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Abstract: The production of one-piece composite hollow profiles with undercuts presents
significant challenges to conventional mold concepts. Mandrels made of thermoplastic
shape-memory polymers could facilitate demolding and reduce tooling costs. To design
molds in a commercial environment, it is critical to determine their behavior using off-the-
shelf Finite Element Analysis (FEA) software. This paper investigates all of the necessary
steps, from the material model generation, its implementation in commercial FEA software,
to the simulation of shape-memory test specimens under unidirectional tensile loading
with off-the-shelf FEA modules. The material investigated is PA6. Differential Scanning
Calorimetry (DSC) is used to determine the glass transition, crystallization and melting
temperatures of the material. The Dynamic Mechanical Analysis (DMA) is then used to
determine the elastic modulus versus temperature and frequency. A viscoelastic material
model is derived from DMA data. Parameters necessary for the implementation are derived
by using fully open-source Python scripts. A unidirectional shape-memory tensile test sim-
ulation is performed and compared with the experimental data from a thermo-mechanical
shape-memory test. The applied methods allow for the generation and implementation
of a viscoelastic material model in commercial FEA software. The simulation shows good
results in comparison with the thermo-mechanical shape-memory test. In conclusion,
the straightforward “from material to solution” path presented allows us to model and
simulate the shape memory behavior of viscoelastic polymers.

Keywords: shape memory polymer (SMP); finite element analysis (FEA); dynamic mechan-
ical analysis (DMA); viscoelasticity

1. Introduction

Fiber-reinforced polymer (FRP) composites have become a leading material in
aerospace applications due to their excellent fatigue resistance, superior material properties,
and the ability to customize performance by adjusting fiber angles. Today, FRP accounts
for approximately 50% of the structural mass in modern commercial aircraft, such as the
Airbus A350 and Boeing 787. In sectors such as general aviation and unmanned aerial
vehicles (UAVs), FRP accounts for more than 90% of the structural mass [1]. In addition,
the market for urban air mobility is expected to grow significantly, with projections of
160,000 passenger drones in use by 2050, although some uncertainties remain regarding the
certification and performance of these aircraft [2,3]. Demand for FRP parts is also expected
to increase over the next decade in the production of pressure vessels for hydrogen-powered
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vehicles, including cars and aircraft [4]. Highly automated manufacturing processes will
be essential to meet this growing demand. However, producing complex hollow profiles,
with smooth internal surfaces and undercuts, such as struts, air intake ducts, and Type V
pressure vessels, remains challenging for traditional tool-based manufacturing methods.
Suitable techniques for the automated production of these components include filament or
towpreg winding, automated fiber placement (AFP), and braiding [5]. Not considering lost
cores of plaster, wax, or similar materials, research into the use of removable mandrels for
the automated production of hollow composite profiles began in the late 1990s. Lehmann
et al. [6] investigated bladder molding and flow dynamics within the resin transfer molding
(RTM) process. Inflatable cores, such as silicone or film bladders, are easily removed from
undercuts, but are not suitable for preforming. Removable and reusable cores, that can
serve as mandrels in automated manufacturing processes for hollow composite profiles
with undercuts, must remain rigid during preforming at room temperature, but must be
demoldable after curing. This requires a mechanism that can either change the shape of
the mandrel, or adjust its material properties to allow for easy removal from undercuts.
Polymers, particularly those experiencing the temperature shape memory effect, have
potential for such applications [7]. These polymers are referred to here as shape memory
polymers (SMPs). The SMPs could facilitate the production of one-piece, all-composite
pressure vessels (Type V), such as those used in hydrogen-powered vehicles, without the
need for soluble cores. For example, a pressure vessel could be wound onto a polymer
mandrel, which could be easily removed after curing. In addition, S-shaped air intake
ducts could be produced using automated fiber placement (AFP) without the need for
costly multi-piece rigid tooling. As examined in the previous study by Neumann, re-
search on thermoplastic shape memory polymers for tooling application is very limited [7].
In addition, no literature could be found on the shape memory effect of blow-molded
articles. However, neat thermoplastic polymers are widely used in 4D printing. Four-
dimensional printing is the 3D printing of stimuli-responsive polymers in which internal
stresses, material orientations, or multi-material configurations are introduced during the
printing process. This can be understood as a shape programming step. Subsequently,
shape recovery is activated in an according manner. The recent literature on this topic has
focused primarily on polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS), with
a much smaller proportion investigating the 4D printing properties of polycarbonate (PC),
polyamide-6 (PA6), polyethylene terephthalate-glycol (PETG), thermoplastic polyurethane
(TPU), polypropylene (PP), polyether ether ketone (PEEK), and polyvinyl alcohol (PVA).
ABS exhibits high impact resistance and good mechanical properties, but degrades under
UV light. PLA is biodegradable and easy to print, with a high dimensional accuracy, but
has a very low heat resistance. PC has a high thermal and mechanical strength, but its
high viscosity makes it difficult to print. PA6 has a high toughness, flexibility and impact
resistance, but also has a relatively high moisture absorption. PETG shows good mechanical
properties, with better flexibility than PLA, but has a lower heat resistance than ABS. TPU
has a high elasticity and abrasion resistance, but is difficult to print. PP has an excellent
chemical and impact resistance, but high shrinkage and warpage. PEEK has an excellent
chemical resistance and high mechanical properties, but this expensive material requires
very high processing temperatures. PVA is water soluble and absorbs moisture, leading to
degradation [8]. However, out of the 3D printing materials mentioned, only PA6 and PP
are widely used in blow molding, the technology to which this research contributes.

1.1. Classification of Shape Memory Polymers

Shape memory polymers can be categorized in several ways, including by the gen-
eral type of polymer, the base polymer, or the activation method [9]. The major types
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of SMPs are: (1) partially cured thermosets, (2) fully cured thermoset systems, and (3)
thermoplastics [10]. In addition, some SMPs have been developed as blends of these
main types [11]. However, each category has its drawbacks. Partially cured thermosets
continue to cure during their use as SMPs, resulting in changes in the material proper-
ties with each cycle. Thermoplastic SMPs tend to creep, i.e., they gradually lose their
shape memory over time [10]. As a result, most research has focused on fully cured ther-
moset systems. Morphological characteristics allow for the classification of SMPs into
four distinct types: chemically cross-linked amorphous polymers, chemically cross-linked
semi-crystalline polymers, physically cross-linked amorphous polymers, and physically
cross-linked semi-crystalline polymers [12]. Based on the base polymer, extensive re-
search on polyamide-based SMPs [13,14], polyurethane-based SMPs [15,16], styrene-based
SMPs [17,18], epoxy-based SMPs [19,20], and cyanate-ester-based SMPs [21,22] can be
found in the literature. The activation mode for the shape memory effect varies. The
temperature-induced shape memory effect (SME) is the most common [7,23], but the effect
can also be current-induced [24], light-induced [25], microwave-induced [26], magnetic
induced [27], or water-/solution-induced [28]. Research on the tooling applications of
SMPs has focused primarily on unreinforced thermoset materials, particularly those based
on styrene. Thermoplastic polymers are less commonly used, and the addition of reinforce-
ments limits the allowable strain in the temporary shape. The ability to change shape in
these studies is based on either a shape memory effect or a softening process, both of which
are triggered by heating in all cases studied in the review by Neumann [7]. Miadowitz [29]
introduced thermoplastic blow-molded mandrels to produce hollow composite profiles
without a shape memory effect. Blow-molded mandrels also allow production rates to
be decoupled from the number of mandrels available, as the blow-molding technology
allows multiple positive mandrels to be rapidly produced from a single negative mold.
In addition, complex curved struts and tubes, such as those used in trusses or fluid lines,
can be efficiently produced either on blow-molded mandrels or by using SMP mandrels
tailored to the specific shape of each part. Neumann et al. [30] investigated the suitability of
other thermoplastic polymers for use as mandrel materials in the manufacture of composite
hollow profiles.

