
Geosci. Model Dev., 18, 1001–1015, 2025
https://doi.org/10.5194/gmd-18-1001-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

ICON ComIn – the ICON Community Interface (ComIn version
0.1.0, with ICON version 2024.01-01)
Kerstin Hartung1,�, Bastian Kern1,�, Nils-Arne Dreier2, Jörn Geisbüsch3, Mahnoosh Haghighatnasab3,
Patrick Jöckel1, Astrid Kerkweg4, Wilton Jaciel Loch2, Florian Prill3, and Daniel Rieger3

1Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
2Deutsches Klimarechenzentrum, Hamburg, Germany
3Deutscher Wetterdienst, Offenbach, Germany
4Institute of Climate and Energy Systems (ICE), Troposphere (ICE-3), Forschungszentrum Jülich GmbH, Jülich, Germany
�These authors contributed equally to this work.

Correspondence: Kerstin Hartung (kerstin.hartung@dlr.de)

Received: 11 July 2024 – Discussion started: 20 September 2024
Revised: 3 December 2024 – Accepted: 4 December 2024 – Published: 24 February 2025

Abstract. In 2021, a team of developers from the
Deutscher Wetterdienst (DWD), the German Aerospace
Center (Deutsches Zentrum für Luft- und Raumfahrt,
DLR), the German Climate Computing Center (Deutsches
Klimarechenzentrum, DKRZ), and the Forschungszen-
trum Jülich (FZJ) started the ICOsahedral Non-hydrostatic
(ICON) model system Community Interface (ComIn)
project: ICON ComIn is a library with multi-language sup-
port for connecting third-party modules (“plugins”) to the
ICON model using the dynamic loader of the operating sys-
tem. ComIn is intended for a wide range of use cases, from
the integration of simple diagnostic Python scripts to chem-
istry model components into ICON. ICON ComIn is dis-
tributed with the ICON model code under an open-source li-
cense. Its application programming interface (API) provides
a low barrier for code extensions to ICON and reduces the
migration effort in response to new ICON releases. ComIn’s
main design principles are that it is lightweight, interoperable
(Fortran, C/C++, Python), and flexible, and required changes
in ICON are minimised. During the development of ComIn
the ease of getting started and the experience during plugin
development were guiding principles to provide a convenient
tool. The extensive documentation and a variety of test and
example plugins are results of this process.

This paper motivates the underlying design principles and
provides some concrete reasoning for their selection. Further,
current limitations are discussed and the vision for the future
is presented.

1 Introduction and motivation

The overarching motivation for the ICOsahedral Non-
hydrostatic (ICON) model system Community Interface
(ComIn) is to facilitate the extension of the ICON host
model by so-called plugins. Plugins can range from indi-
vidual externalised features, like diagnostics or output func-
tionalities, to full Earth system model (ESM) components,
as ocean, land, or chemistry models. ComIn supports sci-
entists in extending ICON for their scientific question and
provides access to the ICON data structures without affect-
ing ICON’s operational use for numerical weather prediction
(NWP). The interface aims to minimise the number of code
changes within the host model ICON when adding an ex-
tension and removes the need for users to modify the host
model directly. ComIn’s application programming interface
(API) is designed to provide a stable interface, which in
turn significantly reduces the maintenance effort required for
plugins when switching to new releases of the host model.
The inclusion of ComIn in the ICON repository and the co-
development of ComIn with ICON are relevant factors for
this. The ComIn API includes multi-language support for
Fortran, C/C++, and Python.

The newly developed interface offers advantages com-
pared to existing options for extending ICON, like adding
features to the host model via internal coupling, external cou-
pling, or integrated frameworks (IFs). These approaches typ-
ically require larger modifications of the host-model code,

Published by Copernicus Publications on behalf of the European Geosciences Union.



1002 K. Hartung et al.: ICON ComIn

and, in the case they are not integrated into the main repos-
itory, frequent updates are necessary while the host model
evolves. Furthermore, through dynamic loading it is possible
to change the plugins attached to ComIn without recompila-
tion of ICON, and for plugins written in Python no compi-
lation is required at all. It should be noted that ComIn also
supports external coupling through couplers and IFs as plu-
gins and thus brings together a variety of methods. As with
all existing extension methods for the ICON code, it is the
responsibility of the developer to ensure optimal resource us-
age of any extension, also with ComIn.

Before presenting use cases and more detailed insight into
ComIn, the background of ICON and the existing options to
extend ESM components are briefly presented.

1.1 The host model ICON

According to the ICON website (ICON Partnership, 2024a),
ICON (Zängl et al., 2015) is a “flexible, scalable, high-
performance modelling framework for weather, climate and
environmental prediction”. ICON is developed by the Ger-
man Climate Computing Center (Deutsches Klimarechen-
zentrum, DKRZ), the Deutscher Wetterdienst (DWD), the
Karlsruhe Institute of Technology (KIT), the Max Planck In-
stitute for Meteorology (MPI-M), and the Swiss Center for
Climate Systems Modeling (C2SM). The atmospheric com-
ponent of the model system is based on a non-hydrostatic
dynamical core for application over a broad range of tempo-
ral and spatial scales, i.e. for high-resolution large eddy sim-
ulations (LESs), NWP, and global general circulation model
(GCM)-based climate projections. The ICON website (ICON
Partnership, 2024a) also summarises ICON’s role as a model
that provides “actionable information for society”, “advances
our understanding of the Earth’s climate system” and “allows
the users to solve challenging problems of high societal rele-
vance”.

The spatial discretisation is realised on an unstructured
triangular C-grid, which is derived from a spherical icosa-
hedron by iterative refinement. Details on the discretisation
of the equations of motion on the triangular C-grid and the
numerical implementation of the non-hydrostatic dynami-
cal core are described by Zängl et al. (2015). ICON comes
with a set of parameterisations for physical processes, rang-
ing from radiation, orographic drag, turbulence, and cloud
and convection processes to parameterisations describing the
atmosphere–land interaction. A detailed overview is beyond
the scope of this article. More information on ICON’s dy-
namical core and physical parameterisations, including a
publication list, is available from the ICON model website
(ICON Partnership, 2024a). The ICON tutorial (Prill et al.,
2024) also provides useful information and includes a sec-
tion on ComIn. Some aspects relevant to this article are listed
below:

– The notation RnBk for the resolution of ICON’s icosa-
hedral grid denotes n root division steps of the icosa-
hedron and k bisection steps of the resulting triangles.
Details can be found in Sect. 2.1 of Zängl et al. (2015).

– In ICON’s dynamical core a two-time-level temporal
discretisation (the predictor–corrector scheme) is ap-
plied.

– Within the dynamical core, ICON uses a fast time step-
ping to solve the fully compressible non-hydrostatic
Navier–Stokes equations. Outside of the dynamical
core, physical processes are divided in fast physics and
slow physics with different temporal integration using
the basic time step 1t of the simulation, which is set
by the simulation configuration (Zängl et al., 2015, and
Prill et al., 2024, especially their Fig. 3.8). Fast-physics
processes are the saturation adjustment, the surface tur-
bulent transfer scheme, the land-surface scheme, the tur-
bulent vertical diffusion, and the microphysics. Each
fast-physics process is calculated every time step tfast =

1t , and the model state is updated sequentially by each
process (time-splitting or sequential-update split). Con-
vection, subgrid-scale cloud cover, radiation, and non-
orographic and orographic gravity wave drag are con-
sidered slow-physics processes. These are called less
frequently, with larger time steps tslow = C ·1t which
can be set for each of the slow-physics processes indi-
vidually as multiples of the basic time step (with con-
stant integer C) and are rounded up automatically if
tslow is not chosen as a multiple of the basic time step.
Tendencies from each of these processes are updated
with this lower frequency, they are kept constant be-
tween two subsequent calls of each process, and they are
applied to the model state independently of each other
(in parallel-split manner). Depending on the prognostic
variable, tendencies are applied either inside the dynam-
ical core (for the edge-normal velocity and the Exner
pressure) or as part of the tracer advection (for mass
fractions) but at each basic time step 1t . This approach
may lead to a slow-physics process being updated dur-
ing time step ti when the tendency based on time step
ti−1 was already applied earlier during the time step.

– For each message passing interface (MPI) process in
ICON, data are only available in the region attributed to
it as part of the parallel domain decomposition; i.e. only
the process-local part of a data field can be accessed.
This restriction enhances the scalability of ICON as
the communication necessary during a simulation is re-
duced.

