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Christopher Koch 
DLR, Institut für Aeroelastik, Göttingen 
 
Whirl-Flatteranalyse mittels Propeller-Transfermatrizen 
Dissertation, Technische Universität Berlin 
 
Whirl-Flattern ist eine aeroelastische Instabilität, dessen genaue numerische Vorhersage wichtig 
für das Design von Propellerflugzeugen ist. Allerdings berücksichtigen bisherige Methoden zur 
Flatteranalyse im Frequenzbereich die notwendigen Transferfunktionen für den Propeller nur 
sehr vereinfacht. Diese Arbeit schlägt eine neue Methode basierend auf aus einem Simulations-
modell identifizierten Transfer-Matrizen zwischen Nabenverschiebung und Nabenlasten des 
Propellers vor. 
Hierzu werden mit einem Zeitbereichs-Simulationsmodell durch aufgeprägte Störbewegungen 
die Antworten auf Verschiebungen an der Propellernabe berechnet und diese anschließend 
zusammen mit der Anregung in den Frequenzbereich transformiert. Die daraus ableitbaren 
Transferfunktionen für den isolierten Propeller können anschließend in einer Flatteranalyse im 
Frequenzbereich zur Repräsentation des Propellers genutzt werden und enthalten alle 
Simulationsbausteine (z.B. Blattelastizität, Rotor-Aerodynamik) des Zeitbereichsmodells. 
Die Methode wird in der Arbeit mittels gekoppelten Zeitbereichssimulationen verifiziert sowie der 
Einfluss von Blattelastizität und genauerer Rotoraerodynamik auf die Whirlflatter-Stabilität zweier 
aeroelastischer Systeme untersucht. Blattelastizität erweist sich als stark stabilisierend sowohl 
auf das vereinfachte Triebwerks-Pylon-Modell als auch für eine generische Propellerflugzeug-
Konfiguration. Eine genauere Abbildung der Aerodynamik am Propeller bis hin zu 3D-
Potentialverfahren ist ebenfalls stabilisierend, allerdings in geringerem Maße 
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Whirl Flutter Stability Analysis Using Propeller Transfer Matrices 
Doctoral Thesis, Technical University of Berlin 
 
Whirl flutter is an aeroelastic instability that requires accurate prediction during propeller aircraft 
design. However, current flutter analysis methods in the frequency domain only include simplified 
propeller transfer functions. This work proposes a new method to represent the propeller using 
identified transfer matrices between hub displacements and loads. 
To obtain the transfer matrices, a time-domain simulation model of the isolated propeller is 
subjected to forced-motion perturbations at the hub, and the time response of the propeller hub 
loads is measured. After transforming both into the frequency domain, the resulting linear transfer 
functions for the isolated propeller can be used in a frequency-domain flutter analysis. The 
transfer matrices include all simulation features of the time-domain model, such as blade elasticity 
and unsteady propeller aerodynamics. 
The new method is verified using coupled time-domain simulations. The influence of blade 
elasticity and more accurate aerodynamic modeling on the flutter stability of two aeroelastic 
systems is explored. Blade elasticity is shown to have a strongly stabilizing effect on the whirl 
flutter stability of the simplified pylon model and a generic propeller aircraft. More sophisticated 
aerodynamic modeling, including 3D potential theory, also stabilizes the system, though minorly. 
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Abstract

Whirl flutter, as an aeroelastic instability, can inflict significant requirements
on the design of a propeller aircraft, especially for the engine suspension.
Certification specifications require predicting whirl flutter, e.g., by including
the propeller’s relevant gyroscopic and aerodynamic forces in frequency-domain
flutter analysis. However, descriptions for the isolated propeller compatible with
frequency-domain analyses are limited in their modeling capabilities concerning,
e.g., blade elasticity and more sophisticated propeller aerodynamics. On the one
hand, current methods are primarily based on the method developed by Houbolt
and Reed in the 1960s and only include a linearized, quasi-steady strip theory
for the rigid propeller blades. On the other hand, modern multi-body simulation
and rotorcraft comprehensive codes offer significant improvements regarding
propeller modeling. Still, they are mostly restricted to the time domain and
incompatible with frequency-domain flutter analysis.

This thesis aims to provide and verify a new method to include these modeling
capabilities of modern time-domain propeller simulations in frequency-domain
flutter processes. It uses the new method to explore the influence of blade
elasticity and propeller aerodynamics on the transfer functions and whirl flutter
stability of an example turboprop propeller-airframe system.

The thesis develops and verifies the Transfer-Matrix method (short: TM-
method). The method revolves around frequency-domain transfer matrices
from propeller hub motion to hub loads. The transfer matrices are identified
using time-domain simulations of an isolated propeller model. Finally, they are
included in the frequency-domain flutter equations and, therefore, in classical
flutter analysis.
The TM-method can accurately predict whirl flutter for rigid and elastic pro-
pellers: it recovers the reference results obtained by coupled time-domain
simulations. Blade elasticity stabilizes whirl flutter, eliminating the instability
in the airspeed range and configurations studied. A comparison of transfer
matrices between rigid and flexible propellers reveals that the reason lies in the
reduction of the destabilizing coupling moment between pitch and yaw motion.
Blade stiffness and eigenfrequency are the driving factors for this stabilization.
Including more sophisticated propeller aerodynamics using unsteady blade aero-
dynamics and azimuthally varying induced velocities improves the correlation of
unsteady aerodynamic predictions with mid-fidelity results. Improved modeling
reduces the unsteady aerodynamic loads and increases whirl flutter speed by
up to 6% compared to the classical analysis for the full aircraft model.





Kurzfassung

Whirl-Flattern ist eine aeroelastische Instabilität, dessen Unterbindung
signifikante Anforderungen während des Entwurfsprozesses von Propeller-
Flugzeugen erzeugen kann. Insbesondere die Lagerung der Propellertriebwerke
ist hiervon betroffen. Laut Zertifizierungsvorschriften müssen deshalb alle
relevanten Lasten des Propellers, insbesondere gyroskopische und aerodynamis-
che Lasten, mit in die Flatterbewertung im Frequenzbereich mit einbezogen
werden. Allerdings sind bestehende Propeller-Modelle für solche Analysen
limitiert in ihrer Fähigkeit, Aspekte wie Blattelastizität oder fortgeschrittene
Aerodynamik-Modelle zu berücksichtigen. Aktuelle Propellermodelle für die
Flatteranalyse im Frequenzbereich basieren häufig auf der Methode nach Houbolt
und Reed und umfassen nur eine linearisierte, quasi-stationäre Streifentheorie
für starre Propellerblätter. Zwar gibt es moderne Simulationsverfahren wie
die Mehrkörper-Simulation, die auch komplexere Propellermodelle ermöglichen.
Diese liegen allerdings im Zeitbereich vor und sind damit nicht direkt kompatibel
mit Flatteranalysen im Frequenzbereich.

Diese Arbeit zielt darauf ab, diese methodische Lücke zu schließen und eine
neue Methode zu Einbindung moderner Propeller-Modelle in Flatteranalysen
im Frequenzbereich zu entwickeln und zu verifizieren. Die Methode wird im An-
schluss genutzt, um den Einfluss von Blattaerodynamik und -elastizität auf das
Übertragungsverhalten eines Beispielpropellers sowie die Whirl-Flatterstabilität
eines Gesamtflugzeuges zu untersuchen.

Die Transfermatrix-Methode (kurz: TM-Methode) als Kernergebnis dieser
Arbeit basiert auf instationären Frequenzbereichs-Transfermatrizen, welche
das Übertragungsverhalten zwischen Bewegungen und Lasten an der Pro-
pellernabe beschreiben. Die Transfermatrizen werden für ein isoliertes
Propellermodell mittels Zeitbereichs-Simulationen identifiziert und in die
Frequenzbereichs-Flattergleichungen eingesetzt. Damit können alle relevanten
Modellierungsaspekte des Zeitbereichs-Modells in die Flatteranalyse einbezogen
werden. Die TM-Methode kann die Whirl-Flatterstabilität für starre und
elastische Propeller korrekt vorhersagen: sie reproduziert Referenzergebnisse aus
gekoppelten Zeitbereichsrechnungen. Blattelastizität ist dabei ein stark stabil-
isierender Faktor, dessen Berücksichtigung Whirl-Flattern für die betrachteten
Konfigurationen komplett eliminiert. Ein Einblick in die Transfermatrizen zeigt,
dass der Grund für diese Stabilisierung in der Verringerung des Kopplungsmo-
mentes zwischen Nick- und Gierbewegung des Propellers liegt. Die wichtigsten
Einflussfaktoren sind dabei die Blattsteifigkeit und -eigenfrequenz.



vi

Es wird zudem gezeigt, das detailliertere aerodynamische Modelle für den Pro-
peller die Vorhersagegenauigkeit für das Übertragungsverhalten des Propellers
verglichen mit einem Mid-Fidelity-Verfahren verbessern. Eine Berücksichti-
gung von instationärer Blattaerodynamik sowie über den Azimuth variierender
induzierter Geschwindigkeiten reduziert dabei die vorhergesagten Lasten und er-
höht die vorhergesagte Flattergeschwindigkeit der Gesamtflugzeug-Konfiguration
verglichen mit der Referenzmethode um bis zu sechs Prozent.
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Introduction

1.1. Motivation
Recently, propeller engines have gotten more attention from aircraft designers
due to their superior propulsive efficiency over turbojet and turbofan engines at
low and medium flight speeds. Especially emerging (hybrid-) electric propulsion
concepts, in which the propellers are powered by electric motors instead of
conventional turboprop engines, offer new configurational opportunities to
aircraft designers, e.g., concerning engine number and placement.
Aeroelastic stability, especially of the engine support, can become a significant
concern in the design of such aircraft. The following example shows that
designing a propeller engine suspension system is a careful trade-off between
load-bearing capacity, passenger comfort requirements, and aeroelastic stability.
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(a) Engine suspension schema

y

z

x

V

K �

K�

a

(b) Simplified dynamic model

Figure 1.1.: Schema of a turboprop engine suspension (a), including a simplified
dynamic model (b) used demonstration purposes in this thesis.

Fig. 1.1(a) shows a simplified schematic of a typical turboprop engine suspen-
sion structure. The propeller is connected to the engine via the rotating shaft,
which is usually supported within the first stage of the gearbox. For global
airframe dynamics, the engine itself is considered a rigid body here due to the
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high stiffness of the engine and gearbox housing. The engine is supported by a
nacelle truss (thick black lines), which connects the engine to the main wing
structure. Instead of a rigid connection, the elements connecting the engine
and nacelle truss comprise elastomer springs (indicated by the small spring
symbols connecting the engine and truss in Fig. 1.1(a)), also called shock
mounts [1]. The purpose of these structural elements is to decouple the engine
and its vibrations dynamically from the airframe, increasing the fatigue life and
passenger comfort [2].
To demonstrate this and motivate the importance of aeroelastic stability con-
siderations, the system shown in Fig. 1.1(a) is reduced to the simplified pylon
system shown in Fig. 1.1(b). The simplified system only considers the pitch
(θ) and yaw (ψ) motion degree of freedom (DOF) of the engine about a pivot
point located in the distance a behind the propeller plane. The pivot point
is a simplified representation of the elastic center regarding pitch and yaw of
the more complex structure in Fig. 1.1(a). The engine pitch and yaw are
considered to be restrained by springs (Kθ and Kψ), which, together with the
engine rotational inertia about the y- and z-axis, yield the system’s uncoupled
rigid body pitch and yaw modes.

The design goal of the shock mounts is explained in Fig. 1.2. Due to small
remaining unbalances in the propeller and engine shafts, due to angle-of-attack or
in-homogeneous inflow, the engine experiences harmonic inertial or aerodynamic
loads with the frequency equivalent to once-per-revolution (1P) or higher-
harmonics of the rotational speed (e.g., 2P, 5P, ...). Fig. 1.2 shows the
transmission characteristics from the vertical force at the propeller hub to
the generalized moment at the nacelle mounting. In other words, it shows
the loads in y- and z-direction transmitted to the airframe over a range of
excitation frequencies. For low excitation frequencies (left side of the plot),
the transmission ratio is almost 1, meaning steady loads (such as weight) are
directly transferred. If the excitation lies in the range of the engine pitch and
yaw modes (around 10 Hz), the loads transferred to the airframe are dynamically
amplified due to resonance. Above the range of the first engine modes, the
transmission factor quickly falls to very small values (right side of the plot),
resulting in dynamic isolation. In this frequency range, only small loads are
transferred to the airframe. The objective of the engine suspension system is to
achieve minimum transmission characteristics during the design. This is done by
designing the stiffness of the shock mounts to obtain low rigid-body frequencies
of the engine, ideally well below the rotational speed of the propeller, while still
meeting strength and stiffness requirements [2].

Aeroelastic stability is a significant factor that creates minimum shock mount
stiffness requirements. According to certification requirements [3], large passen-
ger aircraft have to be free of flutter in all nominal configurations up to a speed
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Figure 1.2.: Force transmission characteristics of the simplified pylon model from
harmonic hub loading to moment at the pivot point

of 1.15 times the dive speed VD, and free of flutter in case of failure, e.g., of a
shock mount, up to VD. For a propeller aircraft, whirl flutter is an aeroelastic
instability that needs to be kept outside of this envelope [4].

Whirl flutter is a dynamic aeroelastic instability of the whirl modes emerging,
e.g., from pylon pitch and yaw modes. If the engine and propeller are rotating,
gyroscopic moments couple the pitch and yaw mode into a forward and backward
whirl mode. During a cycle of such a mode the propeller hub shows an elliptical
path [5] (compare Fig. 1.3). The mode with the higher frequency becomes
the forward whirl mode, in which the direction of the whirl is the same as the
rotation of the propeller (see Fig. 1.3(a)). The lower frequency mode becomes
the backward whirl mode, which shows a reverse whirling direction (depicted in
Fig. 1.3(b)). At high airspeeds and due to unsteady aerodynamic loads, the
backward whirl mode can become unstable, resulting in a divergent whirling
motion and flutter [5].
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(b) Backward whirl mode

Figure 1.3.: Whirl modes of the simplified pylon system, emerging due to gyroscopic
couplings.

Driving factors influencing the aeroelastic stability of the propeller-engine system
are the frequencies of the engine pitch and yaw mode and, therefore, the shock
mount stiffness. Fig. 1.4 shows the aeroelastic stability of the simplified pylon
system for varying combinations of pitch and yaw springs. Instead of the pitch
and yaw stiffness, Kθ and Kψ, the respective rigid body eigenfrequencies, ωθ
and ωψ, are used for the axes. They are computed from the stiffness and inertia
of the model as shown in Eq. 1.1, assuming no coupling between the direction
(i.e., no gyroscopics and aerodynamics). The top right of the whirl flutter
stability map in Fig. 1.4 is the stable area, so a stiff engine suspension yields
a stable system. The bell curve in the middle represents the border to the
parameter range that shows dynamic whirl flutter. Configurations with equal
pitch and yaw stiffness are, therefore, most critical concerning whirl flutter, as
are low-frequency values. If only one direction is stiff and the other has very
low stiffness, there is the possibility of static divergence [5]. The more sensitive
the system becomes to whirl flutter, the larger the extension of the unstable
area is, putting more substantial requirements on the minimum shock mount
stiffnesses.

ωθ =
√
Kθ

Jθ
; ωψ =

√
Kψ

Jψ
(1.1)

As seen from Fig. 1.2, shock mount stiffness should be as small as possible from
the viewpoint of vibration isolation. Fig. 1.4, on the other hand, demonstrates
that aeroelastic stability creates a lower bound for the engine support stiffness.
These conflicting requirements must be balanced during the design process of
propeller engine suspensions. The ideal goal is a suspension system that keeps
the system stable in the aeroelastic envelope while providing minimum vibration
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Figure 1.4.: Example whirl flutter stability map

transmission to the airframe. This requires accurate prediction of propeller
whirl flutter already during the design process using computational models.
The certification specifications for large aircraft [3] contain these requirements
for including the propeller and engine suspension system into the aeroelastic
stability assessment in the acceptable means of compliance [3, AMC 25.629,
5.1.4.6 (a)]:

The evaluation of the aeroelastic stability should include investi-
gations of any significant elastic, inertial, and aerodynamic forces,
including those associated with rotations and displacements in the
plane of any turbofan or propeller, including propeller or fan blade
aerodynamics, powerplant flexibilities, powerplant mounting charac-
teristics, and gyroscopic coupling.

The following section gives an overview of the state of the art regarding propeller
whirl flutter prediction, from its early stages in the 1960s to modern simulation
capabilities.
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1.2. State of the Art
Early work

The first mention of the potential instability of propeller engines was in 1937 by
Taylor and Browne [6], who studied the vibration isolation of aircraft engines.
They noticed that in their theoretical model, "the low-frequency reverse-rotation
precession tends to become unstable" [6], but concluded that this was unrealistic
for practical applications. The phenomenon was only rediscovered 20 years
after causing two accidents with a commercial turboprop airliner; the Lockheed
Electra [7]. After initial problems in finding the root cause of those accidents,
attention quickly turned to the precession instability of the large turboprop
engines. Several investigations were launched [7] to understand the underlying
mechanism. The paper by John C. Houbolt and Wilmer H. Reed III [8]
can be considered a big step forward in the prediction of whirl flutter. They
provided a comprehensive method for calculating the motion-induced in-plane
loads that drive the mechanism of whirl flutter based on a simple strip theory
approach. They demonstrated the application of the method for predicting
the whirl flutter stability of a simplified propeller and pylon system. The
characteristics of propellers to create in-plane forces under angle-of-attack (or
yaw angle, respectively) were known before from aircraft flight mechanics, but
Houbolt and Reed’s method proved simpler than, e.g., Ribner’s formulas [9].

To validate the new theoretical findings, wind tunnel experiments were con-
ducted. Bland and Bennett [10] studied an isolated propeller in the NASA
Langley transonic dynamics tunnel for its static in-plane load derivatives, which
they compared to those predicted with Ribner’s and Houbolt and Reed’s cal-
culation methods over a range of operating conditions. They found similar
qualitative trends in all derivatives compared to the experiment but observed
quantitative offsets. They also measured the flutter boundaries for a simpli-
fied pylon system, comparing them with the predicted boundaries from both
computational methods and the predictions made with measured derivatives.
While the latter proved accurate, the computations showed a trend of pre-
dicting lower (and, therefore, conservative) flutter speeds. In a later study,
Bennett and Bland [11] extended this to include a simplified wing model, demon-
strating the (in most cases) stabilizing effect of wing bending and torsion due
to aerodynamic damping. Wing torsion was reported to have a potentially
destabilizing influence by replacing the engine pitch degree of freedom in the
whirling motion [4]. In his review paper from 1966, Reed [4] summarizes the
findings of many of the early studies.
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Applications of the Houbolt/Reed method

One significant effect of these early investigations after the accidents was the
addition of requirements regarding whirl flutter prediction into the certification
specifications for large propeller aircraft [3]. Due to its simplicity, Houbolt
and Reed’s method was often used for the design and analysis of turboprop
aircraft structures. Hyrcko [2] describes the common design problem for
turboprop manufacturers: Balancing whirl flutter stability with the vibration
isolation characteristics of the engine support. Aircraft designers used more
and more complex structural airframe models to study the whirl flutter charac-
teristics of their design (see, for example., Nitzsche [12]), finding more and more
complex flutter couplings. Because the back-up structure (e.g., the wing or the
tail for rear-mounted engines) can act as a dynamic damper, it was found that
these more complex structural models are better suited both for the prediction
of the transmission characteristics and aeroelastic stability [13].

Presented at the 1989 MSC World User’s Conference, the work of
W.P. Rodden and T.L. Rose [14] marks another milestone in predicting
propeller whirl flutter. By demonstrating the use of aerodynamic derivatives
from the Houbolt/Reed method in conjunction with complex, finite element
(FE) based aeroelastic models (in this case in MSC Nastran), they opened
the path towards full integration of whirl flutter prediction into the
frequency-domain flutter prediction process of commercial aircraft. Since
then, a small program has been shipped with MSC Nastran, allowing the com-
putation of the required stiffness and damping matrices from the Houbolt/Reed
method. Jiří Čečrdle demonstrated this integration into flutter analysis with
MSC Nastran in several publications. He developed a procedure using structural
optimization [15] to find the critical (minimal) engine support stiffness required
for aeroelastic stability at certification speed. Knowledge about this limit
allows designers to ensure this minimum stiffness even under fatigue or failure
conditions. These studies were extended to a half-span turboprop model [16],
also including unsteady wing and nacelle aerodynamics and different mass cases.
The study demonstrated the influence of the selected mass case (and connected
changes in the flutter mechanism) on the minimum stiffness requirements.
Čečrdle demonstrated that also the parameters going into the Houbolt/Reed
method, e.g., the blade lift curve slope distribution, can have a significant
impact on whirl flutter stability predictions [17]. Finally, he described the
details of applying the Houbolt/Reed method for demonstrating compliance
with the certification requirements, elaborating on the importance of treating
failure cases like propeller overspeed or feathered conditions [18]. The results of
his papers, together with an extended literature review, are summarized in his
book on turboprop aircraft whirl flutter [5].
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Due to its analytical nature, the method of Houbolt and Reed is fast and
robust in its application, making it well-suited for parameter studies. The
author of this thesis used it for comparing different modeling approaches for
the airframe structure [19], ranging from only including engine suspension DOF
to including pylon and wing structural DOF and, finally, wing aerodynamics.
Stability prediction can vary widely over these different modeling approaches,
highlighting the importance of integrating whirl flutter prediction into full-
aircraft analysis instead of just treating the isolated engine suspension. While
this study varied structural parameters while keeping the geometry the same,
Böhnisch et al. [20] investigated the influence of the spanwise position of a
propeller on the aeroelastic stability of a slender wing, eventually also comparing
pusher and tractor configurations [21]. They also elaborate on effects outside
of whirl flutter stability, such as the impact of engine mass and gyroscopics on
classical wing flutter.

Structural nonlinearities

While the work described above mainly focuses on linear aeroelastic stability,
recent work has also investigated the stability behavior of whirl flutter systems
with structural nonlinearities. Mair et al. [22] used the linear aerodynamic
derivatives of the Houbolt/Reed method coupled with a simplified pylon system
with nonlinear pitch and yaw stiffness. They used continuation and bifurcation
analysis with nonlinear time integration to find the system’s limit-cycle oscilla-
tions (LCOs). For some of the investigated nonlinear stiffness characteristics,
they found configurations in which the nonlinear system exhibited unstable be-
havior before the linear flutter point, highlighting the importance of considering
potential structural nonlinearities. Quintana et al. [23] studied the influence of
free play in the engine support on the stability characteristics of the simplified
pylon system. Especially in combination with nonlinear stiffness characteristics,
very complex dynamic behavior was observed in the system studied. This type
of analysis usually relies on several nonlinear time simulations, which can be
computationally expensive but allow for incorporating more effects into analysis
models. Gali et al. [24] presented a bifurcation prediction approach that uses
only two nonlinear time simulations in the stable regime to predict the flutter
onset speed, making nonlinear simulation in reasonable computational time
feasible for practical applications.

Unsteady aerodynamics

While fast and robust, the method by Houbolt and Reed makes a few simpli-
fications concerning propeller modeling. Next to the rigid blade assumption,
which is treated in a later paragraph, these assumptions mainly concern the
unsteady aerodynamics of the propeller.



