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PREFACE & ACKNOWLEDGEMENT

From November 2024 until February 2025, I did an Internship at Deutsches zentrum für Luft
und Raumfahrt. DLR is the German aerospace research and technology center (or so-called
German Space Agency). In its core areas, DLR develops technologies for aeronautics and
space, energy and transport, as well as security and defense research. The location of DLR’s
institutions are presented in figure 1. This internship is part of my master program conducted
at University of Twente, Netherlands.

Figure 1: DLR Institutions

The primary objective of this internship project was to evaluate the feasibility and develop
a prototype for a fault-tolerant mechanism designed for deployment in a distributed system
intended for use in Space.
This topic aligned perfectly with my background, as it required both advanced software devel-

opment skills and a strong understanding of embedded systems. Throughout the internship, I
had the opportunity to apply and refine my existing skills while also gaining valuable experience
and knowledge about the unique challenges of the Space environment.
Beyond enhancing my technical expertise, this experience allowed me to develop profes-

sionally in a real-world work setting. Equally important was the growth of my communication
skills, which improved through interactions with colleagues and supervisors, as well as through
delivering presentations, conducting demos, and engaging in discussions and debates.
Therefore, I would like to extend my deepest gratitude to Dr. -Ing. Zain Alabedin Haj Ham-

madeh, my supervisor at DLR, for his invaluable support throughout my journey. His guidance
was instrumental not only during my internship but also in helping me navigate the many chal-
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lenges of settling into a new country. From assisting with paperwork and life logistics in Ger-
many to providing insightful mentorship in the workplace, he made my transition seamless and
enriching. Under his supervision, I had the opportunity to grow both technically and profession-
ally, gaining a deeper understanding of the company, its projects, and its structure. He taught
me how to present my ideas effectively, conduct stakeholder demos, and defend my work with
confidence. More than just a mentor in the workplace, Zain’s encouragement and advice have
had a lasting impact on my aspirations as a person and my vision for the future. For all of this,
I am truly grateful. I would also like to express my sincere appreciation to Dr. ir. Marco Ottavi
for his permission to be my academic supervisor and, more importantly, for his enthusiastic en-
couragement and invaluable guidance throughout my internship. His support extended beyond
technical aspects, providing me with essential advice and assistance that greatly contributed to
my growth. His insights and mentorship have been instrumental in shaping both my academic
and professional development, and I am deeply thankful for his support.
Additionally, I would like to thank my internship coordinator, as well as everyone from DLR

and the University of Twente, for their support in making this opportunity possible. Their efforts
and dedication have enabled me to embark on this invaluable experience, which has profoundly
influenced both my personal and professional journey. This experience has been transformative
and will continue to have a lasting impact on my life and career.
I would like to also acknowledge that while the content of the report is entirely original, some

phrases have been rephrased with the use of LLMs.
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SUMMARY

Distributed systems have proven highly valuable in terrestrial environments, offering scala-
bility and flexibility. Their application in Space, however, remains relatively recent due to the
unique challenges posed by cosmic radiation, communication latencies, and severe resource
constraints. Over the course of this discussion, a Fault-Tolerant Mechanism was proposed to
address the difficulties inherent in maintaining reliable distributed systems in orbit. By combin-
ing established strategies from ground-based distributed computing with specific adaptations
for Space, the FTM seeks to handle node and application failures effectively, ensuring that the
system avoids endless reconfiguration cycles caused by faulty software components.
A key motivation for introducing distributed architectures in Space lies in the need for higher

computational power, which space-graded hardware alone may not reliably provide due to its
slow certification process and limited performance capabilities. Employing a mix of Coordina-
tor Nodes and Worker Nodes can meet emerging demands for intensive onboard data pro-
cessing. Nonetheless, this arrangement requires effective fault management, especially since
non-space-graded nodes are more susceptible to radiation-induced malfunctions, single event
upsets, and thermal stress. The FTM design addresses these risks by recognizing the nature
of failures—whether they stem from hardware fragility, environmental factors, or application
bugs—and reacting accordingly.
To understand the necessity of such a mechanism, a problem scenario was outlined in which

repeated crashes of a faulty application trigger never-ending reconfiguration cycles, making
essential services like telemetry and telecommand unavailable at critical moments. In a tradi-
tional environment, these issues might be resolved via manual interventions or simpler failover
mechanisms, but in Space, communication delays and hardware constraints complicate timely
responses. The FTM seeks to provide an autonomous solution that eliminates faulty applica-
tions quickly and reshapes the system configuration to preserve overall functionality. Its design
leverages well-known techniques such as crash tables and issue weight tables. Crash tables
count how often each application causes node failures, while issue weight tables classify and
weight different failure types according to their impact. A confidence index is then computed to
identify if an application is genuinely faulty or if a hardware error is more likely to blame. Tasks
within an application are also considered individually so that only the truly problematic portions
are halted, reducing disruption to other critical services.
To demonstrate feasibility, the FTM was implemented and integrated with an existing dis-

tributed system framework designed for Space. The system relies on specialized services: a
System Monitor tracks node health, a TMR Service uses triple modular redundancy to counter
soft errors, a Periodic Checkpoint Service stores snapshots for rollback, the System Reconfigu-
ration service helps with changing the system’s configuration, an Application Error Alert Service
report any known errors to the system, a System Update Service that handles updates to any
part of the system and a Telemetry/Telecommand Service allows ground operators to manage
the spacecraft remotely. The FTM interacts with these services to coordinate reconfiguration
requests, gather relevant logs, and maintain data essential for diagnosing issues. A dynamic
configuration module reorganizes the cluster based on the coordinator node’s instructions, while
a data collection module periodically retrieves logs from each node so that valuable evidence
is not lost in the event of a crash.
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Validation efforts involved extensive unit and integration tests. Unit tests confirmed the in-
ternal logic of the FTM: crash tables, the confidence index, log analysis, and dynamic config-
uration updates. Integration tests simultaneously launched multiple processes to emulate the
spacecraft’s nodes, verifying that the FTM could handle scenarios where only specific tasks of
an application fail, multiple tasks fail, or every application fails. These tests indicated that the
FTM’s simplified approach is sufficient to detect and isolate faulty applications under controlled
conditions. However, the solution’s performance in real missions—both in terms of resource
consumption and timing—remains unquantified. Understanding how quickly the system recov-
ers from failures, or how its resource usage scales with larger deployments, requires deeper
analysis and real mission data.
Discussions highlighted that, while Space introduces additional constraints such as limited

