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Forecasting generation and demand forms the foundation of power system planning, operation, and a multitude of decision-
making processes. However, traditional deterministic forecasts lack crucial information about uncertainty. With the increasing
decentralization of power systems, understanding, and quantifying uncertainty are vital for maintaining resilience. This paper
introduces the uncertainty binning method (UBM), a novel approach that extends deterministic models to provide comprehensive
probabilistic forecasting and thereby support informed decision-making in energy management. The UBM offers advantages such
as simplicity, low data requirements, minimal feature engineering, computational efficiency, adaptability, and ease of implemen-
tation. It addresses the demand for reliable and cost-effective energy management system (EMS) solutions in distributed integrated
local energy systems, particularly in commercial facilities. To validate its practical applicability, a case study was conducted on an
integrated energy system at a logistics facility in northern Germany, focusing on the probabilistic forecasting of electricity demand,
heat demand, and PV generation. The results demonstrate the UBM’s high reliability across sectors. However, low sharpness was
observed in probabilistic PV generation forecasts, attributed to the low accuracy obtained by the deterministic model. Notably, the
accuracy of the deterministic model significantly influences the accuracy of the UBM. Additionally, this paper addresses various
challenges in popular evaluation scores for probabilistic forecasting with implementing new ones, namely a graphical calibration
score, quantile calibration score (QCS), and percentage quantile calibration score (PQCS). The findings presented in this work
contribute significantly to enhancing decision-making capabilities within distributed integrated local energy systems.

Keywords: decision-making; distributed integrated local energy system; energy management system (EMS); forecasting
evaluation; probabilistic forecast; sector-coupling; uncertainty quantification

1. Introduction

Power systems are undergoing a profound transformation in
the form of decentralization, along with the penetration of
renewable energy sources, battery electric vehicles (BEVs),
heat pumps, hydrogen, etc. This results in increasing uncer-
tainties due to intermittent generation, as well as dynamic
and less predictable demand [1–3]. These present challenges
to power system planning and operation practices, such as in

terms of energy management, economic dispatch, unit com-
mitment, maintenance planning, etc. [4]. Traditional deter-
ministic forecast techniques do not capture uncertainties,
which leads to decision-makers being poorly advised [5]. A
modern energy system, therefore, requires appropriate quan-
tification of uncertainty to enable informed decision-making.
In contrast to deterministic forecasts, the probabilistic fore-
casting method provides information about uncertainty and
should, therefore, be investigated to facilitate the energy
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transition [6–8]. Following the “Global Energy Forecasting
Competitions” in 2012 and 2014 [9, 10], there has been a
significant surge in research interest in probabilistic forecast-
ing within the energy domain [10]. With the decentralization
of power systems, a growing need has emerged in recent
years for quantifying uncertainties in energy management
systems (EMSs) within smaller facilities, including residen-
tial buildings and small- to medium-sized commercial build-
ings. These facilities require cost-effective EMS solutions
that integrate probabilistic prediction techniques while being
simple, convenient, and implementable with minimal data
requirements.

Despite the potential benefits of probabilistic forecasting
methods in offering uncertainty information, they are com-
plex, data-intensive, and computationally demanding [3].
Additionally, a notable fraction of these methods rely on
black-box models, which lack transparency, as highlighted
in prior research [11]. Transparency is a crucial attribute
in forecasting methodologies [1]. Furthermore, research still
leans heavily toward deterministic forecasting [8, 12, 13].
While many probabilistic forecasting models directly gen-
erate forecast distributions without tying back to determin-
istic models, the literature concerning the combination of
these approaches remains sparse. Typically, most literature
employs the quantile regression averaging (QRA) method,
which follows the approach of leveraging deterministic
methods. This concept has been applied across various sce-
narios, including to electricity prices [14–16], electricity load
[7, 17], solar PV generation [5], and wind power generation
[3, 18]. However, the demand for multiple-point forecast
models introduces challenges such as high data requirements,
model complexities, and increased computational time. Fur-
thermore, quantile regression (QR) itself demands extensive
computational resources, necessitating separate model train-
ing for each quantile [19]. If the post-processing method
adds significant complexity and effort on top of the devel-
opment of the deterministic models, its practical value may
be undermined.

Wang et al. [7] introduced a probabilistic forecast method
that leverages existing point forecast methods by modeling
the conditional forecast residual using QR to derive the prob-
abilistic forecasts. Although this approach reduces reliance on
multiple-point forecast models, it still necessitates complex
post-processing modeling. Another study by Zhang et al.
[20] employed copula theory to model the conditional fore-
cast error for stochastic unit commitment in multiple wind
farms. Dang et al. [21] utilized point forecasts from three
deep neural network models and a similar-day load selec-
tion algorithm to facilitate short-term probabilistic load fore-
casting via quantile random forests (QRFs). Subsequently,
QRF found diverse applications across various domains [19,
22–25]. Zhang, Quan, and Srinivasan [3] found QRF to be
both more accurate and computationally efficient compared
to QRA.

The empirical prediction intervals (EPIs) method, first
introduced by William and Goodman [26], produces proba-
bilistic forecasts around existing point forecasts based on
the distribution of past point forecast errors within a time

window [27]. This method has been implemented in various
fields, including meteorology [28], economics [29], and
energy [30]. However, the major limitation to EPIs is that
the PIs are not conditional [27]. This leads to wider interval
width due to unconditional uncertainty, making them less
adaptive. Hence, it limits its wider application for decision-
making in certain sectors and use cases. To quantify uncer-
tainty in a wind power forecast for a wind farm in China,
Huang et al. [31] presented a simplistic statistical approach
that transforms point forecasts into interval forecasts by
considering the conditional dependence between predicted
values and prediction errors. Saber [32] then proposed three
methods to transform point forecasts into probabilistic ones
with relative ease of implementation. Compared to Huang
et al. [31], Saber’s methods employed historical weather
data as conditionals. Saber’s approach finds application in
the quantification of uncertainties in U.S. electricity and
natural gas consumption. Nevertheless, this approach has
its limitations, as it is not readily applicable to all cases due
to the possible unavailability of weather data, and the
weather parameters as conditionals do not always have a
high correlation with the forecasted outputs. Additionally,
the approach requires several years of point forecasts and
weather data for training, which may hinder its broader
applicability. Furthermore, the approach has not been ade-
quately tested in scenarios involving distribution level,
where uncertainties are higher. The analog ensemble (AnEn)
method was used to generate probabilistic wind power fore-
casts [33] and solar power forecasts [34]. The AnEn generates
probabilistic forecasts using a set of past measured values
corresponding to the most similar past deterministic fore-
casts of the predictors at the same lead time to a current point
forecast (predictors). It computes the deviation from the cur-
rent forecast and every similar past forecast at the same lead
time for the predictor variables and selects the n number of
forecasts with the lowest error values at each lead time; the
corresponding past measured values are the ensembles of the
AnEn forecast which constitutes probabilistic forecasts. One
of the disadvantages of this technique is that it requires mete-
orological predictor variables and its forecasted values in the
training set [34]. Also, the AnEn method is less adaptive and
not extendable to sector-wise applications, as past observa-
tions at the same lead time will not always correlate to the
current lead time, which may lead to unexpected interval
width and inaccuracy of the model’s output. The effective-
ness of AnEn prediction is highly sensitive to the criteria
used to define the similarity between the current situation
and historical analogs [34]. Even slight alterations in these
criteria can result in notable disparities in forecasted out-
comes. Also, the conditional approach to generate probabi-
listic forecasting is still limited in this technique. Moreover,
at various time stamps, the numbers of ensemble observa-
tions could be limited to get a proper distribution forecast
for the current lead time.

Beyond addressing gaps in the probabilistic forecasting
techniques, the lack of effective evaluation methods is a con-
tributing factor to their limited adoption in forecasting appli-
cations [8]. Popular scores possess certain limitations: they

2 International Journal of Energy Research

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



are data-dependent and prioritize sharpness over reliability.
The pinball score andWinkler score (WS), for instance, yield
higher scores for forecasts that are sharper and moderately
reliable as opposed to less sharp but highly reliable forecasts
[32, 35, 36]. Furthermore, mean PI width (MPIW) is data-
dependent, making it unsuitable for comparing probabilistic
forecasting across different datasets. Additionally, PI cover-
age probability (PICP) only measures the reliability of prob-
abilistic forecasts by considering the PI without accounting
for the reliability of each quantile bin. Reliability deviated
from the expectation is not yet penalized by the currently
available scoring rules. Moreover, graphical evaluation tools,
although present in some of the literature in the form of
probability integral transform (PIT) [37, 38], lack numerical
scores, preventing the direct comparison of similar-looking
PIT distributions [32].

There are significant benefits to combining the determin-
istic and probabilistic methods for uncertainty quantification
[5]. Within this context, this paper emphasizes the explora-
tion of the potential for leveraging deterministic forecast
models to derive probabilistic forecasts. This research avenue
will be the central focus of this paper, which will delve into
the intricacies of this approach and its implications. Based on
a comprehensive review of available probabilistic prediction
techniques that leverage deterministic models, this paper
aims to address existing knowledge gaps through a simplified
and computationally efficient post-processing technique for
uncertainty quantification. Inaccurate point forecasts lead to
higher power system operating costs and inefficient use of
renewable energy sources [5]. Therefore, the transition from
point forecasts to probabilistic ones becomes vital for quan-
tifying inherent uncertainties. Moreover, fostering the adop-
tion of probabilistic forecasting in the energy domain
necessitates more comprehensive scoring metrics to address
existing gaps in the popular evaluation metrics.

This paper makes the following contributions:

1. It develops a simplified statistical probabilistic forecast-
ing framework, named uncertainty binning method
(UBM), that leverages deterministic models. The UBM
framework is designed to be cost-effective, data-efficient,
computationally fast, and easy to implement. The UBM
can serve as an extended tool to convert point forecasts
into probabilistic ones, thereby facilitating uncertainty
quantification and aiding decision-making processes in
power system planning and operation.

2. This paper implemented new evaluation scores, namely
the graphical calibration measure (GCM), quantile cal-
ibration score (QCS), and percentage quantile calibra-
tion score (PQCS). They provide a holistic approach to
probabilistic forecasting evaluation, effectively addres-
sing deficiencies in popular scoring techniques.

3. The proposed method showcases robust performance
across multiple sectors, including electricity, heat, and
PV. A practical case study validates its application in
an existing distributed integrated energy system of a
logistics facility in northern Germany.