1.2. State of the Art 9

Because they also affect aircraft aerodynamics and handling qualities, the in-
plane loads due to non-axial inflow on the propeller, also called 1P hub loads,
have been more widely studied with different methods in the literature. The
steady 1P hub loads are equivalent to the stiffness derivatives in dynamic whirl
flutter analysis, so there is some overlap in the aerodynamics used to predict
them. Several authors have worked on improving the prediction from Ribner’s
early work [9]. Recent work includes the thesis of Smith [25], who focused
on low-fidelity methods such as blade element momentum theory (BEM). He
described a formulation (the weighted momentum theory) better suited for
predicting 1P hub forces. Other authors used higher fidelity methods such as
panel codes or computational fluid dynamics (CFD). Fei et al. [26] developed
an unsteady vortex lattice (UVLM) code to study the loads on propellers under
high angles of attack, as they might appear in vertical take-off and landing
vehicles. They connected the reasons for the occurring side forces with effects
due to the tilted wake. The UVLM predicted these in-plane forces well com-
pared to the CFD reference up to the onset of stall. Transonic speeds also
need to be considered for practical application to commercial propeller aircraft.
In France, extensive validation campaigns with the APIAN experiments and
CFD computations in both isolated [27, 28] and installed [28] conditions have
been carried out. These studies state the potentially significant contribution of
the spinner to in-plane forces [27] and compare different numerical modeling
approaches such as unsteady time simulation and steady actuator disc predic-
tions [28]. Ruiz and Calavera [29] also included blade elasticity in their analysis.
They found an offset concerning wind tunnel data in both installed and isolated
conditions. They suggest a correction of CFD predictions using data from wind
tunnel experiments.
While some literature for steady 1P hub loads can be found, publications on the
influence of more complex aerodynamic modeling on unsteady aerodynamics
for whirl flutter applications are rare. Gennaretti and Greco [30] compared
different aerodynamic modeling approaches, including prescribed and free wake
boundary element methods, for the stability prediction of a rotor-pylon sys-
tem. They derived unsteady, finite-state blade transfer functions from their
solvers, capturing the frequency-dependent aerodynamics along the blades. In
their publication, they highlight the presence of multiple frequencies due to
the returning wake and the varying reduced frequency along the blade span,
leading to a dependency of the unsteady blade transfer functions on aspect
ratio. Comparing the stability boundaries at different forward flight speeds for
a two-bladed and three-bladed propeller, they conclude that simplified aerody-
namics (such as in the Houbolt/Reed method) are not necessarily conservative.
Wang and Chen [31], on the other hand, improved the prediction of aerodynamic
derivatives used in the Houbolt/Reed method by identifying them directly from
time-domain simulations with a UVLM solver. They use a slow, quasi-steady
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harmonic excitation in propeller disc pitch to extract aerodynamic stiffness and
damping, which can then be converted into aerodynamic derivatives. Although
this method allows the usage of more complex aerodynamic solvers, it still
neglects the frequency-dependency of unsteady aerodynamics.
Most of the work regarding whirl flutter described so far either studies isolated
pylon-propeller systems or neglects aerodynamic interaction between pro-
peller and wing. In their paper, Rodden and Rose [14] offer a first approach
to include that interaction into frequency-domain flutter calculations using the
Doublet Lattice Method (DLM). They scale the dynamic pressure of the wing
panels in the slipstream based on the thrust-dependent steady induced velocity
of the propeller. Tangential induction due to propeller torque is neglected. In
the other direction, they introduce additional propeller pitch and yaw angle
contributions from the velocity components induced at the propeller hub by the
oscillating wing panels. Although describing the theory in their paper, they do
not show an application. Čečrdle applies the approach [16] and quantifies the
effect it has on the stability boundary concerning engine mount stiffness. For
the twin-engine model studied, he shows a destabilizing effect of the corrections
depending on the modes involved in the flutter mechanism. No concrete flutter
mode shapes were given, making generalizing the results to other configurations
or modes difficult. To the author’s knowledge, at the time of writing, no other
publication includes aerodynamic interaction in frequency-domain flutter evalu-
ations.
For tiltrotor applications (see following paragraph), which involve large rotors
closely mounted to the tip of the aircraft wing, the influence of aerodynamic
interaction was studied using time-domain aerodynamics such as viscous vortex
particle methods (VVPM) [32, 33]. Both applications found increased damping
of the wing beam mode compared to aerodynamic models that model wing
and rotor aerodynamics separately, increasing the flutter speed depending on
the configuration studied. Corle et al. [32] attribute this effect to interactional
aerodynamics or differences in the induced velocities on the wing when using
VVPM.

Blade elasticity

The elasticity of turboprop propeller blades was often neglected in the work
described above because blades were considered stiff. While this might apply to
turboprop propellers, the aeroelastic stability characteristics of another aircraft
category are much more affected by the dynamics of large, flexible rotor blades:
tiltrotor aircraft. Tiltrotor aircraft usually feature two large, tilting rotors on
their wing tips, allowing vertical take-off in helicopter mode and fast forward
flight when tilted forwards in propeller configuration [34]. The rotors used
in such aircraft differ from classical turboprop propellers in their complexity:
rotors feature cyclic blade pitch control, the blades are longer and usually hinged
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or gimballed for load reduction [34, 35]. This makes blade structural dynamics
a more critical feature for aeroelastic stability. While this work focuses on
propeller whirl flutter, a review of the most important literature in the field
of tiltrotor whirl flutter is included, as it has essential overlaps with the work
presented.

Even early publications studying tiltrotor (or sometimes called proprotor)
whirl flutter include some model for the blade dynamics. Young and Lytwyn [35]
used hinged, flapping blades coupled with a simple pylon model. They found a
stabilizing influence of blade flapping on whirl flutter until flap stiffness falls
below a particular value, from which the system becomes more unstable again.
They made an important observation: For very flexible blades, the flutter
mechanism becoming unstable changed from a classical backward whirl flutter
to a forward whirling motion involving the cyclic blade modes and at least
one pylon mode. Unlike backward whirl flutter, this new flutter mechanism
only required one pylon direction to be flexible, as the cyclic blade flapping
provided the other motion component for the whirling motion. Johnston [36]
extended these studies to include the lead-lag motion of the proprotor blades.
By varying the stiffness ratios, he confirmed the stabilizing influence of blade
flapping and found a destabilizing tendency of lead-lag modes. His paper
reports various instability mechanisms for lower blade stiffnesses (in both flap
and lead-lag direction), highlighting the importance of including these DOFs in
tiltrotor stability analyses. Kunz [37] later summarized the influence of different
parameters of a simplified rotor-pylon system in his review paper. Johnson [34]
advanced the state of the art at that time by deriving an analytical model
including not only pylon DOF but also a model of the elastic wing coupled
with an elastic blade formulation and quasi-steady aerodynamics for both wing
and rotor aerodynamics. He compared the results of his computational model
with wind tunnel experiments, finding a good correlation. He highlights the
importance of frequency placement of the elastic blade modes relative to the
airframe modes as a design feature influencing the dynamic characteristics of
the whole system. In his conclusion, Johnson points out that the model includes
the "fundamental features of the proprotor aeroelastic system" [34, p. 160], but
could be extended to include more sophisticated rotor and airframe models.

In the following time, his outlook became a reality with the advent of so-called
rotorcraft comprehensive codes. These simulation tools for rotorcraft
aeromechanics feature a modular architecture to couple dynamic models for
the blades, control systems, and airframe with aerodynamic models of different
fidelity levels. They have become the backbone of modern rotorcraft analysis [38].
Several publications apply rotorcraft comprehensive codes to the prediction
of whirl flutter stability. Yeo et al. [39] compared CAMRAD II and RCAS,
two comprehensive codes, and conducted extensive parameter studies on a
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generic tiltrotor model, highlighting the most critical design parameters (in
their case, parameters influencing the regressive lead-lag frequency). Several
publications compared two comprehensive codes against each other and used
validation data, e.g., from the WRATS experiment [40]. These comparisons
include validation of CAMRAD II and RCAS with WRATS data [41], of RCAS
and Dymore [42] and of Dymore and MBDYN [43]. The studies find fair to
good agreement with experimental frequency and damping values for a range of
operating conditions. The whirl flutter phenomenon investigated is dominated
by strong interaction between the rotor and wing dynamics, which occur in the
same frequency range. Currently, new experiments for validation of the next
generation of comprehensive analysis are in preparation, both in Europe [44, 45]
and the United States [46, 47]. The application of rotorcraft comprehensive
codes is not restricted to clamped wings as used in experiments. It can also be
extended to full, free-flying aircraft like the Bell XV-15 research aircraft [48, 49],
a precursor of the first mass-produced tilt-rotor, the V-22 Osprey [50].

An important common feature of all these analyses and simulation codes is
their reliance on time-domain analysis. This distinguishes them from the
common frequency-domain methods in fixed-wing whirl flutter predictions.
Frequencies and dampings for tiltrotor models are either obtained by direct
linearization of the equations of motions about a (nonlinear) trim point (e.g.,
in [39]) or using nonlinear time simulation. In the second case, the dominating
frequencies and damping ratios are extracted from the time response of the
system to a perturbation, e.g., using the log-decrement method [51] or the matrix-
pencil-method [44]. This is less robust and computationally more expensive
than frequency-domain analysis but allows the use of more complex and even
nonlinear models. In his thesis, Cocco [48], for example, used a vortex particle
code coupled with multi-body simulation (MBS) for his model of the Bell XV-15,
capturing aerodynamic interaction between rotor and airframe. Corle [51]
demonstrated using CFD for whirl flutter stability analysis, advancing the
aerodynamic fidelity for tiltrotor whirl flutter predictions.

Some attempts have been made to use rotorcraft comprehensive codes for the
analysis of propeller aircraft. Acree [52] presented a study for a large tilt-wing
transport aircraft featuring unusually large propellers. He applied CAMRAD II
to analyze the configuration and study blade and whirl flutter stability. For this
configuration, blade flutter due to the unconventional propeller design (including
cyclic pitch control) was a bigger problem than whirl flutter. A string of recent
publications about the X-57 aircraft concept by NASA also applied Dymore
and CAMRAD II models for the clamped wing with tip propeller [53] up to the
analysis of the free-flying aircraft [54]. The authors demonstrated the influence
of aerodynamic modeling (wing aerodynamics, propeller airfoils, quasi-steady
and unsteady aerodynamics) and blade elasticity on whirl flutter using Prony
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analysis on the perturbation response about a trim state [54]. They found a
strong stabilizing effect of considering blade elasticity compared to the rigid
blade analysis [55]. This was possible due to their use of multi-body dynamics,
coupling the flexible rotating blades with the elastic wing in the time domain.
Comparing predictions for the flutter speed of the X-57 with rigid and elastic
blades showed a 50% increase in flutter speed with elastic blades [55, Fig. 8].
These results question the validity of the rigid blade assumption in the classical
Houbolt/Reed method, as it could give very conservative results. An analysis
of stiff tiltrotor models [56] even showed that moderate blade stiffness can
completely stabilize whirl flutter [56, Fig. 3/6] while also pointing out that
decreasing stiffness further produces other instabilities such as forward whirl
flutter [56, Fig. 5]. Donham [57] attributed this stabilization to the dynamic
response of the blade dynamics to the harmonic blade loading during the whirl
motion. This dynamic response alters the transfer function from propeller disc
pitch to in-plane loads in amplitude and phase and, therefore, whirl flutter
stability.

Frequency domain methods

Summarizing the work described so far highlights two key points: On one side,
as the first part of this section showed, integration of whirl flutter prediction
into frequency-domain flutter analysis of propeller aircraft, e.g., using the
Houbolt/Reed method, is a well-established. On the other side, as demonstrated
by the vast literature in tiltrotor research, more complex rotor modeling in the
time domain is available, e.g., through rotorcraft comprehensive codes. The
increased modeling depth of these tools could benefit the fidelity of propeller
whirl flutter analysis, but their use is impeded by the switch to time-domain
analysis.

Some approaches are present in literature to reduce the complex time-
domain rotor models into forms that are easier to couple. Wang and Chen’s
identification procedure [31] of unsteady propeller derivatives from time-domain
aerodynamic models is one example, allowing to make use of more complex
aerodynamic tools while still keeping the rigid blade assumption. Another
approach that is particularly important for this work is coming from the field
of helicopter dynamics. Although comprehensive codes cover most analysis
tasks in this field [38], some require faster models. Bielawa [58, 59] presented a
method for rapid coupling between a rotor and several different pylon structures
for broad parameter studies. His approach uses analytically derived or measured
rotor hub impedance functions (transfer function from hub displacement to
hub loads in the frequency domain). While analytically deriving these transfer
functions becomes very difficult for complex rotor models, he highlights the
application in experimental testing. He suggests that with his method, only the
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stable rotor has to be tested and can then be analytically coupled with various
pylon models, avoiding expensive and dangerous stability testing of coupled
models.
Another area requiring fast models is rotorcraft flight dynamics and control
design [60]. To be usable in real-time applications, models must be accurate
but fast, promoting Reduced-order models (ROM) usage. Gori et al. [60]
presented an analysis procedure to reduce a complex, aeroelastic time-domain
rotor model into a finite-state state-space model for perturbational analysis.
They show a three-step procedure involving the calculation of the harmonic
perturbation response of the rotor about its hub DOF, transferring these into
the frequency domain, and finally, a rational matrix approximation to obtain
the final time-domain ROM for the rotor, which can then be coupled with
a state-space airframe model for analysis. They applied it to recover time
response signals of the coupled system and claim its usefulness for real-time
applications. While Gennaretti and Muro applied the same procedure to obtain
an aerodynamic ROM [61], the reduction of a complete, aeroelastic rotor
into a frequency-domain transfer function, the first part of the procedure
presented in [60], is a valuable concept, which is further developed in this work.

1.3. Objective and Outline
The state of the art summarized above points out two facts regarding propeller
whirl flutter prediction:

1. Whirl flutter prediction using the Houbolt/Reed method is well established
in conjunction with frequency-domain flutter analysis but lacks a more
detailed propeller model.

2. Accurate modeling of complex rotor configurations is possible within MBS
or Rotorcraft comprehensive codes but, in most cases, restricted to the
time domain.

Therefore, the available modeling toolset (in the time domain) does not fit the
preferred analysis type (frequency domain) for propeller aircraft flutter stability.
To close the gap and include, for example, blade elasticity and complex rotor
aerodynamics in propeller whirl flutter analysis, two options are available:
One possible solution to this mismatch would be switching to time-domain
analysis for propeller whirl flutter prediction, modeling the engine support or
even full aircraft in time-domain simulation codes (as, e.g., demonstrated for
the NASA X-57 [54]). While this does not require any additional methods to be
developed because the tools and methods already exist, it has some limitations
and problems. First, current fixed-wing flutter prediction workflows are heavily
based on frequency-domain flutter analysis, and the procedures and models
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(structure, unsteady aircraft aerodynamics) are tuned to this approach. Moving
this whole process and the tuned models into time-domain simulation tools while
preserving the prediction capability not only for whirl flutter but also for classical
fixed-wing flutter mechanisms such as wing or control surface flutter is a difficult
task. Second, time-domain analysis is more costly in terms of computational
time. Broad parameter studies concerning payload and fuel loading or possible
failure cases would take longer than in the frequency domain, prolonging the
development process. Third, time-domain methods sometimes struggle to yield
the same insight into a system behavior compared to frequency-domain analysis.
For example, it is difficult to analyze beyond the first instability or not all
system modes can be captured by identification routines.

The second solution to close the gap in the state of the art is to develop a
method to bring time-domain rotor modeling capabilities into frequency-domain
flutter analysis, enhancing the fidelity of aeroelastic propeller modeling within
the existing flutter processes. This would allow aircraft manufacturers to stick
to their existing flutter processes while profiting from advancements in rotor
modeling made within time-domain tools.

This work provides such a method and covers the following three main objectives:

• To develop a method and workflow for propeller whirl flutter analysis in
the frequency domain using propeller models derived from time-domain
modeling tools.

• To verify the new method by comparing stability results to conventional
time-domain analysis of the coupled propeller airframe system.

• To apply the new method to study the effects of blade elasticity and
more detailed propeller aerodynamics on whirl flutter stability of a generic
turboprop engine support.

The investigations in this thesis focus on the phenomenon of propeller whirl
flutter and applications for propeller aircraft. While they might be used in the
context of tiltrotor whirl flutter analysis, this is not within the scope of this
work. Configurations with propellers with less than three blades are also not
treated, as they become time-periodic due to the propeller inertia and have to be
treated in the time domain. This thesis does not aim to provide validation of the
stability results with experimental data or high-fidelity numerical simulations.
The methodology is carefully verified using existing stability analysis methods
and can be applied in future work to design and prepare validation studies.
The examples in this thesis, especially regarding aerodynamic modeling, only
comprise low- to mid-fidelity methods and do not treat CFD-aerodynamics (and
therefore transonic effects) explicitly, as the main focus is on the methodology
to enable a future use, e.g., of CFD-aerodynamics. A third limitation of this
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work concerns the aerodynamic interaction with the wing. This work focuses
on improving isolated propeller modeling, striving to replace the Houbolt/Reed
method in frequency-domain flutter analysis. It remains compatible with
the approach to interaction described by Rodden and Rose [14], but further
investigations into the aspects of unsteady propeller-wing interaction are left for
future work. The same applies to the airframe dynamic modeling. While the
details of the dynamic representation of the engine support structure influence
the whirl flutter predictions, this is considered out of the scope of this work.

To achieve the goals listed above, this thesis is divided into five main chapters
to derive, verify, and apply the new method in a structured way:

• Chapter 1 already presented the motivation for this work together with
the current state of the art for propeller whirl flutter analysis.

• Chapter 2 introduces the underlying theory, starting with the flutter
analysis in the frequency domain, followed by the theory of representing
propellers in the flutter analysis. This particular section contains the
core methodology and workflow of the Transfer-Matrix or TM-method
proposed in this work. Chapter 2 concludes with a brief look into the
theory of propeller time-domain modeling and stability analysis.

• Chapter 3 summarizes the models used to obtain the results of this work.
They comprise the propeller and simplified engine suspension models used
for most of the studies presented. A generic turboprop aircraft model for
demonstration of the TM-method on full aircraft level is also described
briefly.

• Chapter 4 presents the results of this thesis. First, the verification of the
TM-method using time-domain analysis is shown, followed by applications
to study the effect of blade elasticity and propeller aerodynamic modeling.
The applications mainly comprise results obtained with the simplified
pylon model, but chapter 4 finishes with presenting results from applying
the TM-method to a full aircraft configuration.

• Chapter 5 concludes the thesis with a discussion of the TM-method
and the results presented in the context of the current state of the art,
highlighting the advancements made as well as current limitations. The
closing outlook gives ideas for addressing those limitations and broadening
the scope of the work presented here.



2
Theory

This chapter introduces the underlying theory of this work. The
theory for aircraft flutter analysis in the frequency domain is pre-
sented first. The next section extends this with different models
for the representation of propellers in the frequency-domain flut-
ter equation, including the main theory of the Transfer-Matrix
method. Because time-domain propeller models are a main com-
ponent of the TM-method, their theory is briefly summarized.
Finally, this chapter presents the theory for the time-domain
stability analysis used as a reference method for verification
later.

2.1. Flutter analysis in the frequency domain
The basic equation of motion for a free-flying aircraft in the time domain is
written in Eq. 2.1. The left-hand side (LHS) represents the dynamics of the
aircraft structure in physical coordinates u. It comprises inertial forces (M ü),
viscous damping forces (Du̇) and elastic forces (Ku). These forces are balanced
by the aerodynamic forces on the right-hand side (RHS), Faero.

M ü +Du̇ +Ku = Faero(t) (2.1)

For flutter stability analysis, the eigenvalues of the system described by Eq. 2.1
need to be extracted1. This becomes unpractical for realistic models with many
physical degrees of freedom u. For this purpose, the equations of motion are
transferred to modal or generalized coordinates q using the mode shapes Φ of

1An overview of the theory and details of flutter stability analysis in the frequency domain
can be found in standard aeroelasticity textbooks. Schwochow in his thesis [62] summarizes
the theory.
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the system (see Eq. 2.2). These mode shapes can be truncated for the lowest
frequency modes, omitting high-frequency content in the model [62]. This
drastically reduces the order of the system and transforms the mass, damping,
and stiffness matrices into their generalized formulation (e.g., Mgen).

u(t) = Φq(t) (2.2)

To facilitate the eigenvalue extraction, Eq. 2.1 is transformed in the Laplace
domain, and the aerodynamic forces are split into external aerodynamic forces
Faero,ext, such as the steady loading and perturbations by gusts, and motion-
induced aerodynamic forces. The external aerodynamic forces are neglected for
stability analysis, and only the motion-induced loads are retained. The motion-
induced aerodynamic forces for small perturbations in the Laplace domain
are expressed by a frequency-dependent generalized aerodynamic force (GAF)
matrix Q

gen
, which relates the modal displacements q with the generalized

forces. The generalized Laplace-domain equation of motion is written in Eq.
2.3.

[
s2Mgen + sDgen +Kgen

]
q = ρ

2V
2Q

gen
(p,Ma)q + ����Faero,ext (2.3)

The GAFs depend on the non-dimensional Laplace variable p and the flight
Mach number. The definition of p and its real part g (damping) and imaginary
part k (frequency) using the flight speed V and a reference length cref are as
follows:

p = (σ + iω)cref
V

= scref
V

, k = ωcref
V

, g = σcref
V

. (2.4)

The eigenvalues λ = σ + iω of Eq. 2.3 determine the eigenbehavior of the
aircraft. Due to the (nonlinear) dependency of the GAF matrix Q

gen
on the

non-dimensional Laplace variable p, the eigenvalues are not straightforward to
find. Several methods to obtain them are described in the literature, and the
most commonly used ones are described in the following.
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p-method

In the case of an analytic description of Q
gen

(s), e.g., from analytic derivations
or rational function approximation, the eigenvalues of Eq. 2.3 can be computed
directly [63]. Although these eigenvalues can be calculated precisely in this
case, it shifts the problem from the eigenvalue analysis to finding a good
approximation Q

gen
(p), which is difficult to achieve for complex configurations

in the whole Laplace domain.

p-k-method

Hassig [64] suggested an iterative solution to find the eigenvalues of Eq. 2.3,
approximating the aerodynamic forces in the Laplace domain with those for
pure harmonic motion, so on the imaginary axis (see Eq. 2.5). These are easier
to compute, e.g., with the DLM [65]. The eigenvalues are therefore only exact
for harmonic motion (g = 0, p = ik), although Q

gen
(ik) is a good approximation

for Q
gen

(p) also for small damping values.

Q
gen

(p,Ma) ≈ Q
gen

(ik,Ma) (2.5)

For the algorithm, the airspeed V in Eq. 2.3 is fixed, and the reduced frequency
k, which is used to compute the value of Q

gen
, is changed in iterations until it

matches the imaginary part of the calculated eigenvalue p. This is repeated over
a range of airspeed and for all system modes to obtain frequency and damping
of all aeroelastic modes throughout the airspeed range. Mode tracking [66]
inside the iterations is used to ensure convergence for all aeroelastic modes
and operating points. Further, instead of recomputing Q

gen
(ik,Ma) in each

iteration, a few sampling points are used to compute and then consecutively
interpolate Q

gen
.

g-method

To improve the damping predictions of the p-k-method, Chen [67] suggested to
extrapolate the unsteady aerodynamic forces from the imaginary axis into the
Laplace domain using a Taylor series expansion (see Eq. 2.6) and making use
of the assumption that Q

gen
(p) is analytic.

Q
gen

(p,Ma) ≈ Q
gen

(ik,Ma) + g
dQ

gen
(ik,Ma)
dik

(2.6)
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This reduces to the p-k assumption in the flutter point at zero damping (g = 0)
and delivers the same flutter speed as the p-k method. The damping predictions
outside the flutter point are improved.

Pole fitting

The eigenvalues of Eq. 2.3 can also be interpreted as the poles of the aeroe-
lastic systems transfer function Hsystem(s) between generalized forces and
displacements. The equation can be reshaped into Eq. 2.7 for this purpose. For
harmonic motion, the frequency response function Hsystem(iω) can be evaluated
exactly for sample points along the imaginary axis.

Hsystem(s) =
[
s2Mgen + sDgen +Kgen − ρ

2V
2Q

gen
(ik,Ma)

]−1
(2.7)

Pole-fitting routines such as vector fitting [68, 69, 70] can be used to extract the
poles from the coupled frequency response function. The frequency and damping
of the identified modes can be extracted from the complex poles. Repeating this
process for a set of airspeeds V results in similar results as the iteration-based
methods (p-k, g-method).

Results of a flutter analysis

After extracting the eigenvalues λ from Eq. 2.3, the circular frequency ω, the
associated frequency f and critical damping ζ are extracted from the complex
eigenvalues according to Eq. 2.8

ω = Im(λ) ; f = ω

2π ; ζ = Re(λ)
|λ|

(2.8)

A complex eigenvector is also extracted from Eq. 2.3 for each complex eigenvalue.
The complex eigenvector contains the participation (amplitude and phase) of
each modal DOF of the components in q in the aeroelastic mode associated
with the eigenvalue. The eigenvector is also used to track individual aeroelastic
modes through the operating range studied.

As a result of the flutter analysis (regardless of the solution algorithm), the
frequency and damping results for each aeroelastic mode are known over a
range of, e.g., airspeed. Fig. 2.1 shows an example of such a flutter analysis of
the simplified pylon system from Fig. 1.1(b). The system has two aeroelastic
modes, the forward and backward whirl mode. The frequency and damping
of each mode vary with increasing airspeed on the x-axis. Around 127 m/s
true airspeed, the damping of the backward whirl mode becomes negative,
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indicating instability and, therefore, flutter. From that point on, the system is
unstable, and small oscillations increase in amplitude. Predicting the frequency
and damping of the aeroelastic modes to find this point of instability and the
underlying coupling mechanism described by the associated eigenvector is the
goal of the aircraft flutter analysis.
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Figure 2.1.: Example flutter results for the simplified pylon system with the
frequency (top) and damping (bottom) trends over airspeed.
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2.2. Propeller representation in the frequency
domain

Section 2.1 described the theory for general flutter analysis of an aircraft
in the frequency domain. To capture whirl flutter within this analysis, the
flutter equation 2.3 has to be extended to include the motion-induced loads
of the propeller. The main theory is described in an earlier publication by
the author [71] and reproduced in greater detail here. Eq. 2.9 represents the
extended flutter equation with the motion-induced propeller loads Fgen,prop in
generalized coordinates. They can generally depend on the Laplace variable
s and the generalized coordinates q. They will vary with the aircraft’s and
propeller’s operating point (airspeed V , Mach number Ma, rotational speed
Ω). One assumption in Eq. 2.9 concerns the number of blades. For one- or
two-bladed propellers, the unsteady aerodynamic loads on the propeller hub are
inherently time-dependent and can not be described purely in the frequency
domain (compare, e.g., Johnson [34]). Therefore, Eq. 2.9 is only valid for
propellers with three or more blades.

