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Abstract—1In recent years, several datasets containing tra-
jectories of road users have been published, providing valuable
insights for the analysis and modeling of traffic participant be-
havior. However, road user trajectories from highway datasets
are often limited to lengths of less than 2.5 km, restricting the
analysis of consecutive traffic scenarios, such as multiple lane
changes. To address this gap, we introduce the DLR Highway
Traffic dataset, the longest road user trajectory dataset from
a German highway. This dataset contains 38,209 trajectories,
along with local weather and road condition data collected over
a period of 10 h at the Testbed Lower Saxony. A comparison
with other publicly available datasets reveals that our dataset,
with trajectories reaching up to 6,428 m in length, contains
the longest trajectories from German highways, enabling the
analysis of long-duration traffic scenarios. With a total of
143,371 km, our dataset is approximately three times larger
than the largest existing German highway dataset, the highD
dataset, which covers 44,500 km. However, it is 28 times smaller
than the largest highway dataset, the I-24 MOTION dataset,
which covers approximately 4,050,000 km. In contrast, our
dataset stands out by including additional raw data beyond
just trajectories, such as locally recorded weather data and
road condition data. Furthermore, the traffic volume data,
derived from the trajectory data, provide valuable insights
into traffic flow. Additionally, the trajectory data are available
in OpenSCENARIO format, facilitating the visualization and
simulation of traffic scenarios. Overall, the dataset provides
valuable resources for researchers seeking to conduct data-
driven behavior modeling. It is available for non-commercial
use and can be directly downloaded from https://doi.org/
10.5281/zenodo.14811064.

Index Terms— Highway Trajectory Dataset, Road User Be-
havior, Automated Vehicles, Traffic Research, Open Data

I. INTRODUCTION

Traffic is a major challenge in today’s world, causing ac-
cidents, injuries, and contributing to harmful carbon dioxide
emissions that worsen climate change [1], [2]. To tackle
these problems, researchers focus on making traffic systems
safer and more efficient. This relies heavily on collecting and
analyzing traffic data, which helps to understand how people
behave on the road and to find practical solutions [3].

In recent times, the collection and sharing of traffic
data, particularly datasets containing vehicle trajectories, has
gained significant attention due to its usefulness in a variety

*  Clemens

Liidtke, Karsten

Schicktanz, Lars Klitzke, Kay Gimm, Richard
Liesner, Henning Hajo Mosebach, Fin Heuer,
Axel Wodtke, Lennart Asbach are with the German Aerospace
Center (DLR), Institute of Transportation Systems, Braunschweig,
Germany, {clemens.schicktanz, lars.klitzke, kay.gimm,
richard.luedtke, karsten.liesner, henning.mosebach,
fin.heuer, axel.wodtke, lennart.asbach}@dlr.de.

1le6
5.796 4§ — truck
— car
—— van
—— motorbike
5.795
=)
=
=
£
2 5.794
o]
N
o™
)
=
]
N ol
S 5.793
=
=
5.792

(C) GeoBasis-DE/LGLN 2024 CC-BY 4.0

UTM Zone 32U Easting

Fig. 1: Visualization of trajectories from the DLR-HT dataset
over a 15-minute period.

of research areas [4]. Stationary cameras, which are com-
monly used to capture traffic data through video surveillance,
have proven to be a reliable source of information. With
recent technological advancements, drones have emerged
in the field of traffic data collection as an alternative [5].
However, the datasets collected by drones tend to cover only
small portions of the road, which can limit the ability to
analyze broader traffic patterns.

To overcome these limitations, it is necessary to imple-
ment continuous data collection across larger areas. Testbeds
designed for long-term operation are ideal for generating
such comprehensive datasets. The German Aerospace Cen-
ter (DLR) began its work with automated driving testbeds
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TABLE I: Comparison of our dataset with relevant publicly available datasets (

LIIET)

indicates data not available, ”’*” indicates

approximately).
Dataset Name (Year) Duration [h] Number of Max. Length Total Length Number of Min. Number Number of
Trajectories of a Single of all Object of Lanes per Cameras
Trajectory Trajectories Classes Direction
[km] [km]