– Within parameterisations (and in other parts of the code)
the access to grid data is structured in two nested loops.
The outer loop is often called block loop. This split-
ting of DO loops over grid elements is implemented for

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025



K. Hartung et al.: ICON ComIn 1003

reasons of cache efficiency and also allows code to be
optimised for execution on graphics processing units
(GPUs).

1.2 Common methods for extending an ESM model
component

It is important to understand the ComIn approach within
the context of already-existing methods for model exten-
sion. Therefore we briefly review existing ones, which all
have their validity and use cases based on their properties.
This overview is kept general in terms of the host model.
Specifics of ICON and the set-up with ComIn are discussed
in Sect. 1.3.

1. The simplest way of connecting codes of different com-
plexity, ranging from individual subroutines to compre-
hensive ESM components, is the internal coupling, in
which different components are part of the same pro-
gram unit and exchange data via the working memory
(i.e. utilising the same computational resources as the
host model). New features, added directly within the
code (red circle within the large blue circle represent-
ing the host model in Fig. 1a), need to follow the model
internal data structures, which can be accessed directly.
It is a very efficient way of interacting with an ESM
component, as data exchange can be done via working
memory (see red lines in Fig. 1a) and cache optimisa-
tion at the CPU core level is possible. Although this
approach requires the least additional infrastructure for
individual changes, it has a major disadvantage. Espe-
cially for ESM components with time-critical applica-
tions (e.g. numerical weather prediction and flood mod-
elling), code modifications need to fulfil stringent con-
straints on memory consumption and runtime. Modifi-
cations which are not fed back into the repository of the
host model require frequent updates of the host model
on the user side. The last two points are also true for the
other two methods described in this section (Fig. 1b and
c).

2. With external coupling and only considering online
coupling here (in contrast to exchanging information
offline between components via writing to and reading
from files), information is exchanged between different
program units (i.e. the program units can request and
use their own computational resources). This approach
is traditionally used for coupling ESM components of
different domains (like ocean, atmosphere, land, sea
ice), and originally external coupling was designed with
this application in mind. The aim of a coupler (i.e. soft-
ware to support external coupling) is to perform data
communication between the externally coupled soft-
ware components while requiring as few changes as
possible in the existing components and being able to
outsource the task of grid transformations for multiple

components. A coupler can connect ESM components
of different domains which are separately developed as
individual models (see also Fig. 1b). It also provides ad-
vantages when connecting ESM components acting on
different timescales. Additionally, couplers have well-
defined APIs and avoid namespace conflicts – i.e. they
even support coupling one ESM component with itself.
However, load balancing and debugging are typically
complicated, and most approaches are limited to the ex-
change of 2D model fields. When the set-up requires
a large number of model fields to be exchanged, this
method can create significant additional overhead com-
pared to sharing the information directly via working
memory. Furthermore, the data to be transferred depend
on the experiment set-up and other component(s) con-
nected to the coupler. Even if a coupler is integrated to
an ESM component, new coupling set-ups might require
updates in the data preparation in all connected compo-
nents.

Two examples of coupler libraries are OASIS3-MCT
(Craig et al., 2017) and YAC (Hanke et al., 2016). Both
are designed for the purpose of coupling ESM com-
ponents of different domains, and both are limited to
some extent to 2D data (YAC can transfer 3D data but
is limited to 2D interpolation). Other examples are the
CCSM Coupler Version 7 (National Center for Atmo-
spheric Research, 2024b), the MpCCI mesh-based par-
allel code coupling interface (Joppich and Kürschner,
2006), and former versions 3 and 4 of the already-
mentioned OASIS (Ocean Atmosphere Sea Ice Soil)
coupler (Valcke, 2013; Redler et al., 2010). A special
case is the Multi-Model-Driver (MMD; Kerkweg et al.,
2018) for hierarchical online nesting as part of the Mod-
ular Earth Submodel System (MESSy, namely of COS-
MO/MESSy into ECHAM/MESSy), which also sup-
ports exchange of 3D data, including grid transforma-
tions. Another overview of couplers has been published
by Valcke et al. (2012).

3. The third approach is the application of an integrated
framework (IF), visualised in Fig. 1c. IFs provide
generic data structures and methods (sometimes called
model infrastructure) for building comprehensive mod-
els out of individual (ESM) components, which be-
come interoperable through the utilisation of these data
structures and methods. The level of control is usu-
ally finer (e.g. individual parameterisations can be ad-
dressed) compared to the coupler approach (which acts
on the domain level; see Fig. 1b), thus providing more
flexibility. IFs offer well-defined APIs, which are inde-
pendent of any specific model component, a fact which,
however, also implies a drawback. Additional effort is
required to associate data structures of a host model (of-
ten called legacy models in the context of IFs) with the
data structures of the IF (dashed red box in Fig. 1c).

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025



1004 K. Hartung et al.: ICON ComIn

Still, the coding effort is minimised compared to di-
rect internal coupling, since the translation of the host-
model data structures to the host-model agnostic IF data
structures needs to be performed only once.

Several integrated frameworks have been developed and
are commonly used. Examples are the Earth System
Modelling Framework (ESMF; Earth System Model-
ing Framework, 2024), MESSy (MESSy Consortium,
2024), the Community Earth System Model (CESM;
National Center for Atmospheric Research, 2024c), the
Flexible Modelling System (FMS; Geophysical Fluid
Dynamics Laboratory, 2024), and the Common Com-
munity Physics Package (CCPP)-framework (National
Center for Atmospheric Research, 2024a; Heinzeller
et al., 2023).

1.3 A new tool for extensions to ICON: the community
interface

None of approaches 1 to 3 described in Sect. 1.2 and sum-
marised in Fig. 1 offers the desired flexibility to extend the
ICON model while providing access to the host model’s data
structures (i.e. similar to internal coupling) and introduc-
ing minimal changes to ICON. This flexibility in extending
ICON is beneficial or even required by applications such as

– simple diagnostics, which are computationally inexpen-
sive (compared to the ICON model);

– complex atmospheric chemistry, which requires a tight
coupling to the atmospheric physics, e.g. for tracer
transport (by large-scale advection, convection, and tur-
bulence), radiation, and cloud microphysics;

– land models with a tight coupling to the hydrological
cycle of the atmosphere.

All three approaches to extend the existing ICON model
are intrusive (1: due to direct internal coupling; 2: due to calls
to coupler routines and exchange of data; 3: due to calls to
IF routines and translation of data structures to the IF), even
though the coupler and IF approaches aim to minimise the
intrusion. Once an IF or coupler is integrated into ICON and
especially also the ICON repository, an additional intrusion
when connecting a new ESM component is reduced for any
further extensions (dashed red rectangles in Fig. 1b and c in-
dicate which steps only need to be performed once). As the
ICON consortium is a closed consortium, with gatekeeping
for quality control reasons, inclusion into the ICON repos-
itory is restricted (currently to the YAC coupler) to prevent
additional maintenance overhead. Regular updates of the ex-
tension in response to ICON developments are required in
any case, both in- and outside of the ICON repository. How-
ever, this process is simplified for extensions included in the
ICON repository as regular consistency checks are automat-
ically done and new contributions need to work alongside

of the extension. Updating the ICON version takes much
more time for extensions maintained outside of the reposi-
tory, and the likelihood of introducing errors is increased, as
small changes can lead to incompatibilities between ICON
and the other ESM components.

ComIn intends to fill this gap of extension methods which
are minimally intrusive and which cause low maintenance
overhead. It aims to further reduce the number of changes
within ICON when connecting plugins via the ICON-specific
interface. Update efforts on the plugin side in response to
new ICON versions can be considerably reduced with the
stable API provided by ComIn. Developments of plugins and
the host model are essentially disentangled from each other.
Even so, ComIn also requires changes in the ICON code in
response to newer versions of ICON. Thanks to the inclu-
sion in the ICON repository and the co-development with
ICON, the amount of work to maintain ComIn in ICON is
minimised. External couplers and IFs can also be attached as
ComIn plugins to ICON and thus benefit from the reduced
maintenance effort offered by ComIn.