1.2. Contitutive Models of SMPs

Theoretical constitutive models have been developed to understand the shape memory
mechanism and to optimize SMPs. Three established methods for constitutive models can
be found in the literature: (1) rheological models, (2) phase transition models, and (3) unit
cell based multi-branch models. In addition, there are new model building methods in
the literature that replace the fitting parameters with physics-based parameters, combine
different SMP models, or incorporate multiple algorithms and functions [12].

1.2.1. Rheological Models

The first models used for SMPs were phenomenological visco-elastic and visco-elastic-
plastic models. These models have three main elements representing the behavior of
polymer chains at the macroscopic level: (1) elastic springs, (2) viscous dashpots, and (3) slip
elements. Tobushi et al. [31] were the first to introduce a four-element model, with a sliding
element representing strain storage and release. The underlying mechanism of this model is
that an unrecoverable creep strain occurs when the creep strain exceeds a certain threshold
and the temperature falls below the glass transition temperature (Ty), causing the molecular
chains to freeze and increase internal friction. Early rheological models have limitations in
accurately predicting the shape memory effect; however, they may be sufficient for an initial
or rough prediction. Later, researchers introduced modifications, including nonlinear terms
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and three-dimensional frameworks, to improve their accuracy [12,32]. A significant advance
by Diani et al. [33] was the use of a generalized Maxwell or Maxwell-Wiechert model
(GMM), which recognizes that relaxation occurs over a distribution of times rather than at
a single time, and the Williams-Landel-Ferry (WLF) equation to describe the relationship
between relaxation time and temperature. Since rheological models are relatively easy to
solve, this model, along with the WLF equation and Simo’s finite strain extension [34] of
the generalized Maxwell model, is available in commercial finite element analysis (FEA)
software such as ABAQUS 2024 or ANSYS 2023R2, facilitating the integration of viscoelastic
behavior in simulations [35]. The GMM is shown in Figure 1. Despite improvements,
rheological models often include numerous parameters, without considering the heating
rate and the strain rate. Furthermore, they are only capable of describing one-dimensional
SME. These characteristics make it possible to use rheological models to describe SMPs for
both free and constrained stress recovery tests, with acceptable accuracy.

g
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Figure 1. Generalized Maxwell or Maxwell-Wiechert model for viscoelastic materials with spring
constants ke, ky .. . kj and damping constants Ty ... Tj and under tension o.

1.2.2. Phase Transition Models

The phase transition model was introduced by Liu et al. in 2006 to overcome the limi-
tations of rheological models [36]. Further developments of this approach were contributed
by Chen and Lagoudas [37], Wang et al. [38], Baghani et al. [39], and Li et al. [40]. The
phase transition model considers SMPs as composites consisting of two distinct phases:
(1) an active phase and (2) a frozen phase. The active phase has a high chain mobility and
its deformation is primarily entropic, while the frozen phase has a low chain mobility and
its deformation is primarily energetic. Shape memory occurs because the proportions of
active and frozen phases vary with temperature. When an SMP is cooled below its Tg, the
active phase transitions to the frozen phase. This transition traps the deformed state of
the material. When the SMP is reheated above its Tg, the frozen phase transitions back to
the active phase, returning the material to its original, undeformed shape. Advantages of
this constitutive model include the ability to model the three-dimensional shape memory
behavior with only six fitted material parameters. Accurate determination of the volume
fractions of the active and frozen phases at different temperatures is critical for phase
transition models. However, this determination is often based on empirical formulas or
fitting experimental data, which may not have a clear physical meaning and may vary
depending on the model and material chosen. While the model is clear and understand-
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able for semi-crystalline polymers, it is only a conceptual simplification for amorphous
polymers. This limits the physical interpretation of the model. As a rheological model, the
phase transition model does not consider the heating rate or strain rate [33]. In addition,
it can only model small deformations. Beyond these limitations, the model is capable of
describing the SME for constrained stress recovery and free strain recovery with better
accuracy [12,32].

1.2.3. Multi-Branch Models

Qi et al. introduced a new multi-branch model in 2008 [41]. This model is based
on a representative unit cell of the SMP network and combines the rheological model
and the storage strain-based phase transition model. This way, it is possible to achieve
more advantages than with the other two models. A key strength is its ability to link the
macroscopic deformation observed at the bulk level with the microscopic deformation
occurring at the molecular level. This is achieved by integrating the Arruda-Boyce model,
which describes the behavior of polymer chains within a representative unit cell. This
model assumes that the molecular chains are distributed along the diagonals of a square
unit cell in principal strain space. This integration allows the model to better capture
nonlinear deformation behavior. In addition, Qi et al. introduced a flow rule to describe
plastic softening, allowing the model to describe strain rate effects. Finally, the introduction
of a hyperelastic spring element allows for a better representation of the elastic behavior of
the material. However, a major drawback of this model is that many parameters must be
determined by curve fitting. This makes the model complex to implement [12].

1.3. Implementation in FEA Software

Finite element analysis has been an established method for simulating the shape
memory behavior of SMP since the development of the constitutive models mentioned
above. However, most of the published work is based on “user-defined mechanical material
behavior” (UMAT) subroutines for ABAQUS. Writing these subroutines is time-consuming
and requires FORTRAN programming skills. Fortunately, the GMM and the WLF equation,
as well as the finite strain extension of the GMM for large deformations, as published by
Simo [34], are already implemented in the standard material modules of ABAQUS and
ANSYS. In this way, viscoelastic shape memory behavior can be easily implemented via
modulus and relaxation time pairs of the Prony series and WLF parameters. This procedure
was established by Diani et al. [33], Yu et al. [42], and Azzawi et al. [35]. In particular, the
procedure described by Azzawi et al. is still widely used in the recent literature [43,44].
However, all of the available literature relies on proprietary software, such as NLREG
or TA Advantage, to calculate the WLF and Prony series parameters. This software is
not open source, and licenses must be purchased to use it. Open source software offers
significant advantages over proprietary software and contributes to more accessible and
transparent research results. It allows users to inspect, modify and verify the code, building
transparency and trust. The code can be adapted or used in other software projects to
meet the specific needs of future work. Because it is free to use, open source software is
cost-effective and gives users full control over their software environment by not locking
them into specific vendor ecosystems or licensing models. This, in turn, contributes to a
wider compatibility and interoperability of the software with other software projects.