power and infrequent maintenance, the fundamental ideas of replication, checkpointing, con-
sensus protocols, and thorough failure detection are readily adaptable from terrestrial distributed
systems. What changes is the need to respond autonomously and efficiently under extreme
conditions and with minimal human intervention. The internship objectives—gaining an under-
standing of fault detection and recovery in Space, familiarizing oneself with onboard software
architectures, building and integrating an FTM, and validating its correctness—were all met.
The feasibility of the concept is established, but future steps would involve collaborating with
mission stakeholders to define performance requirements more precisely, carrying out detailed
resource and timing analyses, and refining the mechanisms for even better efficiency. Addi-
tional improvements might include optimizing table look-ups or merging the Data Collection
component with existing system logging to reduce redundancy.
In conclusion, the FTM shows promise in preventing system-wide breakdowns caused by

recurring application faults in a space-deployed distributed system. Although the mechanism’s
effectiveness was demonstrated through unit and integration tests, the next phase of research
should delve into performance measurements, mission-specific constraints, and stakeholder
requirements. By addressing these areas, the proposed FTM can be refined into a robust,
mission-ready solution capable of handling the rigors of orbital and deep-Space operations.
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1 INTRODUCTION

To fully comprehend the necessity and application of FTMs, particularly within the context of
Space systems, it is imperative to first establish a fundamental understanding of distributed sys-
tems and the environments in which they operate. Therefore, this chapter provides an overview
of the foundational concepts, objectives, and a concise summary of existing FTMs documented
in the literature.
The subsequent chapters systematically explore the problem that the FTM seeks to address

(§2). The next two chapters present the proposed solution (§3) and analyze the correspond-
ing results (§4). This is followed by a discussion (§5) that juxtaposes our approach against
existing methodologies in the literature while revisiting the primary objectives of this work. Fi-
nally, the report culminates in a concluding chapter that summarizes key insights and provides
recommendations for future advancements (§6).

1.1 Background

In essence, a distributed system comprises a collection of independent computing entities that
communicate over a network to achieve a shared objective. Despite their physical separation,
these entities function in a coordinated manner, presenting themselves to users as a unified
system.
In our specific case, the distributed system under study is intended for deployment aboard

spacecraft. Consequently, it must be designed to withstand the unique challenges posed by the
Space environment.

1.1.1 What is a Distributed System?

To better contextualize our study, this report refers to the classification provided in the textbook
used for the Distributed Systems course [2]. Our distributed system falls within the category of
cluster computing systems. A conventional cluster computing system is illustrated in Figure 1.1.
The primary distinctions between a traditional cluster and the system in our study lie in the fact
that our system is hardware-agnostic and its nodes are not restricted to executing a single
application.
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Figure 1.1: Traditional Cluster Computing System (adapted from [1] and sourced from [2])

Several key characteristics define distributed systems. Given that multiple components must
operate concurrently, it is essential to implement mechanisms that effectively manage parallel
operations. Additionally, due to the absence of a global clock, nodes rely on message passing
for synchronization [3]. Furthermore, a distributed system must be designed to gracefully han-
dle partial failures, ensuring that localized disruptions (such as individual node failures) do not
compromise overall system functionality [4].
The principal advantages of distributed systems include their high reliability—an indispens-

able attribute for Space applications, as elaborated in Section §1.1.2. Additionally, distributed
systems inherently offer excellent scalability by enabling the integration of additional nodes [5].
However, these benefits come at a cost. Notable challenges include the increased complexity
associated with coordinating independent components, maintaining data consistency across
nodes, and addressing security concerns stemming from the critical communication dependen-
cies between system elements [3, 4, 5].

1.1.2 Challenges of Space

Space presents a unique set of challenges for distributed systems due to extreme environ-
mental conditions, limited available resources, and the vast distances separating deployed sys-
tems from Ground Station Control.
From an environmental perspective, spacecraft are continuously exposed to high levels of

cosmic and solar radiation. On Earth, computers and electronic equipment benefit from the
protective shielding of the atmosphere and magnetic field, but in Space, these protective layers
are absent. Consequently, radiation-induced disruptions such as SEUs [6] can lead to system
failures or even cause permanent damage to electronic components [7]. Another significant
challenge is the extreme temperature variations that occur due to the lack of an atmosphere. A
spacecraft can simultaneously experience extreme heat on one side while facing intense cold
on the other. Maintaining optimal operating conditions for computing equipment under such
conditions presents a major engineering challenge.
Resource limitations in Space further complicate system operations, with power availability

being one of the most critical constraints. Currently, spacecraft rely on solar panels for energy
generation. However, for satellites in Earth orbit, there are periods when they pass through
Earth’s shadow, rendering solar energy temporarily unavailable. Furthermore, due to cost,
weight, and Space constraints imposed by both launch providers and spacecraft designers,
increasing battery capacity or adding larger solar panels is not always feasible. This makes
energy efficiency a critical factor in system design [8].
Additionally, the immense distances between spacecraft and Ground Station Control result in
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high communication latency and intermittent connectivity. As a result, spacecraft must be ca-
pable of operating with a significant degree of autonomy, handling faults independently without
relying on immediate human intervention.

1.2 FTM in Literature

FTMs are not a novel concept, particularly in the domain of distributed systems. A robust FTM
is essential for ensuring the stability and reliability of a DS, allowing it to maintain continuous
operation despite failures.

1.2.1 General Approaches to Fault-Tolerant Mechanisms

Various strategies are employed in fault-tolerant mechanisms for general distributed systems.
The most significant among them include:

• Replication: Bymaintainingmultiple copies of data or services across different nodes, the
system can continue to function even if one node fails. Replication is implemented using
two primary approaches: ”active” replication, in which identical services run on multiple
nodes and process the same requests simultaneously, and ”passive” replication, where
backup nodes are periodically updated [9].

• Checkpointing and Rollback Recovery: The system periodically saves its operational
state so that in the event of a failure, it can revert to the last saved state, therebyminimizing
data loss and system downtime [9].