Another interface library is currently under development at
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The plume library’s (plugin mechanism; Euro-
pean Centre for Medium-Range Weather Forecasts, 2024;
Bonanni and Quintino, 2023) host model is the ECMWF’s
Integrated Forecasting System (IFS), and the library allows
plugins to be loaded dynamically at runtime (via Plugin Man-
ager) and offers access to their data during model runtime
(via Plugin Data). To this end, the plume library provides
APIs that control the dynamic loading during runtime and
access to the model data for the plugins. Plugins can be in-
dividual models, data analysis, or individually implemented
specific calculations. The plume library is set up to be com-
patible with C++ and Fortran and already includes some ex-
ample plugins and an NWP emulator to test the interaction of
the plugins. In general, implementing an interface to a model
system depends to a large extent on the model system’s data
structures and control flow. However, the design concepts ap-
plied are expected to be largely independent and thus easily
transferable to other models.

2 What does ComIn offer?

ComIn allows plugins to be called by ICON and to access
data and metadata of the host model. Additionally, it is pos-
sible to register further variables to be added to the ICON list
of data, which are then available during runtime in working
memory and can be added to the output. Despite these ex-
tensive functionalities, the ambition of ComIn is to provide
a lightweight interface which requires minimal code changes
in the host model and plugins. Furthermore, the compatibility
of the API with regard to different ICON releases minimises
the expected maintenance and migration effort on the plu-
gin side. To support language interoperability, ComIn is cur-

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025



K. Hartung et al.: ICON ComIn 1005

Figure 1. Overview of model extension methods. In each approach one ESM component acts as the host model (blue circle with smaller
light blue circles indicating internal functionalities like parameterisations and dynamical core), which can be extended by these four methods.
Extensions are highlighted in red, and software to support these extensions in approaches (b) to (d) is represented by black circles and ellipses.
Red circles are set around new ESM components (approach b–d) or smaller extensions (approach a). Straight lines indicate exchange of data
and access to routines. An arrow is added if access to routines between components is only possible one way. For example software A can
call routines of software B but not vice versa, where software A could be an ESM component and software B a coupler. In this case, the
arrowhead is located at software B (the coupler) to indicate the software of which routines are called. Dashed red rectangles indicate that
additional infrastructure is required for each host-model component when it becomes connected to the coupler or IF for the first time but
that the corresponding coding effort is only required once. The red line in approach (c), connecting the new component and the IF, indicates
that the component needs to be integrated into the IF. For a model-specific interface (approach d) the dot-dashed line from the host model to
the new component visualises the fact that routines are called but only indirectly via the interface itself (callback mechanism introduced in
Sect. 2).

rently written in Fortran and can be used by plugins in other
languages such as C/C++ and Python via the use of ISO-C
bindings.

ComIn is developed to work together with ICON but main-
tained separately from ICON and creates a well-defined in-
terface between ICON and any plugin. It enables ICON-
specific internal coupling at runtime (at compile time, the
host model and plugins are treated as different program
units), which is formalised through the interface. ComIn is
not a traditional coupler, as it does not just handle data ex-
changes, but also supports integration into the ICON con-
trol flow. Figure 1d visualises both the separation of ICON
and the plugin (full black line and red line with arrow) and
the integration into the ICON control flow (dot-dashed line
with arrow). The exchange of data is done via the work-
ing memory. For ease of use and because the different pro-
gram units are developed separately, there is not just one ex-
ecutable compiled. Instead, ICON and a plugin are both sep-
arately compiled (and linked) with the ComIn library: ICON
as the executable and the plugin as a shared library (note that
this is not visualised in Fig. 1d). At runtime, ICON dynami-
cally loads the shared library of the plugin (and ComIn) via

ComIn on demand. Several plugins can be individually com-
piled with ComIn and dynamically loaded at runtime within
the same simulation. Callbacks to ComIn plugin functions
are implemented as blocking calls (as part of an MPI paral-
lel job but not asynchronously), so the execution of ICON is
paused until the callback returns. ICON loads a plugin as a
shared library and provides information primarily on a per-
task basis. Depending on their specific implementation, plu-
gins can be executed serially within the ICON control flow
using the same computational resources (i.e. cores/nodes re-
quested for the simulation) as ICON. This is the case if a
plugin does not further specify a (parallel) set-up. However,
plugins can also be implemented to use additional compu-
tational resources in an MPI environment (e.g. via a cou-
pler) and be executed asynchronously, spawning new tasks
and immediately returning control to ICON. In all these pos-
sible approaches, managing the computational demands of
a plugin lies in the responsibility of the plugin developer, as
with any development in ICON. ComIn itself provides access
to variables and their metadata, grid information, and infor-
mation on parallel decomposition and MPI communicators.

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025



1006 K. Hartung et al.: ICON ComIn

However, it does not provide any tools to access performance
or manage load balancing.

As background for the discussion of the ComIn design
principles in Sect. 3, a brief summary of the main compo-
nents and terminology for ComIn is provided here and also
in the glossary in Appendix A. Documentation on the ComIn
procedures, data types, and usage instructions are offered in
a white paper as part of the ComIn repository (ComIn au-
thors, 2024) and as a supplement to this article. ComIn itself
consists of two components:

– The callback library (see schematic diagram in Fig. 2)
gathers plugin routines to be executed at specific en-
try points from the host model. At these entry points,
located throughout the model, ICON executes function
callbacks. Entry points during the initialisation phase,
the time loop, and when finalising ICON can be ad-
dressed by a plugin. While not all entry points need to be
associated with a plugin routine, it is possible to attach
one plugin to several entry points and several plugins
to the same entry point. It should also be noted that, de-
pending on the settings of the ICON simulation as given
by the ICON namelist, not all entry points are necessar-
ily always reached.

– The adapter library (see schematic diagram in Fig. 3)
organises data sharing between the host model and
the plugin(s). ComIn exposes (i.e. shares) pointers to
ICON’s own data fields and provides access to their
metadata. Data structures containing information on, for
instance, domain-specific settings and the parallelisa-
tion are mainly shared as pointers as well. These data
structures are termed descriptive data within the con-
text of ComIn. ComIn also supports registering addi-
tional data fields from a plugin to ICON’s variable list,
and ICON then determines internally if they are added
to its internal memory. The metadata of these additional
fields can be defined by the plugin. As with native ICON
fields, they can then be accessed via the adapter library.
Registration of additional data fields is mainly intended
for atmospheric tracers, to add fields from a plugin to
the output of the host model, and to share data between
two different plugins (e.g. when a diagnostic plugin
analyses results of another plugin).

In summary, ComIn aims to minimise the effort to main-
tain code that is tightly integrated with ICON as a plugin, se-
cures past and future time investments in code development
by plugin users, and simplifies the sharing of code between
different communities.

3 Main ComIn design principles

The main design principles of ComIn cover the two, some-
times contradictory and strongly related areas of (i) minimis-

ing the impact of ComIn on the host model and (ii) maximis-
ing flexibility of ComIn for one or more plugins, and they
state that ComIn should be lightweight, interoperable, and
flexible.

The main motivation for minimising the impact of ComIn
on ICON is to simplify the maintenance of ComIn (and
ICON) and to increase the acceptance for ComIn at the ICON
core institutions and general user base. The impact is mea-
sured, for example, as the difference in memory and runtime
of a set-up with ICON–ComIn (plus plugin(s)) compared to
an ICON set-up without ComIn. The number of lines added
to the ICON source code is considered as well. For the about
half a million lines of Fortran code present in ICON (src/),
fewer than 1000 lines (around 870 lines) were added related
to ComIn (excluding comments in both cases and runscript
and namelist updates due to ComIn). Details on the technical
evaluation (memory, runtime and evaluation of overhead) are
provided in Sect. 4.

Furthermore, introducing the option to fully disable
ComIn within ICON caters to the two very different use pat-
terns of ICON: the operational NWP model, which requires
negligible impact and vanishing risks introduced by any ex-
tensions, can be run with ComIn disabled. At the same time,
with ComIn enabled, the code can be flexibly extended be-
yond the operational NWP set-up to suit the scientific re-
search community. Therefore, all expansions and calls re-
lated to ComIn are encapsulated in pre-processor directives,
and ComIn can be fully disabled at compile time within
ICON to avoid even minimal overhead and the risk of nega-
tive side effects.

The second main goal of ComIn is to support the user com-
munity of ICON while also making ICON and ComIn attrac-
tive to new users, for example, for scientific research beyond
NWP. For this reason, several functionalities of ComIn have
been developed to support the extension of ICON for a vari-
ety of use cases.

This section provides motivation for the design principles
of ComIn and information on how they are implemented.

3.1 ComIn adds minimal restrictions on ICON
(lightweight)

During the initialisation phase of ICON, the sequences of set-
up calls of ICON and ComIn are intertwined. In particular,
this concerns questions like until when additional fields can
be registered, from which point the descriptive data are avail-
able, and when pointers to data fields can be requested. The
entry points of ComIn therefore add restrictions to the po-
tential re-location of ICON routines during the initialisation
phase. Any restrictions arising from the integration of plug-
ins via ComIn are kept to a minimum and communicated to
the ICON developers.