This paper follows the procedures established by Diani et al. and Azzawi et al., but
relies on fully open source Python 3.12.9 scripts for parameter identification to allow for a
fully transparent and traceable procedure [45].
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1.4. Aim of This Work

There is no study in the literature that spans from material coupon tests, through
their evaluation, to the implementation of the material model in FEA software for SMP,
using fully open-source and transparent methods. Therefore, the purpose of this work is to
serve as a guideline for the aforementioned steps in order to achieve a time-efficient and
cost-effective finite element simulation of the shape memory behavior. Since the overall
goal of the authors’ research group is to develop a high-rate manufacturing method for
composite hollow profiles on blow-molded mandrels, this study focuses on thermoplastic
polymers. Therefore, PA6 is investigated in this study. However, the methods used in
this work are easily transferable to other types of polymers. Furthermore, all methods
used should be easily accessible and usable with off-the-shelf commercial FEA software
to allow an easy transfer from research to commercial mandrel design. The basic material
parameters are investigated by DSC and DMA as described in Sections 2.2 and 2.3. Then,
a rheological model is used for their implementation. Therefore, the viscoelasticity is
represented by a generalized Maxwell model. To calculate the necessary parameters for the
Prony series, complex shear and elastic modulus are measured via Rheometry, as described
in Section 2.4. Since for thermorheologically simple materials the influence of temperature
on the material behavior is the same as that of time, a time-temperature superposition is
developed, as described in Section 2.5. WLF shift function parameters are calculated, as
described in Section 2.6, and used for the implementation in the FEA software. Section 2.7
introduces a shape memory test procedure to validate the simulation solutions. Section 3
shows the results obtained using the aforementioned methods. The results are discussed in
Section 4 and a conclusion is drawn in Section 5.

2. Materials and Methods

This chapter describes the materials used and methods required to determine the
necessary parameters for implementing shape memory behavior in off-the-shelf FEA
software, such as ABAQUS 2024 or ANSYS 2023R2. The equipment is listed in Table 1.
First, a DSC is performed to determine boundary conditions and parameters for the DMA
and shape memory testing. Second, the DMA test specimens are fabricated by injection
molding. Third, a DMA is performed to investigate the relationship between temperature
and Young’s modulus. It should be noted that this step is not necessarily required, but
helps to define the temperature range and maintain safe operation, within the limits of the
equipment for the subsequent complex shear and tensile modulus measurements. Fourth,
the complex shear and tensile modulus are determined using frequency and temperature
sweeps. As a final step, a shape memory tensile test is performed to validate the simulation
results. The schematic workflow is shown in Figure 2.

Specimen preparation for DMA and Shape-Memory-Test Shape memory test

Injection
Srying smpering Measuring
@ Drying molding Tempering leasuring

Heating Stretching Cooling Heating ‘h’“"'d’:zf‘
(force-free) (isothermal) (clamped) (force-free) for u g

% 2 L2 Y

is
a : y
/ Data collection
Specimen mounting
i testing fixture

f——>{ DMA Measurement |-----=---- ooy
n testing fixture i '
| | o B w
DSC Ty T : :

Figure 2. A schematic representation of the experiments.
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Table 1. Methods and equipment used for thermoanalysis.

Method

Equipment Parameters

Specimen preparation

DSC

DMA
Shape-Memory-Test

Cylinder: 250 °C

M N fn . e
HAAKE™ MiniJet Pro (Thermo Fisher Scientific Mold: 30 °C

Inc., Waltham, MA, USA)

Pressure: 300 bar
DSC 2 TOPEM (Mettler Toledo Inc., Columbus, o o .
OH, USA) 25°C ... 260 °C; 10 K/min

MCR 702 (Anton Paar Group AG, Graz, Austria) 25°C...75°C;0.1Hz...10Hz
MCR 702 (Anton Paar Group AG, Graz, Austria) 80°C...20°C...80°C; 4.3% strain

2.1. Polymers

Previous work has shown that PA6 and PET are suitable as mandrel material for
composite hollow profile production [30]. While PA6 can be processed by extrusion blow
molding (EBM), PET is mainly used for injection stretch blow molding (ISBM). ISBM re-
quires an additional preform step, while EBM blows an extruded preform directly into the
mold. This makes it much easier to scale in size, which is a key consideration for larger
applications. Therefore, PA6 (Durethan BC550Z 900116; Envalior GmbH, Diisseldorf, Ger-
many) is chosen for further investigation in this study. Durethan BC550Z is an unreinforced
PA6 designed to meet the demands of extrusion blow molding. It is heat stabilized and has
an improved impact resistance. It is widely used for pressure vessels and tank systems. The
material comes as granules. The granules are fed into the mini injection molding machine
Thermo Scientific™ HAAKE™ MiniJet Pro to produce the DMA test specimen (60 mm X
10 mm x 1 mm). The physical and mechanical properties of the material used are shown in
Table 2.

Table 2. Physical and mechanical properties of PA6 (Durethan BC550Z) [46].

Property Value Unit
Elastic modulus 2000 MPa
Yield stress 50 MPa
Yield strain 4.0 %
Tensile strain at break 140 %
Poisson ratio 0.4
Melting temperature 219 °C
Heat deflection temperature 53 °C
Coeftficient of thermal expansion 14 10-4/K
Density 1070 kg/ m3
Water absorption 9.1 Yo
Drying temperature 80 °C
Drying time 2-6 h

2.2. Measurement of Characteristic Temperatures via DSC

In order to determine the boundary conditions and parameters for the DMA and shape
memory testing, it is critical to first examine the material by DSC. The most important
properties are the glass transition temperature Ty, crystallization temperature T., and
melting temperature Tr. The glass transition temperature is used to define the temperature
range for DMA and shape memory tests. Additionally, it serves as the reference temperature
for the master curve construction described in Section 2.5. The effect of crystallization
is neglected in this simulation approach because the WLF equation does not cover the
molecular changes, see Section 2.6. Therefore, the temperature of shape memory tests and
their simulation must stay below the crystallization onset temperature. Staying below the
melting temperature is an obvious constraint for all further tests described below. The
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measurement is performed with a Mettler DSC 2 TOPEM. Four samples are tested. All
results agree well with the manufacturer’s melting temperature. Based on the material
data sheet, the temperature range over which the sample is heated and cooled is set to
25-260 °C. The heating and cooling rate is set to 10 K/min. No isothermal holds are used.
Two heating cycles and one cooling cycle are performed. The first heating cycle is used
to erase the previous thermal history of the material. This includes any previous thermal
treatments, such as processing or storage conditions. By heating the sample above its
melting temperature, the molecular structure is reset, allowing a more accurate evaluation
of its properties. The results of the DSC measurement of the used PA6 are shown in
Section 3.1.

2.3. Measurement of Complex Shear and Young’s Modulus via DMA

The Complex Shear and Young’s Modulus are determined via DMA, using an Anton
Paar Modular Compact Rheometer (MCR) 702, with an additional linear drive and a solid
rectangular fixture (SRF) for the specimen. Due to space limitations in the test chamber, one
injection molded sample is cut in half to obtain two samples. Both samples were tested and
showed similar results. For ease of direct data processing, the test data from one specimen
measuring 32.156 mm x 10.03 mm x 1.07 mm is used for further data processing. The test
is performed for frequencies between 0.1 and 10 Hz and for discrete temperatures between
25 °C and 75 °C, with 5 °C steps. The DMA is performed to investigate the relationship
between temperature and moduli, with regard to the frequency to apply time-temperature
superposition as described in Section 2.4. The rheometer and test specimen are shown in
Figure 3.

