

SPONSORED BY THE

SASCHA KORF

David Kerkmann	Jens Henrik Göbbert
Khoa Nguyen	Achim Basermann
Daniel Abele	Martin J. Kühn
Alain Schengen	Michael Meyer-Hermann
Carlotta Gerstein	

AGENT-BASED MODELING FOR REALISTIC REPRODUCTION OF HUMAN MOBILITY AND CONTACT BEHAVIOR TO EVALUATE TEST AND ISOLATION STRATEGIES IN EPIDEMIC INFECTIOUS DISEASE SPREAD

3RD (INTER-) NATIONAL CONFERENCE ON INFECTIOUS DISEASE MODELING

26 - 28 FEBRUARY 2025 IN BERLIN

MODELING NETWORKfor Severe Infectious Diseases

ABM Overview

SPONSORED BY THE Federal Ministry of Education and Research

ABM Interaction

 Interactions happen at locations where there is an infected agent

MODELING NETWORK

for Severe Infectious Diseases

 Probability is determined based upon several features such as: age, susceptibility, or amount and infectivity of infected agents

of Education and Research

ABM Movement

- Two ways of **moving** to locations:
 - Rules: Predetermined rules, e.g., going to work at specific times, going to the

MODELING NETWORK

for Severe Infectious Diseases

- hospital when severely infected, etc.
- Trips: Predefined trips from one location
 to another at a specific time for an
 specific agent

0.20

0.15

0.05

0.00

0.0

2.5

- Infectiousness of an agent is determined by a viral shed curve
- Viral shed is based upon a viral load curve
- For each infection a different viral shed curve is drawn
- The course of an infection is dependent upon multiple factors, e.g., age and vaccination status

for Severe Infectious Diseases

and Research

**

S

Sus-

ceptible

Not

Symp-

tomatic

S

NID

MODELING NETWORK

for Severe Infectious Diseases

ABM Testing

Testing Strategy

Testing Scheme 2

Work & School

0 - 65 years

Symptomatic

March 1st to 20

E

PCR Tests

Ξ

Testing Scheme 1

ጒ Work & School

0 - 65 years

W/O Symptoms

March 1st to 20

Not

Symp-

tomatic

COV

Mildly

Symp-

tomatic

S

ABM Trips for Brunswick demonstrator model

- Around 370.000 persons from Brunswick and the surrounding area
- Over 1.3 million representative trips per day based upon MiD Data

SPONSORED BY THE

of Education and Research

Emilio

ABM Scenario

Grid search to fit 5 parameters

MODELING NETWORK

for Severe Infectious Diseases

to real-world data

We utilized shared and distributed memory parallelization

 Final grid search ran 2.592
 concurrent simulations on a total of 3.456 compute cores multiple times resulting in 85.536 simulations in 8 hours

 MODELING NETWORK

 for Severe Infectious Diseases

ABM Results Scenarios

- Three different scenarios for the likelihood of testing when moving to a location
- Fewer tests during Easter
 week with special gatherings
 at Easter Sunday and Monday
- Less mobility when a lockdown is issued from March 29, 2021 to April 30, 2021

- 65

 MODELING NETWORK
 Image: Modeling Severe Infectious Diseases

ABM Results Parameter Variation

1/8

Ratio for asymptomatic agents to test

1/5

1/2

1/14

1/11

Deaths

8

Quarantine length (days)

11

2

5

Deaths

2

5

8

Quarantine length (days)

11

14

14

ABM Scaling Results

Emilo

Repository

MODELING NETWORK for Severe Infectious Diseases

David Kerkmann

Khoa Nguyen **Daniel Abele**