• Consensus Protocols: These protocols are crucial for maintaining data consistency
across distributed nodes. They ensure that all nodes reach agreement on system-wide
decisions despite failures [10].

• Failure Detection: A fault-tolerant system cannot function effectively without reliable fault
detection mechanisms. It is essential for the system to identify node or process failures
using techniques such as heartbeat monitoring and timeout-based failure detection [7].

1.2.2 Distributed Systems in the Context of Space

Due to the relative scarcity of distributed systems deployed in Space, there is limited literature
on their design and implementation. However, in addition to the general fault-tolerant mech-
anisms discussed in Section §1.2.1, designing an FTM for space-based distributed systems
necessitates special considerations. These include mitigating the effects of radiation-induced
faults, addressing the challenges of limited communication and maintenance procedures [7],
and optimizing for resource constraints [11].

1.3 Objectives and Motivation

With a clear understanding of the context, the assessment of the necessity regarding the FTM
designed and implemented in this study can be done. A more comprehensive analysis of the
problem is presented in Chapter §2.
The extreme conditions of Space introduce multiple potential failure points for computational

nodes. Hardware malfunctions may arise due to prolonged exposure to high radiation levels,
surpassing the TID threshold, or extreme thermal variations. Additionally, SEUs can disrupt
node functionality, often necessitating a system reboot. Apart from these hardware-related
failures, software anomalies and application crashes further exacerbate system instability.
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Given these challenges, the primary objective of the FTM is to effectively distinguish between
failures caused by environmental conditions and those originating from faulty applications. Once
an application is identified as malfunctioning, the mechanism must ensure its timely termination
to prevent cascading system failures and maintain overall stability.
To achieve this objective, the following requirements (§1.3.1, §1.3.2, §1.3.3) have been formu-

lated. Since this study does not focus on the broader domain of systems engineering, only high-
level implementation aspects have been considered to facilitate an efficient workflow. While
the outlined requirements address key concerns, additional specifications could be introduced
depending on the desired level of granularity. Furthermore, fundamental concepts such as ser-
vices, reconfiguration mechanisms, and other critical system components, which have yet to be
discussed, will be explored in greater detail in Chapter §2.
The general objectives of this internship include:

• Gaining an understanding of Fault Detection, Isolation, and Recovery in Space applica-
tions.

• Learning about the architecture of distributed onboard software.

• Developing and implementing the mitigation mechanism using C++.

• Integrating the mechanism with the existing reconfiguration framework.

• Testing the implementation under various failure scenarios.

1.3.1 Business Requirements

The business requirements outlined in Table 1.1 define the fundamental needs of the FTM
within the study case’s distributed system.

Business Requirements
ID Description

BR_REQ-FTM001 The service shall estimate the APP that is crashing nodes
BR_REQ-FTM002 The service must detect the reason of the nodes’ crash

BR_REQ-FTM003 The service shall prevent the system from chain or repeated
reconfiguration

BR_REQ-FTM004 The service shall collect data about the APP’s fault
BR_REQ-FTM005 The service must send the collected data to the Telemetry Service

Table 1.1: Business Requirements

1.3.2 Software Requirements

The more technical requirements, outlined in Tables 1.3 and 1.2, are detailed in this section.
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Non-Functional Requirements

Software Requiremetns
ID Description

SW_NFKT_REQ-FTM001 Collected data shall not exceed the maximum allocated
storage space for Telemetry

SW_NFKT_REQ-FTM002 FTM shall be implemented as a separate service alongside
the DS’ existing services

SW_NFKT_REQ-FTM003 FTM settings shall be stored in a file delivered with the system
configuration

SW_NFKT_REQ-FTM004 FTM settings shall take into consideration the estimated
SEU rate of the mission orbit

Table 1.2: Non-functional software requirements

Functional Requirements

Software Requiremetns
ID Description

SW_FKT_REQ-FTM001 The service shall be able to be enabled / disabled by GS
operators

SW_FKT_REQ-FTM002 APP developers shall be able to edit the FTM settings
SW_FKT_REQ-FTM003 FTM shall analyze the behaviour of APPs

SW_FKT_REQ-FTM004 The FTM shall be able to access the APP logs and the
system logs

Table 1.3: Functional software requirements

1.3.3 Safety/Security/Legal Requirements

Given the level of control that the FTM has over the system, there are critical safety, security,
and legal requirements (Table 1.4) that must be considered.

Safety / Security / Legal Requirements
ID Description

SSL_REQ-FTM001 The FTM shall contain a self-disable mechanism

SSL_REQ-FTM002 When an APP displays security related faults, the FTM shall
consider it a faulty APP

SSL_REQ-FTM003 All legal requirements that apply to the study case’s distributed
system shall also be applied to the FTM

Table 1.4: Safety, Security and Legal Requirements
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2 PROBLEM ANALYSIS

While the context of distributed systems and space environments has already been intro-
duced, it is crucial to delve deeper into the necessity of both. space-graded hardware is excep-
tionally costly, and somewhat counterintuitively, when it comes to computing hardware, it often
exhibits lower performance compared to its terrestrial counterparts. Although new hardware
continues to be space-graded, the process is highly intricate and time-consuming due to the
extensive testing required to validate its reliability under extreme conditions.
To bridge the gap between the need for high-performance computing in Space and the slow

progress of space-grade hardware certification, distributed systems present a viable solution.
The distributed system DS in this study case employs a coordinator node as the primary co-
ordinator for the cluster. The CN consists of space-graded computing hardware, ensuring its
resilience in the harsh Space environment. The remaining nodes in the system, referred to as
worker nodes, are not space-graded but are designed to withstand the extreme temperatures
encountered in Space. These WNs may not have undergone the rigorous Space qualification
tests, or such tests may not have been conducted at all. Despite this, their significantly higher
computational performance and substantially lower costs make them an attractive choice.
The system is inherently scalable, allowing for the incorporation of additional CNs to enhance

redundancy andmultipleWNs to boost computational capabilities. Spacecraft are typically engi-
neered to ensure that all onboard hardware can endure Space conditions for the duration of the
mission. However, in this scenario, the primary vulnerability lies within the WNs. Nevertheless,
as this is a distributed system, the failure of an individual node does not compromise overall
functionality. The system can continue operating and delivering essential services, albeit with
one fewer node.
As previously stated, the Space environment presents extreme challenges. Conventional

distributed system solutions, while highly effective in terrestrial applications, are insufficient to
guarantee the same level of reliability in space-based deployments. The unique adversities of
Space necessitate enhanced fault tolerance and resilience strategies tailored specifically for
these harsh conditions.
Once a spacecraft is deployed, maintenance opportunities are virtually nonexistent. While

in-orbit servicing has been demonstrated in select missions, it remains exceedingly rare, pro-
hibitively expensive, and fraught with risks. Therefore, when applied to unmanned space-
craft and deep-space missions, this distributed system must be engineered to function au-
tonomously, ensuring continuous operation and self-recovery capabilities. Given the impos-
sibility of routine maintenance, the system must achieve an exceptionally high level of reliabil-
ity, enabling it to withstand the rigors of Space and sustain mission-critical operations without
external intervention.