Figure 3. Rheometer Anton Paar MCR 702 with test specimen.
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2.4. Master Curve

Various experimental methods, such as DMA [33] or relaxation experiments [42], can
be used to construct a master curve for a viscoelastic material. DMA is an efficient method
for identifying the properties within the linear viscoelastic region of the material [47]. This
type of experiment requires testing at multiple frequencies and temperatures. The tensile
storage modulus is measured over a frequency range of 0.1 to 10 Hz and a temperature
range of 25 °C to 75 °C, using the Rheometer Anton Paar MCR 702 in the DMA mode. By
applying the time—temperature superposition (T'TS) principle, these storage moduli are
adjusted in the frequency domain, allowing for the development of the master curve. In
this process, the fitted frequency is the experimental frequency multiplied by a shift factor
a, as expressed in Equation (1). Typically, the shift factor a is expressed in logarithmic form
(e.g., a = 10 is expressed as log10(a) = 1). The relationship between the shifted frequency
fshift and the experimental frequency f is defined in Equation (1) as follows:

foniee = f - a )

where f and a represent the frequency and the shift factor, respectively. To create a con-
tinuous curve that approximates the behavior of the material, f¢;;; must be determined
by aligning the data points. Constructing the master curve involves manual fitting of the
data or using optimization methods, as published by Lennon et al. [48]. The developed
algorithm is also published as an open source Github repository under the GPL-3.0 license
and is available as a pip installation (pip install mastercurves) for direct implementation in
custom software projects [49]. We used this routine to implement the mastercurves 0.2.3
into our code and to generate the master curve from our measurement data, which showed
good results, as described in Section 3.3. The reference temperature T,s was set to 50 °C.
The TTS principle is expressed by Equation (2) for the storage and loss modulus:

E/(f/ T) = E/(fshift/ Tref)

2
E" (f, T) =E" (fshift/ Tref) ( )

The TTS generates shift factors a(T) that allow frequency adjustments to match other
experimental temperatures. For simulations, interpolation between experimental tempera-
tures is required, and the shift factors can be approximated using the WLF equation. The
following section details the fitting of the WLF equation to these shift factors.

2.5. William-Landel-Ferry Regression

The Williams-Landel-Ferry equation approximates the shift factors to describe the
temperature-dependent relaxation behavior in polymers. This approach, along with alter-
natives such as the Arrhenius equation, relies on selecting parameters that best match the
experimental shift factors a from the TTS. The WLF equation is particularly effective when
the reference temperature T, is the glass transition temperature of the polymer, and the
constants C; and C; are tailored to the specific polymer [50].

Typically, the WLF equation is expressed in terms of the logarithm of the shift factor,

as shown in Equation (3):
_Cl (T — Tref)

B = G (T T) ¥

Data measured at temperatures below T, result in a positive log(a), shifting to higher
frequencies, characterizing the short-term behavior of the material in colder conditions.
Conversely, data above T, result in a negative log(a) that shifts to lower frequencies,
representing the long-term behavior of the material. This behavior implies that polymers
relax faster at temperatures above T ¢ and slower at temperatures below T.¢, which is well
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in line with the typical behavior of thermoplastic polymers. Williams et al. [50] emphasize
that the WLF equation is most accurate for amorphous polymers above their glass transition
temperature. This means explicitly that the equation does not account for two effects:

o  Crystallization at the crystallization temperature T:
Neglecting crystallization can lead to an underestimation of the long-term modulus
as the material crystallizes, since crystallization increases the long-term modulus.
Therefore, to accurately simulate SMPs, it is important to stay below the onset of
crystallization as determined by DSC experiments.

e  Limit for relaxation times below Ty:
Omitting this aspect leads to an overestimation of the relaxation times 13, suggesting
that the material would relax and creep faster under experimental conditions.

To calculate the WLF parameters, the shift factors derived from the master curve
constitution are read into a Python data frame. Equation (3) is defined as a function of
its parameters. A curve fit is performed using the Scipy function curve_fit. Finally, the
calculated WLF parameters are saved and a plot of the WLF equation and shift factors is
drawn for verification. The initial parameters are chosen in accordance with Williams et al.
(Cq1 =8.86, Cp =101.6) [50]. The reference temperature is set to 50 °C, in accordance with
the DMA results described in Section 3.2.

2.6. Prony Series Parameter Determination

The Prony series represents the viscoelastic behavior of materials in a way that parallels
the relaxation characteristics of a GMM (see Figure 1). The relaxation modulus equation
follows a similar form, as shown in Equation (4). As mentioned above, the Prony series
parameters can be obtained from various test methods, including stress relaxation tests,
creep tests, or DMA. The relaxation modulus E(f) is represented as a sum of terms that
describe the long-term modulus E. and a series of exponential decay components. Each
term in the series is characterized by a modulus E; and a relaxation time 7, where k
indicates each element in the series:

n
E(t)=Ew+ y_ Ege /% (4)
k=1

Unlike Equation (4), DMA data represent the viscoelastic response in the frequency
domain. The link between the time and frequency domains is provided by the Fourier
transformation, and applying the Fourier transformation to Equation (4) results in Equation
(5), with w being the angular frequency [47].

22

n w n wT
E*(w)=FEw+ Y E k k 5
( ) k:Zl k73— 5 » 1+w 2 k:Zl 1+(,U22 ()

The real part of the complex modulus R(E*) is called the storage modulus E’(w), and
the imaginary part S(E*) is called the loss modulus E”(w). This leads to Equations (6)
and (7).

: z Wty
E'(w) = Eeo Ep—— Tk 6
(w) + k;l k1 T (,UZT% (6)

n 212
E'(w) = Ea+ Y Bk @)

2.2
= 1+ wtg

The parameter fitting is performed using the curve_fit function from the Scipy 1.14.1
Python package. The script Prony_FrequencyDomain.py reads the frequencies as well as
storage and loss modulus from the master curve and optimizes Eo, as well as a defined
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number of Ei and 1y pairs. In this study, the Prony parameters are fitted only to the
storage modulus data and not to the loss modulus data. While technically possible, we
have observed convergence problems with the Python curve_fit function when fitting
parameters to both parts of the complex modulus equation at the same time. The derived
parameters are then implemented into the loss modulus equation. While this allows for
a more accurate fit of the storage modulus data, it may result in a less accurate fit for the
loss modulus. Because the loss modulus accounts for energy dissipation and relaxation
behavior during recovery, an underestimate results in a less viscous drag. This results
in a faster predicted recovery and the simulation fails to reproduce the gradual energy
dissipation observed in the experimental data. Overestimation can have the opposite effect.

