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Abstract— Current trajectory datasets of traffic participants
often lack detailed environmental information, which is crucial
for developing effective data-driven methods for future mobility
solutions. To address this gap, we introduce the comprehen-
sive DLR Urban Traffic dataset version 1.2.0. The dataset
includes 32,296 trajectories of traffic participants, along with
traffic light data, local weather data, air quality data, and
road condition data collected at the Application Platform for
Intelligent Mobility Research Intersection during a single day of
recording. A comparison with other publicly available datasets
reveals that our dataset offers more comprehensive information
about the traffic environment than existing alternatives. An
analysis of our dataset shows that trajectories are available
for all possible 16 routes at the intersection, with the number
of trajectories per route varying significantly, ranging from
11 to 3,344. Most interactions between motorized road users
occur during unprotected left turns with oncoming traffic.
However, there are also interactions between motorized and
vulnerable road users, particularly during right turns. All
in all, the dataset provides researchers with the resources
needed to improve urban mobility solutions. Available for non-
commercial use, the dataset can be directly downloaded from
https://doi.org/10.5281/zenodo.14773161.

Index Terms— Trajectory Dataset, Urban Traffic Data, Au-
tomated Vehicles, Traffic Research

I. INTRODUCTION

Road traffic poses a significant problem in modern society,
as it contributes not only to fatalities and injuries but also
to the rising levels of carbon dioxide emissions that drive
climate change [1], [2]. To address these issues, transporta-
tion research aims to enhance both the safety and efficiency
of traffic systems. Central to this research is the collection
and analysis of traffic data, which are crucial for quantifying
the behavior of traffic participants and developing effective
solutions [3].

In recent years, there has been an increasing emphasis
on gathering and sharing traffic data, particularly trajectory
datasets, which have proven valuable for a wide range of
analyses [4]. The use of stationary cameras for recording
videos has proven to be highly effective for collecting traffic
information [5]. However, many of the collected stationary-
mounted cameras are demounted after the end of the related
research project. That limits a comprehensive measurement
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Fig. 1: Visualization of trajectories from the DLR-UT dataset
over a 15-minute period. Satellite image in the background:
© The City of Braunschweig, Department Geographic Infor-
mation.

which is necessary for a holistic description of traffic sit-
uations according to the 6 Layer Model [6]. With recent
technological advancements, drones have emerged in the
field of traffic data collection as an alternative [5]. However,
drone datasets are often recorded during good weather or
consisting of trajectory data only, lacking information about
the environmental context. That can hinder the development
of models capable of operating in challenging environmental
conditions [7].

To overcome these limitations, future datasets for auto-
mated driving should encompass extensive descriptions of
real-world traffic situations and environmental conditions,
enabling a variety of research questions [7]. Testbeds de-
signed and financed for long-term operation are suitable
for generating such datasets. The German Aerospace Cen-
ter (DLR) initiated its first activities in testbeds for automated
driving in 2009 [8]. That includes the establishment of the
Application Platform for Intelligent Mobility (AIM) [9] and
the Testbed Lower Saxony [10]. A key component of the
AIM is the AIM Research Intersection [11], which has been
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TABLE I: Comparison of our dataset with relevant publicly available datasets (”x” indicates data available, ”-” indicates
data not available, ”*” indicates approximate value).

Dataset Name Duration in
Hours

Number of
Trajectories

Digital Map Traffic Lights Weather Air Quality Road
Condition

inD 10 13,599 x x - - -
Waterloo 1 x x x - - -
CitySim dataset 19 x x x - - -
City-scale Data x 5,000,000* x - - - -
Interaction 1 3,775 x - - - -
TUMDOC-MUC 42 x - x - - -
pNEUMA x 500,000* - - - - -
TUMTraf Intersection x 506 - - - - -
VRU Trajectory x 1,532 - - - - -
Ko-PER x 350 - - - - -
DLR-UT (ours) 24 35,090 x x x x x

continuously used and developed across various projects [9],
[11]. At the intersection, video recordings, trajectory data,
traffic light data, weather data, road condition data, and air
quality data are collected.