2.1 Study’s Distributed System

To fully comprehend the role of the Fault-Tolerant Mechanism within this Distributed System,
it is important to highlight some of the key functionalities that the DS already implements.
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2.1.1 System Monitor Service

This service employs a heartbeat mechanism to continuously verify the operational status
of nodes. In practice, the CN periodically sends heartbeat requests to the WNs. If an WN
fails to respond after three consecutive requests, a heartbeat failure is recorded, triggering a
system-wide alert.
To prevent chaotic or unpredictable system behavior—the system runningwithout coordination—

the DS designates two WNs as observer nodes (Observer 1 and Observer 2). These observer
nodes are responsible for monitoring the health of the CN. If both the CN and at least one ob-
server node fail simultaneously, the system enters a predefined ”Safe Mode.” In this mode, all
non-essential operations cease, and the system awaits further intervention from Ground Station
operators. Operators can interact with the Telemetry Service (§2.1.7) to diagnose and manually
resolve the issue.

2.1.2 TMR Service

The TMR Service employs a well-established fault-tolerance technique known as Triple Mod-
ular Redundancy. This technique is widely used to mitigate the effects of soft errors in computa-
tional tasks. Essentially, a task is executed three times—either concurrently or sequentially—on
the same hardware. The system then compares the results and selects the majority outcome
as the correct one, ensuring both data integrity and consistency.
If a majority consensus cannot be reached, the system generates an alert, signaling a poten-

tial anomaly. This mechanism is particularly useful in detecting SEUs, as unexplained discrep-
ancies in computation results may indicate radiation-induced bit flips. Additionally, the TMR
Service enhances overall system reliability by validating task outputs and maintaining data con-
sistency across nodes.

2.1.3 System Reconfiguration Service

The System Reconfiguration Service ensures system adaptability in the event of node fail-
ure by dynamically adjusting the system’s operational configuration. For instance, if the DS is
initially configured as a three-node cluster and one node becomes unresponsive, the system
seamlessly transitions to a two-node cluster. In this process, all tasks previously assigned to
the failed node are redistributed among the remaining nodes, allowing uninterrupted operation
with minimal downtime.
By implementing this service, the DSmaintains a high level of resilience, ensuring that mission-

critical processes continue even in the presence of hardware failures. This capability is particu-
larly vital for autonomous Space missions, where in-orbit maintenance and intervention oppor-
tunities are extremely limited.

2.1.4 Application Error Alert Service

The distributed system relies on this service to systematically register and report any errors
that occur within its various applications. These errors may originate from the TMR Service,
which is designed to enhance fault tolerance, or they may stem from internal application issues
that are either predefined or already recognized by the system. In such cases, the system is
equipped with a dedicated error-handling routine to efficiently manage and mitigate these faults,
ensuring continued stability and reliability in operation.
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2.1.5 Periodic Checkpoint Service

This service is designed to periodically capture and record the current states of individual
nodes and applications to safeguard against potential failures. These recorded states, known
as checkpoints, serve as critical recovery points that enable the system to restore a node to its
last known state in the event of an unexpected failure or system crash. By maintaining these
checkpoints at regular intervals, the service ensures minimal data loss and facilitates recovery,
thereby enhancing the overall reliability, resilience, and fault tolerance of the distributed system.

2.1.6 System Update Service

The SUS plays a crucial role in facilitating modifications and enhancements to the distributed
system by managing and deploying updates efficiently. These updates can encompass a wide
range of system components, including configuration files, operational settings, and even exe-
cutable binaries essential for system functionality.
All updates within the system are strictly controlled and can only be issued by the Ground

Station, ensuring that changes are authorized and properly managed. Before an update is
executed, it must first be processed through the TM/TC Service, which acts as a communication
gateway to verify, transmit, and start the update process.
Once an update is applied, the system automatically generates a detailed report indicating

the outcome of the update process, whether it was successfully implemented or encountered
an issue. This report is then transmitted back to the TM/TC Service to be forwarded to the GS.
In the event of an update failure or system instability following the update, the service initiates

an automatic rollback mechanism. This mechanism ensures that any unintended or detrimen-
tal changes are reverted, restoring the system to its last known stable and functional state. By
implementing this structured update process, the SUS enhances the reliability, security, and
maintainability of the distributed system while minimizing disruptions and potential risks asso-
ciated with system modifications.

2.1.7 Telemetry and Telecommand Service

The Telemetry and Telecommand Service serves as the primary communication link between
the spacecraft and theGround Station, enabling seamless data exchange and system oversight.
Telemetry refers to the transmission of diagnostic and operational data from the spacecraft

to the Ground Station, providing operators with real-time insights into system status and health
metrics. Telecommand, on the other hand, involves commands issued by the Ground Station
to the spacecraft, facilitating remote system control and adjustments.
This service plays a pivotal role in fault reporting, allowing the DS to relay information about

application malfunctions or anomalies to Ground Station operators. Additionally, it enables
remote system recovery procedures, granting operators the ability to restore functionality by
executing corrective commands from Earth. As such, the Telemetry and Telecommand Service
is an indispensable component in maintaining mission stability and operational integrity.

2.2 The Problem

The issue addressed in this study arises under the following scenario, as illustrated in Figures
2.1, 2.2, and 2.3.
The system consists of three nodes: one Coordinator Node and two Worker Nodes. The

WNs are responsible for executing three applications: APP_A, which runs two tasks on a single
node; APP_B, with two tasks distributed across both WNs; and APP_C, which consists of a
single task. In its nominal configuration, the system operates as depicted in Figure 2.1.
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Figure 2.1: Nominal Configuration

When WN2 fails, the system transitions to Configuration 1, in which all applications are mi-
grated to WN1 (Figure 2.2).