2.7. Rheometer Shape-Memory Test

A shape memory test is performed to verify the simulation based on the material
model derived from the Prony series curve fitting. The test is performed with an Anton Paar
MCR 702 rheometer with a linear drive, as shown in Figure 3. Two samples of PA6 Durethan
550BC with a nominal size of 10 mm X 2 mm X 1 mm (measured: 10.39 mm X 2.2 mm X
1.07 mm; 10.91 mm x 2.4 mm x 1.10 mm) are used. Possible errors in the shape-memory
test are as follows: instrumental errors, such as sample, clamp, or fixture misalignment;
sample preparation errors, such as inconsistent geometry or defects and internal stresses;
environmental errors, such as humidity or temperature variations; operational errors,
such as incorrect frequencies or strain amplitudes. The specimens are produced with
precision-milled injection molds and measured multiple times with calibrated measuring
tools. The specimens are dried and annealed to relieve internal stresses and eliminate
moisture. The controlled environment of the test laboratory minimizes the environmental
errors. The shape-memory test setup is developed iteratively. This eliminates potential
errors step by step and ensures a valid test procedure. The test is performed in a calibrated,
high-precision Anton Paar MCR 702 rheometer, which allows for highly reproducible tests
based on the same test specification. Finally, two samples are tested and evaluated based
on the iteratively developed test specification. The derived results allow for a qualitative
statement, but do not represent a large statistical distribution. The samples are mounted
in the SRF of the rheometer. The starting condition for the test procedure is defined as
no load on the specimen and a temperature of 80 °C. The test sequence is defined in
five steps: (1) stretching the specimen to 4.3% strain at a constant temperature (80 °C);
(2) Cooling the specimen to 20 °C at constant strain (4.3%); (3) releasing the force to ON
at constant temperature (20 °C); (4) heating the specimen to 80 °C at constant force (ON);
(5) holding the specimen at constant temperature (80 °C) and at constant force (ON). Since
the first two steps are position-controlled, while steps four and five are force-controlled,
it is necessary to ensure a safe transition between these modes. Therefore, step three is
introduced. Step three is a position-controlled transition step where the elastic strain is
released under a defined linear motion until a force condition (0.01 N) is met. The tensile
force of 0.01 N is maintained to ensure correct data collection by the rheometer. Figure 4
shows a schematic illustration of the shape memory test procedure with the three control
variables: temperature (T), force (F), and strain (e).
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Figure 4. Schematic illustration of the shape memory test procedure with the process parameters
temperature (T), force (F), and strain (e) over time (t).

3. Results

All measurements are carried out in the thermo-analytical laboratory of the DLR—
Institute of Lightweight Systems in Braunschweig, Germany. The results of the previously
introduced methods are presented in the subsequent subchapters. Furthermore, the imple-
mentation in ANSYS Mechanical is described in Section 3.4.

3.1. Results of the DSC

The DSC of the PA6 shows standard thermal properties for this type of semi-crystalline
polymer, including characteristic Tg and Tr, values and a moderate level of crystallinity,
consistent with the typical properties. Figure 5 shows the graph of the measurement. In
the first cycle, the glass transition onset is observed at 44.15 °C and an endpoint at 74.01
°C. No clear ISO midpoint could be found. In the second cycle, the onset is observed at
48.49 °C, the ISO midpoint at 55.82 °C, and the endpoint at 75.88 °C. This shift between
cycles suggests possible relaxation effects or slight reorganization of the polymer chains
as the material heats up. Since the PA6 is hygroscopic, the absorbed water also affects the
values measured during the first heating cycle. This is typical behavior and the reason for
carrying out two thermal cycles. Therefore, only the data measured after the first heating
will be examined further. The melting peak in the second cycle is 222.51 C. During the
cooling phase, a reverse peak at 181.36 °C marks the crystallization process. The degree of
crystallinity calculated from the enthalpy values provides crystallinity values of 19.38% and
18.64%. This is within the expected range for PA6. The results of the DSC are summarized
in Table 3.

Table 3. Summarized results of the DSC.

Measurand Mean Value Standard Deviation
Tg 54.23 °C 1.45°C
Tm 222.17 °C 0.43°C
T, 182.52 °C 2.05°C

Crystallinity 20.07% 1.10%
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Figure 5. Results of the DSC measurement of PA6.

3.2. Results of Complex Tensile and Shear Modulus Test via DMA

Complex tensile and shear modulus are measured using the Anton Paar MCR 702
rheometer with linear drive as described in Section 2.3. Figure 6 shows the results for tensile
storage and loss modulus, as these values are further used to apply TTS and evaluate the
Prony parameters. The storage modulus is above the loss modulus in the temperature
range. This means that the material behaves more elastic than viscos, which is also referred
to as a viscoelastic solid. This is the expected behavior in this temperature range. The
storage modulus represents the elastic behavior of the material, and the energy stored
during deformation. At lower temperatures of up to 40 °C, the storage modulus is at about
1800 MPa. In this temperature range, the material is in its glassy state. From 40 °C to 70 °C
the storage modulus decreases to about 300 MPa. This reflects the reduction in elasticity of
the material across the glass transition. Above 70 °C the glass transition is complete, and
the material is in its rubbery state. The loss modulus measures the viscous behavior of the
material and represents the energy dissipation during deformation. At temperatures below
30 °C, the loss modulus is at approximately 100 MPa, indicating low energy dissipation
and elastic material behavior. Between 40 °C and 50 °C the loss modulus shows a peak,

indicating glass transition and high energy dissipation. Above 60 °C, the loss modulus
drops below 100 MPa, as the material softens further.
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Figure 6. Complex tensile modulus depending on temperature from DMA measurements.

3.3. Parameter Identification

The parameter identification for the Prony series and the WLF equation is performed
according to the method described in Sections 2.5-2.7. First, the complex modulus data
derived by DMA is shifted to a master curve using the TTS principle with the Master-
curve.py vl Python script. The DMA data are shown in Figure 7a. The storage modulus
is plotted against frequency at temperatures ranging from 25 °C to 75 °C. As discussed
in Section 3.2, higher temperatures correspond to lower storage modulus. Figure 7a also
shows that lower frequencies correspond to lower storage moduli, while higher frequencies
correspond to higher storage moduli. At low frequencies, the material has more time to
respond to deformation. Viscoelastic relaxation results in lower stiffness or elastic modulus.
At high frequencies, the sample undergoes deformation in a short time. Therefore, the
material has less time to relax, resulting in stiffer material behavior. This effect is also mea-
surable at higher temperatures, where the material softens and allows for higher molecular
mobility. In this way we observe a frequency dependent stiffening effect. Running the
Mastercurve.py vl script on these data results in Figure 7b. Data from the temperatures
above the reference temperature are shifted left, to the lower frequencies, while data from
lower temperatures are shifted right, to the higher frequencies. The result is a smooth
master curve with no outliers. The narrow confidence interval band in Figure 7a and the
resulting smooth master curve indicate a high quality of the input data and a good appli-
cability of the time-temperature superposition principle. It also indicates a well-defined
glass transition behavior. At low frequencies, between 10 x 1073 and 10 x 10~! Hz, the
storage modulus is low, indicating the rubbery state of our material. Between 10 x 10~!
and 10 Hz Young’s modulus increases sharply, indicating the glassy transition zone, where
the material changes from a viscous to an elastic state. At higher frequencies, the material
behaves as a stiff elastic solid. The calculated shift parameters a are shown in Table 4.

Table 4. Shift factors a for the tested frequencies.

T/°C

25

30

35 40 45 50 55 60 65 70 75

logy(a)

5.270

4.145

2.965 1.879 0.889 0 —-0.828 —-1.596 —2304 —-2910 —3.456
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Figure 7. Storage Modulus vs. Frequency: (a) frequency sweeps at different temperatures (25 ...
75 °C); (b) master curve derived from (a) by Python script.

The shift parameters for each frequency sweep at the discrete temperatures are then
used to calculate a curve fit for Equation (3) and determine the WLF parameters. To do
this, the curve_fit function from the Scipy 1.14.1 Python package is used in the published
WLE_fit.py v1 script. Figure 8 shows the calculated shift factors and the WLF fit over the
temperature. Table 5 shows the fitted WLF parameters. The fitted function agrees well with
the data points. Since the WLF equation is explicitly valid for the glass transition zone, we

observe a higher deviation at the temperatures at the ends of the scale. It is important to
note that on the logarithmic y-axis, the deviation may appear smaller than it actually is for
higher shift factors.
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Figure 8. Plot of the WLF fit and the shift factors.
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Table 5. WLF parameters and reference temperature.