NGSIM US-101 (2005) 0.75 9,206 0.64 5,892% 0 5 8
highD (2018) 16.5 110,500 0.42 44,500 2 2 1
exitD (2021) 16.1 69,430 0.42 27,300 6 2 1
AUTOMATUM (2021) 30 60,000 0.66 39,600* 4 2 1
HIGH-SIM (2021) 2 - 2.44 - 3 3 3
Zen Traffic Data (2023) 5 18,000 2.00 36,000* 2 2 38
1-24 MOTION (2022) 47 600,000%* 6.75 4,050,000%* 7 4 276
DLR-HT (2024) (ours) 10 38,215 6.42 143,371 6 2 118

back in 2009 [6], including the creation of the Application
Platform for Intelligent Mobility (AIM) [7] for urban traffic
and the Testbed Lower Saxony [8] for highway traffic. Both
testbeds have been continuously expanded and improved
through several projects, collecting various types of data, in-
cluding video recordings, trajectory data, weather conditions,
and road surface information. Recently, data from the AIM
Research Intersection has been published as DLR Urban
Traffic dataset (DLR UT) [9].

This publication introduces the DLR Highway Traffic
dataset v1.1.0 [10], a publicly available dataset recorded at
the Testbed Lower Saxony on the German highway A39
near Braunschweig. This dataset provides valuable insights
into real-world traffic conditions, offering a long-distance,
stationary-recorded dataset of vehicle trajectories. The posi-
tion data of these trajectories is shown in Fig. 1.

Such long-distance trajectory datasets allow for the anal-
ysis of changes in driving behavior, such as variations in
speed, following distance, or overtaking patterns.

This publication is conceptually similar to the publication
for the DLR UT dataset [9] and therefore follows a compa-
rable structure, as outlined in the following. In Section II,
we provide an overview of other publicly available traffic
datasets and highlight the unique aspects of our contribu-
tion. Following that, we outline the methods used for data
collection and processing in Section III. Section IV includes
key statistics of the dataset such as the length of captured
trajectories. In Section V, we discuss the contributions of
the dataset, its limitations, and potential avenues for future
work, before concluding the publication in Section VI.

II. RELATED WORK
A. Dataset Comparison

In the field of traffic research, several publicly available
datasets exist. This section outlines how our dataset differs
from previously published ones and highlights its contribu-
tion to the field.

As our contribution is based on the trajectory data from
our dataset, we compare it with other trajectory datasets.
These datasets can be categorized based on their data col-
lection methods: recordings from moving vehicles, record-
ings from flying drones, and recordings from stationary

sensors mounted on infrastructure. In this review, we focus
exclusively on datasets recorded by drones and stationary
infrastructure, as these are more comparable to our dataset
than those collected from moving vehicles.

The Next Generation Simulation (NGSIM) [11] dataset is
the most widely used dataset and was recorded in 2005 using
stationary sensors on a freeway [12]. The first large-scale
trajectory dataset recorded by a drone is the highD [13]
dataset, which has also been widely used since its publication
in 2018. Parts of the highD dataset were converted to Open-
SCENARIO format [14] and made publicly available [15].
However, the data is no longer accessible to the public.
The exiD [16] dataset published data from seven locations
featuring highway on- and off-ramps to enable the analysis
of behavior in these specific on/off-ramp and merging traffic
scenarios. The AUTOMATUM DATA [17] dataset provides a
drone-based highway dataset for the development and vali-
dation of software for automated driving. It includes highly
accurate trajectories of road users from twelve different
locations in Germany. A limitation of these datasets is that
the trajectories are recorded in an area of less than 1 km in
length. Consequently, the behavior of road users in scenarios
covering distances beyond this range cannot be analyzed.

The HIGH-SIM [18] dataset focuses on expanding the test
area and, therefore, the maximum possible trajectory length.
It offers trajectory data extracted from helicopter recordings
captured by 3 cameras. Although the dataset has a relatively
short temporal span of only 2 h compared to the previously
mentioned datasets, it stands out due to its significantly
longer trajectories, with a maximum length of 2.4 km. The
Zen Traffic Data [19] dataset is comparable to the HIGH-
SIM dataset with a temporal span of 5 hours and a spatial
coverage of 2 km. In addition, it includes information on
road surfaces and traffic volume such as our dataset. The
TUMTraf A9 Highway [20] dataset contains data from the
3 km long Providentia++ testbed near Munich, Germany.
However, current releases do not yet contain trajectory data,
but only raw sensor data from installed cameras and LIDAR
sensors, which is why this dataset has not been included in
Table 1.