[
s2Mgen + sDgen +Kgen

]
q = ρ

2V
2Q

gen
(p,Ma)q + Fgen,prop(s, q, V,Ω,Ma)

(2.9)

The generalized form of the propeller loads can be derived from the modal
transformation of the loads about the propeller hub, using the modal matrix
for the propeller hub node, Φhub. The propeller hub node is a single reference
point to which the propeller loads can be referenced and transferred to the
structural model (see Fig. 2.2). The modal transformation with Φhub can be
used to obtain the physical displacements of the propeller hub xhub (see left
side of Fig. 2.2) from the generalized coordinates q as described in Eq. 2.10.
In the other direction, it projects the forces at the propeller hub Fprop,hub (see
right side of Fig. 2.2) back onto the generalized propeller loads Fgen,prop that
are part of Eq. 2.9. A sufficient number of modes should be used in the modal
matrix Φhub to correctly capture the possible motions of the propeller hub node
(translations and rotations).

xhub = Φhubq , Fgen,prop(s, V,Ω,Ma) = ΦThub Fprop,hub (2.10)

The propeller hub displacements xhub and hub loads Fprop,hub have six compo-
nents each, comprising three translations (x, y and z) and three corresponding
rotations (ϕ, θ and ψ), where x denotes the propeller axis and y and z span
the propeller plane:
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xhub =




x
y
z
ϕ
θ
ψ



hub

, Fprop,hub =




Fx
Fy
Fz
Mx

My

Mz



hub

(2.11)
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Figure 2.2.: Separation of the simplified pylon system into pylon and propeller,
denoting the hub displacements xhub and the hub loads Fprop,hub.

The benefit of this coordinate transformation back into physical hub coordinates
is that it is easier to find a relation between motion-induced loads and displace-
ment. For stability analysis, small perturbations ∆xhub can be assumed, and a
linear relationship between loads and displacements is written as in Eq. 2.12.

Fprop,hub = Hprop(s, V,Ω,Ma) ∆xhub (2.12)

Hprop represents the linear, frequency-dependent transfer function from propeller
hub displacements to propeller hub loads (also called transmittance in the
literature [59]). Because ∆xhub and Fprop,hub are both vectors with six entries,
Hprop is a square six-by-six matrix, the so called transfer matrix, as shown
in Eq. 2.13. Each entry is a frequency-dependent transfer function projecting
one hub displacement (e.g., rotation about the y-axis θ) with one hub load
component (e.g., the moment about z, Mz). The resulting transfer function (in
this example, Mzθ) is a scalar, frequency-dependent transfer function.
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Similar to Fgen,prop in Eq. 2.9, the transfer matrices are not only frequency-
dependent but also vary with the operating point (e.g., V , Ma and Ω).

Hprop(s, V,Ω,Ma) =




Fxx Fxy Fxz Fxϕ Fxθ Fxψ
Fyx Fyy Fyz Fyϕ Fyθ Fyψ
Fzx Fzy Fzz Fzϕ Fzθ Fzψ
Mxx Mxy Mxz Mxϕ Mxθ Mxψ

Myx Myy Myz Myϕ Myθ Myψ

Mzx Mzy Mzz Mzϕ Mzθ Mzψ




(2.13)

Inserting Eq. 2.12 together with the modal transformation in Eq. 2.10 into
the flutter equation with propeller loads 2.9 yields the final, frequency-domain
flutter equation including propeller transfer matrices in Eq. 2.14. Solving for
the eigenvalues of Eq. 2.14 yields the eigenfrequencies and dampings of the
airframe modes, including those of the propeller whirl modes.

[
s2Mgen + sDgen +Kgen

]
q = ρ

2V
2Q

gen
(p,Ma)q

+ ΦThubHprop(s, V,Ω,Ma)Φhubq
(2.14)

Different formulations exist for Hprop, including the propeller gyroscopics, the
formulation derived by Houbolt and Reed, and the identified transfer matrices
of the TM-method, the core concept of this work. The different formulations
will be explored in the following subsections.

2.2.1. Gyroscopics
One major influence of the rotating propeller (and engine) is the gyroscopic
coupling between pitch and yaw motion. This dynamic coupling due to the
rotational inertia leads to the whirling motion in the first place, which can then
become unstable under the influence of motion-induced aerodynamics. For the
coordinate system depicted in Fig. 2.2, the gyroscopic coupling matrix becomes
a skew-symmetric viscous damping matrix as in Eq. 2.15 [5, Chap. 2.1]. Jp
represents the polar inertia of the propeller (second mass moment of inertia
about the propeller axis) and Ω the rotational speed. Rotating components of
the engine, such as the gearbox and the turbine, can be included via separate
gyroscopic matrices or by reducing their polar inertia with the ratio of the
rotational speeds to the propeller shaft. It is important, however, to keep the
direction of the rotational speed in mind. Eq. 2.15 assumes a positive rotation
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about the x-axis (counter-clockwise looking from the front). For any component
(including the propeller itself) with an opposite direction of rotation, Ω has to
be inserted with a negative sign into Eq. 2.15.

Hprop(s,Ω) = sG(Ω) = s




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −JpΩ
0 0 0 0 JpΩ 0




(2.15)

The effect of engine gyroscopics on classical aircraft flutter is small and mostly
stabilizing due to the coupling of symmetric and anti-symmetric modes [72]. For
whirl flutter, however, it plays a significant role in the instability mechanism.
Hence, the gyroscopic matrix should always be included in Eq. 2.14.

2.2.2. Houbolt/Reed method
The method of Houbolt and Reed [8] was presented in 1962 and describes
the motion-induced aerodynamic forces on a propeller. Rodden and Rose [14]
presented a few additions to the method. The equations in the following are
taken from their formulation.

The key concept of the Houbolt/Reed method is the description of the motion-
induced aerodynamic hub loads by non-dimensional stiffness and damping
derivatives, which are analytically derived from strip theory. For the detailed
derivation, the reader can refer to the original paper [8] or the book of Čečr-
dle [5, Chap. 5.4ff]. The equations for the hub loads based on the propeller
derivatives can be rewritten in matrix form to comply with the form of Eq.2.12.
Eq. 2.16-2.18 present the formulation of Hprop using the aerodynamic stiffness
(Kprop) and damping matrix (Dprop) [19]. Only motion and load components in
the propeller plane are considered in the theory, and DOF x and ϕ are neglected
(see the zero rows and columns in Eq. 2.18).

Hprop(s, V,Ω,Ma) = πR3ρV 2(Kprop + sDprop) (2.16)
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Kprop =




0 0 0 0 0 0
0 0 0 0 Cyθ

2R
Cyψ
2R

0 0 0 0 Czθ
2R

Czψ
2R

0 0 0 0 0 0
0 0 0 0 Cmθ Cmψ
0 0 0 0 Cnθ Cnψ




(2.17)

Dprop =




0 0 0 0 0 0
0 − Cyψ

2RV
Cyθ
2RV 0 Cyq

2V
Cyr
2V

0 − Czψ
2RV

Czθ
2RV 0 Czq

2V
Czr
2V

0 0 0 0 0 0
0 −Cmψ

V
Cmθ
V 0 CmqR

V
CmrR
V

0 −Cnψ
V

Cnθ
V 0 CnqR

V
CnrR
V




(2.18)

In Eq. 2.17 and 2.18, Cab denotes the non-dimensional derivatives, describing the
load component a due to the motion component b 2. For example, Cnθ describes
the non-dimensional moment Mz due to a steady propeller disc inclination
(pitch) angle θ. The derivatives and Hprop depend on the propeller geometry
and operating point. Eq. 2.19 shows one example for the analytical equation,
in this case for the derivative Cnθ, using the definitions in Eq. 2.20.

Cnθ = −
(
Nb
4

)(
1
πR

)∫ 1

ηhub

η2
√
µ2 + η2

CAr c(η) Clα(η) Re(γ(k))dη (2.19)

with
µ = V

ΩR , η = r/R , k = c

2R
√
µ2 + η2

(2.20)

The derivates mainly consist of an integral along the non-dimensional propeller
radius η, starting at the spinner ηhub. The integral comprises a factor for the
velocity triangle at the blade section (using the propeller advance ratio µ), the
blade chord distribution c(η), the local blade lift curve slope Clα(η) and several
correction factors. The first factor accounts for the unsteady lift lag effect using
Theodorsen’s function γ(k) with the local reduced frequency k, in this case, only
accounting for the rotational frequency Ω instead of the oscillation frequency ω.
The factor is omitted for the quasi-steady approximation of the Houbolt/Reed
method (γ(k) = 1). The second factor, CAr, accounts for the finite blade span

2Note that in the Houbolt/Reed method, the moment My is denoted as m and the moment
Mz as n. The rotational velocity about the y-axis is denoted as p, and r denotes the
rotational velocity about the z-axis.
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(similar to a tip loss factor) and the compressibility using a Mach-correction
(see Eq. 2.21). The third correction factor, NB/4, accounts for the number of
blades because the method by Houbolt and Reed was initially developed for a
four-bladed propeller. The definitions for all other coefficients are given in App.
A.1, where some derive from axial symmetry.

CAr = Ar

2 +Ar
√

1 −Ma2(1 + ( ηµ )2)
, Ar = R(1 − η2

0)∫ 1
ηhub

c(η)dη
(2.21)

Due to its analytical nature, the Houbolt/Reed method is fast and robust.
The derivatives and therefore Hprop can be calculated for every flight point
and inserted into the flutter equation 2.14. However, some assumptions in its
derivation limit the modeling capabilities of the method. The main assumptions
are:

1. The propeller blades are assumed to be completely rigid; no blade elasticity
is considered.

2. The steady angle of attack at the local blade section is assumed to be
zero. The formulation is, therefore, only valid for zero thrust and torque
(windmilling case).

3. No induced velocity (due to circulatory lift on the blades) is considered.

4. Due to the use of strip theory, the radial blade sections are considered
independent of each other. A correction derived for finite wings using the
aspect ratio is used to consider tip-loss effects.

5. No unsteady aerodynamics are considered. The formulation with stiffness
and damping is quasi-steady. The correction using Theodorsen’s function
for the local blade lift lag effect assumes the rotational speed to be much
higher than the oscillation frequency (Ω >> ω).

6. The method only applies to propellers with three or more blades.

Before describing the Transfer-Matrix method, developed to overcome all but the
last limitations, some fundamental relations of unsteady propeller aerodynamics
and whirl flutter stability are presented using the Houbolt/Reed method.

Basic relations of unsteady propeller aerodynamics and whirl flutter

Tab. 2.1 lists the eight unique derivatives (and their corresponding axial-
symmetric counterparts) for an example propeller for the regular Houbolt/Reed
theory as well as for the quasi-steady formulation, omitting the unsteady
correction with the Theodorsen-function in Eq. 2.19. The first four derivatives
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are aerodynamic stiffness terms, representing steady loads resulting from a
steady deflection of the propeller (introduced in chapter 1 as 1P hub loads).
The last four rows contain damping derivatives resulting from a rotational
velocity of the propeller disc.
By comparing the regular and the quasi-steady derivatives, two main effects of
unsteady aerodynamics become apparent: first, for the quasi-steady formulation,
half of the derivatives are zero, and second, those that are not zero are predicted
higher than for the regular theory with unsteady correction. The first effect,
the missing derivatives, can be explained by the omitted unsteady phase lag.
Because the induced angle-of-attack distribution by a disc pitch angle is anti-
symmetric about the z-axis, so is the resulting quasi-steady lift distribution.
The phase lag due to the Theodorsen function results in a phase lag in the
azimuth direction, creating force and moments about the y-axis (for the stiffness
terms). The second effect, the smaller amplitudes, stems from the lift deficiency
in the Theodorsen function, resulting in a reduction in the amplitude of the
unsteady lift and, therefore, in the derivatives.

Table 2.1.: Houbolt/Reed derivatives using regular and quasi-steady formulation
Axial-Symmetric Regular Quasi-steady

Derivative Derivative Houbolt/Reed Houbolt/Reed
Cyθ Czψ -0.047 0
Czθ −Cyψ -0.268 -0.308
Cmθ Cnψ 0.011 0
Cnθ -Cmψ 0.066 0.074
Cyq Czr 0.131 0.148
Czq -Cyr -0.021 0
Cmq Cnr -0.051 -0.056
Cnq -Cmr -0.008 0

Fig. 2.3 shows the fifth column of the resulting unsteady transfer matrix Hprop

for a frequency range up to 30 Hz for the regular Houbolt/Reed theory. It is
seen that the z-force and moment (two plots on the right) are mainly stiffness-
dominated, as they show almost no dependency on the frequency. The y-terms
(two plots on the left) have some stiffness associated (amplitude at a frequency
equal to zero) but are mainly damping terms due to their linear slope in the
transfer function.

Due to the explicit dependency of the Houbolt-Reed transfer matrices Hprop on
the Laplace-variable s, the equations of motion 2.9 for the simplified pylon system
from Fig. 1.1(b) can be solved directly using the p-method (a simple eigenvalue
analysis in this case). Repeating the analysis for different combinations of
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Figure 2.3.: Fifth column of |Hprop| for Houbolt/Reed method, evaluated for an
example propeller for harmonic excitation s = iω up to 30 Hz.

pitch and yaw spring stiffness (Kθ and Kψ) allows us to derive the stability
map of the system in Fig. 2.4 and, respectively, the required stiffness (or
uncoupled frequency as shown in the plot) for stability. The most critical
stiffness combination is equal pitch and yaw frequency, so on the bisecting
line in Fig. 2.4. The required pitch (or yaw) frequency is used as a stability
measure, and the relative change of this required frequency measures any change
in stability due to parameter variations. Eq. 2.22 defines ∆ωstab for a variation
in parameter i relative to the reference stability map ωstab,ref .

∆ωstab = ωstab,i − ωstab,ref
ωstab,ref

(2.22)

A positive ∆ωstab represents a shift of the stability towards higher frequencies
and, therefore, a more unstable system (as indicated in Fig. 2.4) This relative
measure concerning a reference configuration is used throughout this thesis to
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quantify the impact of parameter variation on the whirl stability of a simplified
pylon system.
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Figure 2.4.: Baseline whirl flutter stability map with measure ∆ωstab for quantifying
changes in stability.

The simplified pylon system from Fig. 1.1(b) can experience a second kind
of instability, which is also indicated in the stability map in Fig. 2.4: static
divergence. The vertical force due to pitch angle, Czθ, increases the pitch angle
further and has to be counteracted by elastic forces in the structure [5]. If the
stiffness in one direction becomes too small, the aerodynamic force drives the
system into static divergence. The two straight lines parallel to the x- and y-axis
in Fig. 2.4 mark the area of static divergence. This phenomenon is irrelevant
for turboprop structures due to the relatively high stiffness [5].

The derivatives in Tab. 2.1 influence whirl flutter stability by either stabilizing
or destabilizing whirl flutter. The driving term behind the instability of the
backward whirl mode is the cross-coupling moment derivative Cnθ (and the
corresponding Cmψ

3), as it couples pitch and yaw motion and acts in the

3In the following, for conciseness the axial symmetry will only be mentioned in special cases.
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direction of the backward whirl mode [5]. The vertical force component Czθ
was already described to cause static divergence but also dampens the whirling
motion. The moment due to pitch velocity Cmq also dampens the backward
whirl motion (see [5, Fig. 2.5-2.7]).

These stabilizing and destabilizing effects are explored in more detail in Fig. 2.5.
The eight plots present the sensitivity of whirl flutter (i.e., the extent of the
stability boundary measured using ∆ωstab) when the respective derivative (and
the axial-symmetric counterpart) are scaled relative to the reference configu-
ration from Tab. 2.1 and Fig. 2.4. Each derivative is modified with a scale
factor between -20 % and +20 %. A positive slope of the line in the plot
indicates a destabilizing contribution, as an increase in the derivative leads to
an extension of the whirl flutter area. Fig. 2.5 identifies Cnθ as the primary
destabilizing term, while the force stiffness derivatives Cyθ and Czθ as well as
the moment damping term Cmq are the main stabilizing contributors. The
remaining derivatives have only a minor impact on the stability.
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Figure 2.5.: Sensitivity of whirl flutter stability concerning the propeller derivatives



2.2. Propeller representation in the frequency domain 33

2.2.3. Transfer-Matrix method
The method by Houbolt and Reed explained before formulates analytical rela-
tions between propeller hub motion and loads, compare, for example, Eq. 2.19.
The assumptions inherent to this theory are also listed in section 2.2.2, and
overcoming them with analytical derivations becomes increasingly involved.
The Transfer-Matrix (TM-)method instead relies on an aeroelastic time-domain
simulation model for the propeller (see section 2.3) and identifies the transfer
matrices Hprop using time simulations. This allows identifying the complete
six-by-six transfer matrix, as shown in Eq. 2.23, including the DOF in x and ϕ.

Hprop(s, V,Ω,Ma) =




Fxx Fxy Fxz Fxϕ Fxθ Fxψ
Fyx Fyy Fyz Fyϕ Fyθ Fyψ
Fzx Fzy Fzz Fzϕ Fzθ Fzψ
Mxx Mxy Mxz Mxϕ Mxθ Mxψ

Myx Myy Myz Myϕ Myθ Myψ

Mzx Mzy Mzz Mzϕ Mzθ Mzψ




(2.23)

The origin of this method was developed by Gori et al. [60] to obtain a ROM for
a helicopter rotor for flight mechanics applications. The initial method includes
a three-step process to obtain a time-domain ROM using a rational matrix
approximation of Hprop. The original method is explained briefly in the next
paragraph, followed by the version adapted in this thesis for frequency-domain
whirl flutter analysis. Required for the application of both versions of the
TM-method are:

• A time-domain aeroelastic simulation model for the isolated propeller or
rotor.

• The isolated rotor model has to be stable.

• The solver used for integrating the time-domain model needs restart
capabilities, as several time integrations starting from the same (trimmed)
operating point are necessary.

• The total hub loads Fprop,hub for a simulation with prescribed hub motion
∆xhub have to be recovered.

ROM-procedure according to Gori et al.

The main goal of the method by Gori et al. [60] is to obtain a time-domain,
finite state ROM for a helicopter rotor in steady flight. This ROM represents a
linearized but computationally more efficient version of the complex simulation
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model used to identify it. After identification, the ROM can be coupled with
an airframe model, e.g., for flight mechanics and controller design.

The main steps for reducing an aeroelastic rotor model into a ROM can be
separated into identifying the frequency-domain transfer function for the rotor
hub and converting it into a time-domain ROM. For the first step, identifying
frequency domain transfer functions, the rotor hub motion4 ∆xHub is perturbed
by a harmonic motion of small amplitude. The response of the rotor hub forces
FProp,Hub is recorded until the transient response is decayed. The response of
the rotor hub forces is recorded in the time domain and transformed into the
frequency domain using a Discrete Fourier Transform. Only the first harmonic
of the perturbation frequency is retained, as the goal is to achieve a linear,
time-invariant aeroelastic transfer function (single harmonic input yields single
harmonic output). Eventual higher harmonic content, e.g., resulting from
periodicity in forward flight, is neglected. To obtain a clean frequency-domain
transfer function, an integer multiplier of the perturbation period is used for the
integration time while ensuring it is long enough to avoid spectral leakage [60].
The aeroelastic transfer function for the rotor Hprop is identified by repeating
this process for all hub motion components and several perturbation frequencies.

Because the main goal is to obtain a time-domain ROM, a rational matrix
approximation (RMA) for Hprop is found [60] and afterwards transformed
into a state-space model. The RMA takes the frequency-domain samples for
Hprop on the imaginary axis as an input and fits a rational matrix model as
shown in Eq. 2.24 to the data. For a description of the RMA procedure,
compare Gori et al. [60, Appendix 2]. The resulting matrices are an optimal
approximation for the given frequency-domain data while expanding into the
Laplace domain.

Hprop(s) ≈ s2A2 + sA1 +A0 + C[sI −A]−1B (2.24)

Eq. 2.24 can be rewritten in the time-domain as a state-space model for the
propeller hub forces Fprop(t), shown in Eq. 2.25. The poles of the RMA in
matrix A in Eq. 2.24 become the states of the system, which takes the hub
motion xhub and its derivatives as an input.

Fprop(t) = A2ẍhub +A1ẋhub +A0xhub + Cr

ṙ = Ar +Bxhub
(2.25)

In the final step, the resulting state-space ROM can be coupled with a state-
space airframe model (e.g., using compatibility conditions at the hub interface

4The original method from Gori et al. also includes control DOF, e.g., considering swashplate
inputs. These are irrelevant to the propeller case and are omitted here.
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for displacements and loads). The coupled model can be used for fast time
integration in flight mechanics analysis, control design, or even real-time appli-
cations [60]. The coupled system can also be evaluated for aeroelastic stability
(e.g., by eigenanalysis of the coupled system matrix). The poles of the RMA also
appear in the eigenvalues of the coupled system, representing, e.g., elastic rotor
DOF or aerodynamic states from unsteady aerodynamics (for more detailed
insights into the RMA states, compare Gori et al. [60, Appendix 1]).

The method, as summarized here, was initially developed for helicopter rotors in
hover and forward flight5. Complex time-domain simulation models, including
elastic blade formulations and unsteady aerodynamics, can be used. The method
was verified using indicial response simulations with the full model and recovered
the hub load time histories [60].

Although the resulting ROM is fast to evaluate, the necessity to perform
multiple harmonic perturbations makes the initial creation costly in terms of
computational time. From a methodological perspective, the return to a time-
domain state-space model and the rational matrix approximation connected
to this step is required for, e.g., controller design. A representation in the
frequency domain is sufficient for aeroelastic (whirl) flutter stability analysis,
avoiding the complicated RMA steps.

Frequency-domain Transfer-Matrix method

From the perspective of propeller whirl flutter, the method of Gori et al. [60]
offers promising advantages by allowing the reduction of an arbitrary time-
domain rotor model into a ROM, which can afterwards be coupled to a support
structure, e.g., an airframe. The disadvantages of high computational time
and complex rational matrix approximation have to be overcome to allow
compatibility with current aircraft flutter analysis processes.
For this purpose, the main idea of the first part of the method developed by
Gori et al. [60], the identification of a frequency-domain transfer function from
rotor hub motion to hub loads using time-domain perturbations, is kept and
embedded into a new framework, the so-called Transfer-Matrix method (or
short TM-method). The TM-method is tailored to frequency-domain whirl
flutter analysis, and the main goal is to obtain a frequency-domain representation
of the propeller efficiently. The theory was first described by the author in [71]
and further developed in later publications [73, 74, 75, 76, 77].

For the special case of turboprop whirl flutter analysis, some simplifications can
be applied:

5for the latter as an approximation due to the lack of higher harmonic response terms
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• Due to the fast-forward flight, aircraft propellers usually operate in (nearly)
axial flight conditions. This means the inflow velocity is parallel to the
rotational axis, and the system becomes time-invariant. Small angles of
attack are neglected.

• The propeller pitch control system dynamics are neglected, and the only
interface for motion and loads is the propeller hub node, equivalent to
Fig. 2.2. Gori et al. [60] also include the possibility of rotor control
inputs, e.g., via swashplate motion, but this is usually not applicable for
propellers.

These simplifications are applied to make the process faster and more efficient
but do not limit the application of the TM-method in general. The required
measures to overcome them are discussed in chapter 5.

The workflow for the TM-method is shown in Fig. 2.6 and described in the
following paragraphs. It is split into three main steps: The identification of
the transfer matrices Hprop from the time-domain aeroelastic model; Some
optional post-processing steps to make the transfer matrices compatible with
the airframe model; And finally, the flutter solution in the frequency domain.
The steps are independent and require different tools (e.g., a time-domain rotor
code for the first step). Identified transfer matrices for one propeller model
(from step 1.) can be reused in several flutter analyses even with different
airframe models.

1. Identi�cation of 
    transfer matrices

1.1 Trim to steady 
      reference �ight 
      condition

1.2 Pulse perturbation 
      of the hub motion

1.3 Evaluation of 
      individual transfer 
      functions using FFT

1.4 Simpli�cations for
      axial �ight

2. Optional post-
    processing of TM

2.1 Removal of mass, 
      inertia and gyros-
      copic components

2.2 Masking of x-DOF

2.3 Conversion of
      unit system

2.4 Alignment to air-
      frame coordinate 
      system

2.5 Reversal of 
      rotational axis

3. Flu�er solution

3.1 Interpolation to
      di�erent operating 
      points

3.2 Modal 
      transformation

3.3 Insertion in �u�er
      equation

3.4 Flu�er solution in
      the frequency 
      domain

Figure 2.6.: Basic workflow of the TM-method.
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The individual steps from Fig. 2.6 are explained in detail in the following
workflow description:

1. Identification of transfer matrices
The first major step is the identification of the frequency-domain transfer
matrices Hprop(iω) from a time-domain propeller model [71]. The required
steps include trim, perturbation about the trim point, derivation of the
transfer functions, and assembly of the transfer matrices, including the
simplifications for axial flight. The result is a set of transfer matrices
Hprop(iωk) at discrete frequencies ωk for each operating condition.

1.1 Trim to steady reference flight condition
Starting with an aeroelastic time-domain propeller model, a steady
reference flight condition has to be chosen, and the model must be
trimmed accordingly. This requires choosing the operating condi-
tions, usually comprising airspeed, shaft speed, and air density, at
which the transfer matrices shall be identified. For these operating
conditions, the time-domain propeller model has to be brought into
an equilibrium state for the hub loads, e.g., using time integration
or Newton iteration. Additionally, the propeller blades’ collective
pitch setting must be determined for variable-pitch propellers. This
is usually done by pursuing a trim goal and iteratively adjusting the
blade pitch to minimize the difference to the required trim goal. The
trim for smaller aircraft with fixed-pitch propellers is usually carried
out by adjusting the rotational speed at a fixed airspeed to meet the
trim goal. Common trim goals could be a given thrust force, shaft
torque, or power. It must be kept in mind that the identified transfer
matrices are generally only valid for the operating conditions and
trim settings chosen.

