
Vol.:(0123456789)

CEAS Aeronautical Journal 
https://doi.org/10.1007/s13272-025-00816-3

ORIGINAL PAPER

Modeling and identification of a small fixed‑wing UAV using estimated 
aerodynamic angles

Bogdan Løw‑Hansen1  · Richard Hann1  · Kristoffer Gryte1  · Tor Arne Johansen1  · Christoph Deiler2 

Received: 17 November 2024 / Revised: 17 January 2025 / Accepted: 30 January 2025 
© The Author(s) 2025

Abstract
This paper presents an experimental study on developing and validating a simulation-ready aerodynamic model for the 
Skywalker X8 unmanned aerial vehicle (UAV) using a hybrid output error method (OEM). Building on previous efforts, we 
introduce an updated 6-degree-of-freedom (DOF) nonlinear aerodynamic model and its linearized form. The key features 
of this work include the model’s identification in the stability frame, achieved using estimated angle of attack and sideslip 
angle, and the use of a propulsion system model to obtained the motor speed data. The stability frame parameterization allows 
for direct comparisons with a larger set of UAV models and computational fluid dynamics (CFD) results, often presented 
in terms of lift and drag analysis. Key advancements include a residual distribution analysis that was successfully applied 
to identify and correct weaknesses in the initial drag and side force models. Additionally, the paper addresses the unique 
combination of challenges faced during this study and describes strategies for managing strong winds during experiments, 
use of a propulsion system model to obtain motor speed data, and utilization of estimated aerodynamic angles. The resulting 
model is validated against a separate set of maneuvers comprising 10-s-long sequences that include estimated body states, 
force and moment coefficients, and estimated air data states, ( V

a
 , � , � ), for both lateral and longitudinal maneuvers.

Keywords Small fixed-wing UAV · System identification · Stability frame coefficients

List of symbols
CD,CL  Drag and lift coefficients
C{l,m,n}  Body-axis moment coefficients
CT,CQ  Propeller thrust and torque coefficients
C{X,Y ,Z}  Body-axis force coefficients
D  Propeller diameter (m)
F  Aircraft force vector (N)

I  Aircraft inertia matrix
Ib  Power supply current (A)
Im, Im0  Motor and zero load current (A)
Ip  Propeller moment of intertia ( kgm2)
I{x,y,z,xz}  Aircraft moments of inertia ( kg m2)
J  Advance ratio
KE  Back-emf constant (V/(rad/s))
M  Aircraft moment (Nm)
Pb  Power supply power (W)
Pel,Pm  Electrical and mechanical motor power (W)
Q  Propeller torque (Nm)
Qm  Motor torque (Nm)
R  SO(3) rotation matrix
R  Motor resistance (Omega)
S  Wing area ( m2)
T  Propeller thrust (N)
U  Motor voltage (V)
Ub  Power supply voltage (V)
Va  Airspeed (m/s)
ax, ay, az  Body-axis linear accelerations ( m/s2)
b  Wingspan (m)
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c̄  Mean aerodynamic chord (m)
f   Specific force vector ( m/s2)
g  Gravitiational acceleration ( m/s2)
h  Altitude (m)
hp  Propeller angular momentum ( kgm2∕s)
m  Aircraft mass (kg)
p  Position vector (m)
p, q, r  Body-axis angular velocities (rad/s)
p∗, q∗, r∗  Nondimensional angular velocitites
q̄  Dynamic pressure (Pa)
r  Distance vector (m)
u, v, w  Body-axis linear velocities (m/s)
ua, va,wa  Aerodynamic system velocities (m/s)
v  Linear velocity vector (m/s)
x, y, z  Body-axis position coordinates (m)
Ωp  Rotational motor speed (rad /s)
�  Angle of attack (rad)
�  Sideslip (rad)
�  Flight path angle (rad)
�a, �e  Aileron and elevator deflection (rad)
�el, �er  Left and right elevon deflections (rad)
�r  Rudder deflection (rad)
�t  Throttle command normalized ∈ [0,1]
�  Air density ( kg/m3)
�, �,�  Roll, pitch, yaw angles (rad)
�  Angular rate vector (rad/s)
{b}  Body frame
{i}  Inertial frame
{mI}  Sensor frame
{n}  North-East-Down (NED) frame
{s}  Stability frame
{w}  Wind frame
a  Relative velocity subscript
w  Wind velocity subscript
̂  Hat indicates model prediction results

Abbreviations
CFD  Computational fluid dynamics
CG  Center of gravity
DOF  Degree-of-freedom
EE  Equation error
EKF  Extended Kalman filter
GNC  Guidance, navigation, and control
GNSS  Global navigation satellite system
IMU  Inertial measurement unit
NED  North-East-Down
OE  Output error
OEM  Output error method
RPAS  Remotely piloted aircraft system
UAS  Uncrewed aircraft system
UAV  Unmanned aerial vehicle

1 Introduction

It is clear that by 2024, small, cost-effective unmanned aerial 
vehicles (UAVs) [also uncrewed aircraft systems (UASs), 
remotely piloted aircraft systems (RPASs), or simply 
drones], have transcended their niche hobby and research 
applications to become an integral part of various industry 
and defense sectors [1, 2]. Although professional users find 
these platforms robust enough for many of their applications, 
the increased use has revealed many limitations related to the 
operation of small UAVs in real-world scenarios; among the 
most challenging issues concern operations in harsh weather 
conditions [3, 4]. One way to approach these challenges is 
through simulation-based testing and development. A high-
fidelity model and a simulator framework make it possible 
to test and develop guidance, navigation, and control (GNC) 
algorithms capable of handling various adverse weather con-
ditions without risking losing the aircraft, while it is in the 
air. Motivated by our own research into performance-based 
aircraft monitoring and operation in icing conditions [5–7], 
we aim to facilitate this simulation-based approach by pre-
senting the model development process and the identified 
model parameters of the Skywalker X8 UAV. The UAV is 
a flying wing with a wingspan of 2.1 m controlled by two 
elevons and a rear-mounted propeller, as shown in Fig. 1. 
The physical properties of the aircraft are shown in Table 1.

1.1  Review of existing models

Previous efforts on the modeling of the Skywalker X8 UAV 
include [8], which focused on identifying static aerody-
namic coefficients based on wind tunnel experiments, and 
[9], which extended these results through system identifi-
cation experiments to identify velocity-based parameters. 
Although the velocity-based model in [9] provides valuable 
information on aircraft dynamics, it is not easily compara-
ble to most other models available in the literature. There 

Fig. 1  Skywalker X8 UAV
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are two main reasons for this: first, the model in [9] has a 
complex structure with a high number of parameters and 
nonlinear regressors; second, the model is identified in the 
body frame, as opposed to the stability frame used in the 
classical system identification approaches [10, 11]. Fur-
thermore, the model coefficients identified in the stability 
frame are more convenient to compare against the results 
based on computational fluid dynamics (CFD), which are 
presented primarily in terms of the lift and drag curves. This 
is particularly relevant in the case of aircraft icing research, 
where a considerable amount of data has been accumulated 

on the change in lift and drag coefficients as a function of 
ice accretion [12–18]. Consequently, to allow for conveni-
ent validation and comparison with available research, the 
aerodynamic model presented in this paper was identified 
in the stability frame. The system identification process was 
performed following the classical time-domain methodol-
ogy described in [10, 11], which was greatly simplified by 
the access to the DLR’s (German Aerospace Center) system 
identification tool Fitlab [19].

In the past decade, several research groups have success-
fully conducted system identification of aerodynamic models 
for small fixed-wing UAVs; an overview of the most recent 
results is presented in Table 2. A clear takeaway from the 
presented overview is that most of the identified models 
are parameterized in the body frame. One of the reasons 
for this is the lack of direct measurements of the angle of 
attack and sideslip on low-cost UAV platforms. Identifying a 
model in the stability frame would therefore require the use 
of estimated states, which is done in this paper. Although it 
introduced the state estimation error into the identification 
process, a model described in terms of lift and drag coef-
ficients is necessary in certain applications such as UAV-
icing, where most of the available research on aerodynamic 

Table 1  Physical properties of 
the Skywalker X8 UAV

Property Value

m 3.364 kg
Ix 0.325 kgm2

Iy 0.140 kgm2

Iz 0.400 kgm2

Ixz 0.029 kgm2

c̄ 0.36 m
b 2.10 m
S 0.75m2

Table 2  Overview of recently published small fixed-wing UAV models identified using flight experiments

a Generalized force and moment coefficients. X, Y, Z, L, M, N notation is not used outside the table
b The stability frame coefficients are computed from the generalized force and moment coefficients identified in the form of state-space models
c Observer/Kalman Filter Identification (OKID), the explanatory variables were not mentioned explicitly but are based on derivation in [29]

Paper Year Platform Speed (m/s) Mass (kg) Wingspan (m)