Table I presents a comparison of the aforementioned
datasets based on various parameters. It is important to note



that Table I does not represent all existing datasets. Table I
builds upon Table 1 from the publication [21] about the I-
24 MOTION dataset, as our dataset is similar to the dataset
and should thus be compared with similar references. Our
dataset and the I-24 MOTION dataset distinguish themselves
from previously published datasets due to their maximum
trajectory length of over 6 km. While the [-24 MOTION
dataset, recorded in the United States, contains trajectories
up to 6.75 km in length, our dataset features trajectories up
to 6.42 km, making it the dataset with the longest road user
trajectories on German highways.

Another difference between our and the 1-24 MOTION
dataset is the number of cameras used for data recording
as shown in Table I. With 118 cameras, we use less than
half of the cameras employed in the recording of the 1-24
MOTION dataset. However, we only capture traffic on at
least 2 lanes per direction, whereas the I-24 MOTION dataset
records traffic from at least 4 lanes per direction.

B. Data Usage

To highlight possible uses of our dataset, the following
examples from related studies are provided.

In [22] trajectory data from the highway is used to develop
and evaluate a novel approach for lane-change maneuver
identification and extraction using a primitive-based repre-
sentation of traffic data. Although the method has shown
to robustly work with trajectory data from a test vehicle,
a follow-up work [23] demonstrated the application of the
method to infrastructure-based traffic data collection. In [23]
on-ramp scenarios are extracted to analyze the merging
behavior of traffic participants. This subject is of significant
concern and is the focus of extensive research due to the
potential for conflict [24] and the high degree of complexity
of the scenario [25], which needs to be managed by both
human operators and automated vehicles. In [26], [27], [28],
additional use cases are presented, utilizing similar trajectory
data from urban areas for behavior analysis. These include
the analysis of rare and critical traffic scenarios for the
development of test scenarios for autonomous vehicles [26],
[28], as well as the quantification of the impact of traffic
congestion on safety and efficiency [27].

In conclusion, the examples presented underscore the
dataset’s potential for investigating the behavior of traffic
participants, emphasizing its wide-ranging applicability in
transportation research.

III. METHOD

The presented dataset was captured using stationary
infrastructure-mounted sensors and then processed through
a data processing pipeline. This section introduces both
components: the technical setup for data acquisition and the
data processing pipeline, and also provides information on
tooling for using the data.

A. Technical Setup

The trajectory data is extracted from video recordings
captured by 118 multi-sensor systems, which are mounted

on 59 poles along the A39 highway, spanning from the
Wolfsburg/Konigslutter interchange to the Cremlingen exit.
The field of view of each multi-sensor system overlaps with
that of the neighboring system, as shown in Fig. 2. This
configuration establishes a redundant system that effectively
tracks all relevant objects on the highway, minimizing the
risk of occlusion and enabling continuous monitoring of road
users.

+5.794 x 106

850 car
truck

van
motorbike

800

750

UTM Zone 32U Northing

700

650

(C) GeoBasis-DE/LGLN 2024 CC-BY 4.0

%
i
& & &

UTM Zone 32U Easting

N
"N
&

Fig. 2: Overlap of camera fields of view (blue) at Testbed
Lower Saxony, with trajectory data (see legend), symbolic
representations of poles (pink), cameras (black), weather
station (orange), and virtual optical loops (yellow).

Each multi-sensor system consists of two GiGEVision
mvBlueCOUGAR-109b cameras, with active infrared lighting
positioned between them to enhance scene visibility, as
shown in Fig. 3. Both cameras are linked to a signal pro-
cessing server, which requests data from the primary camera
at a frequency of 10 Hz. The primary camera subsequently
triggers the secondary camera and the infrared lighting to
ensure synchronized image capture from both devices.

The weather and road condition data is collected
from sensors mounted on a pole at UTM coordinates



Fig. 3: Multi-sensor system mounted on pole next to the A39
highway. Cameras (orange) and infrared lighting (green) are
highlighted.