1.2 Pulse perturbation of the hub motion
The hub motion is perturbed in the time domain to identify the
frequency response of the propeller for small perturbations about the
equilibrium point found in 1.1. While Gori et al. [60] used harmonic
perturbation to obtain the perturbation response for one single fre-
quency, this method uses a broad-band excitation perturbing a whole
frequency range at once. This is applicable due to the assumption of
axial inflow, which makes the system time-invariant. Hence, a per-
turbation at a particular frequency only yields a frequency response
at that frequency. Broadband excitation requires only one time
integration (per hub-DOF), replacing several consecutive harmonic
perturbations and saving much computational time. Eq. 2.26 defines
the broad-band pulse used in this work.
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The top plot in Fig. 2.7 shows the resulting time history.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
t/tw,−

0.0

0.5

1.0

p(
t)

/
p m

ax
,−

0.00 0.25 0.50 0.75 1.00 1.25 1.50
ω/ωmax,−

0.0

0.5

1.0

F
( p(

t)
) no

rm
.,−

Figure 2.7.: Shape of pulse perturbation (top) and the corresponding
normalized frequency spectrum (bottom).
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A symmetric, fifth-order polynomial up- and down-stroke are defined
using the pulse width tw. The pulse width can be determined using
the maximum frequency to be excited (tw = 2π/ωmax), although
the Fourier transformation of the pulse shape in the bottom plot of
Fig. 2.7 indicates that also higher frequencies are excited, but with
less energy. Most importantly, Fig. 2.7 shows that all frequencies
up to ωmax are excited, and the spectrum contains no zeros. The
pulse perturbation is applied to one of the hub DOF xhub (compare
Eq. 2.11), e.g., the propeller disc pitch θ. The time response of the
aeroelastic propeller model to the pulse itself and the following decay
is obtained using time integration. The time history of the six hub
load components Fprop,hub(t) is recorded in the non-rotating, fixed
reference system6. The process is repeated for each DOF.

Identification using broad-band excitation only works correctly for a
linear system. Generally, the time-domain propeller model can be
non-linear (e.g., concerning amplitude due to geometric nonlinearities)
but is assumed to show a linear behavior for small perturbations.
The amplitude of the pulse perturbation has to be chosen small
enough to stay within the linear regime of the model but high enough
to excite the system dynamics and produce a signal significantly
stronger than the numerical noise (e.g., due to integrator tolerances).
To verify the usage of broad-band excitation, transfer functions
obtained using the pulse shape defined in Eq. 2.26 are compared
later in this thesis to transfer functions computed using harmonic
perturbation. When recording the response of the hub loads in the
time domain, a sufficient number of steps have to be chosen. The
step size ∆t is usually governed by resolving high-frequency dynamics
with fmax in the model to avoid aliasing when transforming into the
frequency domain in the next step (∆t ≤ 1

2fmax
). The number of

time steps nsteps determines the frequency-domain resolution ∆f ;
a more extended time signal leads to a higher frequency resolution
(nsteps = 1

∆t∆f ). Especially when distinct resonance peaks, e.g.,
due to elastic blade modes, are expected in the transfer functions,
frequency resolution should be high enough to capture those peaks
adequately.

6The coordinate system does not move or tilt with the propeller disc but stays fixed to the
nacelle.
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1.3 Evaluation of individual transfer functions using Fast Fourier
Transformation
The time response of the hub loads obtained for each pulse perturba-
tion is used to extract the frequency-domain transfer functions. First,
the perturbation response is isolated by subtracting the steady-state
hub loads (thrust and torque for axial flight) from the time series.
Second, the time-domain data for hub motion and loads is trans-
formed into the frequency domain using Fast Fourier Transformation.
The transfer function between motion and loads is found by division,
as outlined in Eq. 2.27.

Hij,prop(iω) =
F
(
Fi,hub(t) − Fi,steady

)

F
(
fj(t)

) (2.27)

Applying Eq. 2.27 for each DOF that was perturbed (index j) and
each load component (index i) of the hub load vector Fprop,hub yields
elements of the transfer matrices Hprop(iωk) at distinct sampling
frequencies ωk. The transfer functions are cut at the maximum
frequency ωmax chosen when defining the pulse shape to cut off the
part of the spectrum that has not been excited with enough energy.

1.4 Simplification for axial flight
For the special case of axial flight, some assumptions can be used
to reduce computational effort further. The propeller in axial flight
is axially symmetric (about the global x-axis). Hence, the transfer
functions to perturbations about the global z-axis can be derived
from the ones about the global y-axis (or the other way round). The
signs of the coupling terms between y- and z-direction are flipped
according to Eq. 2.28.
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(2.28)

Additionally, for the propeller in axial flight, the x-direction is uncou-
pled from the in-plane loads and has only a minor impact on whirl
flutter stability7.

7In the Houbolt/Reed theory, the terms in the x-direction are also neglected.
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Especially for structural models without significant DOF in the
x-direction (such as the simplified model from Fig. 1.1(b)), the x-
direction can therefore be neglected by not perturbing x and ϕ, saving
two additional perturbations. Considering both simplifications, the
number of time-domain response simulations is cut down from six to
two.

2. Optional post-processing of transfer matrices
After step 1., a list of transfer matrices Hprop(iωk) and the correspond-
ing sampling frequencies ωk are available. These represent the linear,
frequency-domain transfer behavior of the aeroelastic propeller model
about the trim point. In the following step 2., optional post-processing
steps are described to ensure compatibility with the airframe model and
make the coupling process easier [76].

2.1 Removal of mass, inertia, and gyroscopic components
In case the aeroelastic propeller model contains masses (e.g., to
model propeller blade dynamics), the total inertia of the model is
also present in the transfer matrices Hprop(iωk). Assuming a six-by-
six mass matrix Mprop about the propeller hub, the influence of the
inertia on the transfer matrices can be derived from Eq. 2.298

−s2Mprop = −(iω)2Mprop = ω2Mprop (2.29)

A simplified mass matrix for the propeller with mass mprop and
rotational inertias Jp, Jθ and Jψ is shown in Eq. 2.30, neglecting
any mass coupling terms that could arise, e.g., from offsets between
the center of gravity and the hub coordinate system.

Mprop =




mprop 0 0 0 0 0
0 mprop 0 0 0 0
0 0 mprop 0 0 0
0 0 0 Jp 0 0
0 0 0 0 Jθ 0
0 0 0 0 0 Jψ




(2.30)

In most cases, the dynamic model of the airframe already contains
the mass and inertia of the propeller (e.g., to obtain correct mode
shapes) in the generalized mass matrix Mgen (see Eq. 2.14). The
mass influence on the transfer matrices is eliminated to avoid double
accounting for the propeller mass. In case the aeroelastic propeller
model contains a polar inertia Jp, also a gyroscopic component

8The mass influence is already written for the right-hand side of the flutter equation 2.14,
hence the negative sign.
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G(Ω) is included in the transfer matrices (compare subsection 2.2.1).
These components are also eliminated from the transfer matrices in
favor of a representation as an explicit gyroscopic matrix according
to section 2.2.1. The elimination is conducted by subtracting the
influences from the transfer matrix samples; see Eq. 2.31.

Hprop,mod(iωk) = Hprop(iωk) − iωkG(Ω) − ω2
kMprop (2.31)

2.2 Masking of x-DOF
Even in case the axial DOF (x and ϕ) have been identified during the
transfer matrix identification procedure using explicit perturbation,
for the analysis, some or all of the transfer functions in this direction
can be dropped. For example, the transfer components regarding
the rotation about the global x-axis, ϕ, might not correctly represent
the whole dynamics of the system if the gearbox and shafts are not
modeled. Instead of including these incomplete transfer functions,
they can be dropped entirely by blanking the corresponding rows
and columns.

2.3 Conversion to different unit systems
The transfer matrices Hprop(iωk) are kept in dimensional form and
are not non-dimensionalized. This prevents the impression that
they can be scaled or transferred to other operating points, which is
impossible due to the explicit dependency on airspeed, shaft speed,
and air density. The unit systems must be kept consistent in Eq. 2.14
to ensure compatibility with the airframe model, though. The transfer
matrix samples from step 1. are in the unit system of the time-domain
propeller model. The top left three-by-three sub-matrix has force
per length as units, while the bottom three-by-three sub-matrix has
force times length and the rest force units. Converting the unit
system requires one to convert each element according to its units. A
common conversion is displayed in Eq. 2.32, converting the transfer
matrices from kg-m-s unit system into t-mm-s using element-wise
multiplication with a unit transformation matrix:
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Hprop/t,mm,s(iωk) = Hprop/kg,m,s(iωk)

◦




0.001 0.001 0.001 1 1 1
0.001 0.001 0.001 1 1 1
0.001 0.001 0.001 1 1 1

1 1 1 1000 1000 1000
1 1 1 1000 1000 1000
1 1 1 1000 1000 1000




(2.32)

2.4 Alignment to airframe coordinate system
Interface compatibility at the propeller hub node requires the coordi-
nate system for the hub node in the airframe model to be aligned
with the coordinate system used to identify the transfer matrices.
Fig. 2.2 shows the ideal case for which both coordinate systems
coincide. This might not be the case in some situations, for example,
when coupling the transfer matrices obtained from one propeller
model with different airframe models and coordinate systems. In
this case, the reference coordinate system of the transfer matrices
can be rotated afterwards to align it with the hub coordinate system.
Eq. 2.33 shows the simple case of a 180° rotation about the global
z-axis, in case the global x-axis in the airframe model is pointing
backward instead of forward.

Hprop,mod(iωk) = Hprop(iωk) ◦




1 1 −1 1 1 −1
1 1 −1 1 1 −1

−1 −1 1 −1 −1 1
1 1 −1 1 1 −1
1 1 −1 1 1 −1

−1 −1 1 −1 −1 1




(2.33)

2.5 Reversal of rotational axis
In the case of modeling a propeller aircraft with several propellers,
it can occur that transfer matrices for the same propeller geometry,
reference coordinate system, and operating point, but reversed di-
rection of rotation are required (e.g., if the engines on the left and
right wing are counter-rotating). In this case, the transfer matrices
for one direction of rotation can be derived from the other direc-
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tion by switching certain signs in the transfer matrices according to
Eq. 2.349.

Hprop,mod(iωk) = Hprop(iωk) ◦




1 1 1 1 1 1
1 1 −1 1 −1 1
1 −1 1 1 1 −1
1 −1 −1 1 −1 −1
1 −1 1 1 1 −1
1 1 −1 1 −1 1




(2.34)

3. Flutter solution
After the identification of the transfer matrices from the isolated propeller
model in step 1. and optional post-processing in step 2., the transfer
matrices can be inserted into the flutter equation, and the system solved
for (whirl) flutter stability [71]. While the main theory and equations
are already presented in section 2.1, the process is briefly summarized
in step 3. of the process, and some details concerning the treatment of
transfer matrices during flutter solution are given. The basis of step 3. is
a collection of sets of transfer matrices Hprop(iωk) compatible with the
airframe model, sampled at different operating points over the envelope
(called Vm in the following).

3.1 Interpolation to different operating points
The eigenvalues of the flutter equation 2.14 are evaluated at a set
of operating points Vn. A set of transfer matrices must be available
at each operating point. Either the matrices are identified at each
operating point (Vn = Vm), or the transfer matrices are identified on
a smaller set of operating points Vm to save computational time and
then interpolated on the larger set of operating points Vn. This is
feasible for transfer matrices that gradually change with operating
points and frequency. In this case, (linear) interpolation can be used
between different operating points [76, 77]. In case of nonlinearities
in the transfer matrices, e.g., due to propeller eigenmodes inside
the frequency range of interest, care has to be taken to choose an
applicable interpolation scheme.

3.2 Modal transformation
Before adding the transfer matrices to the equations of motion,
which are usually in generalized form, they are transformed to modal
coordinates using the relations in Eq. 2.10. The modal matrix for the

9This transformation has been derived from comparing transfer matrices obtained from two
identical propeller models but with a reversed sense of rotation.
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propeller hub node, Φhub, is obtained by partitioning the airframe
modal matrix and only retaining the propeller hub node DOF.

3.3 Insertion into the flutter equation
The generalized transfer matrices can then be inserted into the flutter
equation by adding them to the right-hand side (see Eq. 2.14). This
is done for each operating point individually. In case the gyroscopic
components of the transfer matrices have been subtracted during
step 2. or additional gyroscopic components are present, e.g., due to
rotating engine parts, an additional gyroscopic matrix is added to
the equations of motions according to section 2.2.1.

3.4 Flutter solution in the frequency domain
The flutter equation 2.14 is solved for the eigenvalues using one of
the techniques described in section 2.1. Most of these require the
transfer matrices at frequency sampling points ωl different from those
at which they have been identified (ωk). In this case, interpolation
along the frequency axis can be used to obtain the transfer matrices
for the required frequency sampling points. To aid the mode tracking
algorithms inside the flutter solution, it can be beneficial to avoid
discontinuities in the operating conditions of the propeller. This is
especially true for including gyroscopic components in the first veloc-
ity step, as their inclusion can lead to jumps in the eigenfrequencies
and mode shapes, which are hard to track. Ramping the gyroscopic
components up gradually via intermediate operating points to aid
the mode tracking has proven to be a potential solution.

Example results from the intermediate steps described above are shown later in
the result section, referring to the workflow nomenclature introduced above.

Linearization of transfer matrices

In general, the transfer matrices Hprop(iω) are nonlinear concerning frequency,
e.g., due to unsteady aerodynamics or blade dynamics. In some cases, e.g., for
the comparison with the Houbolt/Reed method or for compatibility with legacy,
derivative-based whirl flutter workflows, it can be beneficial to describe the
transfer matrices in a linear fashion similar to Eq. 2.16. For this purpose, the
transfer matrices are linearized with respect to frequencies using two samples
Hprop(iωk) [75, 77]. One sample is chosen at zero frequency to capture the
correct quasi-steady transfer function (ω0 = 0). The second sample is chosen
close to the expected whirl flutter frequency (ω1). Eq. 2.35 shows the lineariza-
tion into a stiffness and damping matrix using the two transfer matrix samples.
The resulting matrices K̃prop and D̃prop are still dimensional and have to be
non-dimensionalized according to Eq. 2.16 to obtain their non-dimensional
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Figure 2.8.: Comparison of full, frequency-dependent transfer function with real
and complex linearization.

counterparts. From the non-dimensionalized matrices, derivatives compatible
with the Houbolt/Reed method can be obtained.

Hprop,lin(iω) = Hprop(0)
︸ ︷︷ ︸
K̃prop

+
Hprop(iω1) −Hprop(0)

iω1︸ ︷︷ ︸
D̃prop

iω (2.35)

Because, in most cases, Hprop(iω1) is complex with both a non-zero real and
imaginary part, the resulting damping matrix, D̃prop, is complex-valued. This
is technically incompatible with the Houbolt/Reed method, which provides
a real-valued damping matrix. To ensure compatibility, the imaginary part
of the damping matrix can be dropped, or it is retained to obtain a better
representation of the transfer matrices. Fig. 2.8 compares the real and complex
linearization of an example transfer function for Fyθ, split into real and imaginary
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parts of the resulting transfer function. The slope of the imaginary part
(damping) fits for all three descriptions, as this part of the transfer function is
linear in this case. The nonlinearity of the total, frequency-dependent transfer
function is mainly in the real part, where the complex linearization gives a
better approximation than the real linearization. The latter only captures the
zero-frequency component correctly. From the real part, it can be seen that the
approximation by linearization becomes worse if the actual transfer function is
more nonlinear.

2.3. Propeller modeling
Section 2.1 and 2.2 describe the theory for (whirl) flutter analysis in the
frequency domain. In subsection 2.2.3, a new method is described to obtain
a frequency-domain ROM from a time-domain propeller model. This section
briefly overviews some methodological aspects of these time-domain propeller
models, mainly covering the methods used within this thesis. First, the low-
to mid-fidelity aerodynamic methods applied in this thesis are described and
compared. Second, the structural modeling of elastic propeller blades within
MBS is covered. It is acknowledged that the full extent of available theory in
the field of rotor or propeller modeling is not encompassed. Nevertheless, the
chosen scope is deemed sufficient for this thesis.

2.3.1. Aerodynamic methods
The motion-induced aerodynamics of the propeller are the driving factor for
propeller whirl flutter, so an aerodynamic method is required for whirl flutter
analysis. While the classical Houbolt/Reed method introduced earlier directly de-
rives the motion-induced load components in the frequency-domain [5, sec. 5.4],
the TM-method uses the time history of the propeller loads in response to a
perturbation in hub motion. Therefore, the aerodynamic method used for this
purpose should be able to compute the aerodynamic loads due to unsteady hub
motion in the time domain. Three classes of methods are standard in literature:

• Low-fidelity methods: analytical methods usually based on strip theory
with local airfoil polars for the blade aerodynamics

• Mid-fidelity methods: potential flow solvers modeling blade and wake
aerodynamics and hence explicitly modeling the interaction

• High-fidelity methods: Navier-Stokes based CFD with explicit model-
ing of the whole flow field, including turbulence and compressibility



48 2. Theory

Only low- to mid-fidelity methods are considered in this thesis, which focuses
on the TM-method. The specific methods used within these categories are
explained below. They represent a subset of the methods used in an earlier
publication [75].

Low-fidelity methods

The low-fidelity methods used in this thesis discretize the propeller blade into
several radially independent airfoil sections with constant properties. The flow
field and, therefore, aerodynamic loads are evaluated at each strip individually.
Each strip has an associated chord length c, a radial position r, and an extension
in radial direction dr as shown in Fig. 2.9. The flow characteristics are evaluated
at the aerodynamic collocation point at the three-quarter chord line (3/4c) by
forming the (vector) sum of all relevant velocity components. These comprise
the kinematic relations of the rotating propeller blade (airspeed V and rotation
Ωr), velocities due to hub or elastic blade motion (in-plane ẏ and out-of-plane
ẋ ), and induced velocities Vind from the wake. From the vector sum, the
kinematic angle of attack αkin and total velocity Veff are found according to
Fig. 2.9.

Ω

Ωr

Veff

V

Vind,x

Vind,tan

L

x3/4 c

c/4 αkin

yxlocal

xlocal

V

r

Figure 2.9.: Velocity triangle (right) for a strip of the propeller blade (left).

The local lift L can be calculated from these quantities using the strip area c dr
and the airfoil lift polar Cl(α) as shown in Eq. 2.36. Drag and moment are
obtained similarly.

L = ρ

2V
2
eff c dr Cl(αkin Γ(t)) (2.36)
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When evaluating the airfoil polar with the kinematic angle of attack, time-
constants Γ(t) modeling the unsteady lift-lag effect can be applied to obtain the
aerodynamic angle of attack. Wagner developed one formulation for the lift-lag
effect [78], and it was approximated by R.T. Jones [78] into two time-constants
(see ΓWagner in Eq. 2.37). Neglecting these time-constants (see ΓQS = 1 in
Eq. 2.37) yields the quasi-steady formulation of the strip theory and lift follows
the instantaneous angle of attack. Wagner’s airloads model includes more
(non-circulatory) unsteady lift components [79], which are neglected here.

ΓQS(t) = 1

ΓWagner(t) = 1 − 0.165e−0.0455
2tVeff

c − 0.335e−0.300
2tVeff

c

(2.37)

The loads are applied to the local quarter chord point c/4. Repeating this process
for all blades and strips in each time step yields the blade load distribution and,
by integration at the hub point, the hub load time history.

Circulatory lift on the blade leads to a shedding of vorticity into the wake behind
the propeller. The combined wake sheets from all blades induce a velocity field
back on the propeller disc (see Vind in Eq. 2.36), affecting the lift distribution
via the local angle of attack. These induced velocities10 can either be neglected
(yielding the quasi-steady or unsteady strip theory described above) or modeled
on the equation level. Many analytical models for computing the induced-
velocity distribution on the propeller disc are available in the literature, ranging
from steady uniform inflow models over quasi-steady blade element momentum
(BEM) theory to unsteady dynamic inflow models [80]. This thesis applies the
quasi-steady BEM based on a momentum equilibrium between lift and induced
velocity at radially independent stream tubes (or strips) [81]. Thrust is balanced
by an increase in axial-induced velocity and moment (or, better, tangential
force) by the rise in tangential-induced velocity. Because the induced velocities
change the force distribution which cause them, an equilibrium between the
two has to be found in each time step by iteration11. The usual formulation of
the BEM obtains the equilibrium for all strips on a radial ring by averaging the
azimuthal lift distribution. According to Smith [25], this does not represent the
reality for situations with a varying lift distribution along the azimuth, such as
a propeller operating under an angle of attack (or disc pitch). He suggests a
formulation that blends the original ring-wise formulation with an element-wise
10The term "induced velocities" is used in this thesis do describe the velocities induced

on the propeller disc due to the combined wake sheets behind the rotor. The term
"inflow" in the same context describes the sum of external velocity and induced velocity
[25, Chapter 1.1.1].

11Contributions to the induced velocities by the near-wake are included in the Wagner-function
and not considered in the BEM, which only covers the combined effect of the propeller
wake.
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BEM, for which the equilibrium is found at each blade and strip individually.
At the blade root, his averaged momentum theory (AMT) applies the ring-wise
solution, and at the blade tip, the element-wise formulation is applied. The
two solutions are blended linearly at intermediate radii based on the radius.
Because the lift and inflow are computed for radially independent strips, no
tip-loss effects are contained in the theory from the first principle. The loss of
lift at the blade tip due to the impact of the tip vortex [80] is modeled with an
empirical tip-loss factor instead. In the case of the implementation used in this
thesis, a Prandtl-Glauert tip-loss factor is used [81].

Mid-fidelity methods

While in the low-fidelity methods, the blade and wake aerodynamics are handled
by separate analytical models, the mid-fidelity methods lift the assumptions
connected to this separation. Usually, based on the potential equation, the
interaction of blade and wake aerodynamics is modeled explicitly. In this
paper, the unsteady panel method (or UPM) [82, 83, 84] developed by the
DLR Institute of Aerodynamics and Flow Technology, is employed. UPM is a
velocity-based potential flow solver. Lifting surfaces such as propeller blades are
discretized into a vortex lattice grid on the mid-surface and a source-sink panel
distribution on the outer airfoil shape to capture thickness effects. The chordwise
distribution of circulation is prescribed12 and its total value is determined by
fulfilling the (unsteady) Kutta-condition on the trailing-edge Kutta-panel by
iteration in each time step. A full-span free wake is shed from the Kutta panel
at the trailing edge, and the induced velocities between the blade and wake
elements are considered when solving for the pressure distribution on the blade
surface and the wake velocities. UPM computes the section loads internally for
each radial strip from the pressure distribution, which can then be integrated
into hub loads for usage in the TM-method. While in the scope of this thesis,
UPM is only used standalone with prescribed hub motion, it could also be
coupled to an elastic blade model, e.g., in MBS.

Comparison

The aerodynamic methods described above and used within this thesis are
compared in Tab. 2.2. Each row gives information about the specific method
of blade lift, the wake and tip-loss model used, and an order of magnitude for
the expected computational times. The methods are ordered by descending
computational time and fidelity. UPM, as a mid-fidelity method, features a 3D
blade lift model, while the other methods all use a strip-theory approach for
the blade lift, which in the case of the Houbolt/Reed methods is even linearized
and only uses the blade lift curve slope.
12In case of this thesis, proportional to the airfoil thickness.
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Table 2.2.: Comparison of aerodynamic methods used in this thesis (reproduced
from [75]).
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Only UPM and BEM+Wagner include an induced-velocity model, with the
first employing a free-wake model and the latter the quasi-steady weighted
momentum theory. Regarding tip loss models, only UPM included this from
the first principle due to the free wake and 3D lift model; all other methods
either include it empirically or not. The different models and their effect on
unsteady propeller aerodynamics and whirl flutter predictions are compared
later in section 4.3.

2.3.2. Structural modeling with MBS
For modeling the propeller structure and kinematics of the rotating system,
multi-body simulation (MBS) is used in this thesis. A MBS system consists
of an arbitrary number of individual bodies connected by joints that allow for
nonlinear motion between the body. For the example of the rotating propeller,
each blade could be modeled as a separate body. Each blade is connected with
a fixed joint to the rotating propeller hub body, which in turn is connected to
the non-rotating nacelle via a joint with forced rotation about the shaft axis.
Eq. 2.38 shows the equations of motion for such a nonlinear system [85], split
into the kinematic equations (first row), the momentum equations (second row),
and the dynamic state equations (third row)[85]. Constraints and algebraic
states are neglected as they are irrelevant to this paper.