Arifianto et al. [20] 2015 Telemaster 16 3.2 1.8
Grymin et al. [21] 2016
Reinhardt et al. [9] 2022 Skywalker X8 18 3.4 2.1
Lu et al. [22] 2018 Hangar 9 PA-18 Super Cub 18 7.5 2.7
Simmons et al. [23] 2019 HobbyKing Bix3 12 1.2 1.5
Simmons et al. [24] 2023 CZ-150 24 4.8 2.1
Dorobantu et al. [25] 2013 Ultra Stick 25e 19 2.0 1.3
Venkataraman et al. [26] 2019 Sentera Vireo 19 1.3 1.0
Matt et al. [27] 2022 KHawk Zephyr3-R 17 2.2 1.2
Matt et al. [28] 2023

 Paper Method and domain Explanatory variables Identified coefficients

Arifianto et al. [20] OE time �, �, p, q, r, �e, �a, �r CX ,CY ,CZ ,Cl,Cm,Cn

Grymin et al. [21] EE time �, �, p, q, r, �e, �a, �r , �t ,CT CX ,CY ,CZ ,Cl,Cm,Cn

Reinhardt et al. [9] OE time u, v,w, p, q, r, �e, �a, �t X, Y, Z, L, M, Na

Lu et al. [22] OKIDc time �, �, p, q, r, �e, �a, �r , �t
c State space  modelsa

Simmons et al. [23] OE time u, v,w, p, q, r, �e, �a, �r CX ,CY ,CZ ,Cl,Cm,Cn

Simmons et al. [24] EE time �, �, p, q, r, �e, �a, �r , J
−1 CX ,CY ,CZ ,Cl,Cm,Cn

Dorobantu et al. [25] OE frequency u, v,w, p, q, r, �e, �a, �r State space  modelsa

Venkataraman et al. [26] OE frequency u, v,w, p, q, r,�, �, �e, �a, �r State space  modelsa

Matt et al. [27] OE frequency u, v,w, p, q, r,�, �, �e, �a CD,CY ,CL,Cl,Cm,Cn
b

Matt et al. [28] OE frequency u,w, q, �, �e,Ωp CD,CL,Cm
b
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performance penalties is described as the change in lift and 
drag. On the technical level, the main difference between the 
approaches in Table 2 lies in the choice between the time- 
or frequency-domain signals, and second in the use of the 
equation error (EE) or the output error (OE) method for the 
definition of the objective function error. These choices are 
often dependent on the available software tools, model com-
plexity, and engineering preferences such as model accuracy 
metrics.

The papers in Table 2 provide a substantial variety in 
identified platforms. However, variations in modeling 
assumptions and use-case-specific adaptations do not always 
align with user-specific requirements. This paper aims to 
address this challenge by contributing to the set of validated 
small fixed-wing UAV models parameterized in the stability 
frame coefficients, thus offering users a wider selection to 
better match their specific application requirements.

In summary, this paper presents a detailed tutorial on the 
modeling and identification of a simulation-ready 6-degree-
of-freedom (DOF) aerodynamic model based on the Sky-
walker X8 UAV platform. To our best knowledge, it is the 
first paper to address the unique combination of challenges 
posed by: model identification in the stability frame using 
estimated values of aerodynamic angles, estimation of motor 
speed from a propulsion system model, and the use of data 
obtained in windy conditions. The final nonlinear model 
comprises 44 coefficients distributed among the aerody-
namic, propulsion, and servo models. The presentation and 
analysis of the model prediction results are done with the 
primary objective of enabling high-fidelity simulation test-
ing using the identified models.

2  Methods

This section includes the theory necessary to set up and per-
form system identification based on the time-domain output 
error method (OEM) [10, Chap. 6.2]. More specifically, this 
concerns the transformation of sensor measurements from 
sensor frame to center of gravity (CG), propulsion force and 
moment calculations, aerodynamic system modeling, and 
simulation. The theory related to the optimization solver 
used by the OEM is considered to be outside of the scope 
of this paper and is therefore not included; if necessary, the 
relevant information can be found in [11, 19].

There are many ways to express vectors and rotations. In 
this paper, the notation from [30] is adopted. An example 
of vectors and a rotation between the body frame {b} and 
North-East-Down (NED) frame {n} is presented here, where 
the NED frame is considered inertial:

vb
nb

—Linear velocity vector of the body frame origin rela-
tive to the NED origin, expressed in {b},

vn
nb

—Linear velocity vector of the body frame origin rela-
tive to the NED origin, expressed in {n},

�
b
nb

—Angular velocity vector of {b} relative to {n}, 
expressed in {b},

Rn
b
—SO(3) rotation matrix that transforms a vector from 

{b} to {n}.

2.1  Sensor measurement transformations

When working with aircraft dynamics and kinematics, the 
time derivative of a vector in a rotating reference frame must 
be defined. In (1, let id∕ dt denote the time differentiation 
in the inertial frame {i}, and bd∕ dt in the body frame {b}. 
The time derivative of a vector (⃗⋅) in a rotating reference 
frame {b}, expressed in the body frame {b}, has two parts: 
a part that accounts for the rate of change of the vector in the 
rotating reference frame {b} and a part that accounts for the 
rotation of the axis of the reference frame {b} in the inertial 
frame {i}, denoted by �b

ib
 [30, Chap. 3.1]

Moreover, the location of the origin of the body frame with 
respect to the aerodynamic center and the CG has to be 
defined. For Skywalker X8, the origin of the body frame {b} 
is placed in the aerodynamic center that is assumed to coin-
cide with the nominal CG of UAV, so that the vector from 
the origin of {b} to CG in the body frame is rb

bCG
= [0, 0, 0]⊤ . 

This simplifying assumption is reasonable when the CG 
is not expected to change during flight and the distance 
between the aerodynamic center and CG is small. Depend-
ing on the UAV, the aerodynamic center and CG could be 
far apart. The validity of the assumption must therefore be 
assessed separately for each platform. Otherwise, the loca-
tion of the aerodynamic center with respect to CG must 
be taken into account when computing the aerodynamic 
moments, as shown in [11, Eq. (6.75)].

In a moving vehicle, measurements of acceleration and 
estimates of linear velocity change based on the location of 
the sensors in the vehicle. Therefore, it is necessary to trans-
form the inertial measurements from the sensor frame {mI} 
to the aircraft CG to obtain the correct reading of the move-
ment of the aircraft. The transformation can be performed 
on the basis of the distance vector that specifies the location 
of the sensor frame {mI} with respect to CG

The velocities in the flight experiment data vb
nmI

 are the out-
put of an extended Kalman filter (EKF) located in the sensor 
frame and therefore must be transformed from the sensor 

(1)
id

dt
(⃗⋅) =

bd

dt
(⃗⋅) + �

b
ib
× (⃗⋅).

(2)rb
mICG

= rb
bCG

− rb
bmI

=

⎡⎢⎢⎣

xCG − xmI

yCG − ymI

zCG − zmI

⎤⎥⎥⎦
.
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frame to CG. Following [30, Chap. 14], the transformation 
can be performed in the following way:

Similarly, the accelerations measured by the inertial meas-
urement unit (IMU) in the sensor frame f b

nmI
 must be trans-

formed to CG. The transformation is derived by the time 
differentiation of (3 assuming that ṙb

mICG
= 0 and recognizing 

that vb
nmI

 is an inertial vector, which can be directly 
differentiated

2.2  Propulsion system modeling

The Skywalker X8 UAV is driven by a pusher propeller 
located behind the fuselage. When the propeller rotates, it 
generates a thrust, which pushes the UAV forward, and a roll 
moment, which the motor must match to sustain the desired 
motor speed. Additionally, the propeller generates a gyro-
scopic moment which resists deviation from its rotation axis. 
The generated roll moment is mainly due to drag and fric-
tion associated with propeller rotation, while the gyroscopic 
moment is caused by the rotating mass of the propeller and 
the motor shaft. The modeling of the drag-related roll moment 
is described in [31, Chap. 4.3], while the gyroscopic effect 
model can be found in [10, Chap. 3.2]. In general, the gyro-
scopic effect is often neglected, as it is an order of magnitude 
smaller than the total torque, although it can become signifi-
cant when the rotating mass is large enough. The propeller 
torque model should therefore be based on available data and 
model requirements.

The propeller thrust T and torque Q in Eqs. (6) and (7) 
are modeled as functions of the airspeed Va , the motor speed 
Ωp , and the advance ratio J defined in (5. The effects of the 
Reynolds number and the Mach number are omitted as they 
are not as significant at slow speeds [32–34], which constitute 
the envelope of interest for small fixed-wing UAVs

(3)

vb
nb

= vb
nmI

+ �
b
nb
× rb

mICG
, vb

nb
=

⎡
⎢⎢⎣

u

v

w

⎤
⎥⎥⎦

, �
b
nb

=

⎡
⎢⎢⎣

p

q

r

⎤
⎥⎥⎦
.

(4)f b
nb

= f b
nmI

+ �̇
b
nb
× rb

mICG
+ �

b
nb
× (�b

nb
× rb

mICG
).