The remainder of this paper is organized as follows: In
Section 2, the methodology of the forecasting framework is
described in detail. In Section 2.2, performance evaluations
of deterministic and probabilistic forecasting are discussed.
In Section 3, a case study of the distributed integrated local
energy system of a commercial logistics facility is presented.
Section 4 presents the results, and Section 5 provides a
comprehensive discussion. Finally, the paper concludes in
Section 6 with an outlook on future work.

2. Methodology

This study presents theUBM for generating short- tomedium-
term probabilistic forecasts while leveraging a point forecast
model. Historical point forecasts are divided into bins based
on the forecasted value range, and quantiles of the forecast
error empirical cumulative distribution function (ECDF) are
computed for each bin. While generating probabilistic fore-
casts, the relevant bin is identified by comparing the new
point forecast with bins forecast ranges, and the error values
at predefined quantiles from the ECDF for the chosen bin are
added to the new point forecast to produce probabilistic pre-
dictions. Further explanation of the UBM is detailed in Sec-
tion 2.1. To evaluate the performance of both probabilistic
and point forecasting results, various evaluation metrics are
implemented, as discussed in Section 2.2.

2.1. UBM Framework. The UBM framework is designed to
generate probabilistic forecasts using output from determin-
istic forecast models, effectively bridging the gap between
deterministic and probabilistic forecasting methods. First, a
deterministic model processes historical measured data and
related factors to generate point predictions. The forecast
errors are calculated by comparing them with the actual
measurements as given in Equation (1).

e tð Þ ¼ by tð Þ − y tð Þ; ð1Þ

where eðtÞ: denotes the point forecast error, byðtÞ: denotes the
(historical) point forecast value and yðtÞ : denotes the actual
measurement value at time t, respectively.

Subsequently, the point forecasts and the forecast errors
are used as historical training data for the UBM. To enhance
adaptability to uncertainties and evolving conditions, the
model is trained dynamically by iteratively adding new point
forecast values to the training data. The training data are
used as input features for describing the conditional distri-
bution of errors into various clusters based on the point
prediction range. Figure 1 illustrates the division of the
example dataset into clusters. Essentially, the data are sorted
on the point forecast values and subsequently divided into a
predefined number of clusters based on the point forecast
range. The ECDF of the forecast errors for each cluster is
then computed. Further explanations regarding the forma-
tion of clusters are detailed in Section 2.1.2. Following this,
the point predictions generated by the deterministic model
during the forecasting period of the UBM are compared with
the point prediction range of clusters derived from the
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training, facilitating the selection of the appropriate cluster.
Finally, the error values at different quantiles of the error’s
ECDF for the selected cluster are combined with the point
prediction value at each timestamp to generate the probabi-
listic predictions.

In the following, let t0 denote the current time at which a
new prediction is calculated. The algorithmic process steps of
the framework are divided into three stages: the deterministic
stage, training stage, and forecasting stage, as presented via
the process flowchart in Figure 2. For each forecasting period
t1;…; tN , all three phases are executed. It is pre-requisite
to have sufficient historical deterministic forecasts byðtiÞ :;
i<0 and measured data yðtiÞ :; i<0 to generate probabilistic
predictions.

2.1.1. Phase I: Deterministic Stage. In the first phase, a deter-
ministic model is implemented to generate the point fore-
casts byðt1Þ :;…;byðtNÞ :, where N denotes the number of
predicted time steps. The UBM is compatible with any deter-
ministic model, be it statistical or machine learning-based. In
this study, the statistical method known as the personalized
standard load profile (PSLP) is implemented to generate
point forecasts for electricity and heat demands, as well as
PV generation. Detailed explanations and applications of
the PSLP for load forecasting can be found in [39–41]. Addi-
tionally, this work integrates and builds upon a recent study
[42] that extended PSLP for heat demand and PV generation
forecasting. The PSLP is expected to perform poorly for PV
forecasting; however, it serves as an example to demonstrate
theUBMs performance when a poor performance of the point
forecast model is observed.

The historical measured data are collected to train the
PSLP model. These data are categorized according to daytype
(weekdays, Saturday, and Sunday) and season classifications
(summer, transition, and winter), similar to SLPs derived by
the German Association of Energy and Water Industries
(BDEW) [39]. The daytype classification is not used for PV
generation forecasts as it has a very low correlation. Forecasts

are then generated by aggregating historical values within
each category using statistical measures such as the mean,
median, and maximum.

The PSLP training data grows as the model iterates to
make it more adaptable to changes in the load profile. That
means that the next day incorporates the measured values
from the preceding day, and so on. Additionally, a rolling
forecast was implemented to limit the training window with
the maximum historical days from the day of the forecast, as
discussed in [41, 42]. That means the training window slides
as it iterates over time, while continuously updating the
training data to include recent measurements while exclud-
ing older ones beyond the specified window. This approach
ensures that the training window does not exceed a specified
maximum historical period from the forecast date.

2.1.2. Phase II: Training Stage. Training of the UBM is car-
ried out in this phase. First, the training data are clustered
based on historical point forecast values. A predefined num-
ber of clusters (K) of equal width are defined as follows. Let
H¼ft−1;…; t−Mg : denote the set of historical time points
used for training, and let a and b denote minimal and maxi-
mal forecasted value, respectively, that is the following:

a¼min by tð Þ : t 2Hf g;

b¼max by tð Þ : t 2Hf g:

The classification intervals Ik; k¼ 1;…;K are then defined
as follows:

Ik ¼ aþ k − 1ð Þw; aþ kw½ �; ð2Þ

where w¼ðb− aÞ:=K denotes the bin width of the intervals.
The bins are then defined as follows:

Bk ¼ t 2H :by tð Þ 2 Ikf g ;  k¼ 1;…;K: ð3Þ
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FIGURE 1: Cluster division using an example dataset (adapted from [32]).
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Start

Deterministic model

Historical point
forecasts

Binning training data based on
deterministic forecast

Compute error ECDFs
for all bins

Calculate quantile
predictions
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Historical actual
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Calculate forecast errors

Historical forecast
errors

Filtered training data
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points forecast range

Future point
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FIGURE 2: The UBM algorithm process flowchart (adapted ideas from [32]). UBM, uncertainty binning method.
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This binning process is repeated after each forecasting
period, meaning that the point forecast intervals ðIkÞ : used to
define clusters change dynamically as new point forecasts are
added to the training dataset atH. In the next step, the point
forecast errors eðtÞ :, as given by Equation (1), are allocated to
their respective bins ðBkÞ :. Histograms and probability den-
sity function (PDF) of point forecast errors are then gener-
ated for each bin ðBkÞ : to gain insights into the spread,
skewness, and presence of any outliers in the forecast error
distribution. A PDF is fitted for each bin ðBkÞ :using a non-
parametric technique known as kernel density estimation
(KDE) [43], as shown in Figure 3a and given by Equation (4).

fk xð Þ ¼ 1
nkhk

∑
t2Bk

K
x − e tð Þ

h

� �
; ð4Þ

where fkðxÞ : is the density function at point x for bin k, nk ¼
jBkj: is the number of data points, hk is the bandwidth param-
eter that controls the smoothness of the resulting density
curve, K is the kernal function (Guassian in this study),
eðtÞ : are the individual errors.

The bandwidth hk in Equation (4) is determined via Scott’s
rule [44] hk ¼ n−1=ðdþ4Þ

k , where d¼ 1 denotes the dimension-
ality of the data.

Figure 3a shows histogram distribution of the errors and
fitting of PDF using KDE, and Figure 3b shows the ECDF of
the errors. The point forecast errors at predefined quantiles
from the distribution are extracted from the ECDF. In this
study, the ECDFs for each bin are obtained using the nearest
rank method (NRM), a nonparametric approach. To deter-
mine the value of a given percentile q, it selects the corre-
sponding value from the sorted data, such that a proportion
q of the data points is smaller than the selected value. A
detailed explanation of NRM for this study is given in the
following:

Let ej; j¼ 1;…; nk denote the ordered error values for the
kth bin, that is, ej ¼ eðtjÞ :; j¼ 1;…; nk with Bk ¼ft1;…; tnkg:

such that e1 ≤…≤ enk .
For a given percentiles q¼f0:1; 0:2;…; 0:9g:, the rank R

is calculated as follows:

R¼ q ⋅ nkð Þ; ð5Þ

where nk ¼ jBkj : is the number of data points for the kth bin.
The error percentile value ɛkðqÞ : for the kth bin at per-

centile q is then given by Equation (6), which accounts for
the contributions of the lower and upper values to the overall
estimation of the percentile value if R is not an integer.

ɛk qð Þ ¼ eR if R is an integer

e Rb c ⋅ Rd e − Rð Þ þ e Rd e ⋅ R − Rb cð Þ; otherwise

(
: ð6Þ

The error values at each percentile q for all the bins Bk

given by Equation (6) are later used in the forecasting stage
to convert point predictions into distributions of forecasts.

The UBM training time series keeps growing as the
model iterates over the forecasting time period t1;…; tN to
simulate the real case scenario. For example, at the current
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FIGURE 3: (a) Cluster’s error histogram distribution and PDF using KDE and (b) cluster’s error ECDF plot. ECDF, empirical cumulative
distribution function; KDE, kernel density estimation; PDF, probability density function.
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time t0 and the forecast horizon of 24 h, with the time
resolution of 15min, the measurement and point forecast
values for the forecasting period (t1;…; t96) are included in
the training set to generate probabilistic predictions for the
next forecasting period (t97;…; t192). This means that the
UBM is trained after every forecasting period with the new
measurements and point forecasts added as part of the train-
ing set. This approach enables the capture of any uncertain-
ties in future predictions and adapts to changing conditions.
Additionally, in order to prevent an infinite growth of the
training data set, the lookback window (LBW) feature is
implemented and can be used to set a fixed predefined train-
ing window. This should be used as per the requirement and
type of data profile to be forecasted. Activating the LBW
feature provides the possibility of limiting the training win-
dow (with sliding) as the model iterates over the forecasting
period t1;…; tN , thus capturing the seasonal trends more
accurately and avoid considering old data which are no lon-
ger relevant. This feature is implemented in this work to
evaluate its potential impact on the performance of the
UBM model on all three data profiles. The training windows
of 180, 150, 120, 90, and 60 days are considered for analysis.
For instance, if the LBW of 180 days is chosen, then the
training set for a current time t¼ 0 will contain the historical
point forecast values byðtiÞ : for i¼ − 1;…; − ð180 ⋅ mÞ : where
m represents the number of data points per day.

