
Bode diagrams presented in Figure 6.6 and Figure 6.7 leads to the conclusion that the
hysteresis term, when fitted correctly, will lead to better simulation results than the
linear model.

Table 6.2: RMSE of the identified parameters from Section 4.4 in comparison to Set R,
Set P, and Set B for magnitude and phase.

Identified Set R Set P Set B
without hysteresis

u to Ψ Magnitude 1.9 · 10−3 6.1 · 10−3 3.3 · 10−3 3.6 · 10−3

u to Ψ Phase 4.9 · 10−1 5.5 · 10−1 5.0 · 10−1 4.7 · 10−1

Ψ to y Magnitude 3.3 · 10−2 3.4 · 10−2 3.3 · 10−2 3.4 · 10−2

Ψ to y Phase 5.3 · 10−1 5.5 · 10−1 5.4 · 10−1 5.4 · 10−1

Overall, the hysteresis manages to depict effects that are visible in the measurements
but not represented by the linear model, for example, small oscillations, varying offsets,
and unexpected phase shifts. This model already represents the measurements more
accurately, than the linear model.
Nevertheless, to be able to effectively use the hysteresis in the simulation further tuning
will be necessary. The current sets of parameters only manage to accurately represent
the magnitude of the resonance peak, represented by set P, or have the same break
frequency, see set B. To manage to get both the break frequency and the height of
the simulation with hysteresis to accurately represent the measurement data, further
methods to tune the parameters will have to be found.



Chapter 7

Conclusion and Outlook

The objective of this thesis was to identify the parameters of the state space model,
presented in Chapter 2, using the frequency responses of measurements. In this work,
as explained in Section 4.2, sine sweep measurements were used. In addition, this thesis
aimed to provide an initial investigation into the non-linearities present in the system.
This thesis introduced the state space model from [6] in Section 2.3. Then the transfer
functions from u to Ψ and from Ψ to y were derived from the model. The state space
model was implemented as simulation in MATLAB Simulink, as presented in Chapter 3.
The simulation was tested by comparing the Bode diagrams obtained from a simulation
with the nominal parameters to the Bode diagrams of the transfer functions with the
nominal parameters. This demonstrated the numerical effects that can occur due to the
simulation and Fourier transform.
The test rig setup for the measurements, described in Chapter 4, had the front axis of
the test rig raised. Thus, only measurements of the rear axis were considered. Moreover,
sine sweeps, as presented in Subsection 2.1.3, were introduced as input of the current
for the test rig. The adjustment of the magnitude and phase obtained from the Fourier
transform of the measurement data was explained. In particular the phase had to be
made continuous and shifted to the expected phase shift range. From the adjusted data
the Bode diagrams for the transfer functions from u to Ψ and from Ψ to y were plot-
ted. The Bode diagrams, presented in Figure 4.5, were used for the manual parameter
identification while the Fourier transforms of the input and output were used for system
identification by the SIT. When comparing the Bode diagrams of the manual transfer
function and the transfer function estimated by the SIT to the measurement data, it
was decided that the manually identified parameters represented the measurements more
accurately than the parameters found by the SIT. Therefore the manually identified pa-
rameters were used as identified parameters. Chapter 4 concludes with an explanation
of how the parameters of the state space model were identified through the parameters
of the transfer functions. The identified parameters were then presented.
The only identified parameter with an unexpected value was δ0. Future research should
consider a different method to identify δ0, as the current method delivered a value that
was outside the expected range.
Overall, the simulation of the linear model with the parameters of the state space model
that were identified in Section 4.5 appears to be closer to the actual measurement data
than the simulations with the nominal parameters or with the parameters identified
in [6]. This was validated in Chapter 5. Furthermore, the linear model represents
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frequency-related effects more accurately than the parameters identified in [6]. The
parameters identified in this thesis will benefit simulations with sinusoidal inputs in the
future. Nonetheless, the simulation of a step response is closer to the measurement data
when using the reference parameters from [6] than when using the identified parameters.
Therefore, future work should consider finding a parameter set that combines both sets
of parameters in order to accurately represent the test rig regardless of the input form.
Nevertheless, some phenomena are not accurately represented or represented at all by the
linear system, e.g., the change in Bode diagrams resulting from changing the amplitude
of the input, as discussed in Section 5.3. Changing the amplitude of the input led to
Bode diagrams that showed that all parameters of the transfer function from u to Ψ
changed through the change of the input amplitude. It remains unclear why the Bode
plots of measurement sets with different amplitudes change. This will have to be the
subject of future research, as well as incorporating amplitude dependent parameters into
the mathematical model and simulation. For this the parameters of the transfer function
from u to Ψ for inputs of different amplitudes should be compared, to see the connection
between the amplitudes and the parameters.
A further non-linear effect of the test rig is represented through hysteresis, as discussed
in [6] and introduced in Chapter 6. Chapter 6 incorporated the hysteresis term into
the linear model, leading to a non-linear model. The parameters of the hysteresis term
were then systematically adjusted to try and find the most accurate fit of the trans-
fer functions. Manually adjusting the parameters, unfortunately, was not satisfactory.
Consequently, future research should focus on developing more effective methods for
estimating the hysteresis parameters. The aim of future research should be to identify
a set of parameters that accurately fits the resonance peak and break frequency. For
this purpose a wide grid search of the parameters should be undertaken. With an accu-
rate set of parameters the model with hysteresis will be more accurate than the linear
model, as it shows non-linear behavior that is found in the measurements but can not
be represented by a linear model.
In conclusion, the identified parameters of the linear model represent the measurement
data well, but further research into different non-linear phenomena will be necessary to
find a model to accurately simulate the test rig.



Appendix A

Notation

A.1 Mathematical symbols

j imaginary unit
I identity matrix
A−1 inverted matrix A
AT transformation matrix of A
rect Rectangular function

A.2 Abbreviations and acronyms

DLR German Aerospace Center

IRDWs Independently Rotating Driven Wheels

NGT Next Generation Train

RMSE root mean square error

SIT System Identification Toolbox

TBP time-bandwidth product
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