(5)J =
2�Va

ΩpD

(6)Q =
�D5

4�2
CQ(J)Ω

2

p

(7)T =
�D4

4�2
CT(J)Ω

2

p
.

In this study, as indicated by the modeling results in Sect. 3, 
the torque and thrust coefficients CQ and CT are represented 
as second- and third-order polynomials of J, respectively

The gyroscopic propeller torque, Mb
prop,gyro

 , generated by the 
rotating mass of the propeller in the body axis, is determined 
by the derivative of the propeller’s angular momentum hp . 
This angular momentum is a function of the propeller’s iner-
tia Ip , and its rotational speed Ωp

The reference frame in which the torque is applied is rotat-
ing relative to the inertial frame. The gyroscopic propeller 
torque is therefore defined according to (1, verified in [10, 
Chap. 3.2]

Combining the aerodynamic drag and friction torque in (6 
with the gyroscopic torque in (11 results in the following 
propeller torque model:

The sign of the torque produced depends on the direction of 
rotation and the location of the propeller with respect to CG. 
For a clockwise rotating propeller mounted at the front of 
the aircraft along the aircraft’s x-axis, the produced torque 
is positive w.r.t. body-fixed axes. For a rear-mounted propel-
ler, as in the Skywalker X8 UAV, the torque produced by 
the propeller is negative, leading to the following definition:

2.3  Aerodynamic modeling and simulation

This section presents the equations of motion and other 
relevant relations needed to simulate the UAV dynamics 
and reproduce the measured flight data.

(8)CQ(J) = CQ0 + CQ1 ⋅ J + CQ2 ⋅ J
2

(9)CT(J) = CT0 + CT1 ⋅ J + CT2 ⋅ J
2 + CT3 ⋅ J

3.

(10)hp =

⎡⎢⎢⎣

IpΩp

0

0

⎤⎥⎥⎦
.

(11)Mb
prop,gyro = ḣp + �b

nb × hp =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IpΩ̇p

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

IpΩpr

−IpΩpq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IpΩ̇p

IpΩpr

−IpΩpq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(12)Mprop =

⎡⎢⎢⎣

Q

0

0

⎤⎥⎥⎦
+Mb

prop,gyro
.

(13)Mprop,rear = −Mprop.
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2.3.1  Flying wing configuration

The aerodynamic modeling of an aircraft is highly affected 
by its geometry and control surface configuration. The Sky-
walker X8 UAV is a flying wing platform with two control 
surfaces—right and left elevons (�er , �el) , normally speci-
fied in radians. In this configuration, the elevons replace the 
function of the elevator and the aileron (�e, �a) , which are the 
standard control inputs used in aerodynamic modeling. Driv-
ing the elevons together emulates the elevator command, 
while driving them differentially emulates the aileron com-
mand. Mathematically, the transformation from elevons to 
elevators and ailerons is defined as follows:

Furthermore, the platform has no rudder, so the rudder 
input �r is not used. Instead, the Skywalker X8 has blended 
winglets to provide directional stability, as seen in Fig. 1. 
The propulsion on the Skywalker X8 platform is achieved 
through a single rear-mounted propeller, controlled by a 
throttle input �t ∈ [0, 1].

2.3.2  Modeling aerodynamic forces and moments

Modeling and dynamic system simulation are crucial com-
ponents of the output-error-based system identification 
method. More specifically, OEM requires computation of 
the system dynamics based on a set of model parameters that 
can be updated iteratively during the identification process. 
In this way, the model parameters can be adjusted to mini-
mize the discrepancy between the simulated model output 
and the measured experiment data.

The calculation of aerodynamic forces and moments 
starts with the aerodynamic state of the aircraft, i.e., the 
airspeed Va , the angle of attack � , and the sideslip angle � . 
The aerodynamic state can be derived from the inertial and 
wind velocities as shown in Eqs. (15) and (16)

Given the aerodynamic state of the aircraft, the forces and 
moments generated can be computed. The exact relation 
depends on the structure of the model, normally given as a 
set of polynomial equations [10]. The selection of the model 
structure is part of the system identification process. In this 

(14)
[
�e
�a

]
=

1

2

[
1 1

−1 1

] [
�er
�el

]
.

(15)
⎡⎢⎢⎣

ua
va
wa

⎤⎥⎥⎦
=

⎡⎢⎢⎣

u − uw
v − vw
w − ww

⎤⎥⎥⎦

(16)

Va =

√
u2
a
+ v2

a
+ w2

a
, � = tan−1

(
wa

ua

)
, � = sin

−1

(
va

Va

)
.

study, the selection was initially based on previous mod-
eling results for similar UAV platforms [23, 24, 28] and then 
verified using the stepwise regression algorithm described 
in [10, Chap. 5]. Following the convention in [10, Chap. 5], 
the resulting aerodynamic model structure is defined with 
stability frame force coefficients and body frame moment 
coefficients.

Although the actual drag is generated in the wind frame, 
decomposing the wind frame drag into the side force and 
drag in the stability frame would introduce coupling between 
the longitudinal and lateral dynamics. To keep the model 
and the identification process less complex, this specific 
coupling is assumed to be negligible and is omitted in this 
model, resulting in the following set of equations: 

where �e, �a, �t are the elevator, aileron, and throttle 
control commands and [p∗, q∗, r∗] are the nondimensional 
angular rates normalized by airspeed and wing size, i.e., 
the wingspan b and the mean aerodynamic chord length c̄

Due to its low weight and large surface area, the Skywalker 
X8 UAV is highly susceptible to wind gusts. During the 
flight experiments, the UAV encountered strong winds, 
which impacted the overall quality of the measured data. 
Consequently, to ensure that the model does not overfit the 
data, a low model complexity and compatibility with similar 
research were weighted to a greater degree in the modeling 
process. The aerodynamic model in Eqs. (17) and (18) is 
almost linear, except for the drag equation, where the nonlin-
earities are introduced in thrust and lift regressors. Moreo-
ver, the model is decoupled along the longitudinal–lateral 
axes. Although actual dynamics are likely coupled, and the 
stepwise regression results suggested that sideslip explains 
some of the variations in lift and drag, including sideslip in 
the longitudinal model did not improve the overall model 
prediction error.

(17a)CL = CL0 + CL�� + CLqq
∗ + CL�e�e

(17b)CD = CD0 + CDqq
∗ + CDCTCT + CDk1CL + CDk2C

2

L

(17c)Cm = Cm0 + Cm�� + Cmqq
∗ + Cm�e�e

(18a)CY = CY0 + CY�
� + CYpp

∗ + CYrr
∗ + CY�a�a

(18b)Cl = Cl0 + Cl�
� + Clpp

∗ + Clrr
∗ + Cl�a�a

(18c)Cn = Cn0 + Cn�
� + Cnpp

∗ + Cnrr
∗ + Cn�a�a,

p∗ =
pb

2Va

, q∗ =
qc̄

2Va

, r∗ =
rb

2Va

.
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2.3.3  Stability to body frame transformation

The lift and drag forces in (17 are generated in the stability 
frame. However, when simulating aircraft dynamics, it is 
useful to compute these forces in the body frame. In this 
way, the total force acting on the aircraft, consisting of 
aerodynamic, propulsive, and gravitational components, 
can be more easily calculated.

Starting from the stability frame coefficients (CD,CL) , 
the body frame coefficients (CX ,CZ) can be acquired by a 
change in direction and a rotation Rs

b

⊤ through the angle of 
attack � . The rotation matrix is defined as follows:

and the transformation is then computed as

Given CX and CZ , the aerodynamic forces Fb
aero

 can be com-
puted as

where q̄ =
1

2
𝜌V2

a
 is the dynamic pressure. Computation of 

the aerodynamic moments Mb
aero

 and the propulsion force 
Fb
prop

 can be done directly in the body frame, while the grav-
ity force has to be transformed from NED to body

where Rn
b
 is the body to NED rotation matrix.

With all components decomposed in the body frame, 
the total forces Fb and moments Mb can be added together 

2.3.4  Simulation

In dynamic simulations, we typically establish the start-
ing point within an inertial world frame, such as the NED 
frame. To describe the motion of a rotating body within 

(19)Rs
b
(�) =

⎡
⎢⎢⎣

cos(�) 0 sin(�)

0 1 0

− sin(�) 0 cos(�)

⎤
⎥⎥⎦
,

(20)
⎡⎢⎢⎣

CX

CY

CZ

⎤⎥⎥⎦
= Rs

b

⊤
(𝛼)

⎡⎢⎢⎣

−CD

CY

−CL

⎤⎥⎥⎦
.