In this publication, we introduce the DLR Urban Traffic
dataset v1.2.0 [12], a publicly available dataset recorded at
the AIM Research Intersection in Braunschweig, Germany.
This dataset provides researchers with a valuable resource
for exploring real-world road traffic, positioning itself as
a stationary recorded dataset for comprehensive mobility
research. Position values of the trajectories are depicted in
Fig. 1.

The structure of this publication is as follows. Section II
will provide an overview of other relevant publicly avail-
able datasets and highlight our contribution. Subsequently,
Section III will delve into the data collection and processing
methodologies. Section IV will present the dataset, including
the number of trajectories and interactions captured. Finally,
the discussion in Section V will reflect on the dataset’s
contributions, critically assess its limitations, and explore
potential avenues for future enhancements. The publication
will conclude with a summary of our findings in Section VI.

II. RELATED WORK

A. Dataset Comparison

In recent years, various datasets have been released in
the field of traffic research. This section highlights how the
dataset presented in this publication differs from others and
outlines its contribution.

Trajectory datasets can be categorized into three main
types based on their data collection method. One approach
involves collecting trajectory data directly from vehicles, as
demonstrated by the Waymo Open Dataset [13]. For this
literature review, however, we focus on datasets collected
via drones or stationary setups mounted on roadside in-
frastructure. These types of datasets cover specific areas,
making them particularly suitable for direct comparison with
our dataset. Among the first widely used datasets was the
Next Generation Simulation (NGSIM) [14] dataset released
in 2006. The highD [15] dataset, introduced in 2018, was
the first large-scale dataset collected from public roads
using drones and has since been extensively utilized . An

increasing number of datasets have been developed for urban
environments to address more complex traffic scenarios than
those typically found on highways. The inD [16] dataset is
one such example. Similar to the Waterloo [17] and CitySim
[18] datasets, it provides digital maps along with traffic light
data. Other datasets, like the City-scale vehicle trajectory
[19] dataset and the Interaction [20] dataset, only offer
digital maps without additional traffic data. The TUMDOT-
MUC [21] dataset, collected via drones, goes a step further
by providing traffic light data from traffic light systems and
traffic volume information from inductive loops. In contrast,
the larger pNEUMA [22] dataset includes trajectory data from
over 100 intersections but lacks additional contextual infor-
mation. Smaller datasets, such as TUMTraf Intersection [23],
VRU Trajectory [24], and Ko-PER [25], also focus solely on
trajectory data. In Ingolstadt, Germany, live traffic data are
available, including information on traffic volume and local
weather conditions [26].

Table I compares our dataset with the most similar
datasets, highlighting the information included in each of
them. Table I emphasizes that our dataset stands out by pro-
viding additional information for a more detailed description
of the traffic situation. It is important to note that the table
does not represent all existing datasets. The table is based
on the contents of surveys [7], [27], [28] and the referenced
dataset publications.

Starting from dataset version 1.2.0, traffic volume data
for the lanes on the road (excluding sidewalks) and files
containing all data in OpenSCENARIO format are also
included in our dataset. However, since these are not raw data
but results extracted from the raw data, they are not included
in Table I. The presence of this metadata highlights the
intention behind our dataset release. In the future, additional
annotations and metadata will be added to the dataset,
including critical braking maneuvers, lane changes, and red-
light violations, to provide users with a more comprehensive
traffic representation and enable higher-level analyses.

B. Data Usage

To illustrate potential applications of this dataset, several
examples from related works are presented below.