Figure 2.2: Configuration 1

Conversely, if WN1 fails, the system switches to Configuration 2, moving all applications to
WN2 (Figure 2.3).
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Figure 2.3: Configuration 2

The core problem arises when a faulty application (for instance, APP_C) triggers a node
failure. This leads to a continuous reconfiguration cycle between Configuration 1 (Figure 2.2)
and Configuration 2 (Figure 2.3).
When WN2 crashes due to APP_C, the application is migrated to WN1. The system then

power-cycles the failed node, bringing it back online. However, since APP_C exhibits the same
behavior irrespective of the node it is running on, WN1 is also likely to crash when executing it.
This results in two problematic scenarios:
If WN1 crashes before WN2 has fully restarted, then as soon as WN2 is available, all appli-

cations are transferred back, restarting the failure loop. The system enters an indefinite recon-
figuration cycle between Configuration 1 and Configuration 2.
If WN1 remains operational until WN2 comes back online, the system briefly restores the

nominal configuration (Figure 2.1). However, once APP_C is executed on WN2, it fails again,
triggering a reconfiguration cycle between the nominal configuration and Configuration 1.
In both cases, the system remains stuck in an unstable reconfiguration loop, which severely

impacts mission-critical services such as telemetry and telecommands. This is particularly dan-
gerous during contact windows with the Ground Station, where communication outages can
lead to mission failure.
On Earth, where hardware failures are less frequent and maintenance or analysis can be

conducted with ease, preventing such failure cycles is straightforward, with well-documented
methodologies available. However, in the Space environment, where failures are less pre-
dictable, repairs are infeasible, and literature on fault mitigation remains scarce, the problem
becomes significantly more complex.
The system must therefore be capable of maintaining its core services autonomously and

distinguishing between node failures and application-induced crashes. Furthermore, given the
constrained resources in Space, any solution must be lightweight to ensure minimal interference
with nominal operations.

Identified Error Types

Through analysis, four primary categories of errors have been identified:
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1. Internal Application Error: Defined by the application developer and recognized by the
system. This means that the cause, severity, and impact of the error on the application’s
tasks and the system as a whole are known and pre-documented.

2. Unidentified Error: Occurs when a node suddenly crashes without a predefined error
signature. These errors are detected and classified by the Health Service as unknown
failures requiring further investigation.

3. Startup Error: Arises when a node undergoes reconfiguration, but its last known state
was faulty. Consequently, as soon as the node restarts, it crashes again, leading to an
immediate failure cycle.

4. Bad Update Error: A distinct category of failure that occurs immediately after an update.
This classification is crucial as it allows the system to preemptively disable an application
suspected of causing failures post-update.
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3 APPROACH AND METHOD

The overarching principle guiding this approach is the well-known ”Keep It Simple, Stupid”
philosophy. This methodology prioritizes simplicity to enhance code maintainability, facilitate
ease of understanding, and streamline the debugging process. These considerations are par-
ticularly critical because this FTM serves as a proof of concept rather than a production-ready
solution. As such, the primary focus is on demonstrating the viability of the approach rather
than implementing fully optimized, industrial-grade software.

3.1 Assumptions

To ensure that the design of the FTM remains both straightforward and practical, several
key assumptions have been established, as outlined in Table 3.1. These assumptions help
define the constraints and expectations of the system, ensuring that its implementation remains
effective within the intended scope.

APP Developers
are tasked with configuring the FTM using the distributed system’s
configuration file
agree that the FTM is able to read the log files of the APP

APPS

are using the distributed system’s logging system
have the at least the same quality as expected from published ground
applications. For example, the ones published on phones’ AppStores
are composed of one or more Tasks running on one or more Nodes
do not need FPGA reconfigurations

Table 3.1: Assumptions

Since some boards deployed in space—particularly Worker Nodes—feature onboard FPGAs,
it is important to clarify that FPGA reconfigurations are not supported by the . The reason for
this exclusion is that detecting and responding to application failures related to FTM miscon-
figurations would introduce an additional layer of complexity that falls beyond the scope of this
internship.

3.2 Constraints

Two primary constraints have significantly influenced the design of the FTM.
The first constraint pertains to log file storage. Each application’s log file is stored locally

on the node where it is executed. Consequently, if a node crashes, the Coordinator Node is
unable to access those files. To address this limitation, a specialized data collectionmechanism,
described in Section §3.3.2, has been implemented.
The second constraint arises from the lack of centralized data access for the nodes. As

a result, when the system transitions to a dynamic configuration (see Section §3.3.2), each
node must independently reconstruct its state, as the configuration cannot be transmitted from
a central source.
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3.3 FTM Design

To ensureminimal system overhead and efficient resource utilization, the FTMemploys lightweight
yet effective mechanisms. This service is executed on the coordinator node, as it has overar-
ching control over the entire cluster and is responsible for system-wide coordination.
The FTM operates primarily in an event-driven manner, with the exception of the Data Col-

lection module (Section 3.3.2), which is periodically executed.

3.3.1 Service Dependencies

As discussed in Chapter §1, a distributed system comprises various mechanisms that facili-
tate continuous operation and minimize data loss. Figure 3.1 illustrates the interdependencies
between the FTM service and the other system services.

Figure 3.1: System Services

The FTM Service communicates with the Reconfiguration Service to request dynamic con-
figuration changes and interacts with the Telemetry/Telecommand Service for status reporting.
The System Monitor Service reports node health check failures, providing critical input for

FTM decision-making. Additionally, the System Alert Service notifies the system of known ap-
plication failures or issues detected by the Voter Service. The Checkpointing Service, which
implements a fault recovery mechanism, transmits its recorded data to the FTM for further anal-
ysis. Lastly, the Update Service informs the FTM about recent software updates and modified
files, ensuring that the system is aware of changes that may impact its stability and performance.

3.3.2 FTM Modules

The Fault-Tolerant Mechanism is primarily divided into two key modules: the FTM Analy-
sis and Decision Module, responsible for detecting faults and determining the appropriate re-
sponse, and the Activity and Data Collection Module, which executes actions based on the logic
established by the first module.