(21)Fb
aero

= q̄S

⎡⎢⎢⎣

CX

CY

CZ

⎤⎥⎥⎦
,

Mb
aero

= q̄S

⎡⎢⎢⎣

bCl

c̄Cm

bCn

⎤⎥⎥⎦
, Fb

prop
=

⎡⎢⎢⎣

T

0

0

⎤⎥⎥⎦
, Fb

gravity
= Rn

b

⊤
⎡⎢⎢⎣

0

0

mg

⎤⎥⎥⎦
,

(22a)Fb = Fb
aero

+ Fb
prop

+ Fb
gravity

(22b)Mb = Mb
aero

+Mb
prop

.

this inertial frame, we rely on Newton’s second law of 
motion 

where I is the inertia matrix. For aircraft, the moments 
of inertia are often assumed symmetric about the body x − z 
plane [31], such that Ixy = Iyz = 0 , resulting in

With body frame forces and moments available from 
Eqs. (22a) and (22b), Newton’s second law of motion can 
be reformulated to compute updates of the linear and angular 
accelerations 

and based on vb
nb

 and �b
nb

 , the position pn
nb

 and attitude 
[�, �,�] dynamics can be computed in the NED frame as 
shown in [30, Chap. 2]

The equivalent quaternion-based solution can also be found 
in [30, Chap. 2].

2.3.5  Electric propulsion system model

When the motor speed measurement Ωp is not available, an 
electric propulsion system model can be used to calculate the 
speed. This model takes the power supply voltage Ub and throt-
tle �t as input, and then outputs the motor acceleration Ω̇p , 
which reflects the balance between the generated motor torque 
Qm on one side and the load propeller torque Q on the other 
side. Mathematically, a simplified model of these relations can 
be formulated as follows: 

(23a)Fb = m
(
v̇b
nb
+ 𝝎

b
nb
× vb

nb

)

(23b)Mb = I�̇�b

nb
+ 𝝎

b
nb
× I𝝎b

nb
,

(24)I =

⎡⎢⎢⎣

Ix 0 −Ixz
0 Iy 0

−Ixz 0 Iz

⎤⎥⎥⎦
.

(25a)v̇b
nb

=
1

m
Fb − �

b
nb
× vb

nb

(25b)�̇�
b

nb
= I−1

(
Mb − 𝝎

b
nb
× I𝝎b

nb

)
,

(26)ṗn
nb

=Rn
b
vb
nb

(27)
⎡⎢⎢⎣

�̇�

�̇�

�̇�

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃

0 cos𝜙 − sin𝜙

0 sin𝜙∕ cos 𝜃 cos ∕ cos 𝜃

⎤⎥⎥⎦
�
b
nb
.

(28a)U = �tUb

(28b)Im =
(
U − ΩpKE

)
R−1
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where Ub is the voltage of the battery or power supply, U 
and Im are the voltage and current of the motor, R is the elec-
tric resistance of the motor, and KE is the back-emf constant. 
An assumption necessary for this model is that the current 
varies slowly, allowing us to remove the motor inductance 
from the voltage-balance equation. The presented model 
can accurately replicate the steady-state response; however, 
some errors are expected in the transient behavior, particu-
larly with voltage peaks during setpoint changes. Further-
more, a zero load current, Im0 , can be added to the torque 
model as Qm = (Im − Im0)KE . However, in this case, it was 
assumed to be negligible to keep the model complexity low. 
Given the motor torque Qm from (28 and the load torque Q 
from the aerodynamic propeller model (6, motor accelera-
tion can be calculated

which in simulation is used to compute the motor speed 
through numeric integration. An in-depth look at the electric 
propulsion system modeling can be found in [32, 33].

When analyzing a propulsion system, it is useful to com-
pute both input and output power. For an electric motor, 
the input power is given by the electric power formula: 
Pel = U ⋅ Im . Conversely, the output power is the mechanical 
power generated, expressed as Pm = Q ⋅Ωp . In cases where 
direct measurements of motor voltage and current are unat-
tainable, the power supplied by the battery Pb = Ub ⋅ Ib can 
serve as a viable approximation for input power, where the 
main uncertainty in the approximation arises from power 
losses in the electronic speed controller. Finally, provided 
the input and output power, the motor efficiency can be com-
puted from the ratio Pm∕Pel.

2.4  Extraction of the measured aerodynamic forces 
and moments

The process of aircraft system identification is greatly simpli-
fied when we have access to measurements or estimates of 
aerodynamic forces and moments. Although not required by 
the classical OEM, these data allow for a deeper understanding 
of the model’s strengths and weaknesses by enabling individ-
ual comparison of the resulting force and moment coefficients. 
Furthermore, access to aerodynamic coefficients, as presented 
in Eqs. (33) and (34), makes it possible to use the hybrid OEM 
described in [35]. In hybrid OEM, indirectly measured aerody-
namic coefficients are used as weighted outputs, which, in this 
work, has greatly improved parameter convergence during the 
system identification process. The remainder of this subsection 
presents the relations necessary to extract these aerodynamic 

(28c)Qm = ImKE,

(29)Ω̇p =
(
Qm − Q

)
I−1
p
,

coefficients and perform system identification based on the 
measurements available in a standard flight log.

The main sensor that allows us to extract the force and 
moment coefficients from the flight data is the IMU, which 
typically includes a gyroscope and an accelerometer. The 
gyroscope measures angular rates �b

nb
= [p, q, r]⊤ , while the 

accelerometer measures the specific force f b
nb

= [ax, ay, az]
⊤ , 

defined as a nongravitational force per unit mass [30, Chap. 
14]. More specifically, it measures the inertial acceleration of 
the aircraft in the body frame, excluding gravitational accel-
eration. Mathematically, the accelerometer measurements are 
related to the total force as follows:

By rewriting (30, and using the definition from (21, the aero-
dynamic force coefficients can be obtained as a function of 
the measured accelerations

Similarly, by combining Eqs. (23b) and (22b), the aerody-
namic moment coefficients can be obtained as a function of 
the measured angular rates

Equations (31) and (32) can also be written out as a system 
of equations 

(30)mf b
nb

= Fb − Fb
gravity

= Fb
aero

+ Fb
prop

.

(31)
⎡⎢⎢⎣

CX

CY

CZ

⎤⎥⎥⎦
=

1

q̄S

�
mf b

nb
− Fb

prop

�
.

(32)
⎡⎢⎢⎣

Cl

Cm

Cn

⎤
⎥⎥⎦
=

1

q̄S

⎡
⎢⎢⎢⎣

1

b
1

c̄
1

b

⎤
⎥⎥⎥⎦

�
I�̇�b

nb
+ 𝝎

b
nb
× I𝝎b

nb
−Mb

prop,rear

�
.

(33a)CX =

(
max − T

)
q̄S

(33b)CY =
may

q̄S

(33c)CZ =
maz

q̄S

(33d)

Cl =
1

q̄Sb

[
Ixṗ − Ixz(pq + ṙ) +

(
Iz − Iy

)
qr + Q + IpΩ̇p

]

(33e)Cm =
1

q̄Sc̄

[
Iyq̇ +

(
Ix − Iz

)
pr + Ixz

(
p2 − r2

)
+ IpΩpr

]

(33f)Cn =
1

q̄Sb

[
Izṙ − Ixz(ṗ − qr) +

(
Iy − Ix

)
pq − IpΩpq

]
.
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The transformation from body frame to stability frame 
is as follows (20:

3  Experiment setup and data analysis

This section describes the flight and wind tunnel experi-
ments used to model and identify the Skywalker X8 UAV 
model. Specifically, the system identification maneuvers 
and the measured data are described. In addition, sources of 
measurement uncertainty are presented.

3.1  Maneuver design

The choice of maneuver periods and amplitudes was based 
on frequency response analysis conducted on prior mod-
els of the Skywalker X8 UAV [8, 9]. The analysis was 
performed as part of a master’s thesis work by Trondstad 
[36] who concluded that the main frequency response of 
the Skywalker X8 should be in the region of 1 to 10 rad/s. 

(34)
⎡
⎢⎢⎣

CD

CY

CL

⎤
⎥⎥⎦
= Rs

b
(�)

⎡
⎢⎢⎣

−CX

CY

−CZ

⎤
⎥⎥⎦
.

The findings were obtained based on coefficients from [9] 
using the Marchand method as described in [11, Chap 2.III]. 
This information was then used to select the pulse dura-
tions for the system identification maneuvers presented in 
Table 3. The duration of the pulse corresponds to the length 
of a single deflection in a maneuver. The relation of pulse 
durations to the excited frequencies of vehicle dynamics is 
described in [11, Chap. 2.III]. For example, for a doublet 
with pulse width of 0.4 s, the mean excited frequency is 
about 2.3∕0.4 = 5.75 rad/s. For more complex maneuvers, 
such as 3-2-1-1 and 1-2-1, the frequency response has sev-
eral peaks, and the range of frequencies is more meaningful 
to specify in that case.

A hard constraint on the length of the maneuver period is 
related to the line-of-sight operation of the UAV. The long-
est straight part of the trajectory flown by the UAV dur-
ing testing was about 400 m, allowing for one or two 10-s 
maneuvers. As a result, combining the time for maneuver-
ing, settling, and maintaining steady flight before and after a 
maneuver can easily exceed 30 s for the slow mode maneu-
vers, pushing against the 400 m constraint. This makes excit-
ing the slow dynamic modes, such as the phugoid and spi-
ral diverse modes, more challenging, as the corresponding 
mode periods can be larger than 10 s. Due to this limitation, 
the identified coefficients associated with the slow dynamic 
modes are expected to have higher uncertainty relative to the 
other aerodynamic coefficients. Additionally, the absence of 
a rudder on the Skywalker X8 makes it challenging to excite 
pure yaw dynamics, further contributing to the uncertainty 
in the aerodynamic coefficients, particularly those related to 
spiral divergence mode.