32U 617078 5794734 as depicted in Fig. 2. General weather
information is collected using the Weather Transmitter
WXT536 sensor. The Present Weather and Visibility Sensor
PWD22 is responsible for determining visibility. The Remote
Road State Sensor DSC211 and Remote Road Surface Tem-
perature Sensor DST111 sensors are employed to assess the
condition of the road surface.

B. Data Processing Pipeline

The processing of camera images is performed directly
on-site in a server room located next to the highway. To
detect and track objects in the camera images and generate
trajectory data, the same processing steps are applied as
those used at the AIM Research Intersection. For a detailed
description of the data processing pipeline, we refer to the
publication [9], specifically Section II1.B, which explains the
processing steps in detail. In brief, detected pixel changes
are used to create 3D voxels that can be described as

object hypotheses. When a sufficient accumulation of object
hypotheses is achieved, an object pose is detected at the
corresponding location. This principle is illustrated in the
images of Fig. 4.

Fig. 4: Object detection. Accumulation of voxels (blue) in
the left image, which form a bounding box (turquoise) in the
right image.

The resulting trajectory data is stored in a database. For
the release of our dataset, the data was retrieved from the
database, and post-processing steps were applied to enhance
data quality. To eliminate unusable measurements, trajecto-
ries shorter than 4 s, those with a total travel distance of
less than 40 m, and those with a distance of less than 40
meters between the first and last object pose, were discarded.
Additionally, the median object dimensions and classification
probabilities were calculated and appended to each object
pose of a trajectory. Since not all objects are continuously
tracked across the entire testbed, particularly under bridges
where trajectories are occasionally interrupted, an algorithm
was developed to link trajectories that are likely to belong to
the same object. Each trajectory was predicted forward based
on its last pose, and the prediction was compared with the
starting points of other trajectories within the next 7 s in a
radius of 300 m. If the other trajectory had a speed difference
of less than 8 m/s and the orientation difference was less than
10°, the trajectory was considered a candidate for merging.
The trajectory with the least deviation between its start
position and the predicted position of the first trajectory
was selected as the successor. The two trajectories were
merged by replacing the successor’s ID with that of the first
trajectory. Finally, a Kalman filter was applied to smooth the
entire trajectory, interpolate missing values, and derive speed
and acceleration data. Interpolated values were marked in the
dataset.

Weather and road condition data were not post-processed
but were directly exported from the database.

Metadata was generated in a separate post-processing step
from the processed trajectory data. To generate the metadata
of traffic volume, virtual inductive loops, as described in [29],
were used to simulate conventional inductive loops and
determine the crossing time of an object at a specific position.
The position of the optical loop was near the weather station,



at UTM 32U Northing 5,794,749 (see Fig. 2), to facilitate
the best possible comparison between traffic volume data and
weather data.

Furthermore, the trajectories were converted into Open-
SCENARIO XML format v1.2.0 [14] to facilitate direct
simulation and visualization of the data within a simulator.
The conversion was carried out using the Python library
scenariogeneration [30]. In this process, trajectory data was
transformed into FollowTrajectoryActions, and the actions
were added and removed from the simulation using StartTrig-
ger and StopTrigger based on their respective start and end
timestamps. Moreover, the objects were assigned to an object
class from the VehicleCatalog of esmini [31] that corresponds
to their classification.

C. Tooling

To facilitate the use of the dataset, we provide a
Python library, Traffic Analysis and Situation Interpreta-
tion (TASI) [32], which simplifies downloading, visualizing
and analyzing the data. The library is regularly updated with
new functionalities to improve the analysis of traffic data.

IV. DATASET DESCRIPTION

The DLR HT dataset v1.1.0 was generated using the
system and data processing pipeline described in the previous
section. This section provides an overview of the dataset’s
key features, helping potential users evaluate its relevance
for their specific use case. A comprehensive description,
including details on the dataset’s format and structure, can
be found in the accompanying documentation, available on
Zenodo alongside the dataset [10].

A. Recording Area

The data were collected at the Testbed Lower Saxony on
the German highway A39. The recording area spans a section
of the highway measuring 6,428 m, located between the
Scheppau and Cremlingen interchanges. The dataset includes
the two on and two off ramps at the Scheppau interchange.
However, it does not cover the section at the Cremlingen
interchange.