2.1.3. Phase III: Forecasting Stage. In this final phase, proba-
bilistic predictions are generated using the trained UBM
model. First, a forecasting time period is selected on the basis
of the forecast horizon. In this work, the forecast horizon of
24 h was chosen, with the time resolution of 15min. For
instance, at the current time t0, the first forecasting time
period spans t1;…; t96. During this period, new point fore-
casts byðtiÞ : for i¼ 1;…; 96 are obtained from the determin-
istic model. These forecasts are compared with the point
forecast intervals (Ik) of all bins Bk as determined in Phase
II to identify the appropriate bin at each timestamp.

Once the appropriate bin is selected, the model retrieves
the error values ɛkðqÞ : at predefined quantiles q of ECDF for
the kth bin. These error quantile values represent the distri-
bution of forecast errors for the specific interval of historical
point forecast values (Ik). The error values ɛkðqÞ : at different
quantiles q are then added to the new point forecast byti to
generate a distribution of predictions bytiðqÞ : at time ti, for i>0
as given by Equation (7). This involves taking each error
quantile and adding it to the point forecast value to create
a range of possible forecast outcomes, effectively converting
point prediction to probabilistic prediction.

byti qð Þ ¼ byti þ ɛk qð Þ; ð7Þ

where bytiðqÞ : is quantile forecast at percentile q and time ti, byti
is point forecast value at the time ti, ɛkðqÞ : is quantile point
forecast error obtained from ECDF of the selected cluster k.

The process described above is then repeated for each
timestamp within the forecasting period to generate a prob-
abilistic prediction curve.

2.2. Performance Evaluation

2.2.1. Deterministic Forecast Evaluation. This work uses
widely recognized evaluation metrics that are commonly
used in the deterministic forecasting literature, as highlighted
in [45–48]. The mean absolute error (MAE), mean square
error (MSE), root MSE (RMSE), mean absolute percentage
error (MAPE), and mean absolute scaled error (MASE) are
used as the point forecast evaluation indices as given by the
following equations:

MAE¼ 1
n
∑
n

i¼1
yi − byið Þj j; ð8Þ

MSE¼ 1
n
∑
n

i¼1
yi − byið Þ2; ð9Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
yi − byið Þ2

r
; ð10Þ

MAPE¼ 1
n
∑
n

i¼1

yi − byið Þj j
yi

; ð11Þ

MASE¼ 1
n
∑
n

i¼1

yi − byij j
1

n−m∑n
j¼mþ1 yj − yj−m

�� �� ; ð12Þ

where yi and yj are measured values in the time series at time
i and j, respectively, byi is the predicted value at time i, yj−m is
the naive forecast at previous time j−m, n is the total num-
ber of data points and m is the previous day for the naive
forecast.

For PV forecasting, the MAPE metric encounters limita-
tions due to the prevalence of zero measured data. This leads
the MAPE calculation in Equation (11) to be undefined. To
tackle this problem, the MASE is also implemented, which
essentially compares the accuracy of the model with the
naive forecast approach. In the MASE calculations for heat
forecasts, a naive forecast obtained from the previous week,
that is, 7 days ago, is used, whereas for electricity and PV
forecasts, the naive forecast from the previous day is used.

2.2.2. Probabilistic Forecast Evaluation. Three main aspects
are considered, namely “reliability” or “calibration,” “sharp-
ness,” and “resolution” while evaluating the performance of
the probabilistic forecasting [21, 38]. Reliability measures the
credibility of the probabilistic forecast model in capturing the
actual values within the PI. Sharpness measures the spread of
interval width or concentration of predictive distribution.
Resolution evaluates the model’s effectiveness in minimizing
sharpness while maintaining reliability within an acceptable
range. These aspects are assessed using six metrics in this
study for a comprehensive evaluation of probabilistic fore-
casting. All the numerical evaluation metrics are summarized
in Table 1.

a. PICP: The PICP measures reliability within the PI,
represented in percentage (%). For a good forecast,
PICP is expected to be closely aligned with the PI
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[35, 49]. PICP is expressed as Equation (13):

PICP¼ 1
N

∑
N

i¼1
Ci; ð13Þ

where Ci is given by the following:

Ci ¼
1 if yi 2 Li;Ui½ �;
0 if yi ∉ Li;Ui½ �

(
;

where yi is the measured values in the time series at time i, Li,
and Ui are the lower and upper predictive percentiles at time
i, N is the total number of data points, and Ci the coverage
factor.

b. MPIW: The MPIW measures the sharpness of the
probabilistic forecasts. However, it is scale-dependent;
that is, MPIW is not favorable for comparing proba-
bilistic forecast results for different datasets. A higher
PICP and a lower MPIW are desirable, but both con-
flict with each other [36]. A tradeoff between the
PICP and MPIW must be made while evaluating
probabilistic forecasts. The MPIW is expressed as
Equation (14):

MPIW¼ 1
N

∑
N

i¼1
Ui − Lið Þ; ð14Þ

c. WS: The WS considers both reliability and sharpness
for evaluation [8]. A low score indicates better proba-
bilistic forecasting. For a central ð1− αÞ: PI, where α2
ð0; 1Þ :, WS is expressed as Equation (15):

WSi;α ¼

δ if Li;α ≤ yi ≤ Ui;α;

δþ 2 Li;α − yi
À Á

α
if yi<Li;α;

δþ 2 yi − Ui;α

À Á
α

if yi>Ui;α

8>>>>><>>>>>:
;

ð15Þ

where yi is the measured value at time i, Li;α, and Ui;α are the
lower and upper predictive percentiles at level α=2 and 1 −
α=2 and δ is the PI width given by the difference between the
upper and lower predictive percentiles (Ui;α − Li;α).

The score rewards narrower PI widths and penalizes if
the measured values fall outside the PI [50]. However, the
WS is more biased toward sharpness than reliability, that is,
it gives a better score for sharper and moderately reliable
probabilistic forecasts compared to less sharp and highly
reliable ones. It is also sensitive to outliers. Furthermore,
the score is scale-dependent.

d. QCS: The QCS assesses reliability with consideration
to each quantile bin and penalizes any deviation from

expected reliability. In this study, the quantile bins are
formed with equal width (10%) percentile ranges (i.e.,
0%–10%, 11%–20%,…, 91%–100%). A low QCS value
is desired, and the perfect forecast is obtained when
the QCS is 0, that is, when the reliability at each
quantile bin matches exactly the expected reliability.
There is no upper limit for the QCS. It basically
rewards when the frequency of observed values (Oi)
matches the expected frequency (Ei) at each quantile
bin (i) and penalizes deviation from expected fre-
quency (Ei), that is, when high or low sharpness fore-
casts are obtained for example [32]. The QCS is
independent of scale; however, it faces limitations
when comparing datasets of different sizes. Addition-
ally, the score becomes invalid for applications with
prolonged data uniformity, such as zero power gener-
ation in PV forecasting. In such scenarios, all quantile
forecasts may converge to the same value (e.g., zero),
causing every point to be valid across all quantile bins.
This results in significantly inflated Oi for each bin,
leading to a disproportionately high QCS due to the
penalization for deviations from Ei:

The QCS is represented by Equation (16).

QCS¼ 1
n
∑
n

i¼1

Ei − Oið Þ2
Ei

; ð16Þ

where n is the number of quantile bins (e.g., 10 in this study),
Ei and Oi are the expected frequency and the observed fre-
quency, respectively, for each quantile bin (i).

e. PQCS: To overcome the limitation of the QCS, the
PQCS is implemented, which is expressed as a per-
centage (%). It is scale- and size-independent; how-
ever, like QCS, it becomes invalid for applications
with prolonged data uniformity. Lower PQCS values
are preferred, with the optimal score being 0%. The
PQCS is calculated as Equation (17).

PQCS¼ 1
n
∑
n

i¼1

Ei − Oij j
Ei

× 100: ð17Þ

f. GCM: The GCM is a graphical evaluation tool to assess
reliability and sharpness [32]. The GCM plots the bar
charts for the actual percentage of observed values
(blue-colored bars) in each quantile bin, comparing
them to the expected percentage (red line), as shown
in Figure 4. Any deviation of actual observed values
from the expected observed values for each quantile
bin is penalized, resulting in a higher score for its
numerical metrics (QCS and PQCS), effectively
addressing both under- and overestimations in fore-
cast reliability. Furthermore, the shape of the GCM
plot provides insight into the forecast’s sharpness.
The perfectly calibrated probabilistic forecasting is
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obtained when the GCM exhibits a uniform distribu-
tion shape, that is, when QCS is 0 and PQCS is 0%.
Conversely, the GCM with a triangular shape distribu-
tion, as shown in Figure 4c, indicates low sharpness
and U-shaped distributions, just as Figure 4b, indicate
high sharpness probabilistic predictions, and Figure 4a
shows a nearly uniform shaped distribution with low
QCS and PQCS values. Both high and low-sharpness
forecasts are penalized by the QCS and PQCS because
high-sharpness is often unreliable across quantile bins,
and low-sharpness probabilistic forecasts are not
ideal for decision-making [32]. Figure 4 shows how
the QCS and PQCS scores change with the shape of
the GCM, offering distinct scores for each of these
cases. Moreover, they are not biased toward sharp-
ness over reliability.