3.2  Flight experiments

The test campaign took place at the Breivika airfield in 
Agdenes, Norway, in May 2023. The maneuvers were car-
ried out during two 30-min flights, where the UAV flew in 

Table 3  Overview of the performed system identification maneuvers

Direction Type Pulse 
duration 
(s)

Amplitude ◦ Air-
speed 
(m/s)

Number of 
experi-
ments

Lateral 1-2-1 0.3 15 18 7
Lateral Doublet 0.4 15 18 5
Longitudi-

nal
3-2-1-1 0.3 10 18 8

Longitudi-
nal

Doublet 0.4 15 18 8

Fig. 2  Visualization of the UAV 
flight path during flight experi-
ments
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a predetermined flight path, as shown in Fig. 2a. The esti-
mated position and attitude data have been validated by rec-
reating the flight path in a 3D animation shown in Fig. 2b.

3.3  Payload and sensors

The payload and sensors installed on the Skywalker X8 are 
based on the setup in [38]. The Skywalker X8 flight stack is 
built around the Cube Orange autopilot, which runs on the 
open-source ArduPilot firmware. The Cube Orange com-
prises triple redundant IMUs with magnetometers and pres-
sure sensors. In addition, the Skywalker X8 has a pitot-static 
tube for airspeed measurement, and a global navigation sat-
ellite system (GNSS) receiver for positioning. Furthermore, 
the ArduPilot firmware provides state estimates computed 
using an EKF, which includes estimates of the wind velocity 
vector, the angle of attack, and the sideslip angle. Moreover, 
an external IMU, STIM300, was installed for redundancy.

Table 4 presents a summary of the sensors installed on 
the Skywalker X8 UAV used in the experiments, along with 

the relevant accuracy metrics sourced from their respective 
data sheets.

3.4  Data pre‑processing

Resampling and filtering of the data were performed prior 
to the calculations and transformations described in Sect. 2. 
More specifically, all measurements and estimates were resa-
mpled to a common frequency of 40 Hz set by the ArduPi-
lot EKF. Furthermore, angular accelerations, used to calcu-
late aerodynamic moments in (33, were obtained through 
smoothed numerical differentiation of angular velocities, as 
recommended in [10, Chap. 5.1.7].

During the flight, the EKF estimated a strong north-west 
wind of 9 m/s. The experimental data did not include meas-
urements of the angle of attack, and the EKF only estimated 
horizontal wind, making it challenging to directly iden-
tify the trim angle of attack. This challenge was addressed 
using data from previous Skywalker X8 flights conducted 
by Borup et al. [39] with a five-hole probe. By referencing 
these flights, we extracted additional information from our 
data. Specifically, assuming a steady vertical wind, we used 
the relative velocity estimates in the horizontal plane and the 
measured airspeed to obtain a correction term equivalent to a 
vertical wind component of 2.8 m/s. To assess the credibility 
of the computed wind correction, we compared the resulting 
air data, shown in Fig. 3, with the reference flight data in [39, 
Fig. 11]. Based on this comparison, the combination of an 
angle of attack of 8◦ at an airspeed of 18 m/s was deemed 
credible, validating the computed wind correction.

In general, using advanced measurement equipment, such 
as a five-hole probe, on small low-cost UAVs is quite chal-
lenging. Due to the small size, it might be difficult to find 
an appropriate mounting location for the probe and correct 
for potential measurement uncertainties caused by mounting 
errors. Furthermore, for small UAVs, the sensor might be 
several times more expensive than the platform itself, sub-
stantially increasing the economic risk associated with the 

Table 4  Sensor overview

Sensor Selected accuracy metrics

Cube orange
 ICM-20602 IMU
 ICM20948 IMU/
Magnetometer
MS5611 barometer

Gyroscope noise: ±4mdps/
√
Hz , Acceler-

ometer noise: 100�g/
√
Hz

Gyroscope noise: ±15mdps/
√
Hz , Acceler-

ometer noise: 230�g/
√
Hz

 Magnetometer resolution: 16-bit, Mag-
netometer range: ±4900 �T

Accuracy at 25◦ C, 750 mbar: ±1.5 mbar
Here3+ GNSS Positioning accuracy: 0.025 m
Airspeed sensor
 MS4525DO

Pressure accuracy: ±0.25% from the best fit 
over the pressure range at 25◦C

STIM300
 Accelerometer
 Gyroscope

Bias instability—0.02 mg, velocity random 
walk—0.03 m/s/

√
h

Bias instability—0.3 ◦/h, angular random 
walk—0.15 ◦∕

√
h

Fig. 3  Measured airspeed V
a
 and estimated angle of attack � of the Skywalker X8 UAV. The air data are comparable to the flight test results seen 

in [39] where a five-hole air probe was used to measure � directly
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experiments. Based on previous system identification expe-
rience on the same platform [9], and due to the mentioned 
concerns, we decided to use the air data estimates provided 
by the ArduPilot EKF instead of flying with the five-hole 
air probe. Furthermore, results from previous flights with 
the five-hole probe [39] provide a good reference point to 
validate the current air data estimates. The drawback of 
using an EKF-estimated angle of attack and sideslip angle 
is that these estimates have varying certainty depending on 
the wind conditions and the complexity of the performed 
maneuver. This is important to consider when discussing the 
model prediction results in regions far from the trim point.

3.5  Data selection

Initial screening of the experiment data is performed using 
the drag and lift curves in Fig. 4. First- and second-order 
polynomials were fitted to the data to highlight the measured 
mean and variance. The lift and drag curves exhibit plausible 
trends, yet two points should be discussed in greater detail.

(1) According to the wind tunnel tests and analysis in [8, 
9], the Skywalker X8 should have a positive lift at � = 0 with 
CL0 = 0.058 . However, the flight data in this article indicate 
a negative lift coefficient at � = 0 . Although this could be 
true for the particular Skywalker X8 used in this study, due 
to dents and other damage related to previous crashes, it 
could also be a result of uncertainties in the vertical wind 
estimates, which directly affect the computed � , Eqs. (15) 
and (16). On the other hand, as presented earlier, the directly 
measured air data in [39] are similar to the airspeed and 
angle of attack presented here. Moreover, according to the 
authors of [8], there were uncertainties related to the selec-
tion of the zero angle of attack setting in the wind tunnel. 
Another relevant input is the elevator deflection; due to a 
strong vertical wind of −2.8 m/s during the experiments, the 

UAV was flying with a nonzero elevator deflection, which 
shifts the whole lift curve down, thus explaining some of 
the discrepancies between the flight data and the wind tun-
nel tests.

(2) There are several data points in Fig. 4a that indi-
cate negative drag values. Negative drag is not physical 
and can be explained by a combination of uncertainties 
in the accelerometer measurement, the thrust force com-
pensation done in (33b, and angle of attack estimates. The 
unmodeled part of the coupling between the drag and the 
thrust force could also explain some uncertainty. This is, 
however, expected when analyzing flight data of a small 
fixed-wing aircraft such as the Skywalker X8. An aircraft 
with a relatively large wing area and a small weight of 
3.4 kg is highly susceptible to gusts and wind disturbances, 
which increases the likelihood of encountering aerody-
namic states far out of trim.

To analyze the quality of the initial Skywalker X8 model, 
an analysis of the model prediction residuals was performed. 
The results of the analysis are presented later in Sect. 4.1.1, 
revealing a greater uncertainty in the model predictions for 
the drag and side force. As such, the drag and side force 
coefficients were considered more thoroughly in the second 
round of data pre-processing. In practice, this means that 
maneuvers with inconsistent drag values as well as maneu-
vers initiated at high sideslip angles or significant angular 
rates were dismissed. In total, of the 28 recorded maneuvers, 
17 were selected for system identification, with a further split 
into 13 maneuvers for training and 4 for validation. By defini-
tion, the validation set maneuvers were not used in the model 
identification process.

The training and validation split, with the identified coef-
ficients and the associated weighted output, is presented in 
Table 5. Notice that the aerodynamic coefficients are part 
of the weighted outputs, consistent with the hybrid OEM, 

Fig. 4  Drag, lift, and pitch moment curves computed from the the 
training and validations sets presented in Table 5. The coefficients are 
computed as shown in Eqs. (33) and (34). The color indicates which 

part of the maneuver the data point is taken from with Fig. 3 as the 
reference. Focusing on the scatter points in red provides a good indi-
cation of the Skwylaker X8’s trim condition flying at 18 m/s
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discussed in Sect. 2.4. Estimation was performed separately 
for the longitudinal and lateral coefficients, while the 13 
selected maneuvers were kept the same.