B. Dataset Overview

The raw data of the dataset comprises trajectory data of
traffic participants, along with local weather data and road
condition data and was recorded on Monday, October 7,
2024, from 6:00 to 16:00 UTC+00:00 which is 8:00 to 18:00
local time (UTC+02:00). The trajectory data is indexed by
object ID and timestamps, including detailed information
about the center position, velocity, acceleration, dimensions,
and classification of each object. The object classification
is represented by probability values, indicating the like-
lihood of each object belonging to one of the following
classes: pedestrian, bicycle, motorbike, car, van, or truck.
The weather data provide information on wind, sunlight,
precipitation, visibility, and more. The road condition data
provide information on surface temperature, water layer
thickness, and more.

In addition to the raw data, the dataset also includes
metadata such as traffic volume and OpenSCENARIO files,
which have been extracted from the raw data. The traffic
volume data provides the number of objects per lane at a
specific location on the testbed near the weather station, as
depicted in Fig. 2. The OpenSCENARIO files contain all raw
data ready for replay in simulation environments.

C. Data Categories

The following subsections provide a detailed description
of the different data categories included in the dataset.

1) Trajectory Data: This subsection presents the trajec-
tory data, including details on the object classes, duration,
and length of the trajectories.

a) Object Classes: The dataset contains a total of
38,209 trajectories (93,697,250 object poses), with the ma-
jority being trajectories of cars (26,322). The next most
common categories are trucks (7,758), vans (4,003), and
motorbikes (126).

b) Duration of Trajectories: The total duration of the
trajectories is 1,301 h (54 days), with an average trajectory
duration of 2 min. The shortest trajectory is 4 s and the
longest trajectory is 5 min 2 s.

c) Length of Trajectories: The total length of the trajec-
tories is 146,391.856 km, with an average trajectory length
of 3.831 m. Among the object classes, trucks (3,931 m),
cars (3,885 m), and vans (3,359 m) have longer trajectories
compared to motorbikes (1,604 m). The detailed distribution
of trajectory length per object class is shown in Fig. 5.
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Fig. 5: Distribution of trajectory length per object class.

The variation in trajectory length and the clusters in
the distribution shown in Fig. 5 can be explained by the
Scheppau interchange and the bridges, where the view on the
objects is interrupted. The largest cluster in the distribution,
comprising 35 %, consists of trajectories that originate from
objects tracked across the entire testbed, each longer than
6 km. A smaller cluster with a length of around 5,600 m
likely corresponds to vehicles traveling from the south to the
Scheppau exit in the north, exiting the testbed approximately



800 m before reaching the northern end. Additionally, the
second-largest peak can be explained by vehicles entering
the highway at Scheppau to the north and then exiting the
testbed again 600 meters later. The other peaks at approxi-
mately 1,700 m, 2,700 m, and 3,500 m can be attributed to
interrupted trajectories under the bridges. For instance, the
distance from the entrance at Scheppau to the first bridge is
1,700 m.

2) Weather Data: Weather data was recorded every 10 s,
resulting in 3,600 records per day. The dataset was recorded
under very favorable weather conditions in early autumn.
There was no precipitation, snow, or hail, and visibility was
the whole day at the maximum sensor value of 20 km. The
wind blew from various directions at speeds ranging from
0 to 5 m/s. The air temperature fluctuated between 9 and
18 °C.

3) Road Condition Data: The road condition data was
recorded every 30 s, resulting in a total of 1,200 records
in the dataset. Due to the favorable weather conditions, the
road surface remains consistently in good condition. Since no
precipitation was observed and the road surface temperature
did not reach minus degrees, no influence on driving behavior
is assumed. As shown in Fig. 6, the air temperature and road
surface temperature were similar throughout the day, with
the air temperature always slightly above the road surface
temperature, which fluctuated between 9.7 and 20.1°C.
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Fig. 6: Air and surface temperature data from the dataset.

4) Traffic Volume: In the dataset, trajectories at all lanes
are available. The highway experiences significantly higher
traffic volume in the direction from north to south, with
14,154 objects recorded by the virtual optical loops, com-
pared to the direction from south to north, with 9,090 objects.
In total, the most traffic (7,133 objects) is on the left lane
from north to south. Less traffic is on the right lane (7,021
objects), followed by the right (6,167) and left (2,923) lanes
from south to north. With 1,008 objects per hour, the highest
traffic volume is recorded on the left lane from north to
south during the hour starting at 16:00 local time. The traffic
volume per lane over time is depicted in Fig. 7.
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Fig. 7: Traffic volume per hour and lane.