3. Case Study

The commercial logistics facility located in northern Ger-
many is considered for the demonstration of the proposed
method. This logistics center represents the integration (or
“sector–coupling”) of electricity, heat, cooling, and transport.
A detailed description of the integrated energy system at the
logistics facility can be found in [51]. To verify the effective-
ness and accuracy of the method proposed in this paper, the
measurements from the ElogZ [52] project are utilized.
Electricity and heat meters were installed in different sub-
distributions of the logistics facility. For this case study, the
electricity and heat demand of each subsystem were aggre-
gated. Space heating and the demand for domestic hot
water are categorized under the heat sector. To meet these
demands, the system utilizes two cascades of air heat
pumps, a heat-water buffering storage unit, and two gas

boilers to handle peak demand. The cooling needs for the
building are met using heat pumps/chillers and a cold water
storage unit. The cooling demand is considered in the con-
text of the heating demand for this study. Additionally,
servers are equipped with individual air conditioning sys-
tems. All electricity needs for the logistics center are sup-
plied by the low-voltage grid. This includes the electricity
requirements of the office building, warehouses, dormito-
ries, and other facilities within the center, as well as the
energy needs for refrigerated trailers (conditioning, precool-
ing, and maintaining of cold chains) associated with the
transport sector. Figure 5a,b depicts the office building (busi-
ness center) and dormitory, respectively. Recently, rooftop PV
panels were installed in the warehouse to boost local elec-
tricity generation for the facility, as shown in Figure 5c. Due
to the lack of PV generation measurement data for this
study, PV generation was simulated with a system size of
200 using the Python library pvlib [53], utilizing publicly
available weather data obtained from open DWD [54]. The
assumption made in the simulation for the PV modules is
that they are oriented half to the east and half to the west,
with an inclination angle of 10°. Battery and power electronics
for control are installed in the dormitory, as depicted in
Figure 5d. Air source heat pump systems are also integrated
within this facility. Both deterministic and probabilistic fore-
casts are generated as an essential component of the EMS for
the given distributed integrated energy system. The observa-
tion, forecasting, and waiting periods for both methods are
detailed in Table 2. All of the data used in this study, including
measured values and generated point and probabilistic fore-
casted output results, were considered at a 15-min resolution
and represented in kW. The forecasting framework (UBM)
and its evaluation are implemented in Python programing
language.
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FIGURE 4: GCM plots for three different cases: (a) nearly uniform, (b) high sharpness, and (c) low sharpness. The QCS and PQCS values for
each of these cases are shown in the figure. GCM, graphical calibration measure; PQCS, percentage quantile calibration score; QCS, quantile
calibration score.
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4. Results

4.1. Deterministic Forecast. In this section, the forecast results
and accuracy of the PSLP for electricity, heat, and PV profiles
are presented and compared. After setting the number of
waiting days (NWDs) to 21 as the basis for the PSLP, point
forecasts were generated for a period between 26 September
2021 and the end of August 2022, as shown in Table 2. For

the same period, the mean of the evaluation scores for the
electricity demand, heat demand, and PV generation were
obtained, as displayed in Table 3. Figure 6 illustrates the
PSLP forecasts and its comparison with the actual values for
a random day (8 June 2022). The mean MAE for the elec-
tricity (6.34 kW) and heat demand forecasts (6.4 kW) are
within a similar range, whereas the PV generation forecasts
exhibit a higher value of 9.9 kW.

ðaÞ ðbÞ

ðcÞ ðdÞ
FIGURE 5: Logistics facility [52]: (a) office building, (b) dormitory, (c) warehouse with rooftop PV, and (d) battery storage and power
electronics.

TABLE 2: Dataset description providing observation period, number of waiting days, and observation period for both point forecast (PSLP)
and probabilistic forecast (UBM).

Forecasting parameters Deterministic forecast (PSLP) Probabilistic forecast (UBM)

Observation period 5 Sep 2021–30 Aug 2022 26 Sep 2021–30 Aug 2022
NWDs 21 days 7 days
Forecasting period 26 Sep 2021–30 Aug 2022 5 Oct 2021–30 Aug 2022

Abbreviations: NWDs, number of waiting days; PSLP, personalized standard load profile; UBM, uncertainty binning method.

TABLE 3: PSLP scores averaged (mean) for the whole forecasting period.

Sector
Scores

MAE (kW) MSE (kW) RMSE (kW) MAPE (%) MASE

Electricity 6.34 78.29 8.71 13.18 0.65
Heat 6.4 76.65 8.52 26.55 0.6
PV 9.9 441.76 20.62 — 0.93

Abbreviations: MAE, mean absolute error; MAPE, mean absolute percentage error; MASE, mean absolute scaled error; MSE, mean square error; PSLP,
personalized standard load profile; RMSE, root mean square error.
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Moreover, a high MSE value of 441.76 kW for the PV
forecasts indicates that there are significant forecast errors on
numerous timestamps throughout the forecasting period.
The lowest MAPE score was obtained for electricity (13.18%),
followed by the heat (26.55%). With respect to MASE, it can
be observed that the PSLP performed better than the naive
forecast for all of the sectors, as it was below 1.

The hourly forecasting error distribution for the entire
forecasting period in a boxplot format is shown in Figure 7.
The box represents the interquartile range (IQR), which
encompasses the values between the 25th and 75th percen-
tiles. The black line inside the box represents the median,
which corresponds to the 50th percentile (the median). The
upper and lower whiskers extend from the box by a maxi-
mum of 1.5 times the IQR. Figure 7 illustrates that the PV
predictions exhibit wider error spread distributions during
the daytime hours compared to heat and electricity demand
forecasts. That means the PSLP resulted in poor forecasting
for PV generation, as expected, which could impact decision-
making in EMS. In such cases, probabilistic forecasting using
UBM could be beneficial for informed decision-making, as
elaborated upon in Section 5.

4.2. Probabilistic Forecast. In this section, the forecast results
and accuracy of the UBM for the electricity, heat, and PV
profiles are presented. In this study, the NWD for the UBM
was 7 days, resulting in the generation of probabilistic fore-
casts from 3 October 2021 to the end of August 2022, as

shown in Table 2. The probabilistic forecasts compromise
percentiles ranging from 10% to 90%, representing an 80%
PI and forming the basis for its performance evaluation.
Later, the forecasts were also evaluated with different PI
levels of 40% and 60%. Several forecast evaluation metrics
(PICP, MPIW, GCM, QCS, and PQCS) are used to assess its
performance, as discussed in Section 2.2.2. The PICP and
MPIW were calculated daily, while the QCS and PQCS were
computed monthly to ensure an adequate number of data
points for their calculation. The QCS and PQCS metrics are
not applicable to PV, as the predictions at different percen-
tiles often coincide with the measured values, particularly
during periods of zero power generation, as exemplified in
Figure 8.

4.3. Probabilistic Forecast Results Without LBW Feature. The
mean of the evaluation metrics presented in Table 4 were
computed for the probabilistic forecasting period (Table 2),
with the LBW feature being inactive. This means that the
training dataset progressively expands over the forecasting
period without being limited by the training window.
Monthly PICP, MPIW, WS, QCS, and PQCS were averaged
over the entire forecasting period across sectors for different
number of bins, as shown in Table 4. Figure 8 shows the
probabilistic output results from the UBM for a random
day (8 June 2022). On this day, it was observed that the
UBM performed with high reliability across all sectors; that
is, the majority of the measured values, denoted by green
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FIGURE 6: PSLP forecasting results on a random day (08 June 2022) for (a) electricity, (b) heat, and (c) PV. PSLP, personalized standard load
profile.
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crosses, fall within the PI. However, the UBM exhibited low-
sharpness PV forecasts, especially during peak generation
hours.

From Table 4, the analysis reveals that the UBM model
consistently generated reliable probabilistic forecasts with
different number of bins across all sectors, with the average
PICP being closely aligned with the PI level (80%). For the
electricity forecast, the highest PICP (80.32%) was obtained
with three bins, but at the same time highest MPIW (19.71
kW), that is, the lowest sharpness, was observed. Considering
the WS, QCS, and PQCS, the best forecast for electricity was
obtained with seven bins. For the same, the WS, QCS, and
PQCS are 30.54%, 20.99%, and 20.95%, respectively. For the

heat demand forecast, the highest PICP was obtained with
three bins; however, this also resulted in the lowest sharp-
ness, that is, the highest MPIW of 22.42 kW. While the low-
est WS (31.54) was observed with nine bins. Considering
QCS and PQCS, the best forecast for the heat sector was
obtained with seven bins, yielding QCS and PQCS values
of 23.31% and 22.53%, respectively. For the PV forecast,
the best UBM accuracy was achieved with 12 bins, which
corresponded to the lowest WS of 48.58. However, it is worth
noting that this also resulted in the lowest sharpness, as
indicated by the highest MPIW among the bin configura-
tions. Based on the overall scores in Table 4, the optimal
number of bins for electricity, heat, and PV were determined

20

10

0

–10

–20

01
:0

0
02

:0
0

03
:0

0
04

:0
0

05
:0

0
06

:0
0

07
:0

0
08

:0
0

09
:0

0
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

17
:0

0
18

:0
0

19
:0

0
20

:0
0

21
:0

0
22

:0
0

23
:0

0
24

:0
0

Fo
re

ca
st 

er
ro

r (
kW

)

Time in hh:mm

ðaÞ

20

10

0

–10

–20

01
:0

0
02

:0
0

03
:0

0
04

:0
0

05
:0

0
06

:0
0

07
:0

0
08

:0
0

09
:0

0
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

17
:0

0
18

:0
0

19
:0

0
20

:0
0

21
:0

0
22

:0
0

23
:0

0
24

:0
0

Fo
re

ca
st 

er
ro

r (
kW

)

Time in hh:mm

ðbÞ

100

50

0

–50

–100

01
:0

0
02

:0
0

03
:0

0
04

:0
0

05
:0

0
06

:0
0

07
:0

0
08

:0
0

09
:0

0
10

:0
0

11
:0

0
12

:0
0

13
:0

0
14

:0
0

15
:0

0
16

:0
0

17
:0

0
18

:0
0

19
:0

0
20

:0
0

21
:0

0
22

:0
0

23
:0

0
24

:0
0

Fo
re

ca
st 

er
ro

r (
kW

)

Time in hh:mm

ðcÞ
FIGURE 7: Hourly PSLP forecasting error boxplot distributions for (a) electricity, (b) heat, and (c) PV. PSLP, personalized standard load
profile.

International Journal of Energy Research 13

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



80

70

60

50

40El
ec

tr
ic

ity
 (k

W
)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Percentile 10th
Percentile 20th
Percentile 30th
Percentile 40th
Percentile 50th

Percentile 70th
Percentile 80th
Percentile 90th
Measurement/simulated data
Deterministic forecasts

Percentile 60th

Time in hh:mm

ðaÞ

40

30

20

10

H
ea

t (
kW

)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time in hh:mm

Percentile 10th
Percentile 20th
Percentile 30th
Percentile 40th
Percentile 50th

Percentile 70th
Percentile 80th
Percentile 90th
Measurement/simulated data
Deterministic forecasts

Percentile 60th

ðbÞ

125
150

100
75
50
25

0

PV
 (k

W
)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time in hh:mm

Percentile 10th
Percentile 20th
Percentile 30th
Percentile 40th
Percentile 50th

Percentile 70th
Percentile 80th
Percentile 90th
Measurement/simulated data
Deterministic forecasts

Percentile 60th

ðcÞ
FIGURE 8: UBM forecasting results on a random day (08 June 2022) for (a) electricity, (b) heat, and (c) PV. UBM, uncertainty binning method.