FTM Analysis and Decision Module

The primary function of this module is to detect application failures. At its core, failure detec-
tion relies on the confidence index, which is computed based on two key inputs:

1. Crash Table: This table (3.2) tracks the frequency with which each application crashes
a specific node. The crash table is populated with data provided by the System Monitor
Service.
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2. Issue Weight Table: This table (3.3) categorizes system issues and assigns a severity
weight to each type. Based on this table and additional data from the SystemAlert Service,
the confidence index is dynamically adjusted.

Crash Table. This component is relatively straightforward. The coordinator monitors which
applications crash on which nodes. Since applications operate in identical environments across
different nodes, tracking both the frequency and location of crashes is crucial. This distinction is
necessary because if an application crashes only on a specific node, it may indicate a hardware-
related issue rather than a faulty application.
When an application exceeds the predefined crash threshold (configured in the system set-

tings), the FTM automatically halts the faulty application to prevent further disruptions.
Since Single Event Upsets are an expected phenomenon, there is a risk of erroneously in-

creasing crash table counters without actual application failures. To mitigate this, the crash table
is periodically reset based on the anticipated SEU rate. This rate is determined using known
data sources and is dynamically updated according to the spacecraft’s current orbital position.
However, relying solely on crash table data is insufficient to precisely identify the faulty appli-

cation. Consider the scenario illustrated in Figure 2.1, where APP_B is running on both WN1
andWN2. If APP_C is faulty and responsible for system crashes, then both APP_B and APP_C
will be halted, as they share the same node. In such cases, there is no direct way to pinpoint
the actual faulty application.
To address this challenge, the system refines fault identification by analyzing crash patterns.

If an application on a crashed node has also caused failures on other nodes, the system may
narrow the investigation from the application level to the task level. For example, in the same
scenario, if APP_B did not cause crashes on WN1, the fault is likely between APP_B/Task2
and APP_C. This increases the probability that APP_C is the root cause rather than an isolated
issue within APP_B. The system can then halt one application and monitor for further crashes.
If another crash occurs, it can revert the decision and apply alternative detection methods.
Another method to refine fault identification involves log analysis. This includes both appli-

cation logs and system logs. By cross-referencing these logs—mimicking the approach of a
ground operator—the system can identify which application executed the last operation before
the crash. This same technique is also used to populate the Issue Weight Table, which catego-
rizes the severity and impact of detected failures.

Node / APP APP_A APP_B APP_C ...
WN1 0 3 2
WN2 N/A 0 2
...

Table 3.2: Crash Table

Issue Weight Table. This table categorizes different types of system issues and assigns
a weight to each, reflecting its severity and overall impact on system stability. The sum of
all assigned weights must equal 1, ensuring a balanced and systematic approach to fault as-
sessment. The primary function of the Issue Weight Table is to fine-tune the confidence index,
allowing the system to halt an application either sooner or later than the predefined crash limit,
depending on the nature and severity of the detected errors.
For example, configuration errors are generally more critical than user-defined errors. This

is because configuration issues cannot be resolved without direct intervention from the Ground
Station, meaning that regardless of how many times a node or application is restarted, the fault
will persist. In contrast, user-defined errors may be transient or recoverable without requiring
external assistance. By incorporating this weighting system, the FTM ensures a more intelli-
gent and adaptive response to different failure scenarios, prioritizing intervention based on the
criticality of the detected issue.
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Issues Weight Rationale
Runtime Errors TBD Can compromise the distributed system’s operation

I/O Errors TBD Can cause conflicts between APPs regarding resource
usage.

Configuration Errors TBD Configurations are critical for the correct operation of
the system.

User-defined Errors custom In case the developers are aware of critical
errors that may cayse problems.

... ... ...

Table 3.3: Issue Weight Table

Confidence Index. As previously mentioned, the confidence index serves as a key deter-
minant in assessing whether an application (APP) is faulty. This index is calculated using the
formula 3.3, incorporating relevant system metrics to provide an objective evaluation of an ap-
plication’s stability and reliability.
The confidence index is computed by summing the Crash Table score and the Weight Table

score. The Crash Table has a maximum value of 1 (when the number of crashes hits the limit of
maximum allowed crashes) 3.2. The Issue Weight Table score is the sum of all the issue scores
3.1. An issue score is the multiplication between its weight and how many times did it occur.
The confidence index threshold is explicitly defined within the Fault-Tolerant Mechanism con-

figuration. By adjusting this threshold, the system can fine-tune its sensitivity to potential fail-
ures, ensuring that erroneous applications are identified and addressed promptly while minimiz-
ing false positives. This adaptability allows the FTM to maintain optimal system performance,
balancing fault detection with operational continuity.

Wt =

IssueNo∑
i=1

OccNo ∗W (3.1)

Ct =
CrashNo.

MaxCrashNo.
(3.2)

conf.index = Ct +Wt (3.3)

where:

Wt is the Issue Weight Table Score,
IssueNo is the number of issues in the Issue Weight Table,
OccNo is the number of times i-th issue occurred for the APP/Task under analysis ,

W the weight described in the Issue Weight table,
Ct is the Crash Table Score,

MaxCrashNo. is the crash threshold defined in FTM settings,
conf.index is the confidence index,

Dependency Analysis. Building on the issue outlined in the Issue Weight Table section,
there remains a possibility that only a specific task within an application is faulty rather than
the entire APP. Consider an Earth Observation APP composed of two distinct tasks: Image
Acquisition and Image Compression. To ensure mission-critical data is not lost, the Image Ac-
quisition task is of paramount importance, whereas the Image Compression task is not essential
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for immediate system functionality. By analyzing the dependencies between these tasks, the
system can intelligently disable only the faulty Image Compression task while keeping the Image
Acquisition task operational, thereby preserving mission integrity.
Error Timing. The FTM can be further enhanced to proactively mitigate failures by analyzing

the timing of error occurrences. For instance, if a configuration error arises immediately follow-
ing a software update, it may indicate a faulty update. By incorporating temporal analysis into
fault detection, the system can identify patterns and act preemptively to prevent further failures.
APP Isolation. When an APP reaches the threshold confidence index and is suspected to be

faulty, but may be a false positive, the system can take an additional step to validate its behavior.
If sufficient hardware resources are available, the APP can be isolated on a dedicated node for
monitoring. If the APP does not crash the node as it previously did, it can be classified as a
false positive. The system can then proceed to evaluate the next suspected APP candidate,
refining fault detection accuracy.