ṗ = T (p)v
M(p)v̇ = f(p,v,a, t,w)

ȧ = fc(p,v,a, t,w)
(2.38)

The differential equations are written in terms of position states p, their deriva-
tives in the form of the velocity states v and additional force element states, e.g.,
for unsteady aerodynamics, a. The first set of equations relates the position
and velocity states with a transformation matrix for the angles, T . The second
set contains the momentum equilibrium and is written in terms of forces and
moments, with the inertial contributions from the system mass matrix M on
the left side and the balancing internal loads, e.g., from elastic contributions,
as a nonlinear set of equations f(...) on the right-hand side. The third set of
equations contains the internal dynamics of the force elements, for example,
the dynamic equations from the Wagner equations for the aerodynamic lift-lag
effect, compare Eq. 2.37. All equations are time-dependent on the system time
t and can contain external inputs w, for example, from forced motion.
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From these equations, the state vector x can be assembled from the position,
force, and velocity states as shown in Eq. 2.39.

x =




p
a
v


 (2.39)

The position states p (and therefore also the respective velocity states) comprise
the states connected to the position of the joints connecting the bodies pjoint,
in case they have any DOF associated. One example is the flapping hinge of
a helicopter blade, which could be modeled with a rotational hinge with one
position state (the angular position). Further position states stem from the
flexible deformation of the elastic bodies, pflex.

p =
[
pjoints
pflex

]
(2.40)

The flexible deformation of, e.g., an elastic blade, is described in Simpack as
a relative deformation with respect to the body reference marker, e.g., at the
blade root. The rigid body motion of the body reference marker is described
using the nonlinear joints. Additional flexible deformation z(r, t) is written
in modal coordinates with the mode shapes of the body Φi for the spatial
dependency and the flexible position states pflex,i for the temporal dependency.
The mode shapes are given for positions along the body coordinates r and are
either imported or computed internally. For more details about the formalism
of including flexible bodies into the Simpack MBS, the reader is referred to
Wallrapp [86, 87, 88].

z(r, t) =
nmodes∑

i=0
Φi(r)pflex,i(t) (2.41)

The nonlinear equations of motions from 2.38 are integrated in time using non-
linear time integration. The integrator chosen in Simpack for this task is called
SODASRT2 [85] and is a backward-differentiation-formula (BDF) integrator
based on the DASRT solver [89]. In the first simulation part, the solution
for the system states x(t) is obtained by time integration. All intermediate
results, such as applied loads from aerodynamics, joint loads, or flexible body
deformations, are obtained in a second postprocessing part by re-inserting the
solution for the states into the respective equations (compare, e.g., Eq. 2.36
and 2.37). The hub forces used for the TM-method are extracted from the final
solution using the joint forces for the non-rotating hub marker.
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2.4. Time-domain stability analysis
Besides the frequency-domain approach to whirl flutter analysis described in
section 2.1 and 2.2, other approaches exist in literature to evaluate the coupled
aeroelastic stability of a rotor-airframe system. One, used in this thesis as
a reference method for verifying the frequency-domain approach, is based on
perturbations of the coupled system in the time domain. This stability analysis
requires a simulation model of the complete aeroelastic system in the time
domain. For example, the rotating propeller and the simplified pylon are
modeled together in one MBS model to evaluate the coupled aeroelastic system
response to perturbations. The specific method used in this thesis to extract
frequency and damping information from the response of a coupled, aeroelastic
time-domain model is the Floquet analysis [90]. The theory is outlined here
based on the existing literature to highlight the assumptions associated with it
before the results are used as a reference for the verification of the TM-method.

Assume a linear, time-periodic system with period T as written in Eq. 2.42. In
the cases studied in this thesis, T describes one rotation of the rotor or propeller.
Only the homogeneous part of the system is shown, and the system matrix A is
periodic. x is the state vector consisting of the n states of the system.

ẋ = A(t)x(t) ; A(t+ T ) = A(t) (2.42)

We call ϕi fundamental solutions of the system (with i from [1, n]) if they consist
of its response to a small initial perturbation integrated over one period. The
collection of n fundamental solutions with linear independent initial conditions
is called fundamental matrices ϕ, compare Eq. 2.43.

ϕ̇n(t) = A(t)ϕn(t) ; ϕ(t) = [ϕ1(t)...ϕn(t)] (2.43)

The matrix that projects the fundamental matrix at the beginning of the
period ϕ(0) to the fundamental matrix at the end of the period ϕ(T ) is called
monodromy matrix, compare C in Eq. 2.44

ϕ(T ) = ϕ(0)C (2.44)

According to Floquet theory [91], fundamental matrices of linear time-periodic
systems can be decomposed in a time-periodic part P and a matrix exponential
eRt:

ϕ(t) = P (t)eRt , P (t+ T ) = P (t) (2.45)
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This yields [91] the relation between the monodromy matrix and the matrix
exponential R

C = eRT (2.46)

The eigenvalues of the monodromy matrix are called characteristic multipliers
ρk. For stability, all ρk must fall inside the unit circle in the complex plane
(|ρk| < 1) to prevent any perturbations from increasing (compare Eq. 2.44).
The eigenvalues of R, on the other hand, are called characteristic exponents
λk and contain the frequency (imaginary part) and damping (real part) of the
system eigenvalues, compare Eq. 2.47.

ωnk = |λk| ; ζk = −Re(λk)
ωnk

(2.47)

The characteristic exponents are related to the characteristic multipliers by
an exponential ρk = eλkT . An essential consequence of this relation is that
the imaginary part of the characteristic exponents and hence the frequencies
are not uniquely determined, as adding an integer multiplier jk of the rotation
frequency 2π/T is also a valid solution, compare Eq. 2.48

λk = 1
T

ln(ρk) + i
1
T

(arg(ρk) + jk2π) = σk + iωk (2.48)

As Peters and Lieb [92] pointed out, there is no correct choice of the integer
multiplier and, therefore, frequency. Specific choices are more helpful for
comparison with other methods and a more straightforward interpretation. In
the case of this thesis, an approach based on the periodic eigenvectors of the
systems is chosen [93] to pick a suitable jk and to fix the main frequency value13

The periodic eigenvectors are computed from the fundamental matrices and the
eigenvectors of R. The eigenvectors V of R can be used to diagonalize R, as
shown in Eq. 2.49.

R = V diag(λk)V −1 (2.49)

The periodic eigenvectors uk associated with a characteristic exponent λk are
computed as shown in Eq. 2.50 (with vk being the columns of V ). Note that
through the dependency of λk on the integer multiplier, the periodic eigenvectors

13Periodic systems have multi-harmonic eigenvalues and therefore not only one single fre-
quency.
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also depend on the choice of jk. As Peters and Lieb [92] note, the combination
of the periodic eigenvector and the characteristic multiplier is always unique.

uk(t) = ϕ(t)vke−λkt (2.50)

By analyzing the frequency contribution to the periodic eigenvectors (e.g., by
applying an FFT to uk), the harmonics (and therefore integer multiplier jk)
with the highest participation in the system response can be identified, giving a
good choice for the integer multiplier.

In practical applications, e.g., when handling MBS models, the system is usually
not linear time-periodic as in Eq. 2.42. In the case of Simpack models, for
example, the system equations are inherently non-linear due to the non-linear
nature of the MBS setup, see Eq. 2.38. The goal is to assess the system stability
for small perturbations about an equilibrium x0(t). The deflections during this
periodic steady state may be entering the non-linear range. Still, system is
assumed to be linear for small perturbations around this periodic steady state.
The fundamental matrices ϕk are computed by adding a small perturbation at
state k to the initial condition x0(t = 0), using the non-linear time integration
to obtain the system response x(t), and subtracting the steady state x0(t)
afterward, as Eq. 2.51 shows.

ϕk(t) = x(t) − x0(t) (2.51)

Multi-Blade Coordinates

Subsection 2.3.2 in this chapter describes the formalism of the MBS-system
Simpack used within this thesis. Simpack formulates the equations of motion
in relative coordinates, so the DOFs of each body are formulated relative to
its reference coordinate system, which can be a moving frame. For example,
consider the case of a rotor with elastic blades. The elastic blade equations are
formulated relative to the blade reference frame at the hub, which is rotating with
respect to the inertial reference frame. This formulation in relative coordinates
poses two issues for analyzing phenomena in which the rotor couples as a
whole entity with an underlying, non-rotating airframe. First, as the blades
rotate, they experience harmonic oscillations in the support stiffness, as they
rotate relative to the non-rotating airframe-DOF14. This makes the equations
of motion periodic, even for cases in which the system is time-invariant. Second,
the individual blade DOFs appear in the system’s eigenvectors. This can be
useful in some cases, but in most cases, it is easier to interpret the motion of

14Only in the particular case of an isotropic airframe the harmonic part in the blade equations
vanish.
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the whole rotor disc as one unit (e.g., to identify a coning mode or a whirl mode
due to blade bending) as the entire rotor couples with the airframe.

To solve these two issues, the multi-blade coordinate (MBC) transformation [94]
is applied to the state vector x. The MBC transformation projects the individual
blade-DOF into the non-rotating system and transforms the individual blade
modes into global rotor modes. The transformation is based on summation
over all Nb blades, weighted with the respective blade azimuth Ψb, compare
Eq. 2.52 [94].

xcol = 1
Nb

Nb∑

b=1
xb

xcos,n = 2
Nb

Nb∑

b=1
xb cos(nΨb)

xsin,n = 2
Nb

Nb∑

b=1
xb sin(nΨb)

xdiff = 1
Nb

Nb∑

b=1
xb(−1)b

(2.52)

The sketch in Fig. 2.10 shows two sets of lead-lag modes for a four-bladed rotor:
The top row shows individual blade modes (xb in Eq. 2.52), where only one
blade is oscillating in each mode. The bottom row shows global rotor modes
obtained by MBC-transformation. The left mode is called collective mode xcol,
and all blades oscillate in phase. The second mode is the first cosine-cyclic
mode xcos,1, while the third mode represents the first sine-cyclic mode xsin,1.
Here, the blades oscillate with a 180°phase shift in each mode. The two cyclice
modes have an additional phase shift of 90°towards each other. A rotor with five
blades or more shows cyclic modes of second order, where the blades oscillate
with a 45°phase. A rotor with an even number of blades also shows a differential
mode xdiff , in which the blades oscillate with 90°phase, as it is shown in the
last sketch on the bottom left of Fig. 2.10.

For coupling between the rotor and the airframe, especially the first three rotor
modes are essential, as they create effective loads about the hub [34]. In the
example of lead-lag modes in Fig. 2.10, the collective mode creates a moment
about the rotor axis due to, e.g., inertial loads. The first cyclic modes create
lateral forces about the rotor hub. The differential mode and all higher cyclic
modes are called reaction-less because the effective loads about the rotor hub
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Figure 2.10.: Set of four individual blade modes and the corresponding global rotor
modes for a four-blades rotor with lead-lag DOF.

are zero. Therefore, they do not couple with the airframe. Under rotation, the
first-order cyclic modes couple with each other due to gyroscopics and create the
progressive and regressive cyclic modes, equivalent to the forward and backward
whirl modes of global airframe modes.

The MBC transformation is applied in this thesis to the state vectors in the
fundamental matrices in Eq. 2.51 to reduce periodicity and obtain the results
of the Floquet analysis afterwards in the non-rotating frame, including global
rotor modes.

Treatment of aerodynamic states during a Floquet analysis

To apply the Floquet theory to a coupled MBS system, the time history of
the complete state vector x(t) needs to be computed and analyzed. This
includes the states representing the unsteady aerodynamics, compare a in
Eq. 2.38. Neglecting parts of the state vector can otherwise lead to wrong
results, especially in the damping forecast (compare Peters and Sue [95]).
Additionally, the MBC transformation is applied in this paper to transform
elastic blade states into global rotor modes. This ensures all system modes are
based on the non-rotating coordinate system and are comparable to the results
obtained with the TM-method. This leads to a problem in conjunction with
the presence of the aerodynamic states: Technically, the aerodynamic states are
in the rotating blade frame, but the application of the MBC transformation on
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the aerodynamic states does not give meaningful results. Hence, three analysis
cases occur in this thesis:

1. Unsteady aerodynamics, but no elastic blade modes:
No MBC transformation is required, as no structural states occur in the
rotating frame. The Floquet analysis can be applied to the full state
vector, including unsteady aerodynamics, but only the results for the
structural states are shown.

2. Unsteady aerodynamics and elastic blade modes:
The presence of elastic blade modes requires the MBC transformation
to compare the results with the TM-method’s results. Therefore, the
aerodynamic states are omitted when computing the fundamental matrices,
which leads to (small) inaccuracies in the damping prediction.

3. Quasi-steady aerodynamics and elastic blade modes:
Due to the Quasi-steady aerodynamics, no aerodynamic states are present
in the model, and the full state vector can be transformed into the non-
rotating frame. The Floquet results are exact in this case.

To assess the potential impact on the damping prediction, App. A.3 gives a
comparison of frequency and damping results obtained with rigid blades and
with and without including the aerodynamic states in the Floquet analysis. The
observed differences are small but visible. Hence, for verifying the TM-method
with elastic blades in chapter 4, both cases 2. and 3. are used to make sure
the inaccuracy in the damping prediction due to the omission of aerodynamic
states does not affect the verification.





3
Models

The models to apply and verify the Transfer-Matrix method in
this thesis are introduced in this chapter. The propeller blade
geometry, as well as the structural and aerodynamic modeling
data, are introduced first. The two airframe models are explained
in the second part, comprising a simplified pylon system with two
DOFs and a generic, two-engine, free-flying commuter aircraft.

3.1. Propeller model
First, this chapter introduces the propeller model used for all studies. The
geometry is close to a commercial off-the-shelf regional turboprop propeller
but kept generic. The structural model is based on engineering constants
derived from the outer shape and material constants for wooden laminate. The
aerodynamic properties of the blade are also listed, assuming simplified airfoil
data. The propeller geometry was used in previous publications [73, 74, 75].

3.1.1. Geometry
The propeller used in this thesis resembles a five-bladed, variable-pitch propeller
with a 1.25m radius. The blade sections start at 18% radius. Everything inside
is covered by the spinner and not modeled. The chord and twist distribution
can be found in Fig. 3.1. Due to the variable-pitch mechanism, a variable
root pitch angle can be added to the twist distribution to trim the propeller to
a given thrust or power setting. The direction of rotation of the propeller is
clockwise, looking from the front.
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Figure 3.1.: Propeller blade chord and twist distribution (reproduced from [75]))

3.1.2. Structural dynamics
The propeller blade’s structure is assumed to be made entirely from wooden
composite with a steel leading edge protection on the outer 40% of the radius.
Due to its long, slender shape, a modeling approach with beam elements is
chosen for the blade structure. The blade structural model does not resemble
an existing propeller blade but is generic for this study. The general layout is
kept close to off-the-shelf wooden propeller blades to ensure realistic orders of
magnitudes.

Figure 3.2.: Generic propeller airfoil section, discretized into rectangles to obtain
engineering constants.

The engineering constants of the individual blade sections are derived numerically
by discretizing the airfoil section (assumed as a symmetrical, four-digit NACA
airfoil) into small rectangles (compare Fig. 3.2) and numeric integration to
obtain the different engineering constants in the local reference frame (aligned
with the blade chord). Eq. 3.1 gives an example for the numerical derivation of
the tensile stiffness EA from the Young’s modulus of the individual rectangle
Erect and its respective area Arect.
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Figure 3.3.: Propeller blade stiffness and mass distribution
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EA =
nrects∑

0
ErectArect (3.1)

Fig. 3.3 shows the resulting mass and stiffness distribution for the blade. The
top plot shows the mass per unit length. The total mass of one blade adds up
to 1.542 kg, and the blade has a mass moment of inertia about the rotational
axis of 0.395 kgm2. The middle plot shows the two respective bending stiffness
distributions about the axis vertical to the chord (EI1) and the chord axis
(EI2). The bottom plot gives the tensile and torsional stiffness. The jump in the
structural properties at 60% radius is due to the steel leading edge protection,
which covers the outer 40% and leads to a local increase in stiffness and mass.

The structural model is built up using the Finite-Element-Method (FEM)
using Timoshenko beam elements with constant properties over one individual
element. Twenty-five elements are used, although the innermost element covers
the connection between zero and 18% radius and is assumed to be rigid. The
internal FEM-library SIMBEAM of the MBS-code Simpack [85] is used for
modeling the blade, and the stiffness values are input in the local coordinate
system aligned with the blade chord at the respective blade sections. SIMBEAM
internally performs a modal analysis of the model followed by a modal reduction,
including the respective geometric stiffness terms for considering geometric
stiffening under rotational speed or effects from propeller moments [85]. Three
structural modes per blade are chosen as a compromise between accuracy and
computational time. Including more (and therefore higher-frequency) modes
would improve the accuracy, e.g., of the deflection shape under load, but lead
to high-frequency content in the time response, which would lead to a required
reduction of the time step and, therefore, an increased computational effort.

The first three in-vacuo eigenfrequencies and their development with rotational
speed are presented in Fig. 3.4. The left plot shows the three eigenfrequencies
in a blade Campbell diagram alongside the first ten harmonics of the rotational
speed (thin lines starting at [0,0]). The three right plots depict the mode shapes
in terms of flap (or out-of-plane) and lead-lag (or in-plane) deflection, starting
at the bottom with the first blade mode. The first blade mode, "B1", is the
first flap bending with some in-plane bending components due to the strong
blade twist. The first eigenfrequency starts at 31.2 Hz in the non-rotating
case. Due to geometric stiffening, it increases to 40.7 Hz at nominal rotational
speed (vertical dashed line in the Campbell diagram). The second blade mode,
"B2", resembles the first lead-lag bending with components of the second flap
bending. Its eigenfrequency starts at 92.2 Hz and increases to 104 Hz at nominal
rotational speed. Finally, the third blade mode, "B3", comprises components
from the second flap and lead-lag bending. It increases its frequency from
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148.5 Hz to 162 Hz. Due to the filled airfoil section and the resulting high
torsional stiffness, no relevant torsional mode shape components arise in the
first three mode shapes. At nominal rotational speed, the first blade mode is
located at about 1.5P, meaning at about 150% of the current rotational speed.
This is in accordance with other propeller blades from literature [96], indicating
that the propeller blade model is representative.
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Figure 3.4.: Propeller blade Campbell diagram for the first three blade modes (left)
and the corresponding mode shapes (right) in terms of flap and lead-lag motion
(reproduced from [73, 74]).
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3.1.3. Blade aerodynamics
The aerodynamic model of the blade is based on the airfoil characteristics of
a symmetric NACA 0008 airfoil and only considers a constant lift curve slope
of Clα of 6.5864, which is used for the strip theory models. The geometry is
discretized into strips with constant chord length (see Fig. 3.1). Two versions
of the strip theory model are used in this study:

1. The aerodynamic model for the MBS model in Simpack, which is coupled
directly to the structural model. In this case, twelve strips are distributed
uniformly over the radius, covering two beam elements each and having a
collocation point (in the middle of each strip) congruent with a structural
node for coupling.

2. The aerodynamic models used for comparing different aerodynamic meth-
ods, which run externally in a Python code and are refined into twenty
strips with a cosine distribution refining at the blade tip. The finer layout
matches the UPM panel model, which also has 20 strips in radial and 30
panels in chord-wise direction.

The different propeller models are trimmed according to the workflow in sec-
tion 2.2.3. If not stated otherwise, the trim is conducted for zero torque, called
windmilling, and referred to as the critical case in literature [4].

Table 3.1.: Nominal operating point
Quantity Symbol Value
Airspeed V 142 m/s
Shaft rotational velocity Ω 167.5 rad/s / 26.7 Hz / 1600 rpm
Shaft torque Mx 0 Nm
Air density ρ 1.225 kg/m3

Based on a reference operating point given in Tab. 3.1, two trim approaches
are used within this thesis:

a) Constant pitch: By keeping the advance ratio µ = V/(ΩR) constant,
the angle of attack at the blade tip stays constant and the blade pitch
angle can also remain constant over a range of airspeeds (in case of strip
theory without inflow (Wagner from Tab. 2.2), at 32.67°). The shaft
rotational speed is scaled accordingly to keep the advance ratio constant.

b) Constant speed: For the constant speed trim (which is more represen-
tative of larger propeller aircraft [97]), the blade pitch angle is adjusted
to adjust the torque to the trim goal. The shaft speed is kept con-
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stant. The trim angles required for zero torque using the strip theory
model without inflow (Wagner from Tab. 2.2) are shown in Fig. 3.5
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Figure 3.5.: Blade pitch for varying airspeed in the constant-speed windmilling
trim.

3.2. Airframe models
Two airframe models are used in this thesis. The simplified pylon system from
Fig. 1.1(b) is used for the verification and most parameter studies due to its
simplicity. A generic, twin-engine turboprop aircraft model is employed to
demonstrate the TM-method’s application to a more complex aircraft configu-
ration. Both models are briefly described in the following section.

3.2.1. Simplified Pylon Model
The first structural airframe model resembles the simplified pylon model from
Fig. 1.1(b). It comprises a rigid pylon/engine that can pivot about a pivot
point in a distance a behind the propeller plane. The pivoting in pitch and yaw
directions is restrained by torsional springs. The engine itself has rotational
inertia in both directions. The parameters of the nominal system are listed in
Tab. 3.2, resulting in an uncoupled pitch and yaw frequency (fθ = 1

2π

√
Kθ
Jθ

) of
8 Hz. The stiffness values are varied to obtain whirl flutter stability maps as
shown in Fig. 1.4.
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Table 3.2.: Properties of the simplified pylon system
Property Symbol Value
Pitch/Yaw inertia Jθ/Jψ 100 kgm2

Total polar inertia JP 6.5 kgm2

Nominal pitch/yaw stiffness Kθ/Kψ 252662 Nm/rad
Distance pivot point to propeller plane a 0.85 m

The (linearized) kinematic relations between pitch angle θ and the displacements
at the propeller hub lead to the modal matrix Φhub of the system as shown in
Eq. 3.2

Φhub =




0 0
0 a

−a 0
0 0
1 0
0 1




(3.2)

The first column represents the rigid body pitch mode, and the second column
represents the system’s yaw mode.

3.2.2. Generic Turboprop Aircraft
The second airframe model comprises a free-flying aircraft configuration and
was modified to the state used in this thesis in [76]. It represents a twin-
engine, high-wing turboprop aircraft with twenty PAX and 6500 kg maximum
take-off weight, as commonly found for commuter aircraft. The aeroelastic
airframe model consists of structural and unsteady aerodynamic models. The
configuration is generic and used to demonstrate the application of the TM-
method on a full-aircraft level.

Fig. 3.6 outlines the configuration. The discretization is equivalent to the
aerodynamic panel grid used for the DLM model (using the ZONA6-method
implemented in the ZAERO aeroelastic software [98]). It comprises the wing and
empennage lifting surfaces modeled using lifting surface panels, and the fuselage
and nacelle bodies comprise body panels. The wing span is approximately
seventeen meters; the fuselage is sixteen meters long.
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Figure 3.6.: Outline of the generic aircraft configuration on the aerodynamic panel
grid

The structural model is a FEM model for MSC Nastran [99], including the
wing, pylon, fuselage, empennage, and control surface structure. The fuselage is
modeled with beam elements, and the rest of the structure is modeled by shell
elements (e.g., for the wing box and pylon structure). Connections between
the aircraft components are established with rigid RBE2 elements. Although
individually modeled, the control surfaces are fixed. They cannot rotate with
respect to the remaining structure to simplify the aeroelastic model since the
focus should be on whirl flutter and not the control surface couplings. The mass
distribution is partly modeled using material properties on the structure and
with additional point masses connected using multi-point constraints (RBE3).
Special attention is directed to the engine support, as this part of the structure
is crucial for the whirl flutter stability. Fig. 3.7 shows a sketch of the engine
support structure and the engine itself. The engine is modeled as a rigid point
mass (compare the node marked as "Engine mass"), and a separate node at the
propeller hub is rigidly connected to it (referred to as "Hub node"). The modal
displacements of the two hub nodes (one on each side of the aircraft) make up
the modal matrix Φhub for the TM-method in Eq. 2.10. The engine is connected
with rigid RBE2 elements (dotted lines) to the interface points, at which the
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Figure 3.7.: Outline of the structural model of the engine and its support with
shock mounts

engine is supported by elastomer springs ("Shock mounts"). The shock mounts
are modeled as translational springs and are shown in Fig. 3.7 as small springs.
The shock mounts connect the engine with the elastic pylon structure, which is
attached at the leading edge of the wing box. To obtain a configuration that
shows whirl flutter within the envelope and is therefore suited for studying
whirl flutter, the shock mount stiffness values are chosen low to obtain low
frequencies for the engine yaw and pitch modes. The structural model is fully
unsupported, leading to six rigid body modes for the whole aircraft. These
modes are considered in the flutter analysis but are not further post-processed
and are omitted from the flutter plots for clarity.

The coupling between the aerodynamic and structural model is achieved using
Infinite-Plate-Splines for the lifting surfaces and Thin-Plate-Splines [98] for the
bodies. The components (wing, horizontal and vertical tail, control surfaces,
fuselage, and nacelles) are splined individually. The front panels of the nacelle
(representing the spinner) are splined to the engine nodes (marked in Fig. 3.7),
while the rest of the nacelle panels are splined to the pylon nodes to visualize
the relative motion between the engine and pylon.

Fig. 3.8 and 3.9 present the first eight structural modes shapes without any
propeller influence, splined on the aerodynamic panel grid. The first two
structural modes (Mode 7 and 8, as Modes 1-6 comprise the rigid body modes)
make up the first wing out-of-plane bending, antisymmetric in Mode 7 and
symmetric in Mode 8. Modes 9, 10, and 11 comprise couplings of the engine
pitch with wing torsion, while modes 12, 13, and 14 show couplings of the first
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wing in-plane bending with engine yaw motion. These six modes couple under
the influence of gyroscopics to form the whirl modes of the engine, as section 4.4
shows. The modes 15 to 26 are shown in Appendix A.2, and the higher modes
27 to 50 are present in the analysis but not shown in this thesis.
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Figure 3.8.: The first four elastic modes (7-10) of the full aircraft, visualized on
the aerodynamic panel grid
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Figure 3.9.: The elastic modes 11-14 of the full aircraft, visualized on the aerody-
namic panel grid





4
Results

Chapter 4 presents the results obtained within the scope of this
thesis. The first section verifies the proposed TM-method by
comparing stability results with available reference methods. Af-
ter the verification, the effect of different modeling aspects on
whirl flutter stability predictions, such as elastic blade modeling
and the impact of the chosen aerodynamic method, is explored.
The last section demonstrates the findings of the parameter study
on a more complex airframe model.