5) OpenSCENARIO: We converted the trajectories into
OpenSCENARIO files, which define FollowTrajectoryAc-
tions for the simulation of vehicle movement. Fig. 8 shows
a screenshot of the replay of the first OpenSCENARIO file
from our dataset in esmini [31]. In the foreground, a red
van is visible in the right lane, moving from north to south.
In the background, additional traffic participants are visible,
captured by the system at that time. The complete trajectories
of all objects simulated in this timestep are shown in orange.

90s entity[0]: 17 579163 ( 63\ N 31)

Fig. 8: Screenshot of the replay of the first OpenSCENARIO
file from the dataset in esmini.

V. DISCUSSION

In this section, we will discussion the limitations of our
dataset, highlight its key contributions, and outline potential
directions for future research.

A. Dataset Limitations

As shown in Table I, our dataset includes six object
classes, which is the second-highest number of classes, with
only one dataset having seven classes. A more detailed
classification could be achieved through the use of neural
networks. This would enable a more differentiated analysis
of traffic participant behavior based on object class.



Furthermore, the area of the testbed for which the weather
data describe the environmental conditions is limited. The
measurements included in the dataset reflect the conditions at
the location of the weather station and cannot be generalized
to the entire testbed, which spans over 6 km in length.

For certain traffic behavior analyses, it is necessary to
represent the position of traffic participants relative to the
lane. A limitation of the dataset is that the high-precision
digital map of the testbed in OpenDRIVE format [33] is not
publicly available. However, a digital map can be created
using OpenStreetMap [34] and Carla [35]. Although this
map does not include all road details, such as shoulder
lanes, it can still be used to determine the position of traffic
participants relative to the lanes.

B. Dataset Contributions

The analysis in Table I shows that our dataset is excep-
tional compared to existing publicly available datasets in the
maximum length of trajectories. While longer trajectories
from highways are only available in the [-24 MOTION
dataset, our dataset stands out in three aspects when com-
pared to it. Firstly, our dataset includes the classification
of motorcycles as objects, enabling the analysis of mo-
torcyclist behavior. Secondly, our dataset includes data on
road conditions, providing up-to-date information on factors
such as water, ice, and snow layer thickness. Thirdly, our
dataset includes metadata derived from the raw data. The
traffic volume data facilitates the analysis of traffic efficiency,
while the OpenSCENARIO data enables direct replay of
the data in a compatible simulator, making it suitable for a
wide range of scenarios. These include accurately replicating
vehicle behavior in traffic simulations, testing advanced
driver assistance systems, and conducting safety analyses. It
is particularly valuable for creating realistic and repeatable
tests in simulated environments, allowing for the evaluation
of traffic behavior.

C. Future Work

The aforementioned metadata are just initial examples.
In future work, the data will be used to analyze various
traffic scenarios and model the behavior of traffic partici-
pants within these scenarios. Selected results will be used
to enrich the dataset, providing a broader data foundation
for researchers and facilitating studies on traffic safety and
efficiency. We encourage users to share analyzed metadata
to create a more comprehensive picture of traffic dynamics.
The dataset’s versioning allows for continuous expansion, for
instance, lane changes can be identified in the trajectory data
and added to the dataset. This facilitates efficient analyses
of lane change behavior, without users needing to detect the
events on their own.

VI. CONCLUSION

This publication presents the DLR HT v1.1.0 dataset [10],
which contains traffic data collected at the Testbed Lower
Saxony near Braunschweig, Germany, from Monday, Octo-
ber 7, 2024. To provide a detailed representation of traffic

conditions, the dataset includes not only trajectory data
but also weather and road condition data. Additionally, the
dataset features metadata such as traffic volume data and data
in OpenSCENARIO format, enabling a replay and simulation
of the data. The provided metadata simplifies the process
of working with the raw data and offers a more detailed
description of traffic conditions. Overall, it can be concluded
that the dataset distinguishes itself from already published
datasets by being the trajectory dataset with the longest
trajectories from German highways. This provides a broad
data foundation for researchers to investigate human road
user behavior.
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