Atmospheric tracers, such as ozone and methane, can be
added to ICON’s variable list by registration via ComIn. Dur-
ing the model integration they can be subject to different

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025



K. Hartung et al.: ICON ComIn 1007

Figure 2. Schematic representation of the integration of entry points into the ICON control flow. At specific entry points, plugin subroutines
can be called from within ICON if they have been registered for these entry points through the ComIn library. After initialisation, the model’s
integration is conducted in a time loop (main part of the schematic). The time integration can be divided into three parts: (i) the dynamical
core “sub-stepping” (dark grey) with a time step shorter than 1t , (ii) the fast-physics process loop with the models basic time step 1t , and
(iii) the slow-physics process loop with a larger time step than 1t depending on the slow-physics process. Entry points are marked in green,
and for some, names are provided. The naming scheme and placement are further discussed in Sect. 3.6, and the white paper (see e.g. in the
Supplement) provides a full list of entry points.

types of advective tracer transport schemes, diffusion, and
convection processes in ICON, which are set by the plugin
via ComIn metadata methods. To support the modularity and
use with ComIn, the set-up of additional tracers in ICON had
to be made more flexible. Instead of defining the (total) num-
ber of tracers in the ICON namelist, the tracer numbers are
now determined at runtime, depending on the dynamically
loaded plugins and the additionally requested tracers therein.

3.2 ComIn and a plugin can be built without ICON
(flexible)

To simplify and shorten the build process, especially if the
selection of plugins changes frequently, it is advantageous
to support the compilation of a plugin with ComIn indepen-
dently of the host model. By separating the variable list and

data structures from those of ICON and sharing them via
the ComIn adapter library, a plugin can be built by linking
just ComIn. Only at runtime does ICON dynamically include
any activated plugins. The callback and adapter libraries thus
enable a separation of concerns and provide a modular ap-
proach for the connection of plugins to the host model.

Ensuring compatibility when building ICON and plugins
separately with ComIn, and thus potentially several versions
of ComIn at the same time, is handled by ComIn version
checks during the initialisation phase of ICON. The ComIn
API design is independent of the ICON version. ComIn ver-
sioning follows Semantic Versioning1, and ComIn is released
in major versions, minor versions, and patches. A major ver-

1Semantic Versioning 2.0.0, https://semver.org/, last access:
21 November 2024.

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025

https://semver.org/


1008 K. Hartung et al.: ICON ComIn

Figure 3. Schematic representation of the adapter library. The
adapter library gathers all data structures required to describe the
ICON state and externalises them from ICON. Through it all in-
formation is exchanged between the adapter library and a plugin,
adding some independence from the description of data structures
in ICON. Specifically, this also implies that a plugin can be com-
piled and linked to ComIn (including the adapter library); linking to
ICON (built with ComIn) is replaced by loading the shared library
(or libraries) of the plugin(s) at runtime.

sion indicates that the interface was changed in such a way
that backward compatibility is not guaranteed, but plugins
remain compatible with the ComIn API for different minor
versions. Checking compatibility on the plugin side is en-
couraged but not enforced by ComIn. Similarly, consistency
of the definition of standard data types, such as floating point
precision, between ComIn and plugin(s) can be tested.

3.3 ComIn offers multi-language support
(interoperable)

To immediately enable a wide range of applications to use
ComIn, the first release of ComIn supports language inter-
operability (from the Fortran core implementation to C/C++
and Python). Either ComIn procedures are defined to be na-
tively interoperable in Fortran with the BIND(C) attribute or,
where this is not feasible due to the handling of strings or
use of dynamic memory (pointers or allocatable arrays), cor-
responding routines for C/C++ and Python access are pro-
vided. The routine interfaces are kept as similar as possible
to assist users working with ComIn in different program-
ming languages. In addition, the ComIn white paper (ComIn
authors, 2024, and as a Supplement to this article) and the
Doxygen documentation directly compare how to use the
API with different languages in translation tables. Two sim-
ple Python plugins (see plugins/python_adapter/examples/ in
the ComIn repository) showcase the simplicity and readabil-
ity with which plugins can be implemented in Python, using
the so-called Python adapter.

The Python adapter itself is implemented as a ComIn plu-
gin written in C++ using the C language bindings of ComIn.
It is shipped with the ComIn library and embeds the Python
interpreter so that the actual Python script is interpreted at
runtime. The filename of the Python script is passed to the
adapter as an option in the ICON comin_nml namelist. Call-
backs are realised as custom Python functions that are regis-
tered with ComIn by adding a function decorator. This makes

it easy to define callbacks on the fly. Furthermore, no recom-
pilation is required during plugin development. Access to the
variable data is provided via NumPy/CuPy objects, which act
as pointers to the actual data. The other API functions are
also exposed in the Python module comin, which can be im-
ported into the script. The Python language bindings allow
for a variety of practical applications, including visualisation
and machine learning. The wide range of Python packages
available allows rapid prototyping.

The available examples for Python and C demonstrate the
interoperability. The C interface is used in a YAC example
plugin. By supporting interaction with the YAC coupler, the
ComIn API provides interoperability not only in terms of
programming languages, but also in terms of coupling types
(i.e. moving from extension method in Fig. 1b to d). ComIn
thus offers a pathway of maintaining the YAC coupler out-
side of ICON.

3.4 ComIn provides a minimalist adapter library
(lightweight)

As a way to keep the adapter library as lightweight as possi-
ble, the shared variables and data structures are limited to the
essentials; the meaning of “essentials” is defined below for
each topic.

To make the interface as stable as possible in the long
term, functionalities and properties of ICON which might be
adapted or removed in the future are not shared.

3.4.1 Essential descriptive data exposed via ComIn

ComIn delivers all the information on the MPI-based paral-
lelisation (communicators, grid decomposition information)
to enable a plugin to set up communication and data trans-
positions (broadcasting, gathering, scattering, boundary ex-
change, etc.). For the selection of any other descriptive data
component the guiding principle is to avoid redundancy.
From the view of the descriptive data, ”essential” thus means
that enough information is exposed (i) to support plugins set-
ting up their own parallelisation (a plugin can still also oper-
ate on the same transposition as ICON) and (ii) to reconstruct
omitted descriptive data within the plugin.

A very simple example is that ComIn does not provide
access to nlevp1, which is the number of vertical half lev-
els. This parameter can easily be re-calculated from the pro-
vided number of full levels nlev as nlevp1 = nlev +
1. Another simple example is the fact that the Cartesian co-
ordinates of the model grid are not separately shared, but
this information is only exposed via the longitude and lati-
tude fields as part of the descriptive data. Similarly, several
MPI communicator properties which might become obsolete
when changing to a different parallel implementation and
which are not required by plugins to set up the communi-
cation and data transpositions are not exposed.

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025



K. Hartung et al.: ICON ComIn 1009

3.4.2 ICON variables are available for one time level

Direct access to the updated variables at the time step used
inside the dynamical core is not available in ComIn. The en-
try points to the ComIn callback library inside ICON’s time
loop (see Fig. 2), i.e. considering both fast and slow physics,
are called at each time step 1t . This means, after each fast-
physics process, the model variables correspond to the se-
quentially updated state. After the slow-physics processes,
model variables are not directly updated by the slow-physics
tendencies. This update is only applied at the next call to the
dynamical core or tracer advection, depending on the prog-
nostic variable for which the tendency is added.

“Essential” data are thus pointers to variables and trac-
ers at the current time level2 of the host model. During the
time loop the pointers reflect the sequentially updated value
from the fast-physics processes, and the slow-physics pro-
cesses are added at different times but are present in the fully
updated state at the end of the time step. This behaviour is
intended, but the developer of a plugin should keep in mind
that the tendencies from the slow-physics processes are cal-
culated and used to update the model state at different parts
of the time step.

Not sharing data at the internally used two time levels
means that the time integration scheme of ICON can be up-
dated without requiring major changes in ComIn and conse-
quently in the plugins. More importantly for the plugin users,
this means that no knowledge of the complex time-stepping
scheme in ICON is required to avoid erroneous results. The
implementation is such that when requesting a data field, a
pointer wrapper is provided via ComIn, i.e. a structure which
contains a pointer. The pointer underlying the pointer wrap-
per is updated to the current time level state at the requested
entry points.