4.1. Verification
Within the scope of this thesis, the proposed Transfer-Matrix method is verified
by comparing results obtained with it with flutter results obtained with other,
similar simulation methods to ensure the TM-method works correctly from a
methodological point of view15. Two verification cases are considered:

4.1.1 Comparison of stability predictions for the simplified pylon model and
a propeller with rigid blades. The classical Houbolt/Reed analysis and
time-domain Floquet analysis are reference methods for this case. The
transfer behavior captured by the transfer matrices comprises the unsteady
aerodynamics from the Wagner strip theory.

4.1.2 Comparison of stability predictions for the simplified pylon model and
a propeller with elastic blades. In this case, only time-domain Floquet
analysis is used as a methodological reference. The transfer matrices
for the propeller with elastic blades contain the unsteady aerodynamic
response of the Wagner strip theory and the dynamic response of the
elastic propeller blades.

15Validation in this context would require experimental results and would also encompass
the modeling aspect of the simulations.
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For each case, the identified transfer matrices are compared between harmonic
and pulse excitation to check the numerical settings first (for the rigid blade
case, transfer matrices are also compared with the Houbolt/Reed matrices).
The primary verification is obtained by comparing flutter results (frequency
and damping) over a range of airspeeds for a fixed-pitch trim. The verification
in the rigid blade case is further enhanced by comparing a stability map similar
to Fig. 1.4. Preliminary verification results with a different propeller and pylon
model are published by the author in [71].

4.1.1. Rigid Propeller Blades
First, the transfer matrices for the nominal operating point from Tab. 3.1 for the
case with rigid blades are compared. Fig. 4.1 presents the amplitude and phase
of the complex transfer functions for propeller disc pitch θ (fifth column of Eq.
2.23), omitting the x-components. The left column contains the in-plane force
transfer functions, and the right column includes the in-plane moment transfer
functions. Transfer matrices obtained with the Houbolt/Reed method are shown
as dashed lines. To better compare with the transfer matrices obtained with the
Wagner strip theory, the aspect ration correction (see. Eq. 2.21) was omitted.
The solid lines represent the transfer matrices obtained using pulse perturbation
of the rigid propeller model in Simpack. A pulse with an amplitude of 0.001
rad and a maximum excitation frequency of 30 Hz (compare section 2.2.3) was
chosen, and the response was recorded for 51 pulse widths with 101 time steps
per pulse width. To verify the numerical settings of the pulse perturbation, a few
transfer function samples were also computed using harmonic excitation with
the same amplitude (markers in Fig. 4.1), using five periods of the harmonic
excitation, of which the first two were omitted to exclude the transient response.
Three hundred sixty time steps per period were used.

The transfer functions match precisely when comparing the pulse and harmonic
identification results. This means the pulse excitation gives valid frequency-
domain transfer functions in the frequency range of interest. When comparing
to the transfer functions from the Houbolt/Reed method, overall, a good fit
regarding amplitude and phase is found. The match is better for low frequencies
and becomes worse at the higher end of the frequency range. This can be
explained by the assumptions made in the Houbolt/Reed method, such as the
definition of the reduced frequency k in Eq. 2.20. The Houbolt/Reed method
only considers the rotational speed Ω for the reduced frequency, assuming
ω << Ω [8]. In the case of Fig. 4.1, the rotational speed is at 26.7 Hz,
explaining the more significant difference between the methods in the higher
frequency range. Section 4.3 compares the different aerodynamic methods more
closely. For this verification, the exact fit between the harmonic and pulse



4.1. Verification 77

transfer functions and the good fit between the identified and the Houbolt/Reed
transfer functions are sufficient.

Figure 4.1.: Comparison of transfer matrices for the rigid propeller between TM-
method and Houbolt/Reed.

Before extending the operating range to an entire flutter plot with varying
airspeed, stability results for the nominal operating point using the transfer
matrices shown in Fig. 4.1 are compared. Fig. 4.2 compares three whirl
flutter stability maps. The dashed line is the stability map computed using
the Houbolt/Reed approach, while the solid line represents results from the
TM-method.
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For verification, some points were sampled using the time-domain Floquet
method. While the Houbolt/Reed method differs in modeling the propeller
aerodynamics, the other methods are based on the same Simpack model of the
propeller. Hence, the hypothesis is that the TM-method and Floquet analysis
results should match exactly, while the Houbolt/Reed method can show offsets
(similar to Fig. 4.1). Comparing the stability maps in Fig. 4.2 confirms the
hypothesis. The stability boundary separating whirl flutter and stable areas of
engine suspension frequencies matches precisely between the two methods based
on the Simpack model. Regarding computational time, the Floquet-analysis
evaluation is more expensive, though. The results of the Houbolt/Reed method
show a slightly more unstable system with a three percent larger extent of the
whirl flutter boundary. The divergence predictions (horizontal/vertical part of
the boundary) are closer between the three methods.
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Figure 4.2.: Comparison of whirl flutter stability maps for rigid propeller between
the TM-method, the Floquet reference and the Houbolt/Reed method.
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Finally, for the rigid blade case, frequency and damping trends over a range of
airspeeds are compared between the three methods. The results are obtained for
the fixed-pitch windmilling trim in a velocity range from 0.2VD to 1.2VD using 21
velocity steps. The transfer matrices for the TM-method were identified for each
operating point and not interpolated over the airspeed. For the Floquet analysis,
all system states were considered, making the results an exact reference. The
nominal stiffness configuration with 8 Hz uncoupled pitch and yaw frequency
was chosen within the unstable range in Fig. 4.2. Hence, the system shows a
backward whirl flutter instability at nominal operating conditions (142 m/s).
As for the stability map, two hypotheses are tested: The TM-method and the
Floquet-reference results should match precisely due to the same underlying
model. The Houbolt/Reed results are expected to show a slightly more unstable
behavior based on Fig. 4.2.

As expected, all damping trends for the backward whirl mode in Fig. 4.3
show a flutter crossing around 130 m/s, below nominal airspeed. For higher
airspeeds, the system is unstable with a backward whirl flutter. The forward
whirl mode stays at positive damping values and keeps a positive damping trend
(damping values are outside the plot for higher airspeeds). The frequencies of
the forward and backward whirl mode diverge for increasing velocity due to the
increase in gyroscopic effects. Gyroscopic coupling rises due to the increasing
rotational speed along the x-axis (proportional to the airspeed). The slight
negative curvature in the frequency trends is caused by the increasing negative
aerodynamic stiffness. Also, both hypotheses from Fig. 4.3 can be confirmed.
The frequency and damping predictions for TM-method and Floquet analysis
match precisely in the airspeed range covered. The Houbolt/Reed method
results show similar trends as the TM-method results but predict slightly lower
damping values and an earlier flutter crossing (about five m/s lower). The
differences are more significant for the forward whirl mode, which also shows a
slightly increased frequency at higher airspeeds.

Summarizing the verification results for the rigid blade case, the TM-method
could successfully be verified with the exactly matching time-domain Floquet
reference results. The Houbolt/Reed method gives very similar results, further
increasing the fidelity of the verification but showing minor differences attributed
to different propeller modeling assumptions.
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Figure 4.3.: Comparison of frequency and damping for varying airspeed and a
fixed-pitch windmilling trim between three stability analysis methods. The two
modes of the simplified pylon system (forward and backward whirl) are labeled.
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4.1.2. Elastic Propeller Blades
For the verification case with elastic propeller blades, the frequency-domain
transfer matrices contain more dynamic content due to the added dynamic
response of the flexible propeller blades. Because the Houbolt/Reed method
assumes rigid blades, it is omitted in this case, and only the two Simpack
approaches are compared. Similar results obtained with a slightly different
propeller system are published in [73, 74].

First, the numerical procedure for identifying the transfer matrices using pulse
excitation is checked by comparing them to transfer samples from harmonic
identification. Due to the model’s higher dynamic content, the numerical
settings for the identifications were refined. A maximum excitation frequency of
250 Hz was chosen for the pulse to identify the highest blade mode. The shorter
pulse was furthermore sampled with 201 time steps per pulse width. To get a
high frequency resolution within the frequency range of interest and adequately
capture the transfer behavior, the response was recorded for a time equal to
501 pulse widths. Similarly, the response to the harmonic excitation was also
extended to 20 periods, and only the last five were used for identification. The
perturbation amplitudes stayed constant compared to the rigid blade case.

Fig. 4.4 presents the transfer functions for propeller disc pitch excitation θ
in a frequency range between zero and 250 Hz. Harmonic transfer functions
were sampled up to 80 Hz. The upper two plots show the amplitude of the
in-plane force and moment transfer functions and the lowest plot shows the
corresponding phase angles. While the transfer functions in the rigid blade
case in Fig. 4.1 only represent the unsteady aerodynamic response, the transfer
functions in this case also contain the dynamic response of the blade modes
to the hub excitation. Hence, distinct resonance peaks can be observed in the
amplitude spectra alongside the corresponding phase jumps. The resonance
peaks are not located at the rotating blade eigenfrequency (see, e.g., Fig. 3.4),
as the hub loads are in the non-rotating system and, therefore, the response
of the combined propeller is recorded. Consequently, the peaks are located at
the frequencies of the global propeller modes (see section 2.4). An excitation
by disc pitch mainly excites the first cyclic modes. Thus, two peaks (regressive
and progressive cyclic) per blade mode are present. The frequencies of the
propeller modes are marked with vertical lines (dashed for regressive, dotted
for progressive) and labeled according to the blade mode from Fig. 3.4.

The comparison between harmonic and pulse excitation shows no differences in
amplitude or phase. It can be concluded that pulse excitation also works for the
elastic blade case. For this case, the benefit compared to harmonic excitations
becomes evident since the sampling rate in the frequency range of interest is
higher with pulse excitation, leading to much smoother transfer functions.
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Fig. 4.5 presents the results of a flutter analysis of the simplified pylon system
with flexible blades over a range of airspeeds. The results are again computed
with a fixed-pitch trim in a velocity range from 0.2VD to 1.2VD using 21
velocity steps. The transfer matrices for the TM-method were identified for
each operating point and not interpolated over the airspeed. The TM-method
results are presented as solid lines and were obtained using the cFRF solver (see
section 2.1). The reference results (markers) were computed with the Floquet
analysis. Due to the presence of rotating blade states, the aerodynamic states
were omitted from the analysis (see section 2.4). Hence, slight differences in
the damping predictions might occur, but the unsteady aerodynamics based on
Wagner were still retained for compatibility with all previous verification results.
Appendix A.3 shows the same comparison of results obtained with quasi-steady
aerodynamics. The Floquet results in this case are exact.

Fig. 4.5 presents the frequency and damping of the relevant system modes.
In this case, more modes are contained compared to the rigid blade case in
Fig. 4.3 due to the presence of elastic blade modes. As before in Fig. 4.4, the
elastic blade modes are presented in global, non-rotating propeller modes. The
modes shown comprise the two pylon whirl modes ("plus" and "circle" markers),
the collective mode ("tri-star" for the collective B1 mode), the first-order cyclic
modes (regressive B1 as "triangle", progressive B1 as "squares", regressive B2 as
"stars"). The remaining modes (B2 collective upwards) are outside the plot at
higher frequencies and not shown here. Also not shown are the second-order
cyclic modes, which do not interact with the pylon modes and are omitted for
the simplicity of the plot. From Fig. 4.5, several observations can be drawn:

1. The frequency and damping predictions between Floquet and TM-method
fit very well. The damping trends stay positive over the full range of
airspeeds. Small deviations can be observed for the forward whirl mode
damping at high velocities, which is attributed to the deviation in damping
in the Floquet analysis due to the omission of the aerodynamic states16.

2. The TM-method does not capture the collective B1 mode. This is due
to the lack of DOF of the pylon in the x-direction, so the respective
transfer-matrix terms vanish from the generalized propeller forces. In case
the pylon had modes showing x-motion, the cFRF method could find the
collective modes. Because it is not relevant for whirl flutter, this does not
impact stability predictions.

3. Beyond 160 m/s, a mode switch occurs between the progressive-cyclic
B1 mode and the regressive-cyclic B2 mode for the TM-method (see the
switch in damping). This is caused by the lack of mode-tracking for
the blade modes. The blade modes are not explicitly represented in the

16The damping predictions for quasi-steady aerodynamics match exactly, compare App. A.3
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eigenvectors of the systems, as they are hidden as poles in the right-hand
side of Eq. 2.14 and can, therefore, not be tracked directly. This does
not affect the mode-tracking for airframe modes, as the modes of the
airframes make up the components of the eigenvectors of Eq. 2.14 and
can, therefore, be tracked directly.

4. Differences occur in the frequency and damping predictions for the
regressive-cyclic B1 mode for higher velocities. B1 is the first flap mode
and shows very high levels of (aerodynamic) damping. The regressive-
cyclic B1 mode at 80 m/s already has a damping higher than 20%. The
peaks in the system response (see Eq. 2.7) are, therefore, very low and
hard to fit precisely by pole-fitting routines. Fig. 4.6 shows an example
system transfer function as an input for the cFRF solver at 114 m/s (first
column of Hsystem), with the modes of the system marked as vertical
lines. The two whirl modes with the lowest damping can be identified as
peaks in the amplitude spectrum and phase jumps in the phase spectrum,
whereas the higher-damped blade modes are more challenging to spot.
However, this difficulty of precisely predicting the eigenvalues of highly
damped modes does not affect flutter stability predictions, as the modes
of interest here are lowly damped.

The TM-method can recover the frequency and damping of the pylon whirl
modes accurately and gives predictions for the frequency and damping for
the relevant (cyclic) blade modes. The latter can be recovered using the
cFRF solver but cannot be tracked accurately due to the missing eigenvector
components. For propeller whirl flutter analysis, where mainly the frequency
and damping of the airframe modes are of interest, the TM-method is well-
suited and computationally less expensive than time-domain Floquet analysis
(especially for studies with more complex airframe models).
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4.2. Influence of blade elasticity
After successfully verifying the TM-method for the isolated propeller model
with rigid and flexible blades, this section applies the TM-method to study the
influence of blade elasticity on whirl flutter more extensively. The main goals
of this section are to

1. Reproduce the stabilizing effect of blade elasticity reported in litera-
ture [55, 57] using the TM-method in conjunction with frequency-domain
flutter analysis.

2. Use the transfer matrices to gain more insights into the driving effects
behind the stabilization.

The comparisons and results can also be found in previous publications by the
author [73, 74], which uses a slightly different propeller and pylon system.

The results for the flutter plots of the simplified pylon system in fixed-pitch trim
conditions using rigid and flexible propeller blade modeling have already been
presented separately in Fig. 4.3 and 4.5. Fig. 4.7 compares the frequency and
damping for the backward and forward whirl modes from both plots. The pylon
structure is the same in the rigid and flexible blade analysis, and both propeller
models use the Wagner strip theory in fixed-pitch windmilling trim. All plots
shown from here on contain results obtained with the TM-method using pulse
identification for the transfer matrix generation. The only difference is the
modeling of the blade structure, which is rigid in one case and flexible in the
other. Significant discrepancies become apparent when comparing the stability
behavior of the backward whirl mode in both cases. While with the rigid blades,
the system becomes unstable at 130 m/s, for the flexible case, the backward
whirl mode stays stable. It has a positive damping trend within the airspeed
range without any trend towards instability. Slight differences also appear in
the frequency of the backward whirl mode at higher airspeeds. Comparing the
damping of the forward whirl mode between the two cases reveals a decrease
in damping for the flexible case, but the damping level stays well above the
backward whirl mode, and trends are still positive. It can be concluded that
the influence of blade elasticity is strongly stabilizing on the backward whirl
mode and destabilizing on the forward whirl mode. The system with rigid
blades shows whirl flutter within the airspeed range studied. The system with
elastic blades does not. The results obtained with the TM-method confirm the
findings in the literature obtained mainly by time-domain analysis or direct
linearization [55].
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Figure 4.8.: Comparison of transfer matrices for the rigid and flexible propeller.
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The reason for the stabilization of the backward whirl mode in the elastic blade
case can be found in the altering of the propeller hub transfer function. The
in-plane load transfer functions for propeller disc pitch are compared in Fig. 4.8
in amplitude and phase. The coupling moment Mzθ in the top right plot (and
the symmetric component Myψ, respectively) is reduced in the frequency range
relevant for the whirl modes (around 8 Hz, backward whirl frequency is marked
as dotted line), as Fig. 4.8 demonstrates for the nominal operating point marked
at 142 m/s. This coupling moment is the leading cause for backward whirl
flutter instability (see Fig. 2.5), and its reduction in amplitude by 40 percent
compared to the rigid blade case is the reason for the stabilization. All other
components of the transfer matrices are also affected, but the changes mostly
cancel each other. For example, the increase in the stabilizing force transfer
function Fyθ is canceled by the decrease in the also stabilizing Fzθ. The change
in phase of the complex transfer functions compared to the rigid case is minimal
at the whirl flutter frequency of 7 Hz. At higher frequencies, the start of the
first resonance peak in the transfer functions for the elastic blade case can be
seen (e.g., in Myθ, the dashed green line in the top left plot), caused by the
dynamic response of the regressive-cyclic B1 mode (around 15 Hz).
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Figure 4.9.: Contour plot of the x-component of the rigid blade lift over one
revolution under 1°angle of attack

To explain the decrease in the coupling moment Mzθ, Fig. 4.9-4.11 take a look
at the response of the blade to disc pitch for zero frequency. Fig. 4.8 shows a
significant offset between the rigid and flexible blade transfer functions already
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at zero frequency. This response is equivalent to the so-called 1P hub loads,
the propeller load response to a steady disc pitch angle. Fig. 4.9 shows the
load distribution of one blade over one revolution under 1° disc pitch about
the positive y-axis. The plot only shows the axial component of the lift force
(or global x-component, respectively). The steady lift distribution under axial
conditions was subtracted, too. Disc pitch about the y-axis means the top of the
disc (positive z-direction) tilts forward. The direction of rotation is clockwise.

During the down-stroke of the blade (on the right side at 90°azimuth), the local
airfoil sections experience a lower angle of attack due to the global disc pitch
angle, compare Eq. 4.1. Hence, the blade produces less lift on the down-stroke,
as seen in the negative delta load in Fig. 4.9. The same, but reverse, can be said
for the up-stroke on the left side of the disc, where the blade sections experience
an increase in angle of attack and, therefore, lift.

∆αkin = −θ sin(Ωt) (4.1)

The resulting axial force distribution, as shown on the disc in Fig. 4.9, is
mainly anti-symmetric about the global z-axis, following the anti-symmetric
angle of attack distribution. This results in the moment about the z-axis, Mzθ.
Because the terms about the z-axis are in phase with the quasi-steady angle of
attack variation, they are named in-phase components in this thesis. Due to
the unsteady lift lag effect (modeled with Wagner’s function here), the maxima
of the unsteady lift are delayed with respect to the angle of attack maxima at
90° and 270° and therefore at slightly higher azimuth angles. The azimuthal
offset also produces a small moment about the global y-axis (Myθ). Similar to
the in-phase components, the forces and moments about the y-axis are called
out-of-phase components as they are out of phase with the angle of attack
perturbation. The tangential force on the blade follows a similar pattern and
produces the two in-plane force components, Fyθ and Fzθ

The blades run through the loading shown in Fig. 4.9 once per revolution and
experience a periodic excitation. In the case of elastic blades, this triggers
a dynamic response of the blade bending dynamics. The negative loading
on the down-stroke bends the blade backward, while positive loading on the
other side bends the blade forward. Fig. 4.10 shows this by comparing the
tip path of the flexible blades (dashed line) with the one for the rigid blades
(solid line). Two factors drive the magnitude of the deflection: the blade
stiffness, which determines the blades’ quasi-steady response to the loading,
and the frequency placement of the blade eigenfrequency with respect to the
rotational speed (which is the frequency of the periodic load in this case). The
closer the rotational speed comes to the eigenfrequency, the higher the dynamic
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Figure 4.10.: Comparison of the tip path plane for the rigid and elastic blades
under steady angle of attack

amplification due to resonance. The dynamic response is also phase-shifted to
the loading, leading to a further azimuthal shift of the deformation maximum.

The periodic deflection of the blades leads to additional hub loads due to inertial
forces. For example, the deflection of the blades when passing through the
90° and 270° position leads to an x-offset of the blade masses to the propeller
plane. Hence, the centrifugal forces on the blade masses create a moment about
the z-axis that counteracts the aerodynamic moment from Fig. 4.9.

The periodic bending deflection of the blades induces additional motion compo-
nents on the blade sections, changing the local angle of attack (e.g., due to a flap
velocity). This leads to an azimuthal shift in the angle of attack and, therefore,
aerodynamic lift distribution. Fig. 4.11 shows the axial force distribution for
the flexible blade case, similar to Fig. 4.9 for the rigid blade case. Comparing
the two distributions, the shift of the lift maxima towards higher azimuth angles
can be seen clearly. The shift is higher at the outer radii, where the bending
deflection of the first bending mode (the one with the closest frequency spacing)
is highest. The azimuthal shift in the aerodynamic forces brings the maxima
closer to the global z-axis. It reduces the in-phase component while increasing
the out-of-phase components about the y-axis. Both can also be seen in the
moment transfer functions in the top left plot of Fig. 4.8 for zero frequency.
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Figure 4.11.: Contour plot of the x-component of the flexible blade lift over one
revolution under 1°angle of attack

It can be concluded that at least two effects contribute to the decrease in Mzθ:
the counteracting moment from the centrifugal loads due to the blade deflection
and the reduction of the aerodynamic moment due to the angles of attack
induced by the blade dynamic response. The effects are explained here for the
case of zero pitch frequency due to simplicity but extend towards the higher
frequencies.

To further investigate the effect of different levels of blade elasticity on whirl
flutter stability, Fig. 4.12 and Fig. 4.13 present whirl flutter stability maps
with different blade stiffness and eigenfrequency settings. Fig. 4.12 shows the
whirl flutter stability maps for the simplified pylon system with scaled blade
stiffness values. The reference rigid blade case from Fig. 4.2 is shown (solid
line), as well as three different stability boundaries for different blade stiffnesses.
The nominal stiffness (K=100%, dashed line) as well as a case with reduced
stiffness (K=75%, dash-dotted line) and a case with four times the nominal
stiffness (K=400%, dotted line). All stiffness directions of the blade (tensile,
bending, torsion) have been scaled with the same factor.
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Figure 4.12.: Comparison of whirl flutter stability maps with varying blade stiffness

The hypothesis going into this plot is based on the findings in the previous
paragraphs: A decrease in blade stiffness should lead to higher deflection and
higher azimuthal load shift due to the lower stiffness and eigenfrequency of the
blades and should, therefore, be stabilizing. Fig. 4.12 confirms this hypothesis.
The nominal stiffness case (dashed line) shows a significantly smaller extent
of the area of whirl flutter instability. The required uncoupled pitch and yaw
frequency for stability in the symmetric case is reduced to 43% compared to the
rigid case (resulting in only 18.5% of stiffness needed). Decreasing the blade
stiffness further (dash-dotted line) almost eliminates the area of whirl flutter.
Even the stiffer blade with four times higher stiffness still shows significant
offset from the rigid blade case. The stiffer blades require 20% less uncoupled
pitch and yaw eigenfrequency. Decreasing the blade stiffness and, therefore,
the eigenfrequencies of the blades has a stabilizing effect on the whirl flutter
of the simplified pylon system. Static divergence (the horizontal and vertical
parts of the stability boundary) are not affected by scaling the stiffness, as the
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reduction in destabilizing Fzθ is compensated by an increase in the destabilizing
Myθ (compare Fig. 4.8).
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Figure 4.13.: Comparison of whirl flutter stability maps with varying blade stiffness
and mass

To further test the hypothesis that stiffness and frequency placement of the
blade eigenfrequencies drive the stabilization, Fig. 4.13 compares stability maps
for blades with varying stiffness and mass distribution. The rigid reference
(solid line), case "1", the elastic blades with nominal stiffness and nominal mass
distribution (K=100%, M=100%) as well as case "2", the blade with nominal
mass and four times higher stiffness (K=400%, M=100%) have been taken
from Fig. 4.12. Case "2" has a higher stiffness and eigenfrequency than case
"1". Additionally, case "3" shows the stability map for blades with four times
higher stiffness and mass (K=400%, M=400%). Because both mass and stiffness
are scaled equally, the eigenfrequencies of the blades stay the same but with
higher stiffness values. Comparison of case "3" to cases "1" and "2" allows the
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separation of the effect of stiffness changes alone compared to combined stiffness
and eigenfrequency changes. The stability boundary for case "3" should fall
in between the ones for cases "1" and "2" if both stiffness and eigenfrequency
drive stability, as for case "3" only one factor is altered. Again, as in Fig. 4.12,
all blade stiffness and inertia terms are scaled equally. Further, to allow for
a better comparison, the pylon-propeller system’s total inertia (in all three
directions) was kept constant when scaling the mass. Fig. 4.13 confirms the
hypothesis: the stability boundary for case "3" (∆ωstab=-38%) falls exactly in
between those of cases "1" (∆ωstab=-56%) and "2" (∆ωstab=-20%). This shows
that the stabilization effect due to blade deflection (driven by pure stiffness) is
of the same order as the stabilization due to blade frequency placing (which
drives dynamic amplification).
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Figure 4.14.: Comparison of whirl flutter stability maps with low blade stiffness
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The previous paragraphs showed a stabilizing influence of decreasing blade
stiffness on whirl flutter stability. Fig. 4.14 demonstrates that there is a lower
bound for the blade stiffness for this effect. If the blade stiffness is decreased
further, new flutter mechanisms arise, e.g., due to the direct coupling of the
blades and the pylon. The stability maps shown in Fig. 4.14 also contain one
for the case with 50% nominal blade stiffness as a dotted line. In this case,
the classical propeller whirl flutter region below the parabola on the bottom
left is completely gone. Only the static divergence remains. However, a new
region of unstable stiffness combination is found around 14 Hz uncoupled pitch
and yaw frequency. The driving instability behind this region is most likely
different from the classical backward whirl flutter. It is already known from
the literature (compare, e.g., Johnston [36, Fig. 10]) that decreasing blade
stiffness below a certain threshold changes the instability mechanism towards
whirl flutter mechanisms as they occur on tiltrotor configurations, where direct
dynamic coupling between the rotor and pylon modes dominate the stability
behavior. The blade stiffnesses considered here are unrealistic for propeller
aircraft propellers. The TM-method is also not ideally suited to investigate these
types of couplings due to the lack of blade DOF in the eigenvectors. Fig. 4.14
served two purposes in this thesis, though: First, it showed that there is a
boundary for decreasing blade stiffness, from which the system becomes unstable
again. Second, it proved that the TM-method can detect these instabilities,
although it does not give enough insights into the exact coupling mechanisms.