In [29], the potential of collecting a large dataset from the



AIM Research Intersection for scenario-based testing was
highlighted. The study demonstrated that a rare illegal U-turn
maneuver at the intersection could be extensively described
due to continuous data recording. In [30], the digital map,
trajectory data, traffic light data, and weather data were used
to assess the impact of traffic congestion on safety and
efficiency at a signalized intersection. Safety was evaluated
by measuring time gaps between intersecting vehicles using
the Post-Encroachment Time. Additionally, the data were
combined to calculate metrics such as traffic volume and
delay to assess traffic efficiency. In [31], the data were used
to present a real-world example of a corner case trajectory
and categorize it within the established taxonomy of corner
case trajectories. In [32], the correlation between traffic
density and air quality data was analyzed and compared with
recordings from a mobile measurement vehicle. In [33], it
was shown that even at a signalized intersection with many
protected maneuvers, rare critical situations can occur. The
study illustrated how such situations can be captured in a
dataset covering almost half a year, and what knowledge can
be derived from this data. It was also shown that combining
weather data with trajectory data provides a more realistic
representation of traffic conditions, making the interpretation
of the traffic situation more accurate.

In summary, the presented examples demonstrate how
the dataset can be utilized to explore various aspects of
traffic safety, efficiency, and the analysis of traffic in relation
to environmental factors, highlighting the dataset’s broad
applicability in transportation research.

III. METHOD

The dataset was recorded using a data processing
toolchain, which is continuously developed on a project
basis over several years. The following section describes the
system architecture and the data processing procedures.

A. Technical Setup

The distributed object tracking system is composed of
14 multi-sensors mounted on 10 streetlight poles. 8 of 14
installations are strategically placed on the four central traffic
islands of the intersection, with each sensor aimed at the
opposite side, as illustrated in the bird’s eye view in Fig. 2
(blue aims inside the intersection, green aims outside the
intersection). This setup creates a redundant system that
effectively captures all relevant objects within the central
area of the intersection, significantly reducing the risk of
occlusion. 4 other systems (red) aim at the crossings of
vulnerable road users (VRU) to increase their quality of
detection. Another 2 systems (yellow) are placed at the
northeastern area of the intersection to enable analysis of
VRU behavior on the sidewalks.

As depicted in Fig. 3, each multi-sensor system includes
a pair of stereo sensors (orange) and active infrared light-
ing (red) to enhance scene visibility. Each stereo sensor
(GiGEVision Prosillica GT2750) is connected to a signal
processing server which requests the primary camera with
10 Hz frequency. The primary camera triggers the secondary

Fig. 2: Camera Field of Views (FOVs) at AIM Research
Intersection.

camera and infrared lighting to provide synchronized images
from both cameras.

The traffic light data is recorded from the traffic light
system, which consists of 30 individual signals at the in-
tersection. The state of each signal is recorded every second.
As other data of the dataset, these data are then stored in a
database, where each entry is indexed by a timestamp and
unique identification number (ID) of the signal.

The weather, air quality, and road condition data are col-
lected from sensors mounted on a traffic light pole as shown
in Fig. 4. The sensor used for air quality measurements is
the Air Quality Transmitter AQT530. General weather infor-
mation is collected using the Weather Transmitter WXT536
sensor. The Silicon Pyranometer SP Lite2 sensor is used
to measure sunshine intensity, while the Present Weather
and Visibility Sensor PWD22 is responsible for determin-
ing visibility. The Remote Road State Sensor DSC211 and
Remote Road Surface Temperature Sensor DST111 sensors
are employed to assess the condition of the road surface.

B. Data Processing Pipeline

The cameras are calibrated using a high-accuracy digital
map from a bird’s-eye perspective, where image points are
manually marked and linked to corresponding points in the
digital map. In addition, an optical flow field is derived to
incorporate visual movement information into the process
of object detection. Optical measurements are converted into
the Universal Transverse Mercator (UTM) coordinate system
to enable the implementation of an object detection algo-
rithm based on visual real-time data from all installations.
That includes, that objects are identified by their movement
patterns at the pixel level in consecutive images. From the
resulting flow field, 3D voxels are generated, which are then



Fig. 3: Multi-sensor system on the pole: The upper system
is directed outward, while the lower system faces the inter-
section.

aggregated into objects in the form of bounding boxes. That
results in multi-object detection on the whole intersection.

Low-resolution images from the view of the central area
of the intersection (blue FOVs of Fig. 2) are shown in
Fig. 5. The raw high-resolution video data is processed
directly at the AIM Research Intersection in a server house to
receive anonymized trajectory data. High-resolution images
are converted to anonymized low-resolution images for later
analysis.