Parameter Value
Tref 50 °C
C1 48.134
Cy 123.139

The final step is to fit the complex modulus master curve using the Prony series from
Equation (5). This is again performed using the curve_fit function from the Scipy 1.14.1
Python package. The script Prony_FrequencyDomain.py v1 reads the frequencies fg,;s, as
well as the storage and loss modulus from the master curve, and optimizes E., as well
as a defined number of Ey and Ty pairs. In this study, a number of ten pairs (k = 10) is
chosen. The fitted parameters are shown in Table 6. Since ANSYS 2023R2 and ABAQUS
2024 require relative moduli ey as input data for the Prony series parameters, these values
are calculated as described by Formulas 8 and 9. The master curve for the storage and loss
modulus and its approximation by the Prony series, using the fitted parameters, are shown
in Figure 9. The Prony series fit closely follows the experimental storage modulus data
over the entire frequency range. This indicates that the Prony fit accurately captures the
elastic response of the material at all frequencies. This means that the elastic behavior is
well approximated on both short and long-time scales. It indicates an accurate prediction of
the stiffness ratio. In the recovery phase, an accurate storage modulus fit indicates a good
prediction of the shape recovery ratio. The Prony fit follows the experimental loss modulus
master curve reasonably well between 10 x 1073 and 10 Hz, underestimating the values by
a small margin. Outside these values, the deviation increases significantly. Underestimating
the loss modulus can lead to shorter relaxation times because it affects the rate of energy
dissipation and relaxation during the recovery phase. As a result, the simulation may
underpredict viscous drag and energy dissipation, resulting in a faster recovery.

n
Ep = Ee + Z Ex 8)
k=1
ex = Ex/Eo ©)
Table 6. Prony series parameters.

k Ek (5% Tk
0 1835.32 - --
1 142.31 0.0775392 3.5724 x 1072
2 128.83 0.07019229 2.8319 x 10!
3 64.89 0.03535694 4.5035 x 103
4 106.54 0.05804762 1.6540 x 10~°
5 196.74 0.107198 5.0093 x 10~*
6 233.04 0.12697283 5.2998 x 102
7 89.67 0.04885859 2.9857 x 102
8 200.00 0.10897322 3.9825 x 107!
9 242.63 0.13220081 5.8732 x 103
10 166.10 0.09050048 3.0959
o0 264.58 -- -
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Figure 9. Master curves of the storage portion (upper plot) and loss portion (lower plot) of the
complex tensile modulus and fitted curves using Python Scipy curve_fit.

3.4. Results of the Rheometer Shape-Memory Test

The shape memory test is performed using the Anton Paar MCR 702 rheometer with
linear drive, as described in 2.7. Figure 10 shows the maximum deformation of the sample
over time. The diagram shows the expected behavior. The first sample is stretched to
4.3% strain. During cooling, the strain decreases to 4.1%. This can be explained by the
negative thermal expansion of the specimen fixture and the increasing internal stress within
the specimen, causing the deformation of the fixture. The elastic strain is then released,
reducing the strain to 3.2%, resulting in a shape fixity ratio of 74.4%. A small increase in the
strain can be observed during the heating due to thermal expansion. This is followed by a
reduction in the strain to 0.9%, after heating above the glass transition or shape memory
activation temperature. The sample shows a shape memory effect, but retains some plastic
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deformation, resulting in a shape recovery ratio of 79.1%. Sample two is stretched to a
4.66% strain. During cooling, a small loss in the strain is observable again. After a force
release a shape fixity ratio of 79.7% is measured. Activated by heating, the sample shows a
shape memory effect, but retains some plastic deformation, resulting in a shape recovery

ratio of 76.6%.
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Figure 10. Results of the rheometer shape-memory test: maximum deformation and temperature over
time for Test 1. Programming: t = 0-1100 s, Force Release: t = 1100-1150 s, Recovery: t = 1150-2600 s.

3.5. Implementation in ANSYS Mechanical

As mentioned earlier, the implementation follows the procedure established by Azzawi
et al. [35]. With their publication, an easy-to-follow guideline for ABAQUS 2024 is already
available. Since there is no guideline for ANSYS 2023R2 in the literature, this study
transfers the mentioned procedure to the static structural analysis in Ansys Mechanical
2023R2. For a static structural analysis, the governing equation is the balance of linear
momentum, simplified for a static case. Since thermal strains are included, the governing
equation considers the changes in stress due to the temperature-dependent strain. For
the constitutive relation, the Prony series and WLF parameters can be entered in the
technical data under “Viscoelastic”. The Prony series represents the time- and temperature-
dependent stress relaxation, while the WLF parameters allow for an adjustment of the
material behavior based on temperature changes. In addition, Poisson’s ratio, coefficient of
thermal expansion, and Young’s modulus for isotropic elasticity and thermal expansion
are added from the material data sheet [46]. Next, the geometry of the shape memory test
specimen is modeled and added as geometry. The model is then meshed using SOLID186
elements. These 20-node brick elements offer quadratic shape functions, providing a high
accuracy in nonlinear and thermal analyses. Each element is a cube of 0.2 mm side length.
This results in a total of 2680 elements and 14,238 nodes. Each node in a SOLID186 element
has three translational degrees of freedom. A temperature boundary condition, a fixed
support (one face of the long side of the specimen), and a displacement boundary condition
(opposite face of the long side of the specimen) are introduced. The analysis is set up in six
steps. The step times are derived from the test data of the shape memory test to account
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for the deviation from the test input times in the heating and cooling phases due to the
heat capacity of the oven. The calculation is set to nonlinear, with thermal strain effects
enabled. The program control Newton-Raphson method is used. The large deflection
and quasi-isotropic solution settings are also turned on. All other parameters are listed in
Table 7. The calculation follows the experimental scheme shown in Figure 2.

Table 7. Time steps and parameters for the ANSYS Mechanical simulation.

Time Step 0 1 2 3 4 5 6
Description Initial Heating Cooling  Releasing  Holding Heating Holding
End time/s 0 152 1108 1147 1247 2026 2577
Sub-steps 0 10 10 10 10 50 10
Thermal condition/°C 80 80 20 20 20 80 20
Displacement/mm 0 0.43 0.43 - -— - -—
The simulation result is plotted with the test data and shown in Figure 11. During the
loading phase, we observe a very good correlation between the test data and the simulation.
During cooling, we see an increasing deviation between simulation and test data. The
deformation in the experimental data decreases, possibly due to thermal expansion in
the specimen holder, as already discussed in Section 3.4. When the clamping force is
released, the simulation continues to closely match the test data. This is consistent with
an accurate prediction of the deformation ratio. During the recovery phase, we see a
noticeable deviation between the simulation and test data. The simulation predicts a
faster recovery, followed by a gradual increase in deformation. Interestingly, the gradient
of this last increase mimics the gradient of the increase in deformation just before the
recovery under increasing temperature. This suggests a thermal expansion process. The
experimental data show a slower and more steady decrease in deformation during the
recovery phase. However, the recovery process starts at the same time in the test and the
simulation, without a clear thermal expansion step. Finally, both the simulation and test
data agree on the residual deformation after shape recovery. The key values of the shape
memory cycles are summarized in Table 8.
0.6
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£04 ! ;\
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Figure 11. Comparison of the simulation and test data deformation over time. Programming:
t =0-1100 s. Force Release: t = 1100-1150 s. Recovery: t = 1150-2600 s.
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Table 8. Comparison of key values from test data and simulation.