3.4.3 ICON fields are partitioned according to the MPI
parallelisation

To allow ComIn users to benefit from the optimised ICON
scaling, ICON fields are shared essentially as they are set up
in ICON, i.e. only the local information on each process. This
approach prevents a huge communication overhead which
would limit the scalability of ICON but still exposes all the
data available.

3.5 ComIn adds minimal memory overhead
(lightweight)

The implementation of how the ICON data fields and de-
scriptive data are made available to ComIn impacts the over-
head and usability of ComIn. The smallest memory overhead
is achieved when sharing the pointers to the ICON memory
addresses. However, this adds the possibility that a plugin
can (inadvertently or incorrectly) change the value of such a

2See Sect. 1.1 for the two-time-level scheme.

field. Via the usage of Fortran pointers, no access restrictions
are implemented, as these are not supported by the language
standard. Implementing memory access restrictions would
add additional undesired execution overhead. It was thus de-
cided to share the pointers to data fields via ComIn without
safety mechanisms.

So far the memory argument (ComIn should be
lightweight) was considered more important also in the case
of descriptive data, even though most descriptive data are
constant in time and their size not excessive. Thus, with a few
exceptions, pointers to the ICON descriptive data are shared
directly. Another advantage of this approach is that inconsis-
tencies in data copies can be prevented. Exceptions include
the cell properties longitude and latitude, as their storage for-
mat has been simplified in ComIn to eliminate a further de-
pendence on the host model’s data structures. It is thus the
responsibility of the user to ensure that the descriptive data
are handled correctly and that descriptive data are not acci-
dentally modified.

3.6 ComIn plugin routines can replace ICON
parameterisations (flexible)

The guideline for the placement of the entry points during
the time loop was to allow maximum flexibility for the plu-
gins. A plugin should be able to modify the input going into
an ICON parameterisation and read the modified state after-
wards or alternatively to replace an existing parameterisa-
tion of ICON by a parameterisation of the plugin. The en-
try points during the time loop are therefore mostly located
before and after physics parameterisations (see also Fig. 2),
outside of any IF guards checking if a particular parameter-
isation is enabled. This means that entry points around pa-
rameterisations are reached even if they are disabled in the
ICON namelist. Following this approach a few redundant en-
try points are created if two parameterisations are executed
directly in sequence. In this way intuitive naming of the entry
point associated with the respective parameterisation is pos-
sible, i.e. EP_ATM_TURBULENCE_BEFORE for the entry
point (EP) before the (atmospheric) turbulence scheme. At
the same time the likelihood is increased that an entry point is
located at the same place relative to a parameterisation even
after code changes in ICON, for example when adding an-
other parameterisation. The very comprehensive addition of
entry points during the time loop, i.e. two for every physical
parameterisation, enables a wide range of applications to use
ComIn.

Plugins can have very different requirements for the
interaction with ICON. It is thus, for instance, possible
to disable the turbulence parameterisation within ICON
and use the entry point EP_ATM_TURBULENCE_BEFORE
to instead call the turbulence scheme of a plugin.
In another model set-up, the user wants to execute
the ICON turbulence scheme but adapt settings in
EP_ATM_TURBULENCE_BEFORE before the ICON tur-

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025



1010 K. Hartung et al.: ICON ComIn

bulence scheme and then retrieve modifications afterwards at
the entry point EP_ATM_TURBULENCE_AFTER. With the
chosen entry point locations both use cases are supported.

As an intended design constraint, all ComIn entry points
are placed outside of the block loops3 in ICON. An entry
point inside a block loop would require an extension of the
callback functionality to support both the current MPI col-
lective callback and the callback inside the block loop. Such
a callback thus leads to additional communication overhead
and necessitates another set of descriptive data to describe
the current block-loop instance. Entry points inside the block
loops could enable direct interaction with existing parameter-
isations, as access to local variables would be possible. How-
ever, the large list of drawbacks, which would make ComIn
less lightweight, outweighs the potential benefits at the cur-
rent stage.

3.7 A ComIn plugin can set up additional MPI parallel
communication (flexible)

As mentioned in Sect. 3.4, the ICON-internal MPI com-
municators and exchange patterns are not exposed. How-
ever, within the descriptive data all relevant MPI informa-
tion is made available to be able to set up data transposi-
tions in a plugin. The MPI communicator, which contains
all MPI tasks taking part in the ComIn initialisation rou-
tines within ICON, is shared via ComIn. In addition, each
plugin can specify a name of a communicator which is
then created at initialisation. External processes can use this
name in the MPI handshake (https://gitlab.dkrz.de/dkrz-sw/
mpi-handshake, last access: 28 January 2025) to be part of
this communicator. In this way users can create communi-
cators to exchange data with external processes via MPI,
for example, to operate in a different parallel decomposition
(on the same computational resources as ICON) or execute
plugins on different computational resources than ICON,
e.g. driving external couplers via ComIn.

3.8 ComIn supports several plugins being connected
simultaneously (flexible)

The callback and the adapter libraries were developed specif-
ically to support the connection of several plugins to ICON
within the same simulation. A potential use case is a land
model plugin which is connected to ICON together with a
diagnostic plugin to determine parameters during runtime
which are not natively calculated in either the land model or
ICON. Such a set-up could work with two plugins connected
to ICON via ComIn.

To easily put together a flexible set-up of plugins, ComIn
is built as a shared library together with each potential plu-
gin. As the decision on the plugins finally used is set via
the ComIn namelist, no re-compilation in response to mod-
ifications of the set-up is necessary. Plugins are then loaded

3See Sect. 1.1 for a definition.

dynamically at runtime within ICON by ComIn in the or-
der they are defined in the comin_nml section of the ICON
namelist (which is listed in the white paper as part of the
repository (see ComIn authors, 2024) and as the Supplement
to this article). Currently the order in which plugins are exe-
cuted is the same for all entry points. Additionally, requested
variables can be shared across all plugins, but the adapter li-
brary also allows additional fields to be created which are
exclusive to just one plugin. In summary, the ICON variable
list can be extended and customised to fit different plugin
set-ups and their combination.

3.9 ComIn ships with tests and simple use cases

In order to aid the switch from ICON to ICON–ComIn for
users, ComIn is kept as simple as possible and developed
with various examples demonstrating its use “in action”. The
documentation in the form of a manual (see Supplement and
ComIn authors, 2024, for an up-to-date version) and of ex-
ample plugins is of course also advantageous for new users
of ICON.

The functionality of the available ComIn routines is show-
cased in short technical examples (i.e. not necessarily physi-
cally meaningful). These are set up and maintained to cover
all IF guards implemented in the code, both through test
cases intended to succeed and tests intended to deliberately
fail. For example, the tests indicate at which points during a
simulation new variables can be requested or pointers to ex-
isting fields can be obtained, but they also ensure that an error
is reported when additional variables are registered too late
during the initialisation phase. These examples are also used
for testing as part of the CI (continuous integration) pipeline,
which provides automated build- and runtime tests and sup-
ports the ComIn development process and code review. In
addition, a few simple use cases were developed as a refer-
ence for plugin developers implementing ComIn in their own
model or software. These example plugins inspired by real-
world usage (i) calculate an average across all MPI ranks to
get global mean temperature (C and Fortran plugins), (ii) add
new microphysical variables (liquid and ice water path) and
calculate column total statistics (Fortran plugin), (iii) add
emissions from a point source to the list of ICON tracers
(Python plugin as part of the Python adapter and Python API
shipped with ComIn), and (iv) retrieve ICON input fields via
coupling to YAC (C plugin). The first test case uses YAXT
(Behrens et al., 2024) for MPI data transpositions and con-
firms that the ComIn descriptive data contain enough infor-
mation to set up ICON-independent MPI communication.

4 Computational aspects

The test simulations to measure the overhead from ComIn are
based on a typical operational NWP set-up. This time-critical
set-up requires maintaining a minimal additional overhead.

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025

https://gitlab.dkrz.de/dkrz-sw/mpi-handshake
https://gitlab.dkrz.de/dkrz-sw/mpi-handshake


K. Hartung et al.: ICON ComIn 1011

Currently such a simulation is run with ComIn disabled so
that no change to the operational behaviour is expected. The
7.5 d forecast on a global R3B06 grid (approximately 26 km)
with a nested R3B07 domain over Europe (approximately
13 km) is typically run as part of the ICON ensemble (ICON-
EPS) with 40 members. The forecast lead time varies from
short- to medium-range forecasts, and here the longest lead
time of 180 h is selected.