TABLE 4: UBM scores averaged (mean) for the whole forecasting period across sectors for different number of bins.

Sector Number of bins
Scores

PICP (%) MPIW (kW) WS QCS PQCS (%)

Electricity

3 80.32 19.71 30.81 21.23 21.13
7 79.52 19.59 30.54 20.99 20.95
9 78.95 19.48 30.57 23.63 22.48
12 79.04 19.52 30.66 22.62 21.88

Heat

3 82.32 22.42 31.64 27.43 23.95
7 81.45 22.29 31.59 23.31 22.53
9 81.55 22.33 31.54 29.88 25.25
12 80.89 22.05 31.88 30.03 25.72

PV

3 81.32 26.06 59.30 — —

7 80.62 30.09 50.99 — —

9 80.46 31.40 49.45 — —

12 81.37 32.54 48.58 — —

Abbreviations: MPIW, mean prediction interval width; PICP, prediction interval coverage probability; PQCS, percentage quantile calibration score; QCS,
quantile calibration score; UBM, uncertainty binning method; WS, Winkler score.

14 International Journal of Energy Research

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to be 7, 7, and 12, respectively. Consequently, the results
presented are derived from this selection of the number of
bins for each sector. Figure 9 illustrates the comparison
of scores across different sectors based on their respective
optimal bin configurations.

From Figure 9, it can be observed that UBM achieved the
highest PICP value of 81.45% for heat forecasts, whereas
the lowest PICP value was obtained for electricity forecasts.
With respect to the MPIW, the UBM excels in producing
sharp forecasts for electricity (19.59 kW) and heat demand
(22.29 kW) compared to PV generation (32.54 kW). A high
interval width (i.e., low sharpness) was observed for PV gen-
eration, which can be interpreted from a high MPIW. Con-
versely, the UBM achieved the highest sharpness (i.e., lowest
MPIW) for the electricity profile with a value of 19.59 kW.
The lowest WS was observed for electricity (30.54), followed
by heat (31.59), but exhibited notably highWS for PV (48.58).
Considering the variability of PV generation and inaccuracy
of the PSLP forecasts output, a high MPIW and WS were
observed, as expected. Based on the QCS and PQCS, the high-
est calibrated forecast was observed for electricity, with values
of 20.99 and 20.95%, respectively, compared to the heat sec-
tor, with values of 23.31% and 22.53%, respectively.

The performance of the UBM, as measured by PICP,
MPIW, WS, QCS, and PQCS, on the electricity, heat, and
PV data profiles for each month throughout the forecasting
period, is depicted in Figure 10, with the LBW feature being
inactive. The black dashed line in the first subplot depicts PI
(i.e., 80%) to indicate the deviation from the expected PICP.
Notably, higher PICP values were observed in the spring and
summer months compared to the winter months. During the
same period, higher MPIW values for PV were observed,
possibly due to higher fluctuation in the data profile. The
MPIW for the electricity experienced a slight rise during the
spring and summer, while the opposite trend was observed
for a heat profile. The trend of the WS can be interpreted by

combining the trends of the PICP and MPIW. The lowest
WS for PV (24.79 kW) was observed in December 2021,
while the lowest WS for electricity (23.62 kW) and heat
(22.83 kW) was observed in June 2022 and August 2022,
respectively. Moreover, the monthly QCS and PQCS values
were observed for the electricity and heat profiles. The lowest
QCS and PQCS values for electricity (2.2% and 6.8%, respec-
tively) were observed in October 2021. The lowest QCS and
PQCS values for the heat forecasts were 11.8 in July 2022 and
14.2% in October 2021, respectively. The highest QCS and
PQCS, that is, the lowest reliability at each bin for the elec-
tricity profiles, were observed in May 2022 with values of
44% and 33.2%. On the other hand, for the heat profile,
the highest QCS (47.5) and PQCS (35.1%) were observed
in March 2022 and November 2021, respectively. Overall,
the UBM demonstrated relatively good accuracy for electric-
ity compared to the heat sector based on WS, QCS, and
PQCS. The GCM plots for the electricity in April and May
2022 are shown in Figure 11 as an example. It was observed
that both the QCS and PQCS penalize deviations from the
expected percentage. This is evident in the way the values of
QCS and PQCS change with the shape of the GCM, making
them valuable scores for further investigating the accuracy of
the probabilistic forecasts. They offer a more comprehensive
reliability assessment, along with insights into the sharpness
of probabilistic forecasting.

The results presented above were based on 80% PI as a
benchmark for evaluating the probabilistic forecast. In the
following, forecasts are evaluated across different PI levels,
including 40% and 60%, using the optimal bins for each
sector, as given in Table 5. A PI of 100% is excluded from
consideration because it encompasses all possible outcomes,
making it overly broad and uninformative for practical
decision-making in energy management. It fails to provide
actionable insights or the precision needed to assess risks
or optimize resource allocation, which is essential for the
intended application. The QCS and PQCS remain unchanged
across different PI levels, as they are computed considering
the entire quantile range from 0% to 100% with a fixed bin
width of 0.1th or 10th percentile. Consequently, these metrics
are not included in Table 5. It can be observed that the PICP
remains closely aligned with the PI levels for each sector,
except for the PV with a 40% and 60% PI, which resembles
over-coverage, reflected in a PICP value of 67.33% and 74.41%,
respectively. From Table 5, it is evident that with increased PI
levels, the interval width also increases, as indicated by MPIW
values, to cover the expected real values within the quantile
range. This leads to also increase in WS, as the score empha-
sizes sharpness, as discussed in Section 2.2.2.

4.4. Probabilistic Forecast Result With LBW Feature. To show
the effect of the LBW feature on the UBM performance,
evaluation metrics were calculated for electricity, heat, and
PV with varying sliding training windows (180, 150, 120, 90,
and 60 days) with an optimal number of bins and PI of 80%,
as shown in Table 6. For all the data profiles, reducing the
training window led to a slight decrease in the MPIW, WS,
QCS, and PQCS. However, it should be noted that PICP also
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decreases simultaneously. The decrease in these metrics can
be attributed to the smaller training dataset size, leading to
lower data variability over shorter time frames. Consequently,
this results in a reduced spread of error distributions, subse-
quently lowering evaluation metrics values. In the case of
electricity, the lowest MPIW (19.67 kW), QCS (18.25), and
PQCS (18.71%) were obtained with a training window of
60 days. However, the PICP was lowest (78.13%) compared
to the other training windows. On the other hand, the lowest
WS (30.54) was obtained with a training window of 90 days.

The choice between achieving a higher reliability or a higher
sharpness depends on the specific application. In the case of
the heat profile, the lowestWS (31.02) was obtained with a 90-
day training window, whereas the lowest QCS (18.96) and
PQCS (19.97) scores were obtained with 60 days. For the
PV forecasts, the highest PICP and lowest WS was achieved
with a 150-day training window. However, overall, it can be
said that with shorter training window results in better perfor-
mance of probabilistic forecasting, considering WS, QCS, and
PQCS, which take both reliability and sharpness into account.
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FIGURE 11: GCM plots for electricity demand on (a) April 2022 and (b) May 2022. GCM, graphical calibration measure.

TABLE 5: UBM scores averaged (mean) for the whole forecasting period across sectors with their selected optimal number of bins for different
PI.

Sector
Scores

PI (%) PICP (%) MPIW (kW) WS

Electricity
40 39.7 7.55 18.76
60 59.28 12.36 23.13
80 79.52 19.59 30.54

Heat
40 42.99 8.3 19.34
60 63.22 13.9 24.01
80 81.45 22.29 31.59

PV
40 67.33 13.96 29.67
60 74.41 22.07 36.53
80 81.37 32.54 48.58

Abbreviations: MPIW, mean prediction interval width; PI, prediction interval; PICP, prediction interval coverage probability; UBM, uncertainty binning
method; WS, Winkler score.
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5. Discussions

Due to the increased uncertainty and requirement of low-
cost EMS at the distribution level, a simple and robust fore-
casting framework (UBM) was introduced in this study.
It was found to be computationally fast, reliable, adaptable
across sectors, low feature engineering, and relies on easily
accessible data. The UBM generates probabilistic forecasting
by levering deterministic models, in this case, PSLP. The
electricity demand, heat demand, and PV generation fore-
casting were produced for the distributed integrated energy
system at a logistics facility in northern Germany. This work
also emphasizes the limitations of commonly used evaluation
metrics for probabilistic forecasting and illustrates how a
more comprehensive evaluation can be achieved by incorpo-
rating new metrics such as GCM, QCS, and PQCS.

The PSLP was evaluated using popular metrics (MAE,
MSE, RMSE, MAPE, and MASE) for all the sectors. The
mean of these metrics across the entire forecasting period
was calculated, and it was found that the PSLP performed
better for electricity and heat demand forecasts but exhibited
high forecasting errors for PV generation, as expected. This
shortcoming can be attributed to the inherent variability in
PV generation, as illustrated in Figure 12, where generation
over three consecutive days highlights the significant vari-
ability and notable forecast errors incurred by the PSLP
model. This will directly affect probabilistic forecasting gen-
erated by the UBM.

The UBM performance was evaluated with a different
number of bins for each sector. The optimal bins for electric-
ity, heat, and PV were found to be 7, 7, and 12 bins. The

UBM demonstrated highly reliable probabilistic forecasting
across sectors. However, it fails to provide a sharp PV gen-
eration forecast. Notably, low sharp probabilistic forecasts
were observed mostly during the PV peak hours. This is
mainly due to the high variability of PV generation itself,
which consequently leads to high forecast errors generated
by the PSLP model. This, in turn, results in a wider spread of
point forecast errors during the peak PV generation hours, as
depicted in Figure 7c. This corresponds to the wider error
ECDFs for the clusters in Phase II of the UBM model. Conse-
quently, this leads to wider interval widths (i.e., low sharpness)

TABLE 6: UBM mean scores for the varying training window with LBW feature active.