3.6  Propulsion system model

The propulsion system of the Skywalker X8 UAV consists 
of an electric Hacker A40-12 S V2 14-pin KV610 motor, 
a Jeti SPIN Pro 66 speed controller, and a 14x8 Aeronaut 
CAM folding propeller. The propeller parameters presented 
in Tables 6 and 7 were identified separately based on wind 
tunnel experiments. The back-emf coefficient KE and electri-
cal resistance R of the motor are based on the specifications 
provided in the motor’s datasheet.

Figure 5 displays measurements alongside model predic-
tion results derived from multistep experiments conducted in 
a wind tunnel at a constant speed of 18 m/s. The identified 
model is a propulsion system model that takes power supply 
voltage and throttle as input and outputs the resulting motor 
acceleration. The motor acceleration is then integrated to 
get the motor speed, making it possible to compute propeller 
thrust and torque, as described in Sect. 2.3.5.

The motor speed was not measured during the Sky-
walker X8 flights; instead, the motor model in Sect. 2.3.5 
was used to generate the propulsion system data. As part of 
the pre-processing step, a throttle offset was added to match 
the measured and simulated power consumption shown in 

Table 5  Aerodynamic parameters and the weighted outputs used to estimate these parameters

The weighted outputs are grouped for readability. The force and moment coefficients are computed from the state variables, as shown in 
Eqs. (33) and (34)

Training data Validation data Parameters Weighted outputs Parameters Weighted outputs

3 × long. 3-2-1-1 3 × long. doublet 1 × long. 3-2-1-1 1 × long. doublet z, � z,�,�

CD(∗) u, w, q CY(∗) v, p, r
CL(∗) ax, az Cl(∗) ay

4 × lat. 1-2-1 3 × lat. doublet 1 × lat. 1-2-1 1 × lat. doublet Cm(∗) Va, � Cn(∗) Va, �

C{D,L,m} C{Y ,l,n}

Table 6  Propeller thrust and 
torque coefficients used in 
Eqs. (8) and (9)

CT CQ

CT0 0.1400 CQ0 0.0082
CT1

−0.0300 CQ1 0.0112
CT2

−0.2370 CQ2
−0.0211

CT3 0.0847

Table 7  Propulsion system parameters

Name and symbol Value

Back-EMF constant kE 0.0157 V/(rad/s
Motor resistance     R 0.017Ω

Propeller diameter   D 14" or 0.3556 m
Propeller inertia     Ip 3.46 × 10−4 kgm2

Fig. 5  Propeller model identified based on multistep experiments per-
formed in a wind tunnel at a constant speed of 18 m/s. The spikes in 
the torque data (b) are due to the gyroscopic effect generated during 

acceleration as described in (11). Model prediction results are indi-
cated by the ̂ . The zoom plot in (b) is made using [40]
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Fig. 6a. The resulting mapping from electric power Pel to 
motor speed was validated based on data from [33]. The 
model output for one of the experiments is shown in Fig. 6. 
Note that the power spike in Fig. 6a is not captured by the 
model. As described in Sect. 2.3.5, this is because the model 
assumes a slowly varying current and does not account for 
the effects of inductance during a setpoint change. Induct-
ance opposes changes in current, resulting in a voltage 
spike necessary to overcome the inductive reactance. Con-
sequently, this leads to a transient power spike seen in the 
measured data.

In the initial modeling, the variation of the battery volt-
age was assumed to be negligible. Upon further analysis of 
the prediction results, it was discovered that the drag model 
in particular had potential for improvement. The propulsion 

system is directly coupled to the drag model, prompting fur-
ther consideration. As shown in Fig. 7, the battery voltage 
fluctuates between 15.2 V and 16.4 V which directly affects 
the mapping from the throttle to the power delivered to the 
motor, thus influencing the drag model. Consequently, the 
battery voltage was used as input in the system identification 
process for the updated model.

4  Results

This section presents the results of the aerodynamic mod-
eling for the Skywalker X8 UAV. It is organized as follows: 
First, an analysis of the model prediction residuals is pro-
vided. This residual analysis has been crucial in identifying 

Fig. 6  Output of the propulsion system model for the Skywalker 
X8 used in system identification. Throttle, battery power, and air-
speed are available from flight experiments, while the remaining 
data are generated by the model in Tables 6 and 7. The discrepancy 

in electrical power in a is due to a missing inductance in the model, 
as described in Sect. 3.6. The oscillations in thrust (f) and torque (e) 
carry over from both throttle (c) and airspeed (d); moreover, the sharp 
jumps in the torque are due to the gyroscopic effect described in (11

Fig. 7  Measured battery voltage variation during the maneuvers
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weaknesses and refining the initial model. Next, the model 
prediction results are presented alongside the measured 
experiment data, and the new set of identified aerodynamic 
coefficients, used to generate the predictions, is provided. 
Finally, this section includes the results of linearization, 
comparing the predictions of the nonlinear and linearized 
models.

4.1  Model fitting results

The system identification process began with the initial 
parameters available from wind tunnel experiments pre-
sented in [8]; an intermediate model was then identified 
and used as a basis for model analysis. The analysis led to 
remodeling and improvement of the drag and side force 
models through a thorough outlier analysis, as well as a revi-
sion of the propulsion system model.

4.1.1  Model characteristics and residual analysis

The identified model structure follows Eqs. (17) and (18). A 
comparison between the aerodynamic coefficients calculated 
from the flight data and the coefficients obtained from the 
simulation of the model is presented in Fig. 8. In particular, 
the drag, lift, and pitch moment curves are shown. Although 
the presented scatter plots do not indicate the model’s accu-
racy, they can provide a general understanding of the mod-
el’s region of validity and the distribution of the measured 
data points. Visual analysis indicates a good model fit about 
the trim, indicated by the dense regions of the scatter plots. 
However, the model is not as good in the regions further 
away from the trim, which is especially visible at the nega-
tive angles of attack, where only limited amounts of data 
have been collected.

For a more quantitative analysis of the model, the resid-
ual distribution for each of the aerodynamic coefficients is 
shown in Fig. 9.

For most of the coefficients, the residuals are narrowly 
distributed about zero, indicating a good match between the 
data and the model. A quick look at the comparison between 
the initial and final models reveals that there are mainly two 
coefficient models that were improved—the drag and the 
side force. The double peak in the drag residual distribution 
indicates that the intermediate drag model has varying accu-
racy depending on the maneuver it predicts. The final model 
has a single peak and, as discussed in Sects. 3.5 and 3.6, 
the improvement of the model was achieved through better 
data pre-processing and a revised propulsion system model. 
Moreover, as discussed in the modeling section (Sect. 2.3.2), 
the drag and the side force are physically coupled through 
the sideslip angle, and although they are decoupled in the 
structure of the identified model, the residual distribution 
analysis shows how the improvement in the drag model also 
has a slight effect on the side force model.

4.1.2  Nonlinear model prediction analysis

The model prediction results for a longitudinal 3-2-1-1 and 
a lateral doublet maneuver are presented in Figs. 10 and 11. 
The evaluation of the model predictions can be split into two 
stages: the first, prediction of the aerodynamic forces and 
moments, and the second, prediction of the aircraft motion. 
Forces and moments are easier to model and identify, as 
direct measurements of aircraft acceleration and angular 
rates are available from the IMU. In contrast, the aircraft 
motion is based on the output of an EKF, which combines 
the airspeed, IMU, and GNSS measurements to estimate 
the wind and the resulting aerodynamic state of the aircraft, 
making the model prediction analysis more challenging due 
to uncertainties introduced by estimation.

Fig. 8  Comparison of drag, lift, and pitch moment curves based on flight and simulation data of 17 maneuvers at 18 m/s. The red line shows the 
model output mean computed by fitting a polynomial to the output data
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Fig. 9  Probability distribution of the aerodynamic coefficient residu-
als in the training set. The drag residuals show a biased distribution 
which warranted a further investigation of the initial identified model. 

The updated model provides an overall better result, particularly for 
drag and side force models
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(1) A look at the model prediction results for both lat-
eral and longitudinal examples reveals that the model can 
predict the force and moment coefficients for the duration 
of the recorded maneuvers. In general, the model is able 
to replicate large dynamic movements with high accuracy; 
however, the prediction of the low amplitude dynamics is 
not as accurate. This is an expected result, as the measure-
ment noise and environmental disturbances are difficult to 
replicate in simulation. When analyzing the individual force 
and moment coefficients, it is noticeable that the predicted 
drag peaks, both positive and negative, do not fully match 
the measurements in Fig. 10; however, as already discussed, 
modeling the drag can be challenging due to the coupling 
effects between the propulsion model and the airframe drag. 
Identification of an aero-propulsive model as suggested in 
[24] or a more in-depth modeling of the thrust compensation 
in (33b) can potentially be used to improve this modeling 
error. Additionally, using direct motor speed measurements 
rather than estimated values could further improve modeling 
accuracy.