This model set-up was executed for ICON and ICON–
ComIn; i.e. the only difference is whether data prepara-
tion for plugins and execution of callback routines is in-
cluded, which are encapsulated by ComIn pre-processor di-
rectives. For measuring the overhead added by ComIn it-
self to ICON, no plugin is attached to ICON via ComIn
in this set-up (ICON–ComIn). So, no callbacks are trig-
gered at any entry point, but since the ComIn set-up and
data preparation are still executed, the overhead of ComIn
to ICON can be determined. This set-up thus practically cor-
responds to an extremely efficient plugin (i.e. one without
any runtime or memory overhead). It should be noted that
in realistic configurations with ComIn plugins, total perfor-
mance is also impacted by the computational efforts from
the plugins themselves. For both model configurations, a set-
up with output and without output was run on the DKRZ
(https://www.dkrz.de/de, last access: 28 January 2025) high-
performance computing (HPC) system Levante. Based on the
output, it was confirmed that ComIn does not impact the
ICON simulation results. Three additional simulations per
set-up (ICON and ICON–ComIn) without output were used
for the performance tests. The additional overhead in terms
of runtime (elapsed time and total max time from the ICON
timer) is approximately 1.5 %. The additional memory over-
head considering the maximum memory required, sampling
once per second, is similarly 1.5 %. The variability among
simulations is relatively large even at this sampling frequency
with the result that the range of standard deviations overlaps
and indeed in two ICON–ComIn experiments the maximum
memory is lower than in any of the ICON set-ups. Consider-
ing the average memory requirement (sampled every second)
the increase using ICON–ComIn is slightly lower at 0.8 %.
Again the variability is larger than the average difference be-
tween the two set-ups.

It can thus be concluded that even with ComIn enabled as
part of ICON, the additional required memory and runtime
are small.

5 Example applications and use cases

The motivation for the development of ComIn is to support
internal coupling of external ESM components into ICON
while keeping the intrusion to ICON minimal. The imple-
mentation of ComIn in the integrated framework MESSy
(Jöckel et al., 2005, 2010) is currently ongoing as a complex
example for the use of ComIn. However, during the devel-

opment and from first user interest, it has become obvious
that many more applications of ComIn are possible. The list
given below is certainly not complete but is expected to in-
crease and diversify as the ICON user community applies
ComIn to answer their scientific questions.

Before presenting examples and their motivation, it should
be emphasised again that by design none of the scientific ap-
plications of ComIn outlined below interfere with the opera-
tional ICON model when being connected via ComIn. Also,
by design, any developments described below can be rela-
tively easily ported between different ICON versions if they
are based on ComIn. Additionally, language interoperability
is an essential feature of ComIn, which enables many ap-
plications and use cases. Exemplary use cases, starting with
some which are already implemented and tested and also in-
troducing some which are possible with ComIn (in no partic-
ular order), are as follows:

– With ComIn additional diagnostics can be introduced
into ICON much quicker and with fewer side effects. In-
stead of the need to find an appropriate routine in ICON,
the correct time level, the procedure in which to add the
new diagnostic to the list of ICON variables, the differ-
ent locations in the code to add metadata, etc., a few
calls to the ComIn API produce the same result.

– Via ComIn, not only Fortran routines but also C and
Python routines can be easily called during an ICON
simulation. This means that (online) visualisation is
possible without much effort, for example via Cata-
lyst (https://docs.paraview.org/en/latest/Catalyst/index.
html, last access: 28 January 2025), a tool which sup-
ports in situ workflows. Online visualisation has many
benefits, for example reducing the size of output files
and thus the time it takes to write them. Addition-
ally, online visualisation allows the model state to be
screened at every time step, which is often not possible
with output files written per default at a lower frequency.

– Similarly to online visualisation to evaluate physical re-
sults of a simulation while it is ongoing, it is possible
to perform online performance analysis during a model
simulation, for example with the tools Prometheus
(https://prometheus.io/, last access: 28 January 2025) or
Grafana (https://grafana.com/, last access: 28 January
2025). Information on the computing resources con-
sumed by a simulation (for example computing time,
memory, or energy usage) are available right away so
that inefficiencies become apparent quickly, and a sim-
ulation with satisfactory performance can be continued
and does not need to be restarted after the evaluation.

– Fast prototyping can be used to develop parameterisa-
tions. Based on the ICON-independent API of ComIn,
parameterisations can be developed outside of a com-
plex NWP or climate model and extensively tested.

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025

https://www.dkrz.de/de
https://docs.paraview.org/en/latest/Catalyst/index.html
https://docs.paraview.org/en/latest/Catalyst/index.html
https://prometheus.io/
https://grafana.com/


1012 K. Hartung et al.: ICON ComIn

Once the implementation of the parameterisation is fi-
nalised as a stand-alone code, it can easily be attached
via ComIn for further testing and productive applica-
tion in the complex numerical model. Fast prototyping
is possible in all the supported programming languages
but especially efficient with the intuitive programming
language Python.

– Instead of working directly with a full NWP/climate
model, the model-specific interface simplifies the in-
teraction with the model. This can be very useful for
e.g. teaching and student theses. Students can relatively
easily insert simple diagnostics into ICON and generate
additional output without the need to make modifica-
tions directly in ICON. This benefits them individually
in their studies and introduces them with a relatively
low threshold to modelling. At the same time, they are
trained to become the next generation of NWP and cli-
mate modellers, which is very valuable to the commu-
nity.

– With YAC and an I/O server as plugin, interpolated I/O
can be enabled. Instead of an extra step after writing out-
put, the interpolation can be executed (asynchronously)
during the ICON simulation, thus reducing the post-
processing steps. Similarly, the set-up of YAC and an
I/O server can be used to pre-process datasets of vari-
ous resolution and prepare them for the simulation.

– ComIn provides all necessary information to drive the
YAC coupler. The use with other couplers was not tested
but should also be possible. This means that ComIn fa-
cilitates external coupling outside of the ICON code.
Individual coupler interfaces inside the ICON code are
no longer required with ComIn, but instead couplers can
be flexibly attached through ComIn.

– Using ComIn it is possible to externalise ICON internal
functionalities (i.e. developments similar to the land-
surface scheme JSBACH (Reick et al., 2021) or the
Hydrological Discharge (HD) model (Hagemann et al.,
2020)) and to modularise ICON further.

– Machine learning and artificial intelligence applica-
tions are becoming more prevalent in NWP and climate
modelling. Attaching a plugin to train a machine learn-
ing dataset (independently of the programming lan-
guage) is possible via ComIn. As Python has a large
collection of libraries and packages that are suitable
for machine learning and artificial intelligence, this is
a very relevant use case of ComIn’s Python API.

6 Missing functionalities and planned and envisioned
developments

Although ComIn already provides a wide range of function-
alities, it is clear that expansions and additional features can

further increase the flexibility and usability of ComIn while
still keeping it lightweight. Several extensions for later ver-
sions of ComIn are currently planned and partly in prepara-
tion, of which some are briefly introduced here:

– ICON can be accelerated by using GPUs. Consider-
ing set-ups on CPUs (also called “host”) and GPUs
(also called “device”), possible configurations are thus
that (i) ICON and a plugin are executed on the de-
vice, (ii) ICON runs on GPUs and a plugin on CPUs,
and (iii) ICON–ComIn and plugins only utilise CPUs.
In practise this differentiation can be handled per en-
try point, i.e. ICON informs ComIn which entry points
are integrated into accelerated code. ComIn thus needs
to be able to receive information for each variable re-
quested by a plugin if it is needed on the device or not
(the default). If a variable is requested on the device in
configuration (i), no data transfers need to be initiated.
Similarly, this is the case for configuration (iii). In case
(ii), ComIn needs to trigger data transfers before and af-
ter each entry point executed on GPUs. The implemen-
tation is currently ongoing and will be part of the next
release version of ComIn.

– Currently metadata are stored in a pre-defined and thus
inflexible data structure. An update, which will not be
visible to the users, is a more flexible implementa-
tion of metadata information via a hash table/key-value
storage4. This will simplify the introduction of further
metadata to ComIn. This development started during
the second half of 2024. An additional use case of this
key-value storage would be to associate CMOR (https:
//cmor.llnl.gov/, last access: 28 January 2025) names
with each variable to support users taking part in model
inter-comparison studies.