Training
horizon

Scores

PICP (%) MPIW (kW) WS QCS PQCS (%)
Electricity

180 days 79.65 19.75 30.66 21.16 21.12
150 days 79.77 19.81 30.61 20.15 20.63
120 days 79.55 19.8 30.6 18.33 19.39
90 days 79.17 19.8 30.54 17.88 18.91
60 days 78.13 19.67 30.6 18.25 18.71

Heat
180 days 80.0 21.46 31.33 25.55 23.16
150 days 79.67 21.2 31.27 23.95 22.78
120 days 78.95 20.81 31.11 21.55 21.12
90 days 78.37 20.6 31.02 22.67 21.45
60 days 78.3 20.58 31.09 18.96 19.97

PV
180 days 81.32 31.36 48.85 — —

150 days 81.32 31.33 47.98 — —

120 days 81.23 30.74 48.69 — —

90 days 81.37 30.25 48.37 — —

60 days 81.11 29.6 48.52 — —

Abbreviations: LBW, look back window; MPIW, mean prediction interval width; PICP, prediction interval coverage probability; PQCS, percentage quantile
calibration score; QCS, quantile calibration score; UBM, uncertainty binning method; WS, Winkler score.
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FIGURE 12: Variability of PV generation in 3 consecutive days.
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in the generated probabilistic forecast in Phase III, as shown,
for example, in Figure 8c.

Low sharpness in probabilistic forecasting can pose chal-
lenges for effective decision-making when compared to real
behavior. Decision-makers rely on forecasts not only to assess
reliability but also to ensure the intervals are sufficiently narrow
to facilitate actionable insights. Forecasts with low sharpness

imply broad uncertainty bands, which may be interpreted as a
lack of confidence in the forecast’s precision. In practical
terms, this can lead to overly conservative decisions, such as
over-provisioning resources or failing to optimize the deploy-
ment of assets like energy storage systems. For instance, in
energy management, a forecast with wide PIs might hinder
effective grid balancing or delay response strategies, thus

TABLE 7: Comparison of UBM with other probabilistic forecasting methods that also leverage deterministic models.

Method Limitations Strengths Sources

QRA

• Requires point forecasts from multiple
deterministic models

• High computational complexity
• High model complexity
• Black box QR model

• Extensively covered in the literature
• Generates probabilistic forecasting with
good reliability and sharpness

• Diverse applications, including electricity
prices, electricity load demand, PV, and
wind generation

• Nonparametric

[14–16]

QRF

• Uses point forecast from multiple
deterministic models [3]

• Medium-to-high computational
complexity

• High model complexity
• Black box model

• Extensively covered in the literature
• Found to be more accurate and
computationally efficient compared to
QRA [3]

• Diverse application
• Nonparametric

[3, 22, 23]

EPIs
• Prediction intervals are not conditional
• Lacks adaptability
• Moderately complex

• Single deterministic model is sufficient to
construct the prediction interval

• Have been applied in various fields,
including meteorology, economics, and
energy

• Can use nonparametric distribution of
forecast error

• Low computational complexity
• Simplistic approach and easy to
implement

[26–28]

AnEn

• Along with the forecasted values, it needs
meteorological predictor variables
(conditionals)

• Less adaptive to sector-wise and diverse
application

• Less accurate
• Highly sensitive to the criteria used to
define the similarity between current
situation and historical analogs

• In several lead times, the number of
ensemble observation values could be
limited to get the proper distribution
forecast

• Single deterministic model is sufficient
• Robust approach
• Low-to-medium computational
complexity

• Nonparametric assumptions can be
considered

[33, 34]

UBM

• Found to be generating low sharpness
probabilistic forecast for highly variable
entities and low accuracy of the point
forecast model (e.g., PV generation)

• Newly developed and has to be explored
with further research

• Only uses single-point forecast model
• Only uses point forecast as conditional
• Highly transparent approach (non-black
box)

• Low model complexity
• Robust model and has the ability to
capture uncertainty accurately

• Easy to implement
• Moderately accurate results
• Extremely low computational
• Nonparametric distribution approach
• Can be used in diverse application

This study

Abbreviations: AnEn, analog ensemble; EPIs, empirical prediction intervals; QR, quantile regression; QRA, quantile regression averaging; QRF, quantile
random forest; UBM, uncertainty binning method.

International Journal of Energy Research 19

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



impacting the cost-effectiveness and efficiency of operations.
Nevertheless, even when a deterministic model demonstrates
significant forecasting errors, as in the case of PV, probabi-
listic forecasting emerges as highly valuable from a decision-
making perspective. It provides critical insights into the
degree of uncertainty associated with the model’s forecasted
outputs. Depending solely on inadequate point forecasts can
pose substantial challenges across a multitude of applications
within a power system. Therefore, the UBM is found to be a
highly valuable tool, capable of converting inaccurate point
forecasts into reliable probabilistic ones and providing richer
information about uncertainty for decision-making in energy
management.

In future work, the implementation of more accurate
point forecast models for PV generation could be explored
to achieve more precise probabilistic forecasting results from
the UBM, however, this is out of scope for this work. Since
the UBM’s performance relies heavily on the accuracy of the
underlying deterministic model, any limitations or inaccura-
cies in the point forecast can directly impact the quality of the
probabilistic forecast. Therefore, improving the base deter-
ministic model for PV generation is essential to enhance the
sharpness and overall reliability of the UBM’s output. By
integrating advanced forecasting models that better capture
the high variability and complex patterns of PV generation,
such as hybrid machine learning approaches or enhanced
statistical models, the UBM could potentially generate tigh-
ter PIs and reduce the spread of errors observed during peak
generation periods. This would ultimately lead to more action-
able and trustworthy forecasts, facilitating more effective
decision-making and resource management within power
systems.

Overall, a correlation between the accuracy of the deter-
ministic model (PSLP) and the UBMmodel was also observed.
As the point forecasts and its errors are used as training
data for the UBM, their impact on the model’s performance
becomes evident. A higher variability in the data profile and
lower accuracy of the deterministic model results in low
sharpness probabilistic predictions. Typically, the UBM com-
promises sharpness by prioritizing the PICP to be closer to or
higher than the PI. In order to obtain a better PICP, the
interval width must simultaneously increase. On the other
hand, reducing the PI can improve the sharpness, but this
does not necessarily enhance the overall accuracy of the prob-
abilistic forecasts. But, the UBM at all time tries to achieve
reliable forecasts, even if sharpness is compromised. This
investigation sheds light on how the performance of the deter-
ministic model influences the sharpness and reliability of the
probabilistic forecasts produced by the UBM. Ultimately, this
insight supports informed decision-making in EMS.

UBM was also evaluated with different PI levels. PICP
values were found to be aligned with PI levels being consid-
ered for all the sectors, except for PV, with PI of 40% and
60%. It is usually expected to have a PICP closer to PI;
therefore, overestimating the PICP beyond the expected PI
level indicates that the model is overestimating the level of
uncertainty or variability in the PV generation, leading to
wider intervals that cover more of the actual data points

than anticipated. This over-coverage can be problematic
in energy management because it may lead to inefficient
decision-making, such as overestimating the reserve capacity
needed or over-allocating resources to account for higher-
than-expected variability. With the increase in PI levels, the
interval width also increased as expected, ensuring that the
forecasted intervals covered the real values within the quantile
range.

Moreover, the UBM implemented the LBW feature,
which basically limits and slides the training window as the
model iterates over the time. It was observed that reducing
the training window decreases sharpness (MPIW and WS)
but has a slight effect on reliability (PICP). Overall, it was
observed that with shorter training window results in better
performance of the UBM. Across all given data profiles, the
effect of changing the training window on the performance
of the UBM was not significant. However, even a slight
improvement in forecasting results counts. Slightly higher
differences were observed in electricity and heat demand
forecasts based on the QCS and PQCS. Although the effect
on the data profiles in this study was not substantial, it could
be more significant for other data profiles. Therefore, testing
the LBW feature to assess its impact on the UBM, depending
on the data profile, can be useful for improving the accuracy
of the UBM. As a guideline for selecting an appropriate
training window, observations from this study suggest the
following: for data profiles with pronounced seasonal varia-
tions, such as PV generation and heat demand, a training
window of 30–90 days is recommended. This range ensures
that the training data reflects season-specific characteristics,
as using historical data from a season like summer to con-
struct forecast distributions for winter could lead to reduced
sharpness. Conversely, electricity demand profiles may accom-
modate a larger training window (e.g., over 90 days), but this
depends on the nature of the connected load. In the future,
as the number of heat pumps increases, winter demand is
expected to grow relative to summer, amplifying seasonal
differences. In such scenarios, a shorter training window
(e.g., 30–90 days) would again be advisable. However, it is
important to note that shorter training windows result in
fewer data points within each cluster, potentially hindering
the generation of accurate error distributions. Overall, the
selection of the training window should be tailored to the
specific characteristics of the case at hand.

Table 7 compares UBM with several known models or
approaches that leverage the deterministic model to generate
probabilistic forecasts. The GCM, QCS, and PQCS overcome
some of the shortcomings of popular metrics. The GCM
offers a graphical evaluation, which is not commonly found
in the literature on probabilistic forecasting evaluation. PIT
is a similar technique as GCM that has been described in
other literature [30, 31], but it lacks numerical representa-
tion, which is addressed by QCS and PQCS in this study. The
QCS and PQCS are independent of the data scale, in contrast
to MPIW and WS. This supports the comparison of model’s
performance based on different datasets. Furthermore, QCS
and PQCS are not biased toward sharpness over reliability, as
in the case with WS. Unlike PICP, which only measures the
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reliability within the PI, QCS, and PQCS assess reliability
with consideration to each quantile bin and check its devia-
tion from expected reliability. That is, they penalize any over
and underestimation of reliability. However, these metrics
cannot be applied to PV, as the predictions at various per-
centiles align with the measured values, particularly during
periods of zero power generation, leading to significantly
inflated observed frequency (Oi) for each bin. This results
in disproportionately high QCS and PQCS due to the penal-
ization for deviations from expected frequency (Ei). An alter-
native approach could involve excluding such occurrences
when calculating QCS and PQCS, enabling their use in eval-
uating probabilistic forecasting of PV generation. In future
work, the adaptation of QCS and PQCS for PV generation
should be prioritized to provide a fair evaluation framework.
Developing modified versions of these metrics or applying
conditional calculations would enhance their applicability.
This would support more nuanced insights into forecasting
performance and better guide decision-making. There is no
single metric that can evaluate all aspects of probabilistic
forecasting without limitations. Therefore, in addition to
popular metrics (PICP, MPIW, and WS), GCM and its
numerical scores (QCS and PQCS) can provide a more com-
prehensive and intuitive performance assessment.