(2) The second-stage results provide reasonably good pre-
dictions, especially for the angle of attack shown in Fig. 10. 
This is expected as � is directly related to the longitudinal 
force and moment coefficients. When it comes to altitude, 

heading angle, and body frame speeds, the model predictions 
are less accurate. It should be noted that the wind makes 
the estimation and prediction much more challenging. Calm 
wind conditions should, therefore, be prioritized when per-
forming system identification with small aircraft. Alterna-
tively, direct measurements of � and � should be considered.

4.1.3  Identified model parameters

The final set of model parameters is presented in Table 8.
The coefficient and standard deviation values (StdDev.) 

were obtained using the Fitlab tool [19]. The model struc-
ture was identified through stepwise regression [10, Chap. 5], 
where regressors are gradually added to the model and several 
statistics, such as model prediction error, are analyzed to keep 
or discard a particular regressor. The low standard deviations 
in Table 8 indicate a good alignment between the data and 
the selected model structure. Although most coefficients are 
identified with a low standard deviation, there are some with 
higher uncertainty which are worth mentioning. In particu-
lar, this concerns coefficients related to the yaw dynamics, 
CYr,Clr,Cnp . As discussed previously in Sect. 3.1, this uncer-
tainty can be explained by the lack of rudder on the Skywalker 
X8 UAV which makes it difficult to excite yaw dynamics in 

Fig. 10  Weighted outputs and the model prediction results for a longitudinal 3-2-1-1-maneuver used in the identification of longitudinal param-
eters C

D(∗),CL(∗),Cm(∗)
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Fig. 11  Weighted outputs and the model prediction results for a lateral doublet maneuver used in the identification of lateral parameters 
C
Y(∗),Cl(∗),Cn(∗)

Table 8  Identified coefficients of the nonlinear aerodynamic model given by Eqs. (17) and (18)

The coefficients were identified according to Table 5, based on flight maneuvers performed at the speed of 18 m/s. The (Rel. %) column shows 
the standard deviation as a percentage of the coefficient value

C
D

C
l

Coeff. Value Std dev. (Rel. %) Coeff. Value Std dev. (Rel. %)

CD0 0.058 6.73e−04 (1.12) Cl0 0.007 7.21e−05 (1.07)
CDq 0.480 5.85e−02 (10.54) Cl�

−0.108 1.04e−03 (0.97)
CDCT

−0.217 1.99e−02 (3.16) Clp
−0.313 2.91e−03 (0.93)

CDk1
−0.034 2.18e−03 (5.06) Clr 0.037 3.60e−03 (6.12)

CDk2 0.225 2.33e−03 (1.02) Cl�a 0.102 8.51e−04 (0.83)

C
L

Cm

CL0
−0.077 3.04e−03 (3.68) Cm0 0.027 2.81e−04 (1.10)

CL� 2.573 2.33e−02 (0.86) Cm�
−0.274 1.97e−03 (0.74)

CLq 17.119 2.30e−01 (1.24) Cmq
−1.608 2.44e−02 (1.49)

CL�e 1.369 2.03e−02 (1.23) Cm�e
−0.276 1.89e−03 (0.68)

C
Y

C
n

CY0 0.011 1.91e−04 (1.72) Cn0
−6.3e−04 9.51e−06 (1.57)

CY�
−0.285 3.08e−03 (1.09) Cn� 0.022 1.61e−04 ( 0.76)

CYp
−0.270 7.67e−03 (2.93) Cnp

−0.009 5.27e−04 (5.27)
CYr 0.108 1.20e−02 (8.51) Cnr

−0.050 5.34e−04 (1.13)
CY�a 0.097 2.24e−03 (2.34) Cn�a

−0.007 1.48e−04 (2.45)
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isolation and identify the associated coefficients. Nonetheless, 
as shown in Fig. 11, the identified lateral model is able to 
match the large-amplitude dynamics quite well.

Analysis of Table 8, or equivalently Eqs. (17) and (18), 
shows that the identified model is for the most part linear, 
except for the drag, which is modeled as a second-order func-
tion of lift and includes a propeller thrust component. The 
negative thrust component indicates that the drag decreases 
with increased throttle, i.e., the propeller has an impact on the 
flow across the airframe.

4.1.4  Actuators

In addition to the aerodynamic model, two actuator models had 
to be implemented to obtain a complete simulation-ready model 
of the Skywalker X8 UAV. Following [8], a second-order pro-
cess was used to model the elevon dynamics and a first-order 
process was used to model the throttle input. Both models 
include input delays, identified by matching control inputs to the 
measured IMU-data, i.e., the time from a change in a control sig-
nal to a change in the measured acceleration or angular rate. The 
complete set of actuator model parameters is listed in Table 9.

4.2  Linearized dynamics

It is often useful to describe a dynamic system with a linear 
model. Linear models have numerous applications: they enable 
faster simulations, facilitate the application of well-established 
linear control design methods, and unlock tools for frequency-
domain analysis such as transfer function evaluation, and the 
assessment of system poles and zeros. The frequency-domain 
analysis is particularly useful in aircraft analysis, as decades 
of research have resulted in a large amount of knowledge relat-
ing aerodynamic modes, i.e., the location of system poles and 
zeros to the aircraft flight characteristics. Chapters 10 and 11 
of [41] provide a good introduction to this type of analysis.

A linearized model can be represented using the state-space 
formulation as follows:

where A,B,C are the system matrices, x is the system state, 
u is the input, and y is the output.

The system matrices for the lateral and longitudinal dynam-
ics were computed by linearizing the equations of motion in 

(35)ẋ = Ax+ Bu , y = Cx,

(25. The linearization process was also performed using the 
linmod function in the Matlab Simulink library to validate 
the results derived manually.

A realization of the linearized system dynamics is presented 
in state-space form in Eqs. (39) to (42). The results show a lin-
earization about the trim point taken from the 3-2-1-1-maneu-
ver in Fig. 10. The poles of the system are shown in Fig. 12. 
The trim state and input are

The described trim state and input represent the following 
flight condition:

4.2.1  Lateral dynamics

(36)

x∗ =
[

u∗ v∗ w∗ p∗ q∗ r∗ h∗ �∗ �∗ �∗
]⊤

=
[

11.8m∕s −6.26m∕s −0.28m∕s 0 0 0 178m −0.47◦ −1.11◦ 92.89◦
]⊤

(37)

u∗ =
[
𝛿∗
e
𝛿∗
a
𝛿∗
t
u∗
w
v∗
w
w∗
w

]⊤

=
[
−2.35◦ −2.16◦ 0.44 −5.93m∕s −6.62m∕s −2.75m∕s

]⊤
.

(38)
[
Va 𝛼 𝛽 𝛾

]⊤
=
[
17.9m∕s 7.9◦ 1.2◦ 0.0◦

]⊤
.

(39)xlat =
[
v p r 𝜙 𝜓

]⊤
, ulat =

[
𝛿a uw vw ww

]⊤

(40)

Alat =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.68 −0.96 −11.52 9.82 0
−5.45 −16.81 1.80 0 0
0.53 −1.62 −2.10 0 0
0 1 0 0 0
0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

Blat =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

4.17 −0.02 0.68 −0.003
92.93 −0.24 5.45 −0.03
1.64 −0.003 −0.53 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Clat = I5×5.

Table 9  Actuator model parameters for a second-order servo system 
controlling the elevons and a first-order system for the throttle control

Servo 2nd order system Throttle 1st order system

Natural fre-
quency

Damping Input delay Time constant Input delay

100 rad/s 0.707 0.07 s 0.2 s 0.05 s

Table 10  Lateral poles at 18 m/s

Pole Damping Frequency (rad/s) Period (s)

−17.50 + 0.00i 1 17.50 0.36
−0.84 + 3.73i 0.22 3.83 1.64
−0.84 − 3.73i 0.22 3.83 1.64
−0.42 + 0.00i 1 0.42 14.96
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4.2.2  Longitudinal dynamics

4.2.3  Coupled dynamics

For the coupled dynamics, the model includes the effect of 
lateral states on the longitudinal states and vice versa. For 
instance, in the linear system realization given by (43, the 
forward acceleration u̇ is a function of the yaw rate r and, 
similarly, the sideways acceleration v̇ is a function of the 
forward velocity u

4.2.4  System poles

The calculated frequencies of dutch-roll (3.83 rad/s) and 
short period (7.92 rad/s) modes in Tables 10 and 11 and 
Fig.  12 indicate good consistency with the natural fre-
quency range of 1–10 rad/s estimated by Trondstad [36]. 
The identified roll mode is slightly faster than Trondstad’s 
estimate, while the identified poles related to the phugoid 
and spiral divergence modes have periods of 0.99 rad/s and 
0.42 rad/s, respectively, which are quite slow and were not 

(41)xlon =
[
u w q 𝜃

]⊤
, ulon =

[
𝛿e 𝛿t uw vw ww

]⊤

(42)
Alon =

⎡⎢⎢⎢⎣

−0.59 0.92 0.61 −9.82

−0.23 −6.31 4.42 0.19

0.78 −5.59 −5.92 0

0 0 1 0

⎤⎥⎥⎥⎦
, Blon =

⎡⎢⎢⎢⎣

4.26 19.43 0.59 0.01 −0.92

−58.88 0.25 0.23 0.02 6.31

−101.91 0 −0.78 0 5.59

0 0 0 0 0

⎤⎥⎥⎥⎦
Clon = I4×4.