Test 1/Simulation 1 Test 2/Simulation 2 Mean
Shape fixity ratio 76.9%/75.7% 79.7% /77 4% 78.3%/76.6%
Deviation 1.2% 2.3% 1.7%
Shape recovery ratio 77.2%/80.9% 76.6%/81.0% 76.9%/80.9%
Deviation 3.7% 4.4% 4.0%

4. Discussion

This study aims to provide guidelines from the material coupon tests, through their
evaluation, to the implementation of the material model in FEA software for SMP, using
fully open-source and transparent methods. The methods used are described in Section 2.
All developed Python scripts used for parameter identification and curve fitting for the
Master curve, WLF equation, and Prony series are open-source and accessible from Gitlab.
The link can be found in the Supplementary Materials. The DSC results are within the
expected range and are used to define the temperature range for the DMA test to measure
the complex tensile modulus. Storage and loss moduli match well with the reviewed
literature. Notably, the Ty measured by the DSC differs from the Ty measured by the DMA.
This is why 55.8 °C was measured as Tg in Section 3.2, while 50 °C is used as the reference for
setting up the master curve and the midpoint of the shape memory test. This discrepancy is
expected due to the different measurement principles between the DSC and the DMA. The
DSC measures the heat flow through the sample and Ty is associated with the step change
in heat capacity. This value depends on the heating rate. Standard ISO or ASTM DSC
methods, such as the one used in this study, recommend heating and cooling rates of 10 K
per minute. This value is higher than the rates used in shape memory testing or in a DMA.
The slower heating rate allows more time for molecular relaxation, resulting in a lower
Tg. However, Ty measured by DMA is frequency dependent. Higher frequencies result
in a higher Ty, while at lower frequencies the material has more time to exhibit relaxation
behavior in response to the applied stress, resulting in a lower measured Tg. The storage
and loss modulus data obtained are within the expected range and show the expected
behavior over temperature (Figure 6) and frequency (Figure 7a). Furthermore, the master
curve constructed in Figure 7b is a smooth curve, indicating high-quality measurement
data and a proper working shift in the data series using the Mastercurves 0.2.3 Python
package in mastercurve.py v1. The curve fit for the WLF equation shows an agreement
with the applied shift factors, as shown in Figure 8. This indicates that the WLF parameters
are correct and that the WLE_fit.py v1 script is working properly. As shown in Figure 9, the
Prony series curve fit agrees with the storage modulus master curve. For the loss modulus
master curve, the curve fit shows very good coherence around the glass transition, with
increasing deviation at higher and lower frequencies. Since the Prony series is used to
model the behavior of the material around its glass transition, this can be accepted. This
validates the derived Prony parameters and the Prony_FrequencyDomain.py v1 script.
The shape memory test shows good results, as shown in Figure 10. However, the elastic
recovery after releasing the displacement is quite high. Therefore, the PA6 used shows a
shape fixity rate of only 74%, which is very low, compared to published shape memory
polymer formulations that allow a shape fixity rate of over 99% [51]. Furthermore, the
measured shape recovery rate is 79%. This is also low compared to other shape memory
polymers [51]. However, PA6 was not primarily chosen for its shape memory capabilities,
but for its properties for disposable mandrels in composite manufacturing. Therefore,
shape memory capabilities were important, but the exact performance was of secondary
interest in the material selection. This does not limit the applicability of the methods
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described in this work to other shape memory polymers. Another very important issue
is the degradation of the shape memory properties of the thermoplastic polymers after
recycling. Since this study aims to provide a material-to-solution framework, from material
testing to the simulation of shape memory behavior, material degradation is not addressed
in this study. In order to investigate shape fixation and shape recovery for multiple recycling
steps, the provided workflow can be easily used to ensure reproducibility in each described
part of the workflow. Follow-up research will provide deeper insight into this topic, with
respect to the material investigated in this study. The DSC, DMA, and the described shape
memory test can be easily performed with other polymers by changing the respective test
parameters to the values valid for the chosen polymer. How to find these parameters is
described in the test standards or in the methods section of this paper. All Python scripts
used in this work are applicable to test data derived from other polymer materials, using the
described methods. A description of how to adapt these scripts to the respective parameters
is provided in the header of the scripts.

The DSC and DMA are widely used thermal and mechanical analysis techniques.
Major errors in a DSC include the following: instrument errors, such as inaccurate cali-
bration of temperature and heat flow; sample preparation errors, such as contamination,
mismeasured mass, or pan contact errors; environmental errors, such as ambient temper-
ature fluctuations or shocks; and operational errors, such as incorrect test programs or
misinterpretation of results. To address these potential errors, we used a calibrated Mettler
DSC 2 TOPEM to check the samples for contamination and the pans for buckling or dents
that indicate poor contact. All measurements were carried out in the controlled environ-
ment of the thermal analysis laboratory at the DLR Institute of Lightweight Structures in
Braunschweig, Germany. Operating errors have been addressed by following the DSC
standard DIN EN ISO 11357 [52]. All results were derived and evaluated separately by the
authors to avoid misinterpretation. The main errors in a DMA are as follows: instrumental
errors, such as sample, clamp, or fixture misalignment; sample preparation errors, such as
inconsistent geometry or defects and internal stresses; environmental errors, such as humid-
ity or temperature variations; and operational errors, such as incorrect frequencies or strain
amplitudes. Our specimens were produced with precision-milled injection molds and
measured multiple times with calibrated measuring tools. All specimens were dried and
annealed to relieve internal stresses and eliminate moisture. The controlled environment of
the test lab minimizes environmental errors. The DMA test setup was iterative to achieve
the correct frequency and strain amplitude for the material used. The shape memory test
setup was developed iteratively. This allowed us to eliminate potential errors step-by-step
and ensure a valid test procedure. The DMA and shape memory tests were performed in a
calibrated, high-precision Anton Paar MCR 702 rheometer. This ensures full reproducibility
of our experiments with the parameters discussed in this study. Implementing viscoelastic
material properties and setting up the shape memory cycle in ANSYS 2023R2 Mechanical
is straightforward. The simulation correlates with the test data until the displacement
is released, as shown in Figure 11. A smaller discrepancy during the first cooling phase
can be explained by the increasing stress due to the negative thermal expansion of the
specimen and the fixture. After the release, the simulated thermal expansion is higher than
the measured one. This can be explained by a possible deviation between the real thermal
expansion coefficient of the sample and the one derived from the data sheet and used for
the simulation. However, the activation temperature for the shape memory effect is the
same in simulation and test, since both data series start the shape recovery at the same time.
The simulation then shows a much higher recovery rate than the test data. This could be
due to the small tensile force applied to the specimen by the fixture during shape recovery,
and the delay due to the thermal capacity of the specimen and the oven. A more reasonable
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explanation for the mismatch during the recovery phase is the underestimation of the loss
modulus by the Prony series, as shown in Figure 9. Since the loss modulus accounts for
energy dissipation and relaxation behavior during recovery, an underestimate results in
a less viscous resistance. This results in a faster predicted recovery and the simulation
fails to reproduce the gradual energy dissipation observed in the experimental data. To
simplify the curve fitting process and avoid convergence problems, the Prony series in the
Python script used only fits the parameters to the loss modulus test data, while simply
applying these parameters to the loss modulus data. We modified the code provided in
this study to fit the parameters to both experimental data sets, memory, and loss modulus,
at the same time, but continued to run into convergence problems and less accurate curve
fits than in the proposed way. More advanced curve fitting packages such as the standard
curve_fit function in Python Scipy 1.14.1 package could potentially overcome these prob-
lems. However, both the simulation and test reach the recovered shape at the same time
with the same shape recovery rate. This indicates that the applied methods are capable of
accurately predicting the shape fixation ratio, the shape recovery ratio, and the start and
end points of the recovery process. These are critical considerations in the accurate design
of single use disposable shape memory polymer mandrels for hollow composite profile
manufacturing. In this scenario, the actual behavior of the mandrel between the temporary
and recovered shape is less important than the accurate prediction of these states and the
time for shape recovery. Overall, the methods described in this study meet the require-
ments of the overarching scenario. The methods are transferable to other polymers and
provide an open-source guide from the material testing and parameter identification to the
implementation in proprietary finite element software such as ANSYS 2023R2 or ABAQUS
2024. The following implementation guidelines should help to reproduce our results:

1.  FEA Software Setup
e ANSYS Mechanical 2023.2

e Package: Static Structural
e  Governing equation: Linear momentum balance for static case

2. Material Data Setup

e  Material data sheet: Poisson’s Ratio, Elastic Modulus, Coefficient of thermal
expansion
e  DMA test data: Prony parameters, WLF parameters

3. Geometry and Meshing

o  Test specimen modeled in 3D
e  Mesh-elements: SOLID186 (20-node brick, quadratic shape function)
e  Mesh-size: 0.2 mm

4. Boundary conditions

e  Temperature
e  Fixed support (one face)
e Displacement (opposite face)

5. Analysis setup

e  Six steps (step total times derived from test data)

e  Nonlinear analysis (Newton-Raphson program controlled)
e Large deflection

e  Quasi-isotropic solution

e  Refer to Table 7 for detailed parameters

Figure 12 shows a schematic summary of the “material-to-solution” approach devel-
oped in this study.
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Figure 12. Schematic summary of the “material-to-solution” approach derived in this work.

When comparing the results of our study with the related literature, it is important to
understand the differences in methodology. Yu et al. [42] and Azzawi et al. [35] used stress
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relaxation tests to derive their master curve and calculate the Prony parameters. Frequency
sweeps, as proposed in this paper, were used by Diani et al. [33]. Frequency sweeps are a
more practical and time-efficient method for constructing master curves when a dynamic
mechanical analyzer is available. The properties of SMPs with moderate to fast relaxation
times can be more accurately captured. The derived data are in the frequency domain, and
the Prony fit is more complex as storage and loss modulus curves must be fitted for best
results. Stress relaxation tests are better suited for slow relaxation time systems. However,
the experimental setup is less complex, and the derived data are in the time domain, where
itis easier to fit the Prony series to a single curve. The study by Azzawi et al. [35] shows very
good agreement between their master curve from relaxation tests and the Prony fit in the
time domain. It is noteworthy that only five Prony terms were used to derive their material
model. They study the shape memory effect of a bent beam. The simulation accurately
predicts the shape fixity ratio, but shows some discrepancy in the shape recovery step.
While our study overestimates the shape recovery gradient, Azzawi et al. underestimate
it. The shape recovery ratio is not evaluated. Yu et al. [42] used twelve Prony terms to
fit the master curve from the stress relaxation test. However, their fitted function shows
alternating discrepancies with the experimental data over the entire time scale. Their model
overestimates the shape fixity and shape recovery ratios, as well as the shape recovery time.
Diani et al. [33] also used twelve terms to calculate their Prony fit from the DMA test data
in the frequency domain. Instead of plotting storage and loss modulus plots, they plot
storage modulus and tan(8) plots. However, their Prony fit shows very good agreement
with the storage modulus experimental data, while the fitted curve underestimates the
peak of the tan(), which correlates with an underestimation of the loss modulus, resulting
in a higher recovery gradient and faster recovery times in the simulation, compared to
their experimental data. All of the discussed related literature shows the same drawbacks
as our study. An underestimation of the storage modulus leading to a higher gradient in
shape recovery. As discussed in the introduction, the Maxwell-Wiechert or Generalized
Maxwell model is one of the simplest possible approaches to model the behavior of shape
memory polymers. However, the prediction of the shape fixity ratio, the shape recovery
ratio, and the start and end points of recovery in temperature and time can be simulated to
a sufficient degree. For use in cases where the exact shape during the recovery phase is less
important, this approach is a simple and efficient way to predict the overall behavior of
shape memory polymers.

As described in the introduction, the overall research objective was to facilitate blow-
molded thermoplastic shape-memory mandrels for the high-rate production of hollow
fiber composite profiles. As our previous research has shown, PA6 and PET are promising
materials for such mandrels [30]. The material-to-solution approach proposed in this study
makes it possible to predict the key properties, shape fixation ratio, and shape recovery
ratio of shape memory polymers in a straightforward, accessible, and reproducible manner.
Future research will focus on the characterization of other thermoplastic materials, particu-
larly PET, the transfer of the derived simulation approach from the coupon level to mandrel
geometries, and the fabrication of blow-molded mandrels for simulation verification at
this level. Subsequent research will focus on the manufacturing process of the hollow fiber
profiles, in particular the winding or fiber placement process on blow-molded mandrels, the
demolding process, and quality assurance. The results achieved will help manufacturers to
quickly and economically design shape-memory thermoplastic mandrels and the tooling
for their production. The necessary software tools, such as CAD, standard FEA programes,
and integrated development environments, are widely used in the industry and do not
require extensive additional programming of subroutines or the like. Subsequently, this will
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enable a flexible, high-rate production of hollow fiber composite profiles, such as pressure
vessels without liners, air intakes, or similar components.

5. Conclusions

The aim of this study was to provide the first guideline that spans from material
coupon testing, through evaluation, to the implementation of the material model in FEA
software for SMP using fully open source and transparent methods. PA6 was used as
the material, but all methods are easily transferable to any other polymer material. We
discussed the necessary thermo-rheological material tests, DSC and DMA, to derive the
data and identify the parameters needed to implement the rheological generalized Maxwell
model in proprietary FEA software such as ANSYS 2023R2 or ABAQUS 2024. For this
purpose, we developed open-source Python scripts to fit these parameters. The software
is available via the open repository Zenodo [45]. Furthermore, we introduced a tensile
shape memory test using a rheometer with a linear drive. The simulation and the test
agree in shape fixity ratio, shape recovery ratio, activation temperature, and recovery time.
However, the explicit behavior of the specimen between the activation and full recovery
showed some discrepancy between the simulation and test data. All the methods provided
in this study are easily transferable to other polymer materials.
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AFP Automated Fiber Placement

DLR German Aerospace Center

DMA  Dynamic Mechanical Analysis
DSC Differential Scanning Calorimetry
FEA Finite element analysis

FRP Fiber-reinforced Polymer

GMM  Generalized Maxwell Model
MCR Modular Compact Rheometer
RTM Resin Transfer Molding

SME Shape Memory Effect

SMP Shape Memory Polymer

SRF Solid Rectangular Fixture

TTS Time-Temperature Superposition
UAV Unmanned Aerial Vehicle

UMAT User-defined Mechanical Material Behavior
WLF Williams-Landel-Ferry
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