There are numerous possibilities for enhancing the accu-
racy of the UBM, primarily by considering more precise
deterministic models, especially in the case of PV forecast-
ing. Besides the deterministic methods, alternative binning
approaches can be explored for the UBM training. This
work uses the Python “cut” function [55], which requires
to predefined the number of clusters and discretizes the
data with equal-width bins. An alternative approach is the
Python “qcut” function [56], which discretizes arrays into
equally sized bins. This enables the function’s algorithm to
generate clusters based on the data profile itself while main-
taining an equal number of data points in each bin. Such
flexibility in generating clusters should be data-driven
rather than being preset to predefined clusters. There are
other popular automatic clustering algorithms, such as K-
means and fuzzy C-means clustering [57–59] that could be
implemented to train the UBM. Furthermore, hyperpara-
meter optimization could enhance the UBMs performance
further.

6. Conclusions and Outlook

This work introduces an approach to generating probabilistic
forecasting by extending a deterministic model. Given the
increasing significance of uncertainty quantification in the
energy domain, the proposed UBM emerges as a valuable
tool for decision-making in EMS. It is shown to be a trans-
parent and efficient method that leverages deterministic
models while offering simplicity and high computational
speed, harnesses readily available data, requires minimal
training data, involves minimal feature engineering, offers
rapid computational capabilities, and achieves reasonable
accuracy. This approach caters to the evolving landscape of
EMS requirements, particularly in smaller-scale settings like

buildings and mid-sized facilities, where efficiency and
affordability are the main factors. The UBM was rigorously
validated for forecasting electricity demand, heat demand,
and PV generation. A practical case study was conducted
using an existing distributed integrated local energy system
at a logistics facility in northern Germany.

The statistical PSLP method was implemented to gener-
ate point forecasts, which were subsequently used as input
features for the UBM. For its evaluation, MAE, MSE, RMSE,
MAPE, and MASE were considered. The PSLP model dem-
onstrated good performance in forecasting the electricity and
heat demand but exhibited limitations in accurately predict-
ing PV generation. As UBM uses point forecasts from the
PSLP model as input features for generating probabilistic
forecasts, the accuracy of the PSLP impacted the UBMs over-
all accuracy. This impact was particularly noticeable in the
interval width, as evident through MPIW and WS. In the
given case study, sensitivity analysis was carried out to deter-
mine the optimal number of bins on the performance of the
UBM, which resulted in the selection of 7, 7, and 12 bins for
electricity, heat, and PV, respectively. Following the selection
of optimal bins, it was observed that the UBM achieved
notably good reliability across all sectors, with PICP values
of 79.52%, 81.45%, and 81.37 % for electricity, heat, and PV,
respectively. With respect to sharpness, the UBM showed
better performance on electricity and heat demand over PV
generation. A high MPIW (32.54 kW) and WS (48.58) were
observed for PV generation forecasts, which can be attributed
to the low accuracy of the PSLP model due to the high vari-
ability of the data profile itself. Hence, it was observed that the
accuracy of the point forecast model directly impacts that of
the probabilistic forecasts produced by the UBM. However,
it has the capability to transform inaccurate deterministic
forecasts into reliable probabilistic ones, providing richer
information on uncertainty and, consequently, supporting
decision-making in EMS. To address the limitations of popu-
lar evaluation scores, theGCM,QCS, and PQCSwere implemen-
ted, providing a more comprehensive performance evaluation
of probabilistic forecasting. Both the QCS and PQCS scores
were found to be better for electricity, with values of 20.99%
and 20.95%, respectively, compared to heat, with the QCS
value of 23.31 and PQCS value of 22.53 %. However, the
scores were found to be unsuitable for evaluating PV fore-
casts. The UBMs performance was also evaluated at different
PI levels (40%, 60%, and 80%). The PICP was found to be
closely aligned with PI levels for each sector, except for PV,
with 40% and 60% PI. The interval width was found to be
increased with an increase in PI levels, as expected, resulting
in higherMPIW andWS.Moreover, performance evaluations
were conducted with varying sliding training windows. It was
observed that the reduction in the training window yielded an
improvement in the probabilistic forecast scores except PICP.

Future work should focus on testing the UBM with more
accurate deterministic models, especially for PV. Moreover,
K-means clustering, fuzzy C-means clustering, qcut, or other
more advanced clustering techniques should be explored for
training the UBM. A detailed comparison of the UBM with
other available probabilistic forecasting techniques should be
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investigated in further work. The adaptation of the GCM,
QCS, and PQCS for PV probabilistic forecasts is another
avenue to be considered. Further detailed examination is
required on how point forecast errors propagate to the
accuracy of the UBM. In the future, the real application of
the UBM for operational optimization can be tested, for
example, by optimizing EV charging schedules. Although
the potential applications of the UBM within the distributed
integrated local energy systems are abundant, these possi-
bilities remain avenues for exploration in future research.

Nomenclature

AnEn: Analog ensemble
BEVs: Battery electric vehicles
ECDF: Empirical cumulative distribution function
ELogZ: Energieversorgungskonzepte für Klimaneutrale

Logistikzentren
EMS: Energy management system
EPI: Empirical prediction interval
GCM: Graphical calibration measure
IQR: Interquartile range
KDE: Kernel density estimation
LBW: Look back window
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MASE: Mean absolute square error
MPIW: Mean prediction interval width
MSE: Mean square error
NRM: Nearest rank method
NWDs: Number of waiting days
PDF: Probability density function
PI: Prediction interval
PICP: Prediction interval coverage probability
PIT: Probability integral transform
PQCS: Percentage quantile calibration score
PSLP: Personalized standard load profile
PV: Photovoltaic
QCS: Quantile calibration score
QR: Quantile regression
QRA: Quantile regression averaging
QRF: Quantile random forest
RMSE: Root mean square error
SLP: Standard load profile
UBM: Uncertainty binning method
WS: Winkler score.

Data Availability Statement

The authors do not have institutional permission to share
data or codes.

Disclosure

Responsibility for the content of this publication lies with the
author. More information regarding the ELogZ can be found
at www.elogz.de.

Conflicts of Interest

The authors declare conflicts of interest.

Funding

The project Energieversorgungskonzepte für klimaneutrale
Logistikzentren (ELogZ) on which this article is based was
funded by the Federal Ministry for Economic Affairs and
Climate Action (BMWK) under the funding code 03EN1015F.

Acknowledgments

The authors gratefully acknowledge PANEUROPA Trans-
port GmbH for the provision of time series data, pictures,
and knowledge of its logistics facility under the project
“Energieversorgungskonzepte für klimaneutrale Logistik-
zentren (ELogZ).”

References

[1] J. Xie, T. Hong, T. Laing, and C. Kang, “On Normality
Assumption in Residual Simulation for Probabilistic Load
Forecasting,” IEEE Transactions on Smart Grid 8, no. 3 (2017):
1046–1053.

[2] C. Voyant, G. Notton, S. Kalogirou, et al., “Machine Learning
Methods for Solar Radiation Forecasting: A Review,”
Renewable Energy 105 (2017): 569–582.

[3] W. Zhang, H. Quan, and D. Srinivasan, “Parallel and Reliable
Probabilistic Load Forecasting via Quantile Regression Forest
and Quantile Determination,” Energy 160 (2018): 810–819.

[4] C. Kang, Y. Wang, Y. Xue, G. Mu, and R. Liao, “Big Data
Analytics in China’s Electric Power Industry: Modern Informa-
tion, Communication Technologies, and Millions of Smart
Meters,” IEEE Power and Energy Magazine 16, no. 3 (2018):
54–65.

[5] F. Mei, J. Gu, J. Lu, et al., “Day-Ahead Nonparametric
Probabilistic Forecasting of Photovoltaic Power Generation
Based on the LSTM-QRA Ensemble Model,” IEEE Access 8
(2020): 166138–166149.

[6] G. I. Nagy, G. Barta, S. Kazi, G. Borbély, and G. Simon,
“GEFCom2014: Probabilistic Solar and Wind Power Forecast-
ing Using a Generalized Additive Tree Ensemble Approach,”
International Journal of Forecasting 32, no. 3 (2016): 1087–
1093.

[7] Y. Wang, N. Zhang, Y. Tan, et al., “Combining Probabilistic
Load Forecasts,” IEEE Transactions on Smart Grid 10, no. 4
(2019): 3664–3674.

[8] T. Hong and S. Fan, “Probabilistic Electric Load Forecasting: A
Tutorial Review,” International Journal of Forecasting 32,
no. 3 (2016): 914–938.

[9] T. Hong, P. Pinson, and S. Fan, “Global Energy Forecasting
Competition 2012,” International Journal of Forecasting 30,
no. 2 (2014): 357–363.

[10] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and
R. J. Hyndman, “Probabilistic Energy Forecasting: Global
Energy Forecasting Competition 2014 and Beyond,” Interna-
tional Journal of Forecasting 32, no. 3 (2016): 896–913.

[11] E. Lucas Segarra, G. Ramos Ruiz, and C. Fernández Bandera,
“Probabilistic Load Forecasting for Building Energy Models,”
Sensors 20, no. 22 (2020): 6525.

22 International Journal of Energy Research

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.elogz.de
https://www.elogz.de
https://www.elogz.de


[12] O. Grothe, F. Kächele, and F. Krüger, “From Point Forecasts to
Multivariate Probabilistic Forecasts: The Schaake Shuffle for
Day- Ahead Electricity Price Forecasting,” Energy Economics
120 (2023): 106602.

[13] Meer V. dDW, J. Widén, and J. Munkhammar, “Review on
Probabilistic Forecasting of Photovoltaic Power Production
and Electricity Consumption,” Renewable and Sustainable
Energy Reviews 81 (2018): 1484–1512.

[14] B. Uniejewski, R. Weron, and F. Ziel, “Variance Stabilizing
Transformations for Electricity Spot Price Forecasting,” IEEE
Transactions on Power Systems 33, no. 2 (2018): 2219–2229.

[15] B. Uniejewski, “Smoothing Quantile Regression Averaging: A
New Approach to Probabilistic Forecasting of Electricity
Prices,” arXiv preprint arXiv: 2302.00411, 2023

[16] R. Weron, “Electricity Price Forecasting: A Review of the
State-of-the-Art With a Look into the Future,” International
Journal of Forecasting 30, no. 4 (2014): 1030–1081.

[17] B. Liu, J. Nowotarski, T. Hong, and R. Weron, “Probabilistic
Load Forecasting via Quantile Regression Averaging on Sister
Forecasts,” IEEE Transactions on Smart Grid 8, no. 2 (2015):
730–737.

[18] Y. Zhang, K. Liu, L. Qin, and X. An, “Deterministic and
Probabilistic Interval Prediction for Short-Term Wind Power
Generation Based on Variational Mode Decomposition and
Machine Learning Methods,” Energy Conversion and Manage-
ment 112 (2016): 208–219.

