DEVELOPMENTS IN QUANTUM SENSORS AND THEIR ECONOMIC OPPORTUNITIES

Berliner Photonik Tage

Prof. Kai Bongs Institutsdirektor QT

DLR-Institut für Quantentechnologien Wilhelm Runge Straße 10 89081 Ulm

Quantum Technology Applications and Markets

Overall economic impact much larger (e.g. estimate for QC in 2035: \$620B-\$1270B)

Quantum^{BW}

REPORT BY ANCHOREDIN

Segmentation of Companies Against Quantum Sensors and Instruments

Quantum^{BW}

REPORT BY ANCHOREDIN

Estimated Income through Contracts or Revenue in US\$

Quantum^{BW}

REPORT BY ANCHOREDIN

Table 2: Quantum Platform Technologies Underpinning Sensor Modalities

- - -

	Vapour Cell	Cold Atoms	NV-diamond	Other	Quantum Photonics
Quantum Magnetometers					
Quantum Electric Field Sensors					
Atomic Clock					
Quantum Intertial Sensor					
Quantum Imaging					

Quantum Technologies – Beginnings

1900: Radiation of hot objects

Planck Postulate: Electromagnetic energy is quantised

E=hv

Quantum Technologies – Beginnings

1900: Radiation of hot objects

Albert Einstein explains photocelectric effect using light quantum hypothesis

 \rightarrow Nobel Prize 1921

Planck Postulate: Electromagnetic energy is quantised

E=hv

Quantenwellen

1920-30: Wave particle duality

By This file was made by User:Sven (http://creativecommons.org/licenses/by-sa/3.0/), CC BY-SA 2.5-2.0-1.0

Bohr's Atom model

Quantum 1.0

Technology based on understanding quantum levels in solids

Quantum 2.0

Superposition and entanglement

Superposition

Particle simultaneously in several states → Schrödinger's cat Entanglement

"Superposition across several particles"

Example: Superposition in an atom

"Oscillating electron cloud"

By This file was made by User:Sven (http://creativecommons.org/licenses/by-sa/3.0/), CC BY-SA 2.5-2.0-1.0

How to make an atom oscillate?

"Push" using electric field

Pushing a classical oscillator

Induced electric dipole

Ingredients for Quantum Technologies

Techology Considerations

Photons versus radio waves

- Radio waves:
 - Standard electronic integration technologies
 - Cryogenics required to avoid thermal background and excitations

- Photons:
 - Operation at quantum level at room temperature possible
 - Photonic integration technologies required to drive size, weight, power and cost down.

How do Quantum Clocks work?

Replacing the classical oscillator with an atom

Reproducible and precise due to laws of nature

This is how it looks like

DLR lodine clock

Quantum Magnetometers

Superposition of energy levels depending on external magnetic field

Oscillation frequency depends on magnetic field

Quantum Gravimeters / Inertial Sensors

Potential difference leads to different phase evolution

Kai Bongs, DLR QT, 5.11.2024

Disruptive consequences of new sensors

Sensors and clocks are enabling system capabilities with large economic impact

Historic examples based on sensor-related Nobel Prizes

Sensor utility needs systems thinking!

USPs of Quantum Sensors

Quantum Clocks: highest accuracy

Quantum 2.0 for Navigation and Time

Quantum clocks are powering current global satellite navigation systems

Credit: ESA

Synchronisation

Kai Bongs, DLR QT, 10.10.2024

Impact: 5-10% of GDP

Commercial Opportunities through Quantum Clocks

Communication

3D Radar

Urban Flight

Global Height Reference

Satellite Navigation

Autonomous Vehicles

USPs of Quantum Sensors

Quantum Magnetometer: highest sensitivity at room temperature

OPM-MEG development – 2015 – 2019 - Adaptation to Head Size

University of

Its here NOW: Commercial Offering

Joint venture between University of Nottingham and Magnetic Shields Ltd.

USPs of Quantum Sensors

Quantum Inertial Sensors (including gravimeters): low bias and high scale factor accuracy

Allows e.g. high common mode suppression in differential measurements

Nature volume 602, pages590–594 (2022)

Enabling Gravity Cartography

- Relevant to a range of applications, including:
 - Water monitoring
 - Infrastructure
 - Archaeology
 - Agriculture
 - Navigation

Schematic Setup of a Quantum Navigation

Market Roadmap for Quantum Navigation Systems

Potentially Accessible Quantum Sensor Markets

Key Drivers: Robustness and Cost

Operational Environment

Thank you for listening

Questions?

- Key messages:
- Quantum Sensors offer USPs, which could allow significant markets and huge economic impact
- Hybrid electro-optomechanicl integration is a key enabler for market success of quantum sensors