FTM Dynamic Configuration and Data Collection Module

Beyond fault detection and analysis, the FTM performs two additional critical functions: Dy-
namic Configuration, which governs the creation and dissemination of updated system config-
urations, and Data Collection, which periodically retrieves essential system data from active
nodes.
Dynamic Configuration. When an APP is deemed faulty, the systemmust exclude it from its

execution schedule. However, in the context of the study case’s Distributed System, exclusion
is handled through adaptive configuration adjustments. Once the coordinator node generates
a revised configuration, it transmits this update to all available nodes. Each node then indepen-
dently applies the new configuration. Once all nodes confirm successful implementation, the
coordinator initiates the transition to the updated configuration, ensuring seamless operation.
Data Collection. As previously mentioned, once a node crashes, the system loses access to

its logs and checkpoints. To mitigate this issue, the FTM periodically collects data from all nodes
and securely stores it on the coordinator node. This proactive data collection enables post-crash
analysis and potential recovery actions. To optimize storage utilization, a predefined allocation
is reserved for this purpose, with the storage limit configurable within the FTM settings.

3.3.3 FTM settings

Variable Type Rationale
ftmEnabled Boolean Enables / Disables the FTM System Service
maxCrash uint_8 Defines the maximum number of allowed APP crashes

confIndexThr uint_8 Specifies the confidence index’es threshold

maxDynConfig uint_8
Helps the FTM to shut itself off in case too many different
dynamic configurations are made. If this limit is reached,
help from Ground is requested.

Table 3.4: FTM settings Variables

3.4 Measurement Setup

The primary metric for evaluating the effectiveness of this project is its ability to prevent nodes
from entering a reconfiguration cycle. Therefore, the validation process involves a comprehen-
sive set of unit and integration tests to ensure that both the system and the FTM function as
intended. A detailed breakdown of these tests is provided in the subsequent section.
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For unit testing, Google Test (gtest) was employed. Google Test is a widely-used C++ testing
framework designed for writing and executing unit tests efficiently. It offers a comprehensive
set of assertions, test fixtures, and test runners to validate code behavior. Additionally, gtest
supports automatic test discovery, parameterized testing, and seamless integration with Google
Mock for creating and managing mock objects, which helps simulate complex dependencies
within the system.
The integration testing process posed additional challenges due to the nature of inter-service

communication. The system’s services interact using socket-based communication, making
conventional gtest-based approaches less suitable, as proper testing requires launching and
managing multiple processes simultaneously. When processes are executed independently,
direct access to internal variables and objects is lost, making validation more complex.
To address this limitation, a hybrid approach was adopted. The gtest framework was utilized

to execute tests in a manner consistent with the unit testing methodology. However, instead
of relying on direct object access, the validation of inter-service communication was performed
using a log-based analysis system. A dedicated text parser was implemented to analyze the
logs generated during execution, enabling verification of expected behaviors and ensuring that
service interactions function correctly under real-world operational conditions.
This approach ensures that the system’s fault-tolerant capabilities are thoroughly tested, pro-

viding confidence that the implemented mechanisms effectively prevent reconfiguration cycles
and maintain system stability.
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4 RESULTS

As previously stated, the primary metric for evaluating the effectiveness of the FTM Service
is its ability to prevent the scenario described in Section §2.2. To ensure thorough validation,
an extensive suite of tests has been designed to analyze multiple scenarios in detail.

4.1 General Approach

The FTM operates through three core activities:

1. Detection: When a fault event occurs, the system must quickly and accurately determine
whether an application is faulty.

2. Action: Once an application is confirmed to be faulty, a dynamic configuration is created
to exclude the APP from execution. Additionally, logs and checkpoints from each APP
and node are periodically collected.

3. Reporting: After the system transitions into a dynamic configuration, all relevant logs and
checkpoints are forwarded to the Telemetry Service for transmission to the Ground Station
for further analysis.

During the detection phase, four possible outcomes must be tested to ensure the robustness
of the confidence index and the accuracy of the system’s ability to distinguish between faults.
The test scenarios aim to challenge the detection mechanism and identify any weaknesses in
handling SEUs or misclassifications.

• True Positive: The APP is genuinely faulty and correctly identified as such.

• False Positive: The APP is not faulty, yet the confidence index is close to the threshold.
The test verifies that the FTM does not incorrectly classify the APP as faulty.

• False Negative: The APP is faulty, but its confidence index remains near the threshold.
The test ensures that the FTM does not incorrectly classify the APP as non-faulty.

• True Negative: The APP is correctly identified as functional, confirming that the FTM
does not unnecessarily exclude it.

Testing is divided into two categories: unit tests, which evaluate individual features of the FTM,
and integration tests, which assess its interactions with other system services. All tests utilize
the same system configurations and application topology as the scenario outlined in Section
§2.2.

4.2 Unit Tests

Using the setup described in Section §3.4, the unit tests validate the following functionalities
and scenarios:
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1. Verification that the crash table correctly identifies and limits faults, ensuring only the faulty
APP (e.g., APP_C) is flagged.

2. Validation that all issues listed in the Gravity Table are correctly identified through con-
trolled faults in APP_C.

3. Ensuring that the confidence index only triggers when reaching the predefined threshold
in the FTM settings.

4. Direct testing of the confidence index computation by inputting raw values.

5. Validation of dependency identification, ensuring that APP_B Task 1 remains operational
even when APP_B Task 2 is disabled.

6. Confirmation that the FTM correctly detects and differentiates two errors occurring in
APP_C at the same time of day.

7. Verification that the FTM correctly isolates an APP when two applications have closely
matching confidence indices exceeding the threshold.

8. Testing the correctness of dynamic configurations when APP_A, APP_B, and APP_C are
faulty individually, in pairs, and simultaneously.