Including blade elasticity in propeller whirl flutter prediction stabilizes flutter
predictions, as shown in the literature and reproduced here in the frequency
domain using the proposed TM-method. The stabilization is driven by the
blade stiffness due to the deflection of the blade under the aerodynamic forcing
and by the distance between blade eigenfrequencies and the rotational speed
due to dynamic amplification of the aerodynamic forcing. Blade elasticity could,
therefore, be used as a design parameter to mitigate whirl flutter. Still, two
things must be kept in mind: First, there is a lower bound of blade stiffness,
below which the system becomes more unstable again. Second, only the effect
of blade elasticity on whirl flutter stability has been considered here, neglecting
impacts on other disciplines such as loads or performance. However, including
the existing blade elasticity changes stability predictions towards lower engine
support stiffness requirements or higher flutter speeds, which is worth considering
in the propeller aircraft design process. The TM-method allows these effects to
be considered in the frequency-domain flutter process.
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4.3. Comparison of unsteady aerodynamic methods
In the previous sections, the aerodynamic method used for all investigations
was kept the same to verify the TM-method and compare the influence of blade
elasticity without additional influence from the aerodynamic method. The
method chosen was the unsteady strip theory with Wagner’s function (see Tab.
2.2). This section presents a comparative study on the influence of different
aerodynamic methods on predicting transfer matrices and whirl flutter stability.
All other parameters (TM-method settings, blade elasticity) are kept constant
as in the previous sections. The propeller blades are assumed to be rigid to
facilitate further comparison with the Houbolt/Reed method. The investigations
are partly published in [75], but using a different pylon system and including
more results from different mid-fidelity methods. This section only contains the
results contributed by the author.

The first subsection deals with the comparison of the predictions of the different
methods listed in Tab. 2.2 regarding unsteady aerodynamics and whirl flutter
stability for a windmilling operating condition, while the second subsection
highlights the influence of the trim state.

4.3.1. Windmilling Condition
This subsection first examines the predictions of the different aerodynamic
methods for the hub load response to propeller disc pitch. The quasi-steady
response, the 1P hub loads, are compared in Fig. 4.15. They resemble the linear
transfer function from a steady disc pitch angle17 to the in-plane hub loads.
All methods from Tab. 2.2 are listed by descending magnitude of the in-phase
components. The aspect ration correction is neglected for the Houbolt/Reed
methods (quasi-steady (QS) and unsteady) for better comparison with their
strip-theory equivalent. The top two plots in Fig. 4.15 present the two in-plane
force components, and the bottom plots the corresponding moments. The right
two plots list the in-phase components, which are of higher magnitude than
the corresponding out-of-phase components in the left two plots. Comparing
the two quasi-steady methods (identified Quasi-steady and Houbolt/Reed QS)
reveals a good match in amplitudes of the in-phase terms, with the identified
ones approx. five percent higher.

17In this case, computed for 1°disc pitch angle.
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Figure 4.15.: Comparison of in-plane loads of the propeller under steady disc pitch
between different aerodynamic methods

The out-of-phase components are zero due to a lack of lift-lag, which produces
an anti-symmetric response of the blade lift (compare explanation to Fig. 4.9).
The only exception is Myθ for the quasi-steady version of the time-domain strip
theory (named Quasi-steady) because the airfoil moments are considered in this
method and neglected in the Houbolt/Reed method. The airfoil moments reach
their maxima together with the unsteady lift at 90°and 270°, adding up to a
global moment about the y-axis. The comparison between the time-domain
and Houbolt/Reed versions of the strip theory is also similar for the unsteady
versions (Wagner and Houbolt/Reed). For these, the amplitude of the in-phase
components is reduced due to the lift lag by twelve to fifteen percent depending
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on the component. The out-of-phase components are increased compared to
their quasi-steady equivalents. The difference in Myθ due to the missing airfoil
moment in the Houbolt/Reed theory can also be observed here. Comparing
the strip theory with and without the induced velocity model (BEM+Wagner
and Wagner) reveals a general reduction in the predicted aerodynamic loads
when induced velocity is considered. Mzθ, for example, is reduced by 22%
in the BEM+Wagner result compared to the Wagner result without induced
velocities. The dampening effect of the induced velocities on the unsteady angle
of attack on the blades explains this. In disc sections that produce more lift
(up-stroke), more circulation is shed to the wake, and more velocity is induced
on the propeller disc, leading, in turn, to a reduction in the local angle of attack.
The same but vice-versa applies for disc sections with less lift (down-stroke).
BEM+Wagner is the most complete analytical model, generally showing a good
match with the prediction of UPM, the 3D panel method. The remaining
differences (e.g., about seven percent in Fzθ and almost 50% in Myθ) can be
attributed to 3D effects like better tip-loss modeling and a different prediction
for the airfoil moments. The differences in 1P hub load predictions between
UPM and BEM+Wagner are in the same range as those between different
mid-fidelity methods [75]. The weighted BEM approach helps with this fit, as
the pure element-wise formulation under-predicts aerodynamic forces, while the
ring-wise approach over-predicts them [75].

Fig. 4.16 extends the method comparison to the prediction of unsteady hub
load transfer functions. As before, only the response to propeller disc pitch is
shown, here up to 20 Hz perturbation frequency. The four hub load components
are split into real (solid line) and imaginary (dashed line) part. The real part
represents the aerodynamic stiffness (compare sec. 2.2.3). The slope of the
imaginary part represents the aerodynamic damping components. The transfer
functions from the Houbolt/Reed methods are omitted to make space in the
plot as they are linear anyway. The transfer functions from UPM were identified
using harmonic excitation, and the others were identified using pulse excitation.
The transfer functions from the quasi-steady strip theory (orange) also show
a linear behavior. The frequency-dependency in the other transfer functions
(especially in the real part) stems from unsteady aerodynamics. In general,
the shape of the frequency-nonlinearity (compare, e.g., the decrease in the real
part of Fzθ) is comparable between the methods, only an offset equal to the
difference in the 1P hub loads can be observed18. Regarding the amplitudes
of aerodynamic stiffness and damping, the results are similar as for Fig. 4.15:
Quasi-steady transfer functions (orange) are predicted larger than those from
unsteady Wagner theory (green) due to the lift-lag effect, and the additional
induced velocity model in the BEM+Wagner-method (red) and UPM (blue)

18The transfer function for zero frequency is equivalent to the 1P hub load from Fig. 4.15.
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further reduces amplitudes. Again, the fit between UPM and BEM+Wagner is
good, especially for the real part of Mzθ and the aerodynamic damping terms
in Fyθ and Myθ.

Figure 4.16.: Comparison of transfer matrices for the rigid propeller and computed
with various aerodynamic methods
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The transfer functions are linearized into aerodynamic derivatives according to
section 2.2.3 to further investigate the differences in aerodynamic stiffness and
damping and facilitate a more quantitative comparison between the methods.
The reference frequency was chosen at 10 Hz, and only the real part of the
derivatives was retained. Fig. 4.17 compares the four derivatives for the aerody-
namic stiffness in the left column and the corresponding damping derivatives in
the right column. In this case, the notation is equivalent to the Houbolt/Reed
derivatives (compare section 2.2.2). The derivatives from the Houbolt/Reed
method are also listed, and the value of the unsteady Houbolt/Reed theory is
marked with a horizontal dashed line for reference. The sorting of the individual
plots is the same as in Fig. 4.15, so with descending magnitude of the in-phase
stiffness components (Czθ and Cnθ in this case). Comparing the magnitude of
the different derivatives with each other shows the same pattern as observed be-
fore. The in-phase components (Czθ, Cyq, Cnθ and Cmq) are larger in magnitude
than the out-of-phase components. The variation between the different meth-
ods is higher for the out-of-phase components, which depend on the unsteady
aerodynamic model and the airfoil moment (both differ between the methods).
As for the 1P hub loads, the magnitude of the in-phase damping components
(Cyq and Cmq) are predicted higher by the quasi-steady and unsteady strip
theory and reduced by induced-velocity effects in BEM+Wagner and UPM
predictions. One noticeable discrepancy between UPM and BEM+Wagner
prediction is for Cmθ, where BEM+Wagner predicts a 50% higher value. Ac-
cording to Fig. 2.5, this should not affect stability predictions much as the
sensitivity for this component is low. The influence, if detectable, is stabilizing
for BEM+Wagner. Noticeable differences between all the methods also occur
for the smallest derivative, Cnq, where all time-domain methods even predict a
different sign than the Houbolt/Reed method due to missing consideration of
the airfoil moment in the latter. The "smallness and the lack of experimental
correlation" [14] of Cnq was already stated in literature, and therefore, Cnq (and
also Czq) are sometimes set to zero in literature.

The comparison of the unsteady aerodynamic predictions from the different
methods reveals a pattern: Quasi-steady methods predict higher aerodynamic
forces than unsteady, and modeling induced velocities on the propeller disc
reduces loads further. The two most detailed methods (UPM and BEM+Wagner)
match well for most components. Only small offsets in individual components
remain due to different tip-loss and airfoil moment modeling.
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aerodynamic methods
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To compare the effect of different aerodynamic modeling on whirl flutter stability,
the frequency-dependent transfer matrices19 are used to compute whirl flutter
stability maps for the simplified pylon system. The top plot of Fig. 4.18 compares
the maps for the simplified pylon system used before. The insert axes show parts
of the tip of the whirl flutter region enlarged for better comparison. The grey
and orange lines represent the two quasi-steady methods (Houbolt/Reed and
time domain). These two methods predict the most unstable system regarding
the extent of the whirl flutter region. The most stable prediction is given by
Wagner strip theory (green line), closely followed by unsteady Houbolt/Reed
(black) and BEM+Wagner, which provide almost identical predictions for this
system. Stability maps with UPM aerodynamics show a larger extent but are
still smaller than the quasi-steady methods. At first sight, this does not fit to
the predictions from unsteady aerodynamics, where BEM+Wagner and UPM
showed a good match and, e.g., Wagner strip theory over-predicted aerodynamic
loads, especially the destabilizing Mzθ. The explanation lies in the different
sensitivities of the system’s stability to the individual aerodynamic stiffness
and damping derivatives. A general over-prediction increases the stabilizing
components along with the destabilizing ones and does not affect overall whirl
flutter stability as much as a difference in a single component (e.g., a significant
difference in the slightly stabilizing Cmθ between BEM+Wagner and UPM).
The more significant differences in all derivatives to the Wagner method cancel
each other out in this case. These findings can not be generalized regarding
which method shows more or less stable predictions compared to the others.
Different structures weigh the force and moment components differently. This
is demonstrated by the two plots on the bottom of Fig. 4.18, for which the
distance between the pivot point and the propeller plane was doubled (left
plot) or halved (right plot). For the shorter pylon, the moment coefficients
dominate the generalized propeller forces (as the forces are multiplied by a
shorter distance in Φprop). Therefore, the lower prediction of the stabilizing
moment Cmθ in UPM yields an even more unstable system. This fits to findings
in the literature: Gennaretti and Greco found that for their system with a
pivot to radius ratio a/R = 0.3, their panel free-wake methods predicts a more
unstable system even compared to the quasi-steady strip theory [30, Fig. 12]20.
On the other hand, on the bottom left of Fig. 4.18, stability maps with UPM
aerodynamics are the smallest for the longer pylon. For the longer pylon, the
results with the quasi-steady methods fall outside of the plot at higher pylon
uncoupled frequencies [75].

19Not their linearization!
20Note: their investigation is at a slightly higher advance ratio, µ = 1.0, compared to this

investigation at µ = 0.67.
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Figure 4.18.: Comparison of whirl flutter stability maps for three pylon lengths
and between the different aerodynamic methods. For the bottom left plot, the
quasi-steady results are out of range at higher frequencies.
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This means no clear trend regarding the effect of propeller aerodynamic modeling
on whirl flutter stability can be derived from the results with the simplified
pylon system. The main finding is the system’s high sensitivity to small relative
changes of the individual components, opposed to a low sensitivity to the
overall scaling of the loads. Choosing a better or worse method for stability
prediction is impossible without a high-fidelity or experimental reference. Until
a validation case is set up, great care should be taken when modeling real aircraft
propellers, and as many aspects as possible (induced velocities, unsteadiness,
airfoil moment, tip loss) should be considered.

4.3.2. Powered Condition
The last subsection compared predictions of different aerodynamic methods for
unsteady propeller aerodynamics and whirl flutter stability. The trim condition
chosen for this was the windmilling trim to allow a better comparison with
the Houbolt/Reed method. This subsection deals with the influence of the
trim condition on the transfer matrices and whirl flutter stability. Only results
calculated with the mid-fidelity method UPM are shown. The differences are
representative of other aerodynamic methods.

Fig. 4.19 compares the transfer functions regarding disc pitch angle for the
windmilling (black lines) and powered (grey lines) case. In windmilling, the
propeller blade pitch angle is adjusted to yield zero torque about the propeller
axis and, therefore, zero power. The blade pitch is increased for the powered
case until the power required to drive the propeller reaches 500 kW, a realistic
maximum continuous power for a representative turboprop engine of this size.
Comparing the transfer functions between the two trim conditions reveals two
main differences. The magnitude of the real part of Fzθ increases in the powered
case due to the tilting thrust vector. When the propeller rotates about the
global y-axis, the steady thrust vector rotates with it (compare Fig. 4.20).
This produces a vertical force component in the negative z-direction, increasing
the aerodynamic transfer function in this direction (top right plot) by the
amplitude of the thrust vector. The same applies to the global torque vector,
which produces a negative Mzθ, reducing the amplitude of the real part of the
transfer functions (bottom right plot). Not shown in this plot is the amplitude
offset in the real part of Mzy. This is also caused by the steady thrust vector,
which, when moved in the y-direction, has an offset to the global z-axis and
causes a moment component about the z-axis. For the simplified pylon system,
the changes in Fzθ and Mzy caused by the thrust vector cancel each other
in the generalized propeller forces because the thrust vector always moves on
an axis pointing through the pivot point and hence can not do work on the
system. On the other hand, the decrease in Mzθ directly stabilizes the system
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by reducing the destabilizing component. The other transfer functions either
stay the same or show minor changes (e.g., aerodynamic damping in Fyθ) caused
by the different steady angles of attack on the blades.
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Figure 4.19.: Comparison of transfer matrices for the rigid propeller in different
trim conditions

Fig. 4.21 compares the whirl flutter stability maps for the simplified pylon
system for the windmilling and the powered case. From the transfer matrices
in Fig. 4.19, the hypothesis is that the powered case should be more stable
than the windmilling case. This hypothesis is consistent with statements in
literature [4]. Fig. 4.21 confirms this hypothesis: the powered case is almost
20% more stable concerning whirl flutter in terms of uncoupled pitch and yaw
frequency. Static divergence is almost not affected, as the thrust force effects
cancel out for the system.
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Figure 4.20.: Sketch of the tilting propeller, including the tilting thrust and torque
vector

The stabilizing effect of power (or, better, torque) is known from literature
and is confirmed here using rigid propeller transfer functions using mid-fidelity
aerodynamics. The stabilizing influence can be reproduced with low-fidelity
aerodynamics [75] and flexible blades [74].
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4.4. Application to full aircraft model
Up to this point in this thesis, the simplified pylon system was used for all
whirl flutter analyses. The following section extends the findings regarding the
influence of blade elasticity and aerodynamic modeling gained with the simplified
pylon system to the full aircraft model described in section 3.2.2. First, the
flutter results obtained with the classical Houbolt/Reed method are examined in
detail, including the description of the two flutter modes of interest. After this,
the effect of propeller modeling using the TM-method is analyzed by comparing
the frequency and damping predictions for the two critical modes with varying
blade elasticity and aerodynamic modeling. The results are published in two
conference papers with contributions of the author [76, 77] and are reproduced
here for a slightly different propeller configuration (Jp and Clα of the propeller
differ).

Fig. 4.22 presents the frequency and damping of the first 25 elastic modes of
the full aircraft configuration over a range of airspeed from zero to 170 m/s. In
total, 50 modes, including six rigid body modes, were considered for the flutter
analysis. Still, both the rigid body modes and the higher frequency modes are
not shown in Fig. 4.22 as they are not of primary interest and to obtain readable
plots. Classical Houbolt/Reed propeller modeling for the two propellers with
clock-wise rotational sense has been used, neglecting the aspect ratio correction.
Unlike the previous analysis, a constant speed trim to zero power (windmilling)
was used. To ease the mode-tracking in the lower speed range, the rotational
speed was ramped up slowly from a standstill to full speed between zero and
32 m/s. All analyses have been conducted with incompressible aerodynamics
both for the DLM- as well as for the propeller aerodynamics. Aerodynamic
interaction between propeller and wing has been neglected according to the
assumptions of this thesis. Analyses were conducted using the g-method.

Because the aircraft model is tuned to show whirl flutter within the envelope,
Fig. 4.22 shows two modes that become unstable in the speed range analyzed.
Modes nine (blue ’+’-markers) and ten (red stars) are highlighted and become
unstable at 127.5 m/s and 163 m/s respectively. The flutter mechanism behind
the instability of mode ten is a coupling between symmetric engine pitch,
symmetric wing torsion, and antisymmetric engine yaw (the latter with 90
deg phase shift), as Fig. 4.23 shows with four global pictures of the complex
eigenvector during one mode cycle. The coupling of symmetric engine pitch and
anti-symmetric engine yaw leads to an anti-clockwise (or backward) whirling
motion of the propeller hub, with the pitch motion being in phase. Due to
the coupling between engine pitch and wing torsion, the wing also undergoes a
torsional motion (compare t=0.5T in Fig. 4.23).
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Figure 4.22.: Flutter results of the full aircraft model using Houbolt/Reed propeller
transfer matrices
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Figure 4.23.: Complex flutter eigenvector (at zero damping) for mode 10
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The flutter mechanism behind the instability of mode 9 is the out-of-phase
equivalent of mode 10. The coupling is between anti-symmetric engine pitch,
anti-symmetric wing-torsion, and symmetric engine yaw. Again, both propeller
hubs undergo a backward whirling motion (compare Fig. 4.24), but in this case,
with approximately 180°phase difference in the pitch. Like the first instability,
anti-symmetric wing torsion is involved due to coupling with the engine pitch.
Both flutter couplings can not be categorized as purely symmetric or anti-
symmetric due to the asymmetry imposed by the rotational sense of the two
propellers. Both instabilities are classical backward whirl flutter mechanisms.
The remaining modes all stay stable within the investigated range of airspeeds.
The ramping up of the engine rotational speed causes the significant changes in
frequency and damping at low airspeeds. Due to the constant speed trim, the
engine gyroscopics are already fully present at low speeds and induce changes in
frequency. The rotational speed is slowly ramped up to ease the mode-tracking
back to the structural mode shapes, so results below 32 m/s are not physical.
The low speeds are not crucial for the flutter assessment as flutter occurs mainly
at high airspeeds.
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Figure 4.24.: Complex flutter eigenvector (at zero damping) for mode 9
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The following two figures explore the sensitivity of the two flutter couplings
described in the last paragraph to propeller modeling. First, Fig. 4.25 investi-
gates the effect of blade elasticity on the frequency and damping of modes nine
and ten. Second, Fig. 4.26 shows the frequency and damping of the two whirl
modes for the rigid propeller analysis using different methods for the propeller
aerodynamics.

Fig. 4.25 shows the frequency and damping trends for modes nine and ten
only, which are those becoming unstable in the Houbolt/Reed analysis from
Fig. 4.22. Mode nine is shown as blue lines with a "+" marker, and mode ten is
shown as red lines with "star" markers. For each mode, three different results
are presented: the Houbolt/Reed results from Fig. 4.22 as a reference (solid
lines), the results using rigid propeller blades and Wagner aerodynamics using
the TM-method (dashed lines) and the frequency and damping for the analysis
with flexible propeller blades and Wagner aerodynamics (dotted lines). The
aeroelastic airframe model is the same for all analyses. Frequency and damping
were computed between 0 and 170 m/s in steps of 1 m/s. The transfer matrices
were calculated on 21 equidistant velocity points and interpolated linearly over
the velocity range. The constant-speed trim was used as in Fig. 4.22. In
section 4.2, the results obtained with the Houbolt/Reed propeller model and
the rigid blade transfer matrices were shown to be very similar, while the results
with elastic blades were drastically stabilized. The results from 4.25 confirm
these findings also for the more complex full-aircraft model. The frequency
and damping results for Houbolt/Reed and rigid blade transfer matrices are
very close, with the Wagner aerodynamics in the TM-method results giving a
slightly higher flutter speed. However, the elastic blade results in the dotted
lines differ again considerably from the rigid blade results. The damping trends
stay positive over the airspeed range, and no trend toward whirl flutter can be
seen. All other modes (not shown in Fig. 4.25) stay stable, too, so with elastic
blades, the configuration shown is free from flutter up to at least 170 m/s. Due
to the decreased negative stiffness terms in the transfer matrices with elastic
blades (compare Fig. 4.8), the frequency of modes nine and ten is slightly higher
for the elastic blade case. It can be concluded that the stabilizing influence of
blade elasticity on whirl flutter can be reproduced on a full-aircraft level and is
not an artifact of the simplified pylon system.
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Figure 4.25.: Comparison of the frequency and damping trends for the unstable
modes between Houbolt/Reed and rigid and flexible blade TM-method results.
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While Fig. 4.25 shows results for varying blade elasticity and a fixed aerodynamic
model, Fig. 4.26 presents results from a study with rigid blades and varying
blade aerodynamics. For the same airframe setup as in the previous plots,
five aerodynamic methods are compared: Houbolt/Reed (solid lines), low-
fidelity Quasi-steady (dotted) and Wagner (dashed) aerodynamics without
induced velocities as well as BEM+Wagner results (dash-dotted) and mid-fidelity
UPM results (dash-dot-dotted). The transfer matrices have been computed for
operating points at five different airspeeds (0.25, 0.5, 0.75, 1.0, and 1.2 times
dive speed VD) with the constant-speed windmilling trim. The increased spacing
of the operating points is possible due to the more linear behavior of the rigid
blade transfer matrices (compare, e.g., Fig. 4.4 and Fig. 4.1). The interpolation
over the airspeed range was conducted using cubic polynomial interpolation. As
in Fig. 4.25, only the frequency and damping trends for the two unstable whirl
modes nine and ten are shown. From the damping plot (lower plot in Fig. 4.26),
it can be seen that quasi-steady aerodynamic modeling yields the most unstable
results, with flutter speeds almost twenty percent lower than the Houbolt/Reed
results. The results with Wagner aerodynamics are close to the Houbolt/Reed
results, as Fig. 4.25 already showed. The results from the methods with induced
velocity modeling (BEM+Wagner and UPM) display higher flutter speed and
match closely for mode ten. For mode nine, the flutter speeds of the latter two
methods are outside of the covered airspeed range but show more significant
discrepancies compared to mode ten for the damping trends. These differences
between the modes and the higher flutter speed compared to Houbolt/Reed
highlight the results from section 4.3 and stress the sensitivity of the problem
with regard to the flutter mode shape and the airframe model in general. In the
case of the full aircraft configuration, additional stabilizing terms are present in
the equations of motion in the form of unsteady wing aerodynamics. This makes
the sensitivity of the system smaller regarding the stabilizing propeller transfer
functions (e.g., Fyθ and Fzθ), as in the flutter point the destabilizing moment
term Mzθ is balanced by the wing aerodynamic damping and the stabilizing
propeller terms together. Hence, the absolute value of the destabilizing term
is more important here, which is why the aeroelastic stability (expressed by
the value of the flutter speed) correlates better with the magnitude of the
propeller transfer functions (compare, e.g., Mzθ in Fig. 4.15). When looking at
the frequency trends (upper plot in Fig. 4.26), the more prominent changes in
frequency at lower airspeeds are again due to the slow increase in gyroscopics
and not physical. The results with quasi-steady propeller aerodynamics predict
the lowest frequencies at higher airspeeds, while those with transfer matrices
from UPM predict the highest. This is again due to the higher negative stiffness
terms for the Quasi-steady method, which can already be seen in the higher
amplitudes, e.g., in the 1P hub loads (compare Fig. 4.15).
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Figure 4.26.: Comparison of the frequency and damping trends for the unstable
modes between different aerodynamic methods for the propeller transfer matrices
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Tab. 4.1 compares the flutter speeds of modes nine and ten from Fig. 4.22 to
Fig. 4.26 in true airspeed and relative to the Houbolt/Reed results (percentages).
The figure from which the values are obtained is listed in the first column, and
the flutter speeds for modes nine and ten are listed in the last two columns.
The comparison shows the destabilizing influence of quasi-steady aerodynamics,
as the flutter speeds of the Quasi-steady method are 18% lower compared
to the Houbolt/Reed results. The three other aerodynamic methods lie one
to six percent higher than the reference. The flutter speeds for Mode 9 and
BEM+Wagner and UPM aerodynamics are marked as higher than 170 m/s, as
no flutter crossing was found, but a clear trend towards whirl flutter exists. On
the other hand, for the elastic blade modeling in the last column, no results have
been given as no trend towards whirl flutter was found in the given airspeed
range.