(43)
x =

[
u v w p q r 𝜙 𝜃 𝜓

]⊤
, u =

[
𝛿e 𝛿a 𝛿t uw vw ww

]⊤

(44)
A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.59 −0.01 0.92 0 0.61 −6.26 0 −9.82 0

0.02 −0.68 0 −0.96 0 −11.52 9.82 −0.00 0

−0.23 −0.02 −6.31 6.26 4.42 0 0.08 0.19 0

0.24 −5.45 0.03 −16.81 0 1.80 0 0 0

0.78 0 −5.59 0 −5.92 0 0 0 0

0 0.53 0 −1.62 0 −2.10 0 0 0

03×3 I3×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4.26 0 19.43 0.59 0.01 −0.92

0 4.17 0 −0.02 0.68 0

−58.88 0 0.25 0.23 0.02 6.31

0 92.93 −5.76 −0.24 5.45 −0.03

−101.91 0 0 −0.78 0 5.59

0 1.64 −0.42 0 −0.53 0

03×3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C = I9×9.

well captured by the system identification maneuvers in 
Table 3. For this reason, the exact placement of the phugoid 
and spiral divergence poles is less certain compared to the 
poles of the other modes. Nonetheless, the magnitude and 
relative placement of the identified poles are similar to those 
identified for the same type of aircraft in [25, 26, 28].

Having a pole-zero map makes it easy to assess the stabil-
ity qualities of the system. The simplest stability analysis is 
performed by checking that all poles have negative real com-
ponents. A more sophisticated analysis can be performed by 
analyzing the aerodynamic stability coefficients. For lon-
gitudinal static stability, the main requirement is a restor-
ing pitching moment Cm𝛼 < 0 , while for lateral stability, the 

weathercock behavior is provided by a positive Cn� and a 
stable dihedral effect which causes the vehicle to roll away 
from the sideslip [41, Chap. 3.1 and 3.4] is given by a nega-
tive Cl� . Thus, according to the coefficients in Table 8 and 
the poles in Fig. 12, the identified model is statically stable.

4.2.5  Linearized model prediction results

Figures 13 and 14 compare the model prediction results of 
the nonlinear and linearized models with the flight data. The 

following coloring scheme is used to differentiate between 
the models: black—flight data, blue—nonlinear model, 
orange—coupled linear model, and green—decoupled lin-
ear model.

An overview of the time series data in Figs. 13 and 14 
shows that in most cases, the nonlinear model provides 
noticeably better predictions compared to the coupled and 
decoupled linear models, although the linear models are 
capable of replicating the measured flight data quite well. 

Table 11  Longitudinal poles at 18 m/s

Pole Damping Frequency 
(rad/s)

Period (s)

−6.19 + 4.93i 0.78 7.92 0.79
−6.19 − 4.93i 0.78 7.92 0.79
−0.22 + 0.97i 0.22 0.99 6.35
−0.22 − 0.97i 0.22 0.99 6.35
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Furthermore, the degradation of the linear model predictions 
is expected due to the change of the trim condition about 
which the model is linearized. A repeated re-linearization of 
the model, similar to what is done in an EKF, would improve 
the prediction performance of the models.

A particularly interesting result can be seen in the predic-
tion of the angle of attack by the decoupled linear model in 

Fig. 14. The linear model prediction for the angle of attack 
during a lateral doublet maneuver is completely wrong. 
Comparing this to the angle of attack predictions during a 
longitudinal maneuver in Fig. 13, we can conclude that the 
angle of attack dynamics is influenced by more than just the 
longitudinal states of the aircraft and that analyzing 6-DOF 
dynamics with two decoupled linear models is not a good 
idea in the case of Skywalker X8 UAV.

Fig. 12  System poles trimmed at [V
a
,�,�] = [17.9m∕s, 7.9◦, 1.2◦]

Fig. 13  Model predictions for a longitudinal 3-2-1-1 maneuver. RMSE is computed w.r.t. flight data in black
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5  Conclusion

This paper addresses the need for accurate models to 
enable simulation-based testing and rapid development of 
applications tailored to small fixed-wing UAVs. While sev-
eral small fixed-wing UAV models exist, as summarized 
in Table 2, few are parameterized in the stability frame, 
which is preferred in certain intra-disciplinary fields such 
as aircraft icing. Throughout this paper, we detailed the 
process of developing a simulation-ready nonlinear aero-
dynamic model of the Skywalker X8 platform, including 
its propulsion system and control surface actuators. We 
validated both the nonlinear and linearized models using 
flight data, demonstrating good agreement with the meas-
ured data during large dynamic maneuvers. However, we 
note that predictions near the steady state are less accurate 
due to estimation uncertainties and measurement noise. 
Finally, we presented a model assessment, including a 
pole-zero map and static stability properties of the identi-
fied model, facilitating easier comparison with other UAV 
modeling results.

This paper has examined several critical factors that influ-
ence the identification of small fixed-wing UAV models. 
Here, we revisit these key insights and challenges:

(1) The hybrid OEM: The nonlinear model presented in 
this article was identified using the hybrid OEM, where con-
structed force and moment coefficients are used as weighted 

outputs in addition to the directly measured data. In our 
study, the classical OEM did not work due to slow param-
eter convergence. Thus, the use of the force and moment 
coefficients as weighted outputs was critical to obtaining a 
good model.

(2) Wind susceptibility: Small, lightweight UAVs are 
highly sensitive to wind disturbances. Unlike larger air-
craft, which act as low-pass filters for wind disturbances, the 
smaller platforms are affected significantly by wind gusts, 
making the model identification process challenging. It is, 
therefore, important to ensure that the flight experiments 
are performed in calm wind conditions. Moreover, direct 
measurement of the air data should be considered.

(3) Drag model: Modeling the aerodynamic drag remains 
challenging due to the aero-propulsive coupling. A way to 
decouple these effects is by performing specific maneuvers, 
e.g., a gliding maneuver where the motor can be turned 
off. Alternatively, a coupled aero-propulsive model can be 
identified [24]. In this article, the drag model uncertainty 
is partially mitigated by identifying an accurate propulsion 
system model based on wind tunnel experiments. Moreover, 
when motor speed measurements are not available, using all 
the relevant propulsion system measurements, including the 
battery voltage, can help improve the drag model. Finally, a 
thorough data pre-processing and removal of outliers is nec-
essary when the measured data are noisy or are significantly 
affected by disturbances.

Fig. 14  Model predictions for a lateral 1-2-1 maneuver. RMSE is computed w.r.t. flight data in black
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(4) Modeling assumptions: The lateral–longitudinal 
dynamics are decoupled in the identified nonlinear model. 
The decoupling choice was based on stepwise regression 
results and a simplification assumption, the validity of 
which was affirmed based on the model prediction results. 
However, since the model prediction results are imperfect, 
some prediction errors may be attributed to the unmod-
elled coupling effects.

(5) Region of validity: Aircraft dynamics are highly 
nonlinear; this means that the accuracy of a model identi-
fied at a specific trim point will deteriorate quickly for 
states far away from the trim. This has to do with Reynolds 
number, turbulence, and flow separation. In this paper, a 
decrease in model accuracy can be observed for negative � 
values, where there are only a few data points and the mod-
eled lift and drag begin to deviate from the measurements.

5.1  Impact and future work

Our primary motivation for obtaining an aerodynamic 
model was to facilitate the development of GNC and 
fault monitoring algorithms essential for the operation 
of small fixed-wing UAVs in adverse weather conditions. 
We believe that our model provides a good representation 
of nominal Skywalker X8 UAV flight dynamics, thereby 
offering a solid foundation for the development of such 
algorithms.

In the specific case of UAV-icing, the obtained model 
will be integrated with icing-CFD results [12] and icing 
wind tunnel data [32, 33] to conduct realistic simulations 
of inadvertent icing encounters. The parameterization of 
the model in the stability frame will simplify the adapta-
tion of ice-related penalties to changes in drag and lift 
coefficients, thereby improving the accuracy and reliability 
of the results.

While the model is useful as presented, it has certain 
limitations. In particular, the model lacks the description 
of the stall angle, and as discussed in Sect. 4.2.4, the slow 
mode dynamics were not well excited during the system 
identification maneuvers, resulting in a larger uncertainty 
associated with the identified spiral divergence mode. 
Furthermore, the chosen model structure decouples the 
lateral and longitudinal dynamics, making it less suitable 
for studying the interaction between drag, side force, and 
sideslip angle, which may be relevant for certain GNC 
algorithms. These are some of the limitations that can be 
investigated in future modeling efforts.
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