9. Ensuring that data is correctly collected from nodes at designated intervals.

4.3 Integration Tests

As described in Section 3.4, integration tests run three parallel processes representing the
three nodes in the system. Their configurations match those in Section 2.2. These tests validate
that system components function correctly under the following scenarios:

1. APP_A is faulty. Only Task 1 and Task 2 of APP_A are stopped, as they are interdepen-
dent.

2. APP_B Task 1 is faulty. APP_A remains operational, but APP_B is entirely stopped due
to Task 2’s dependency on Task 1.

3. APP_B Task 2 is faulty. APP_A remains unaffected, and only Task 2 of APP_B is stopped
since Task 1 can operate independently.

4. APP_C is faulty. Only APP_C is stopped, leaving APP_A and APP_B running.

5. APP_A and APP_C are faulty, leaving only APP_B operational.

6. APP_A and APP_B are faulty, leaving only APP_C operational.

7. APP_B and APP_C are faulty, leaving only APP_A operational.

8. All three applications (APP_A, APP_B, and APP_C) are faulty, resulting in no active ap-
plications on the nodes.

These scenarios cover both expected operational cases and extreme edge cases. Notably,
each test is conducted for multiple fault types, including unknown issues, known Gravity Table
issues, startup errors, and update-related errors.
The FTM’s effectiveness is assessed based on its performance in these extensive test cases.

Additionally, all pre-existing system tests for the study case’s distributed system must pass.
Upon successful completion of all tests, the FTM is deemed suitable for deployment within the
system.
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5 DISCUSSION

The implementation of distributed systems in Space is a relatively new and evolving field,
meaning that there is limited literature on Fault-Tolerant Mechanisms specifically tailored for
Space-based applications. However, FTMs have been extensively researched and implemented
in terrestrial distributed systems, particularly in the Ground Segment, where fault tolerance is a
critical requirement for maintaining reliable operations.
The proposed solution and the study case’s distributed system leverage many of the well-

established fault-tolerance strategies documented in literature. These strategies have been
rigorously tested and validated in ground-based distributed systems, ensuring their reliability.
The primary distinction in this study is the adaptation of these methodologies to accommodate
the unique challenges of the Space environment. These include considerations for radiation-
induced errors, extreme thermal fluctuations, and communication latency due to the vast dis-
tances between spacecraft and Ground Station Control. By integrating these additional factors
into the existing framework, the system ensures robust fault mitigation tailored specifically for
Space operations.
The development of the FTM service required an in-depth understanding of Fault Detection,

Isolation, and Recovery techniques within Space applications. To successfully implement this
solution, I first gained a strong foundational knowledge of distributed system architectures and
onboard software frameworks. This knowledge enabled me to design and develop the FTM
service, integrating it seamlessly into the study case’s existing FTM infrastructure.
Following its implementation, the FTM service underwent extensive testing, including unit

and integration tests, to validate its effectiveness and ensure compatibility with the study case’s
distributed system. These tests confirmed the service’s ability to prevent reconfiguration cycles,
maintain system stability, and accurately identify and mitigate faults within the system. The
rigorous validation process reinforced the reliability of the proposed solution and demonstrated
its capability to handle fault scenarios effectively.
Through this comprehensive process, all the objectives of this internship were successfully

achieved. The development and testing of the FTM service not only provided valuable insights
into fault tolerance in distributed Space systems but also contributed to a growing body of
knowledge in this emerging field. This experience has strengthened my technical expertise in
distributed computing, Space systems engineering, and fault-tolerant software design, further
reinforcing the viability of distributed architectures for future Space missions.

28



6 CONCLUSIONS AND RECOMMENDATIONS

The findings of this study demonstrate that with minimal adaptations to existing fault-tolerance
mechanisms for terrestrial distributed systems, reliable fault management solutions can be de-
veloped for Space-based distributed systems. However, this research primarily focused on
assessing feasibility rather than conducting an in-depth performance evaluation.
Although the FTM Service was successfully implemented and tested on the hardware used

for the Flight Model, several aspects remain unverified in real-world operational scenarios with
actual applications. One of the most significant unknowns is resource utilization under mission
conditions. The actual computational load and memory footprint of the service when deployed
with real applications need to be assessed to determine its viability for long-term Space mis-
sions. Additionally, the service lacks a defined time guarantee, meaning that the detection time
for faulty applications and the duration of system downtime during dynamic configuration propa-
gation are currently unknown. Understanding these factors is crucial for determining the overall
effectiveness of the FTM in mission-critical environments.
While theoretically, these performance analyses are relatively straightforward, their practical

execution is highly dependent on specific mission requirements and stakeholder expectations.
Therefore, before proceeding with further optimizations or enhancements, it is strongly rec-
ommended to engage with mission stakeholders to establish clear performance criteria, fault-
detection time constraints, and system availability requirements. Once these parameters are
well-defined, a set of structured requirements and constraints can be formulated. This will allow
for a more comprehensive performance analysis and guide the necessary improvements to the
system.
If further optimizations are required, several enhancements could be considered. For exam-

ple, more efficient search algorithms could be implemented, particularly for table look-ups, to im-
prove processing speed. Additionally, integrating the existing system logging and checkpointing
services with the Data Collection component could significantly reduce resource consumption
by streamlining data retrieval processes. This adjustment would shift the Data Collection func-
tionality away from the FTM Service, allowing it to focus solely on fault detection and dynamic
reconfiguration.
In conclusion, the results of this study confirm the feasibility of the proposed FTM Service.

However, without a thorough performance assessment, the system’s limitations and its compat-
ibility with real applications remain uncertain. Therefore, the next logical steps involve defining
clear requirements and constraints in collaboration with mission stakeholders, followed by a
detailed performance and timing analysis. These steps will provide the necessary insights to
refine and optimize the service, ensuring its reliability and efficiency in operational Space envi-
ronments.

Keywords—Distributed Systems, Fault-Tolerant Mechanism, Single Event Upsets, Space Environment,
Confidence Index, Dynamic Configuration
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LIST OF ABBREVIATIONS AND SYMBOLS

• APP Application composed of one or more Tasks that run on different threads

• CN: Coordinator Node

• DS: Distributed System

• FDIR: Fault Detection, Isolation and Recovery

• FN: False Negative

• FP: False Positive

• FTM: Fault-Tolerant Mechanism

• SEU: Single Event Upset

• TID: Total Ionizig Dose

• TN: True Negative

• TP: True Positive

• TMR: Triple Modular Redundancy

• WN: Worker Node
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