Table 4.1.: Flutter speed predictions of the generic turboprop model using different
propeller modeling

Flutter speed, m/s (%)
Figure Propeller-modeling Mode 9 Mode 10
4.22 Houbolt/Reed 163.0 (100%) 127.5 (100%)
4.26 TM, Quasisteady 133.9 (82%) 105.0 (82%)

TM, Wagner 164.0 (101%) 131.3 (103%)
TM, BEM+Wagner > 170.0 (>105%) 135.0 (106%)
TM, UPM > 170.0 (>105%) 133.2 (104%)

4.25 TM, Wagner, Elastic blades - -

Tab. 4.1 summarizes the results from this section and the whole parameter
studies in this thesis: While propeller aerodynamic modeling does influence
stability predictions, which partly depends on the mode shape, the effect of
blade elasticity on whirl flutter stability is much higher and so far always found
to be stabilizing. Without validation results from experiments or high-fidelity
numerical simulations, none of the modeling approaches can be considered
conservative or non-conservative.





5
Conclusion

To conclude this thesis, the last chapter summarizes the key
contribution of this work to the state of the art. Afterward,
the method and the results are discussed in a broader context,
pointing out advantages over existing methods and discussing
the potential impact of the limitations of this work. Alongside
this discussion, recommendations for further work are given.

5.1. Key contribution
This thesis contributes a new method for frequency-domain whirl flutter analysis
of propeller aircraft. The Transfer-Matrix method is based on identifying
frequency-domain transfer functions from propeller hub motion to hub loads
using a time-domain simulation model of the isolated propeller. This allows the
inclusion of all modeling aspects of the time-domain propeller model, such as
blade elasticity and complex propeller aerodynamics, into the frequency domain
whirl flutter analysis. The new method increases the fidelity of the isolated
propeller representation compared to state-of-the-art methods like the one
developed by Houbolt and Reed. This thesis successfully verifies the method by
comparing frequency and damping to results obtained by coupled time-domain
stability analysis. The work demonstrates a significant impact of elastic blade
modeling on whirl flutter stability, eliminating whirl flutter in the operating
range studied by considering blade elasticity.

5.2. Discussion
The Transfer-Matrix method described in this thesis enables the representation
of an aeroelastic model of an isolated propeller in a frequency-domain flutter
analysis of a full aircraft configuration. It aims to increase the propeller transfer
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functions’ modeling fidelity for whirl flutter analysis. It is verified and applied
in this thesis to study the impact of blade elasticity and aerodynamic modeling
on propeller whirl flutter. The following section discusses the advantages
and limitations of this work in three main subsections. First, the method
is compared to other available methods to highlight fundamental differences
from the methodological point of view. Second, the main findings of this
thesis regarding the influence of blade elasticity and aerodynamic modeling are
discussed. Their potential impact is assessed in the context of existing literature.
Third and last, the limitations of the method and the models chosen for the
studies in this thesis are discussed, and recommendations for future work are
given as means to overcome these limitations.

5.2.1. Discussion of the method
The workflow of the Transfer-Matrix method is briefly summarized below, and
the fundamental differences to the other methods (the workflow for time-domain
ROM by Gori et al., the Houbolt/Reed method and coupled time-domain
stability analysis) are outlined.

The TM-method starts with an aeroelastic time-domain model of an isolated
propeller. The model can include linear or non-linear blade dynamic and
aerodynamic models. First, the model is trimmed to a reference operating
point, and then, a polynomial pulse perturbation for the propeller hub motion
(e.g., disc pitch or translation) is applied. The time response of the propeller hub
loads to the perturbation is computed using time integration. Hub motion and
loads are transferred into the frequency domain, and the linear transfer function
is determined by division. After identifying all directions, the frequency-domain
transfer matrices are transformed into modal coordinates and inserted into
the frequency-domain flutter equation. This equation can be solved for the
eigenvalues of the aeroelastic system afterwards using frequency-domain flutter
solvers.

The TM-method is derived from the workflow described by Gori et al. [60].
The latter introduces identifying the hub load transfer functions from time-
domain perturbations. The critical difference to the proposed TM-method is the
direct use of the frequency-domain transfer matrices in the frequency-domain
flutter analysis. In contrast, in the method by Gori et al., the transfer functions
are approximated by a rational matrix approximation and then transformed
back into the time domain. The ROM obtained by this process is used, e.g., for
controller design and real-time applications for helicopters, while the primary
goal of the TM-method is propeller whirl flutter analysis. The axial inflow
conditions found in propeller applications are exploited for the TM-method by
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introducing pulse perturbation of selected DOF. At the same time, Gori et al.
rely on computationally more expensive harmonic perturbation of all hub DOF.

The TM-method provides an alternative to the classical propeller representa-
tion developed by Houbolt and Reed [8]. In contrast to the TM-method,
which numerically identifies the propeller transfer functions, the Houbolt/Reed
method derives them analytically. It provides purely aerodynamic transfer
functions, including a linearized strip theory. The analytical character makes
the Houbolt/Reed method fast and easy to apply but restricts its scope of
modeling features. On the other hand, the TM-method mainly provides a work-
flow to reduce existing time-domain propeller models into frequency-domain
transfer functions, so the scope of potential modeling features is only limited
by available time-domain models. Many models for including blade elasticity
and complex rotor aerodynamics exist today, and future developments can be
included. Depending on the simulation model chosen, the TM-method requires
higher computational times compared to the Houbolt/Reed method, but only
for the identification of the propeller transfer matrices.

The main benefit of the TM-method is that it allows the whirl flutter analysis
to remain embedded into the frequency-domain flutter analysis of the whole
propeller aircraft. Contrary to this approach, methods exist for the stabil-
ity analysis of coupled time-domain aircraft models, as described in
chapter 1. These are based on modeling the entire aircraft (and not only the
propeller) in the time domain and directly assessing stability there. By this,
they can make full use of, e.g., non-linear descriptions of the aeroelastic system
and eventual couplings between the different sub-models (e.g., aerodynamic
interaction between rotor and wing, see Corle et al. [32]). However, these
methods are computationally more expensive than a frequency-domain flutter
analysis. Furthermore, the complete stability analysis has to be repeated when
changing any model parameter (e.g., for different mass cases). In contrast,
for the frequency-domain flutter analysis, only the relatively inexpensive last
solution step has to be repeated and the transfer matrices can be reused.

5.2.2. Discussion of the main findings
This thesis investigates two main questions using the proposed TM-method:
First, which influence does blade elasticity have on propeller whirl flutter
stability predictions, and what are the underlying mechanisms? Second, which
effect does aerodynamic modeling have on whirl flutter, and which features
(unsteadiness, wake modeling, etc.) are required to capture the essential aspects
of incompressible flow?
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The main findings from the studies regarding blade elasticity are a mostly
stabilizing effect when elasticity is considered. This stabilizing influence was
reported before by other authors [55, 57] and is reproduced in this work
using the TM-method for frequency-domain flutter analysis. The reason
for the stabilization could be revealed by analyzing the transfer functions.
The main contribution comes from a reduction in the destabilizing coupling
moment between pitch and yaw (Mzθ and Myψ). Two underlying mechanisms
of this reduction are identified: First, the deformation of the blades due to
the harmonic loading during one revolution, which is driven by the blade
stiffness and produces inertial loads, is found to counteract the aerodynamic
moment term. Second, the blade responds to the harmonic loading, which
induces additional angles of attack on the blade and shifts the blade loads
to higher azimuth angles, reducing the aerodynamic coupling moment. The
blade response is dynamically amplified and shifted in phase relative to the
quasi-steady deformation if the first blade bending mode comes closer to the
shaft speed. Hence, this effect is driven by the frequency placement of the
first bending mode(s). The stabilizing effect has been found on the simplified
pylon system and confirmed for the full aircraft configuration, eliminating whirl
flutter in the studied operating range in both cases. For very flexible blades,
the trend towards stabilization is reversed by the occurrence of new flutter
couplings, as, e.g., common for tilt-rotor configurations [36, 56]. This serves as
a lower bound for using blade elasticity directly as a mitigation measure during
the design of propeller configurations, next to side effects on propeller loads
and performance due to more elastic blades, which have not been studied here.
On the other hand, ignoring existing blade elasticity and only considering rigid
blades might make whirl flutter predictions overly conservative, as this thesis
could demonstrate a stabilizing effect even for very stiff blades. Regardless
of the flexibility, the TM-method enables its consideration during frequency-
domain flutter analysis, allowing further studies for research and design purposes.

In contrast to the studies on the influence on blade elasticity, the studies re-
garding aerodynamic modeling revealed a clear trend for unsteady propeller
aerodynamics but no clear trend concerning whirl flutter stability. Significant
differences between the methods studied have been shown in predicting 1P hub
loads and for the unsteady propeller transfer matrices. Quasi-steady propeller
aerodynamics significantly over-predict the in-plane loads compared to the panel
free wake reference by 47.5%. Considering unsteady blade aerodynamics by
using Wagner’s function improves the fit, especially for the out-of-phase compo-
nents, but still shows considerable over-prediction. The effect of azimuthally
varying induced velocities improves the predictions further to the level of the
panel-free-wake reference. The requirement for an unsteady blade model and az-
imuthally varying induced velocities are already reported in the literature for the
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predictions of 1P hub forces [25]. Furthermore, an effect of the airfoil moment on
the out-of-phase 1P hub moment is found. The following studies on whirl flutter
stability with the simplified pylon system reveal a spread between the different
methods that is, on the one hand, not directly related to the absolute level of
agreement between the unsteady aerodynamic predictions and, on the other
hand, dependent on the mode shapes involved. Further investigations indicate
that relative differences between force and moment terms are more critical than
the absolute force level of the hub loads, as destabilizing and stabilizing terms
cancel each other. For the full aircraft configuration, the flutter speeds correlate
better with the absolute level of the predicted aerodynamic loads (small 1P hub
loads yield a more stable system). This is attributed to additional stabilizing
terms in the flutter equation in the form of wing aerodynamic forces. Hence,
the sensitivity with regard to the stabilizing propeller derivatives is smaller,
and the reduction in the amplitude of the destabilizing coupling moment takes
precedence. Although not investigated in this thesis, the absolute value of the
harmonic blade loads should play a more significant role when considering blade
flexibility simultaneously, as the harmonic blade loading deforms the blades and
creates the stabilizing effect of blade deformation. With smaller amplitudes,
e.g., due to induced velocities considered, the stabilizing effect should be slightly
reduced.

In general, the effect of blade flexibility has proven to be much larger than
the sensitivity to aerodynamic parameters such as shaft power or aerodynamic
modeling. For the full aircraft configuration, only a relatively small variation
(up to 6%) of the flutter speed occurred between the unsteady aerodynamic
methods, while blade elasticity eliminated whirl flutter. Not all aerodynamic
parameters have been studied in this thesis. For example, only incompressible
aerodynamics are investigated. Still, the results strongly indicate the importance
of blade elasticity.

The TM-method allows for the inclusion of many effects in the flutter analysis
that are neglected, e.g., in the Houbolt/Reed method. The findings about
the influence of the investigated parameters described above are purely based
on numerical simulations with low- to mid-fidelity methods. To exploit these
new capabilities for aircraft design and certification, the propeller models used
for the identification should be validated, e.g., with validation cases from
high-fidelity numerical simulations or experiments. Measuring the dynamic hub
load response of a propeller undergoing forced-motion pitch oscillations in a
representative wind-tunnel experiment would, for example, yield an excellent
validation basis for the TM-method and the models used with it. Extending
these experiments towards a propeller-wing configuration could also cover
potential aerodynamic interaction effects, which have been neglected in this
thesis (compare next discussion section). After the aeroelastic transfer functions
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of such systems are understood and validated, flutter stability experiments or
in-flight damping measurements can provide the final validation cases for the
whirl-flutter workflow.

5.2.3. Discussion of the limitations
The following section discusses the limitations of this work and potential mea-
sures to overcome them. Some limitations concern the method and the systems
or operating points that can be covered. Others apply to the studies conducted
with the TM-method in this thesis and the assumptions, e.g., for the aerody-
namics. Both are repeated and discussed concerning their potential impact,
suggesting further studies.

To derive the efficient procedure suited for propeller whirl flutter analysis in
the frequency domain as outlined in section 2.2.3, some limitations have been
put onto the system to be analyzed. First of all, to allow for an efficient pulse
identification, axial inflow conditions (e.g., zero angle of attack) have been
assumed for this work. This makes the system time-invariant concerning the
non-rotating hub loads, allowing for pulse perturbation. Furthermore, it makes
the system axially symmetric, reducing the number of directions in which the
hub loads must be identified. The system becomes time-periodic for non-axial
inflow conditions (e.g., a propeller under angle or attack). When subtracting
the steady loads in Eq. 2.27, this must be considered. Furthermore, a single-
harmonic input to a periodic system yields a multi-harmonic output, which
prevents pulse-identification. For small angles of attack, the effect might be
small. For larger angles, harmonic identification has to be used (as used by
Gori et al. [60]), which makes the process computationally more expensive. Due
to the lack of axial symmetry, all hub DOFs must be identified individually.
The effect is expected to be small for propeller aircraft configurations, as the
angles of attack are small, especially in the high-speed regime. This aspect is
more critical for other configurations, e.g., those from urban air mobility that
might also use propellers to generate lift.

The propeller blade control system has been neglected as a possible load
path in all the studies shown. Aircraft propellers usually only feature a control
system for the blade collective angle to set the power or thrust. Dynamics
stemming from this control system path might influence the hub transfer
functions regarding the x-axis. Still, they should have negligible influence on the
in-plane loads, which are essential for whirl flutter. As shown by Gori et al. [60],
additional load paths through the control system (in their case, through the
swash plate of a helicopter rotor) can be considered as additional input- and
output quantities, making the transfer matrices larger than six by six and
requiring additional perturbations during identification.
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The TM-method is based on small perturbations for the hub motion and loads
and is intended for linear whirl flutter stability analysis. The response is likely
not linear for hub motion with larger amplitudes. Nonlinearities might arise
due to geometric effects (e.g., from rotations with a large angle), unsteady
aerodynamics (e.g., non-linear local lift polars), or periodicity at higher inflow
angles. The effect of amplitude-dependency of the transfer matrices could be
studied using harmonic perturbations with varying amplitude. The impact of
nonlinearities is more critical for load analysis (e.g., gust response), where the
perturbations are more significant than in a linear flutter analysis.

By identifying transfer functions from a model of the isolated propeller, aero-
dynamic interaction between the propeller and the wing is neglected, too.
Aerodynamic interaction influences the steady state of both the propeller and
the wing aerodynamics, as well as the unsteady loads. The steady influence
of the propeller slipstream on the wing affects the dynamic pressure and flow
speed by increasing the axial velocity behind the propeller and the local angle
of attack on the wing due to the tangential-induced velocity. For subsonic aero-
dynamics, the increase of dynamic pressure affects the GAFs, and corrections
for this are proposed by Rodden and Rose [14]. These can be combined with
the TM-method. For transonic cases, the steady state can more significantly
influence the GAFs, e.g., due to changes in shock position. To cover this, a
representation of the propeller in the steady flow field, e.g., using an actuator
disc in a CFD computation, could give a starting point for investigations. The
steady influence of the wing’s induced velocity field on the propeller’s steady
state changes, e.g., the angle of attack on the propeller and the local blade lift.
These changes in steady state are expected to have negligible influence on the
propeller transfer functions but make the process more complicated (compare
the discussion of non-axial inflow above). Unsteady interaction stems from
motion-induced velocities induced by the oscillating propeller on the wing or
vice versa. Corrections for the induced flow angles at the propeller hub due to
wing motion are proposed by Rodden and Rose [14], using DLM aerodynamics.
This or a similar approach could also be used with the TM-method. To verify
all these corrections, a fully coupled aerodynamic time-domain model of the
propeller-wing system, e.g., using mid-fidelity methods such as UPM or even
CFD, can be used (as used for the tilt-rotor studies on this topic, e.g. by
Corle et al. [32]). For the fully coupled model, GAFs of the coupled system
can be identified using pulse or harmonic excitation of the modal DOF and
compared with GAFs obtained using the isolated wing and propeller model.
One problem will remain, though, with all approaches, as it is inherent in the
physics of the system: The GAFs of the system are then dependent on one
additional parameter describing the operating point of the propeller, be it the
rotational speed, advance ratio, or steady thrust coefficient. The correction
factors proposed by Rodden and Rose, for example, depend on the propeller’s
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disc loading. The disc loading changes for the constant power trim, requiring
velocity-dependent correction factors and, therefore, GAFs. In general, whirl
flutter is a high-speed phenomenon critical in windmilling conditions. The blade
lift and the induced velocities in the slipstream are negligible in these conditions.
In high-speed flight, the unsteady induced flow angles are also small, as the high
axial speed dominates. The aerodynamic interaction is expected to have a minor
influence on the whirl flutter stability, compared to, e.g., considering blade
elasticity. This should be verified, though, using the time-domain approach
proposed above.

The studies in this thesis all have been conducted using incompressible aero-
dynamics. Potential effects of compressible flow range from an increase in
the lift curve slope, which can be covered, e.g., using Prandtl-Glauert factor
corrections for the local airfoil polars, to the evolution of shocks and supersonic
areas, e.g., at the blade tips. For the nominal case studied here, the tip Mach
number is 0.74, already on the border of potential transonic effects. Compress-
ible flow phenomena are most dominant on the blade tips, where the highest
local speeds occur. As changes in the aerodynamics at the blade tips affect the
hub moments more than the hub forces due to the longer lever arm, they could
affect whirl flutter stability and, again, could be dependent on the mode shape.
To study the impact of compressible flow, full, three-dimensional CFD using
Euler or URANS-equations can be used. Prandtl-Glauert corrections factors or
non-linear, Mach-number dependent airfoil polars can serve as a first starting
point for the strip-theory approach.

In general, to increase the aerodynamic fidelity, the current state-of-the-art
uses CFD aerodynamics, e.g., based on the Navier-Stokes equations. For
rigid propeller 1P hub load computations, CFD methods reach a good level
of agreement with wind-tunnel tests [27], although aspects like the spinner
aerodynamics have to be correctly accounted for (compare Ortun et al. [27]).
In this thesis, the prediction of 1P hub loads is revealed to be representative of
the unsteady predictions of propeller transfer matrices. Full three-dimensional
CFD should, therefore, be able to predict the propeller transfer matrices of
a real system, although, to the author’s knowledge, no validation data exists
yet. A high spatial and temporal discretization is required to model a rotating
propeller, leading to high computational costs. Reduced modeling approaches
such as actuator disc formulations or actuator line models [100] promise a
reduction in computational time but must be adequately verified and validated
for unsteady applications with elastic blade and hub motion.

The investigations in this thesis have all been conducted using the same pro-
peller geometry, a five-bladed wooden composite propeller with straight
blades. As the aerodynamic moment due to the airfoil moment and the offset
between the quarter-chord point and the blade axes has been shown in this
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thesis to influence whirl flutter, blade sweep is expected to have a potential effect
on whirl flutter due to the increased offset of the aerodynamic forces. This is es-
pecially interesting for high-speed propellers with swept tips. Further parameter
studies can be conducted on the structural blade parameters, too. Only general
mass and stiffness scaling were applied in this work. Still, more insights into the
sensitivities regarding the individual structural parameters, such as bending and
torsion stiffness for different blade layouts, could provide interesting insights.
For example, a structured uncertainty quantification approach can be applied
to find the driving fundamental parameters in the structural and aerodynamic
model to focus future investigations on those dominating effects.

In its presented form, the TM-method is tailored towards application on large
propeller aircraft, with propellers operating in high-speed axial inflow conditions.
The application to other aircraft configurations is possible but comes with some
challenges depending on the specific configuration. One alternative to classical
propeller engines are open-rotor or even counter-rotating open-rotor engines.
While the first features a rotating propeller with a stator behind it to retrieve
the energy lost in the tangential velocity, the latter features two counter-rotating
rotors. Literature on a potential whirl flutter of such configurations is scarce or
non-existent. While the key concept of the TM-method should also apply to
such configurations, some challenges might lie in the design of such engines and
the different load paths between the rotor and stator. It might be necessary to
include more hub-DOF (e.g., hub of rotating part and hub of stator parts) in
the transfer matrices. As mentioned in the introduction, one aircraft category
suffering from whirl flutter are tilt-rotor aircraft with their large, flexible
rotors. Especially for high-speed forward flight, the TM-method can be applied
for the aeroelastic stability analysis. Additional hub-DOF for the rotor control
system might have to be included. One challenge of the current form of the
TM-method relevant for these rotor systems is the limited amount of information
about the participation of blade modes in the flutter mode shapes. This is
not so relevant for propeller configurations, where the blade modes are not
directly involved in the instability mechanism, but more critical for tilt-rotor
whirl flutter, which usually includes significant participation of the blade modes.
A third aircraft category that might benefit from the TM-method for aeroelastic
stability analysis is the new class of urban-air-mobility (UAM) vehicles.
These often feature several propellers in exposed locations on the airframe,
which are used for lift and thrust generation. To efficiently use the TM-method,
further investigation is needed to determine if it can be applied efficiently
for propellers at higher angles of attack. If the propellers to be investigated
only have two blades, the inherent periodicity prevents the application of the
TM-method, and time-domain analysis, such as Floquet analysis, is better
suited.
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While this thesis revolves around creating a better representation of the pro-
peller transfer functions for whirl flutter analysis, other parameters than the
propeller influence the whirl flutter predictions significantly and must be better
understood, too. On the side of the structural model, the characteristics of
the shock mounts strongly impact the engine modes and, therefore, on whirl
flutter stability. As these parts are often manufactured from elastomer materials,
which change their characteristics under preload, with temperature, and due
to aging [101], their influence on whirl flutter stability could be another focus
of attention to strive for a more complete understanding of the intricacies of
propeller whirl flutter prediction.
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A
Appendix

A.1. Definition of propeller derivatives
This section includes the full list of definitions for the sixteen aerodynamic
propeller derivatives derived by Houbolt and Reed [8, 14]. For the definition of
the correction factors and variables, refer to section 2.2.2.
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Czψ = Cyθ ; Cyψ = −Czθ
Cmψ = −Cnθ ; Cnψ = Cmθ

Czr = Cyq ; Cyr = −Czq
Cmr = −Cnq ; Cnr = −Cmq

(A.9)

A.2. Higher modes of the generic aircraft model
The following three figures include the higher modes 15 to 26 of the generic
aircraft, in addition to the modes shown in Fig. 3.8 and 3.9. Modes higher than
number 26 are not shown.
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Figure A.1.: The elastic modes 15 - 18 of the full aircraft, visualized on the
aerodynamic panel grid
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Figure A.2.: The elastic modes 19 - 22 of the full aircraft, visualized on the
aerodynamic panel grid



A.2. Higher modes of the generic aircraft model 147

Figure A.3.: The elastic modes 23 - 26 of the full aircraft, visualized on the
aerodynamic panel grid
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A.3. Flutter results for flexible blades and
quasi-steady aerodynamics

Fig. A.4 compares flutter results for the simplified pylon system with quasi-
steady aerodynamics and flexible blades between Floquet and TM-analysis. The
equivalent results with unsteady aerodynamics are shown in Fig. 4.5. In Fig. A.4,
the frequency and dampings of the whirl and first-order cyclic propeller modes
match exactly, verifying the TM-method. This indicates that the differences
observed in Fig. 4.5 are caused by the omission of the aerodynamic states from
the Floquet-analysis, not by the different analysis methods or problems in the
TM-method.
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Figure A.4.: Comparison of flutter results for the simplified pylon system with
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A.4. List of publications
This appendix comprises the list of publications of the author of this thesis
(denoted "writer" in the following) at the time of writing. The content of the
publications is summarized. In case of co-authorship, the contribution of the
writer is explained. The publications that contain work reproduced in this
thesis are marked with "*".

1. Master thesis on the aeroelastic stability of the FVA30 motor
glider
Master thesis of the writer and its dissemination in several conference
papers. The first is the actual master thesis, the second the dissemination
in a conference paper on a national scientific conference with the two
supervisors of the thesis as co-authors. The second is an extension of the
first paper published in the proceedings of an international conference
(the presentation itself was canceled due to the COVID-19 pandemic).
The last paper describes the aircraft configuration of the motor glider
studied in the thesis.
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