– When a plugin requests an ICON data field, it does this
for a specific list of entry points. This information can
be used by ICON to determine the exchange of data
throughout the simulation. With the additional infor-
mation of the desired access, i.e. if data are just read,
adapted by a plugin, or also required for halo synchro-
nisation, the host model could detect incorrect access
patterns and return an error or a warning if access re-
strictions are violated. The latter part is currently not
implemented but is a potential expansion for the future,
probably available only in a debug mode of ComIn as
this option would add overhead. Additionally, this infor-
mation can be used to support asynchronous execution
of plugins and to enable efficient halo synchronisation
through ComIn.

– To ensure a flexible use of ComIn with several plugins,
their call sequence at different entry points should be

4A key-value database stores data in a “key-value” format and is
optimised for reading and writing those data.

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025

https://cmor.llnl.gov/
https://cmor.llnl.gov/


K. Hartung et al.: ICON ComIn 1013

adaptable. This is currently not possible, but control via
an additional ComIn namelist is planned, in which ex-
ecution priorities of plugins at each entry point can be
listed.

– Currently all plugins are executed in sequence when
an entry point is reached. The callback routines are
called in a blocking manner, so the execution of ICON
is paused until the callback returns. Considering that
several plugins are independent of each other or of the
subsequent procedures in ICON, an option for asyn-
chronous execution could increase the runtime perfor-
mance especially for computationally expensive plug-
ins. At the same time, this requires careful use to prevent
deadlocks or erroneous results.

Some additional extensions will be motivated by plugins
but might require changes in the overall concept of ComIn.
Suggestions will be gathered and evaluated in terms of their
feasibility among the ComIn (and if necessary ICON) de-
velopers before potentially being implemented. Any changes
to ICON itself, e.g. access to current local fields, required
by ComIn users will not be supported by the ComIn devel-
opers but must be discussed with the ICON core developers
instead.

7 Conclusions and outlook

In this article ComIn was introduced as a lightweight, in-
teroperable, and flexible model-specific interface library for
ICON, which minimises the required changes to the ICON
code. A variety of use cases were introduced in Sect. 5, which
are considered to be beneficial to the NWP and climate com-
munity using ICON. Going along with an increasing adop-
tion of ComIn, some additional steps in assessing perfor-
mance and usability of ComIn are necessary:

– The evaluation of the interface itself in terms of mini-
mal computation and memory overhead to ICON is pre-
sented in this article. Preparations for a large-scale test
case for a set-up with a plugin, namely the integrated
framework MESSy, are currently ongoing. As each plu-
gin is differently interacting with ICON, such an evalu-
ation is recommended with each new plugin connected
to ICON. In this way the optimal set-up of parallel re-
sources can be determined.

– As ComIn is adopted by the community, the user expe-
rience needs to be reviewed, e.g. if the complexity and
usability from the user perspective are balanced. Here,
for example, the ease of getting started with ComIn, the
experience during plugin development, and the support
for testing are key factors. In addition, a public online
tutorial might be beneficial for new users.

– Based on the results of the large-scale test case and feed-
back from the first users on their experience of adopting

ComIn but also on currently missing features, a critical
review of the benefits and issues of ComIn needs to be
performed at regular intervals. What are current short-
comings and how can they be resolved? What future
applications and thus required developments can be en-
visioned? How can developments be kept sustainable?
Finally, how can the implementation of ComIn be ad-
vanced, for example through the use of key-value stor-
age for metadata?

– The re-usability of the ComIn concept for models other
than ICON can be discussed. The design was devel-
oped as general as possible. Other ESM components can
adopt ComIn (and become its host model) to increase
their modularisation and facilitate expansion from out-
side their core community. However, as the descriptive
data and entry points are of course specific to the host
model, some modifications to the interface would be re-
quired for such a transfer to a separate, ComIn-like im-
plementation. If the benefits of the ComIn approach are
expected to outweigh the additional effort of a ComIn-
like implementation for other host models, then this ar-
ticle along with the white paper (ComIn authors, 2024)
can act as a guideline for the adaptation process.

Appendix A: Glossary

Descriptive data Descriptive data are ComIn data struc-
tures that provide metadata on ICON
and the simulation, for example on
domain-specific settings, the paral-
lelisation, and experiment start and
stop dates. They are typically exposed
(i.e. shared) as pointers but should be
used read-only.

Entry point Entry points in ICON allow plugin rou-
tines to be called directly from ICON if
they are registered via the ComIn call-
back library.

Host model ICON is the host model of ComIn. That
means that ComIn is based on ICON’s
data structures and that entry points are
implemented within the ICON control
flow.

Plugin ICON-external software which is at-
tached to ICON via ComIn is called
a (ComIn) plugin. Plugins can range
from individual externalised features to
full Earth system model components.

Code and data availability. ComIn is released under the BSD 3-
Clause license (https://opensource.org/license/BSD-3-Clause, last
access: 26 March 2024) and is available from https://gitlab.dkrz.de/
icon-comin/comin (ComIn authors, 2025). A version of the ICON

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025

https://opensource.org/license/BSD-3-Clause
https://gitlab.dkrz.de/icon-comin/comin
https://gitlab.dkrz.de/icon-comin/comin


1014 K. Hartung et al.: ICON ComIn

model was released under the open-source BSD 3-Clause license at
the end of January 2024 (https://www.icon-model.org, ICON Part-
nership, 2024a). The version of ComIn used in this article is part
of ICON version 2024.01-1 (tag tags/icon-2024.01-1 in the ICON
repository https://gitlab.dkrz.de/icon/icon, last access: 28 January
2025 and branch release-2024.01-public in the public ICON repos-
itory https://gitlab.dkrz.de/icon/icon-model, last access: 28 January
2025), which is available under the DOI https://doi.org/10.35089/
WDCC/IconRelease01 (ICON Partnership, 2024b).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1001-2025-supplement.

Author contributions. KH wrote a first draft of the manuscript with
contributions and feedback from BK, AK, and PJ. NAD, JG, MH,
WJL, FP, and DR provided comments and additional input on the
first draft, based on which KH prepared the final version. FP and DR
provided the input data and set-up instructions for the test case. The
ComIn project was managed by FP, and all other authors contributed
to the code development.

Competing interests. At least one of the (co-)authors is a mem-
ber of the editorial board of Geoscientific Model Development. The
peer-review process was guided by an independent editor, and the
authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We want to thank all colleagues involved in
working groups, discussions, and proposals on coupling ICON to
other models or model components and elaborating requirements
of an open community programming interface to the model system.
Especially Heidrun Matthes, Mariano Mertens, and all contributors
to the “GI3” (Generalised Interface in ICON) proposal. We thank
Ali Hoshyaripour, Sven Werchner, Ralf Müller, and Florian Ziemen
for their input and advice during the formulation and development
of ComIn and Daniel Reinert for his involvement in the initial plan-
ning and first development. We thank Axel Lauer for the very con-
structive feedback on a draft version of the article. We also would
like to thank the two anonymous reviewers.

The model simulations have been performed at the German Cli-
mate Computing Centre (DKRZ) through support from the Bun-
desministerium für Bildung und Forschung (BMBF). DKRZ and
its scientific steering committee are gratefully acknowledged for
providing the HPC and data archiving resources (including /pool/)
for the project ESCiMo (Earth System Chemistry integrated Mod-
elling). One project on which this article is based was funded by
the German Federal Ministry of Education and Research under the
funding code 01LK2203. The responsibility for the content of this

publication lies with the authors. The authors acknowledge the sup-
port from the National Earth System Modelling Project (natESM),
which is funded through the Federal Ministry of Education and Re-
search (BMBF) under grant agreement no. 01LK2107A, and from
the DLR project GHGmon.

Financial support. This research has been supported by the Bun-
desministerium für Bildung und Forschung (grant nos. 01LK2203
and 01LK2107A).

The article processing charges for this open-access
publication were covered by the German Aerospace Center (DLR).

Review statement. This paper was edited by Olivier Marti and re-
viewed by two anonymous referees.

References

Behrens, J., Hanke, M., and Jahns, T.: Yet Another eXchange Tool,
YAXT [code], https://swprojects.dkrz.de/redmine/projects/yaxt,
last access: 6 May 2024.

Bonanni, A., Hawkes, J., and Quintino, T.: Plume: A Plugin Mech-
anism for Numerical Weather Prediction Models, EGU Gen-
eral Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-
7944, https://doi.org/10.5194/egusphere-egu23-7944, 2023.

ComIn authors: ComIn documentation, DKRZ, https:
//gitlab.dkrz.de/icon/icon-model/-/blob/release-2024.01-public/
externals/comin/doc/icon_comin_doc.md, last access:
17 June 2024.