[19] L. Zhang, S. Lu, Y. Ding, et al., “Probability Prediction of Short-
Term User-Level Load Based on Random Forest and Kernel
Density Estimation,” Energy Reports 8 (2022): 1130–1138.

[20] N. Zhang, C. Kang, Q. Xia, and J. Liang, “Modeling Conditional
Forecast Error for Wind Power in Generation Scheduling,”
IEEE Transactions on Power Systems 29, no. 3 (2014): 1316–
1324.

[21] S. Dang, L. Peng, J. Zhao, J. Li, and Z. Kong, “A Quantile
Regression Random Forest-Based Short-Term Load Probabi-
listic Forecasting Method,” Energies 15, no. 2 (2022): 663.

[22] H. Aprillia, H.-T. Yang, and C.-M. Huang, “Statistical Load
Forecasting Using Optimal Quantile Regression Random
Forest and Risk Assessment Index,” IEEE Transactions on
Smart Grid 12, no. 2 (2021): 1467–1480.

[23] E. Freeman and G. Moisen, An Application of Quantile
Random Forests for Predictive Mapping of Forest Attributes (U.
S. Department of Agriculture, Forest Service, 2015).

[24] K. Vaysse and P. Lagacherie, “Using Quantile Regression
Forest to Estimate Uncertainty of Digital Soil Mapping
Products,” Geoderma 291 (2017): 55–64.

[25] S. P. Vasseur and J. L. Aznarte, “Comparing Quantile Regression
Methods for Probabilistic Forecasting of NO2 Pollution Levels,”
Scientific Reports 11, no. 1 (2021): 11592.

[26] W. H. Williams and M. L. Goodman, “A Simple Method for
the Construction of Empirical Confidence Limits for Economic
Forecasts,” Journal of the American Statistical Association 66,
no. 336 (1971): 752–754.

[27] Y. S. Lee and S. Scholtes, “Empirical Prediction Intervals
Revisited,” International Journal of Forecasting 30, no. 2 (2014):
217–234.

[28] “National Hurricane Center Forecast Verification,” NOAA
National Hurricane Center, 2016, https://www.nhc.noaa.gov/ve
rification/verify6.shtml.

[29] E. Britton, P. Fisher, and J. Whitley, The Inflation Report
Projections: Understanding the Fan Chart (The Bank of
England, England, tech. rep, 1998).

[30] L. H. Kaack, J. Apt, M. G. Morgan, and P. McSharry,
“Emperical Prediction Intervals Improve Energy Forecasting,”
PNAS 114 (2017).

[31] H. Huang, R. Jia, J. Liang, J. Dang, and Z. Wang, “Wind Power
Deterministic Prediction and Uncertainty Quantification
Based on Interval Estimation,” Journal of Solar Energy
Engineering 143, no. 6 (2021): 061010.

[32] M. Saber, Quantifying Forecast Uncertainty in the Energy
Domain, (PhD thesis, (Marquette University, Marquette, USA,
2017).

[33] S. Alessandrini, L. Delle Monache, S. Sperati, and J. N. Nissen,
“A Novel Application of an Analog Ensemble for Short-Term
Wind Power Forecasting,” Renewable Energy 76 (2015): 768–
781.

[34] S. Alessandrini, L. Delle Monache, S. Sperati, and G. Cervone,
“An Analog Ensemble for Short-Term Probabilistic Solar
Power Forecast,” Applied Energy 157 (2015): 95–110.

[35] C. Sigauke, M. M. Nemukula, and D. Maposa, “Probabilistic
Hourly Load Forecasting Using Additive Quantile Regression
Models,” Energies 11, no. 9 (2018): 2208.

[36] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya,
“Lower Upper Bound Estimation Method for Construction of
Neural Network- Based Prediction Intervals,” IEEE Transac-
tions on Neural Networks 22, no. 3 (2011): 337–346.

[37] A. Harvey and G. Sucarrat, “Evaluating Density Forecasts
With Applications to Financial Risk Management,” Computa-
tional Statistics & Data Analysis 76 (2014): 320–338.

[38] M. B. Bjerregård, J. K. Møller, and H. Madsen, “An Introduction
to Multivariate Probabilistic Forecast Evaluation,” Energy and AI
4 (2021): 100058.

[39] M. Hinterstocker, Roon vS, and M. Rau, Bewertung der
Aktuellen Standardlastprofile Österreichs Und Analyse Zukünf-
nftiger Anpas- Sungsmöglichkeiten Im Strommarkt (Sympo-
sium Energieinnovation, [Evaluation of Austria’s Current
Standard Load Profiles and Analysis of Future Adjustment
Options in the Electricity Market], 2014).

[40] J. S. Telle, N. Maitanova, T. Steens, B. Hanke, Maydell vK, and
M.Grottke,Combined PV Power and Load Prediction for Building-
Level Energy Management Applications (IEEE, 2020): 1–15.

[41] T. Steens, J. S. Telle, B. Hanke, et al., “A Forecast-Based Load
Management Approach for Commercial Buildings Demonstrated
on an Integration of BEV,” Energies 14, no. 12 (2021): 3576.

[42] J. S. Telle, A. Upadhaya, P. Schönfeldt, T. Steens, B. Hanke, and
K. von Maydell, “Probabilistic Net Load Forecasting Frame-
Work for Application in Distributed Integrated Renewable
Energy Systems,” Energy Reports 11 (2024): 2535–2553.

[43] B. Du, S. Huang, J. Guo, H. Tang, L. Wang, and S. Zhou,
“Interval Forecasting for Urban Water Demand Using PSO
Optimized KDE Distribution and LSTM Neural Networks,”
Applied Soft Computing 122 (2022): 108875.

[44] D. W. Scott,Multivariate Density Estimation: Theory, Practice,
and Visualization (John Wiley & Sons, 1992).

[45] J. M. González-Sopeña, V. Pakrashi, and B. Ghosh, “An
Overview of Performance Evaluation Metrics for Short-Term
Statistical Wind Power Forecasting,” Renewable and Sustain-
able Energy Reviews 138 (2021): 110515.

[46] J. Antonanzas, N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-
de-Pison, and F. Antonanzas-Torres, “Review of Photovoltaic
Power Forecasting,” Solar Energy 136 (2016): 78–111.

[47] R. J. Hyndman and A. B. Koehler, “Another Look at Measures
of Forecast Accuracy,” International Journal of Forecasting 22,
no. 4 (2006): 679–688.

International Journal of Energy Research 23

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.nhc.noaa.gov/verification/verify6.shtml
https://www.nhc.noaa.gov/verification/verify6.shtml
https://www.nhc.noaa.gov/verification/verify6.shtml
https://www.nhc.noaa.gov/verification/verify6.shtml
https://www.nhc.noaa.gov/verification/verify6.shtml
https://www.nhc.noaa.gov/verification/verify6.shtml


[48] R. J. Hyndman and G. Athanasopoulos, “Forecasting: Principles
and Practice,” (OTexts (2018).

[49] X. Sun, Z.Wang, and J. Hu, “Prediction Interval Construction for
Byproduct Gas Flow Forecasting Using Optimized Twin Extreme
Learning Machine,”Mathematical Problems in Engineering 2017,
no. 1 (2017): 5120704, 12.

[50] T. Gneiting and A. E. Raftery, “Strictly Proper Scoring Rules,
Prediction, and Estimation,” Journal of the American Statistical
Association 102, no. 477 (2007): 359–378.

[51] B. Steden, J. S. Telle, N. Wollek, S. Schlüters, and J. Marx-
Gómez, “Distributed Sector Coupled Low Carbon Energy
Supply for Logistics Properties-Concept for the Integration of
Heating, Electricity and Transport,” EnviroInfo (2021).

[52] Energieversorgungskonzepte Für Klimaneutrale Logistikzent-
ren, “Energy Supply Concepts for Climate-Neutral Logistics
Centres,” : 2019–2024, https://elogz.de/.

[53] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “Pvlib
Python: A Python Package for Modeling Solar Energy Systems,”
Journal of Open Source Software 3, no. 29 (2018): 884.

[54] DeutscherWetterdienst - OpenData, “WebPage";-Free Provision
of Spatial Data of the DWD via the DWD’s Open Data Server,”
(2023).

[55] Pandas, Python Cut Function From Pandas Library (Webpage,
2023).

[56] Pandass, Python Qcut Function from Pandas Library (Webpage,
2023).

[57] A. Ashabi, S. B. Sahibuddin, and M. Salkhordeh Haghighi,
“The Systematic Review of K-Means Clustering Algorithm,” in
International Conference on Networks, Communication and
Computing (2020): 13–18

[58] S. Askari, “Fuzzy C-Means Clustering Algorithm for Data
With Unequal Cluster Sizes and Contaminated With Noise
and Outliers: Review and Development,” Expert Systems with
Applications 165 (2021): 113856.

[59] Y. Sinambela, S. Herman, A. Takwim, and S. R. Widianto, “A
Study of Comparing Conceptual and Performance of K-Means
and Fuzzy C-Means Algorithm (clustering Method of Data
Mining) of Consumer Segmentation,” Jurnal Riset Informatika
2, no. 2 (2020): 49–54.

24 International Journal of Energy Research

 ijer, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/er/4460462 by A

jay U
padhaya - D

tsch Z
entrum

 F. L
uft-U

. R
aum

 Fahrt In D
. H

elm
holtz G

em
ein. , W

iley O
nline L

ibrary on [03/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://elogz.de/
https://elogz.de/

	A Robust Approach to Extend Deterministic Models for the Quantification of Uncertainty and Comprehensive Evaluation of the Probabilistic Forecasting
	1. Introduction
	2. Methodology
	2.1. UBM Framework
	2.1.1. Phase I: Deterministic Stage
	2.1.2. Phase II: Training Stage
	2.1.3. Phase III: Forecasting Stage

	2.2. Performance Evaluation
	2.2.1. Deterministic Forecast Evaluation
	2.2.2. Probabilistic Forecast Evaluation


	3. Case Study
	4. Results
	4.1. Deterministic Forecast
	4.2. Probabilistic Forecast
	4.3. Probabilistic Forecast Results Without LBW Feature
	4.4. Probabilistic Forecast Result With LBW Feature

	5. Discussions
	6. Conclusions and Outlook
	Nomenclature
	Data Availability Statement
	Disclosure
	Conflicts of Interest
	Funding
	Acknowledgments
	References