ComIn authors: ComIn, DKRZ [code], https://gitlab.dkrz.de/
icon-comin/comin, last access: 28 January 2025.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Earth System Modeling Framework: Earth System Modeling
Framwork, ESMF, https://earthsystemmodeling.org/, last access:
5 May 2024.

European Centre for Medium-Range Weather Forecasts: Plugin
mechanism, plume, GitHub [code], https://github.com/ecmwf/
plume, last access: 5 May 2024.

Geophysical Fluid Dynamics Laboratory: Flexible Modelling
System, FMS, https://www.gfdl.noaa.gov/fms/, last access:
5 May 2024.

Hagemann, S., Stacke, T., and Ho-Hagemann, H. T. M.:
High Resolution Discharge Simulations Over Europe and
the Baltic Sea Catchment, Frontiers in Earth Science, 8,
https://doi.org/10.3389/feart.2020.00012, 2020.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Heinzeller, D., Bernardet, L., Firl, G., Zhang, M., Sun, X.,
and Ek, M.: The Common Community Physics Package
(CCPP) Framework v6, Geosci. Model Dev., 16, 2235–2259,
https://doi.org/10.5194/gmd-16-2235-2023, 2023.

Geosci. Model Dev., 18, 1001–1015, 2025 https://doi.org/10.5194/gmd-18-1001-2025

https://www.icon-model.org
https://gitlab.dkrz.de/icon/icon
https://gitlab.dkrz.de/icon/icon-model
https://doi.org/10.35089/WDCC/IconRelease01
https://doi.org/10.35089/WDCC/IconRelease01
https://doi.org/10.5194/gmd-18-1001-2025-supplement
https://swprojects.dkrz.de/redmine/projects/yaxt
https://doi.org/10.5194/egusphere-egu23-7944
https://gitlab.dkrz.de/icon/icon-model/-/blob/release-2024.01-public/externals/comin/doc/icon_comin_doc.md
https://gitlab.dkrz.de/icon/icon-model/-/blob/release-2024.01-public/externals/comin/doc/icon_comin_doc.md
https://gitlab.dkrz.de/icon/icon-model/-/blob/release-2024.01-public/externals/comin/doc/icon_comin_doc.md
https://gitlab.dkrz.de/icon-comin/comin
https://gitlab.dkrz.de/icon-comin/comin
https://doi.org/10.5194/gmd-10-3297-2017
https://earthsystemmodeling.org/
https://github.com/ecmwf/plume
https://github.com/ecmwf/plume
https://www.gfdl.noaa.gov/fms/
https://doi.org/10.3389/feart.2020.00012
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-16-2235-2023


K. Hartung et al.: ICON ComIn 1015

ICON Partnership: ICON model website, ICON, https://www.
icon-model.org, last access: 5 May 2024a.

ICON Partnership (DWD; MPI-M; DKRZ; KIT; C2SM): ICON re-
lease 2024.01, World Data Center for Climate (WDCC) at DKRZ
[code], https://doi.org/10.35089/WDCC/IconRelease01, 2024b.

Jöckel, P., Sander, R., Kerkweg, A., Tost, H., and Lelieveld, J.:
Technical Note: The Modular Earth Submodel System (MESSy)
– a new approach towards Earth System Modeling, Atmos.
Chem. Phys., 5, 433–444, https://doi.org/10.5194/acp-5-433-
2005, 2005.

Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede,
H., Baumgaertner, A., Gromov, S., and Kern, B.: Development
cycle 2 of the Modular Earth Submodel System (MESSy2),
Geosci. Model Dev., 3, 717–752, https://doi.org/10.5194/gmd-3-
717-2010, 2010.

Joppich, W. and Kürschner, M.: MpCCI – a tool for the simulation
of coupled applications, Concurr. Comp.-Pract. E., 18, 183–192,
https://doi.org/10.1002/cpe.913, 2006.

Kerkweg, A., Hofmann, C., Jöckel, P., Mertens, M., and Pante,
G.: The on-line coupled atmospheric chemistry model sys-
tem MECO(n) – Part 5: Expanding the Multi-Model-Driver
(MMD v2.0) for 2-way data exchange including data interpo-
lation via GRID (v1.0), Geosci. Model Dev., 11, 1059–1076,
https://doi.org/10.5194/gmd-11-1059-2018, 2018.

MESSy Consortium: Modular Earth Submodel System, MESSy,
https://www.messy-interface.org, last access: 5 May 2024.

National Center for Atmospheric Research: Common Community
Physics Package (CCPP)-framework, National Center for Atmo-
spheric Research, https://ccpp-techdoc.readthedocs.io/en/latest/
Overview.html, last access: 5 May 2024a.

National Center for Atmospheric Research: CCSM Coupler Version
7, National Center for Atmospheric Research, https://www.cesm.
ucar.edu/models/cpl/7.0, last access: 5 May 2024b.

National Center for Atmospheric Research: Community Earth Sys-
tem Model, CESM, http://www.cesm.ucar.edu/models/ccsm4.0/,
last access: 5 May 2024c.

Prill, F., Reinert, D., Rieger, D., and Zängl, G.: ICON Tutorial –
Working with the ICON model, Deutscher Wetterdienst, Offen-
bach, https://doi.org/10.5676/DWD_pub/nwv/icon_tutorial2024,
2024.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, https://doi.org/10.5194/gmd-3-87-2010, 2010.

Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M.,
and Nabel, J. E. M. S.: JSBACH 3 – The land component of
the MPI Earth System Model: documentation of version 3.2.,
Berichte zur Erdsystemforschung, 240, Max Planck Institute
for Meteorology, 271 pp., https://doi.org/10.17617/2.3279802,
2021.

Valcke, S.: The OASIS3 coupler: a European climate mod-
elling community software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013.

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R.,
Ford, R. W., Jacob, R., Larson, J., O’Kuinghttons, R., Ri-
ley, G. D., and Vertenstein, M.: Coupling technologies for
Earth System Modelling, Geosci. Model Dev., 5, 1589–1596,
https://doi.org/10.5194/gmd-5-1589-2012, 2012.

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The
ICON (ICOsahedral Non-hydrostatic) modelling framework
of DWD and MPI-M: Description of the non-hydrostatic
dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579,
https://doi.org/10.1002/qj.2378, 2015.

https://doi.org/10.5194/gmd-18-1001-2025 Geosci. Model Dev., 18, 1001–1015, 2025

https://www.icon-model.org
https://www.icon-model.org
https://doi.org/10.35089/WDCC/IconRelease01
https://doi.org/10.5194/acp-5-433-2005
https://doi.org/10.5194/acp-5-433-2005
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.5194/gmd-3-717-2010
https://doi.org/10.1002/cpe.913
https://doi.org/10.5194/gmd-11-1059-2018
https://www.messy-interface.org
https://ccpp-techdoc.readthedocs.io/en/latest/Overview.html
https://ccpp-techdoc.readthedocs.io/en/latest/Overview.html
https://www.cesm.ucar.edu/models/cpl/7.0
https://www.cesm.ucar.edu/models/cpl/7.0
http://www.cesm.ucar.edu/models/ccsm4.0/
https://doi.org/10.5676/DWD_pub/nwv/icon_tutorial2024
https://doi.org/10.5194/gmd-3-87-2010
https://doi.org/10.17617/2.3279802
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.5194/gmd-5-1589-2012
https://doi.org/10.1002/qj.2378

	Abstract
	Introduction and motivation
	The host model ICON
	Common methods for extending an ESM model component
	A new tool for extensions to ICON: the community interface

	What does ComIn offer?
	Main ComIn design principles
	ComIn adds minimal restrictions on ICON (lightweight)
	ComIn and a plugin can be built without ICON (flexible)
	ComIn offers multi-language support (interoperable)
	ComIn provides a minimalist adapter library (lightweight)
	Essential descriptive data exposed via ComIn
	ICON variables are available for one time level
	ICON fields are partitioned according to the MPI parallelisation

	ComIn adds minimal memory overhead (lightweight)
	ComIn plugin routines can replace ICON parameterisations (flexible)
	A ComIn plugin can set up additional MPI parallel communication (flexible)
	ComIn supports several plugins being connected simultaneously (flexible)
	ComIn ships with tests and simple use cases

	Computational aspects
	Example applications and use cases
	Missing functionalities and planned and envisioned developments
	Conclusions and outlook
	Appendix A: Glossary
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