For each detected object in every image, a new entry,
also referred to as object pose, is created in the form
of a new row in the trajectory dataset. Since an ID is
generated for each detected object, all data associated with
a specific object ID represents the trajectory of that object.
In a subsequent step, the trajectory data is processed offline
to improve data quality. Trajectories with a duration of less
than 2 s, a length of less than 4 m, or a distance between
the start and end points of less than 2 m are excluded
from the dataset. Additionally, the medians of the object
classification probabilities and the size measurements are
computed for each trajectory and written into all object poses
of the respective trajectory. Furthermore, a Kalman Filter is
applied for smoothing and interpolating the position to 20

Fig. 4: Weather station mounted on the pole, including sensor
labels and the measurement range of the DSC and DST
sensors (dashed lines).

Fig. 5: Images of cameras facing the intersection. Top left:
facing south. Top right: facing west. Bottom left: facing
north. Bottom right: facing east.

Hz. Finally, the velocity, acceleration, and heading values are
derived from the position data. The heading is kept constant
when the velocity drops below 1.5 m/s to ensure that the
heading remains stable for objects with minimal movement.

Weather, road condition, air quality, and traffic light data
are exported directly from a database to the dataset without
further processing. However, the weather, road condition, and
air quality data represent measurements from a specific area
as the sensors are mounted on a traffic light pole in the
southeastern part of the intersection. It is important to note
this limitation when analyzing the data, as measurements
like water layer thickness cannot be generalized to the entire
intersection but for that specific location as shown in Fig. 4.

C. Tooling

The dataset is designed to ensure that its usage is as
user-friendly as possible. Therefore, we have provided a
Python library, Traffic Analysis and Situation Interpreta-
tion (TASI) [34], which simplifies both the download and
analysis of the data. The library is actively maintained and



continuously updated with new functions for analyzing traffic
data. It can also be used to load data from the DLR Highway
Traffic dataset [35], as it is provided in the same format.

IV. DATASET DESCRIPTION

The DLR UT v1.2.0 [12] dataset was recorded using the
setup presented in the previous section. This chapter provides
statistics about the dataset to give potential users an overview
of whether the dataset is suitable for their specific use case.
A comprehensive description of the dataset, including its
format, can be found in the accompanying documentation,
which is available on Zenodo together with the dataset.

A. Key Facts

The dataset comprises trajectory data of traffic partici-
pants, along with traffic light data, local weather data, air
quality data, and road condition data from the AIM Research
Intersection, and was recorded on Sunday, September 24,
2023.

The trajectory data is indexed by object ID and times-
tamps, including detailed information about the position,
velocity, acceleration, dimensions, and classification of each
object. The dataset contains 32,296 trajectories including
15,328,297 object poses, covering both motorized road user
(MRU) and VRU of object classes pedestrian, bicyclist,
motorbike, car, van, and truck.

The traffic light data captures the current state of all 30
traffic lights at the intersection. The weather data provide
information on wind, sunlight, precipitation, visibility, and
more. The air quality data represent concentrations of five
different gases and fine, and coarse particle concentrations in
the atmosphere. The road condition data provide information
on surface temperature, water layer thickness, and more.

The data were collected at the AIM Research Intersec-
tion, an urban intersection located at northeastern corner of
the inner city ring road near the Technical University of
Braunschweig. Buses from the local public transport system
regularly pass through the intersection, as well as large
industrial vehicles. Therefore, interactions between heavy
vehicles and VRUs are included in the dataset.

B. Trajectory Data

1) Object Classes: The dataset contains a total of 31,592
trajectories, with the majority being trajectories of cars
(25,894). The next most common categories are bicycles
(3,153), motorbikes (1,105), trucks (838), pedestrians (765),
and vans (541).

2) Length of Trajectories: The total length of the trajec-
tories is approximately 3,401 km, with an average trajectory
length of 105 meters. Among motorized vehicles, cars (118
m), vans (117 m), trucks (99 m), and motorbikes (77 m)
have longer trajectories compared to VRU trajectories, with
bicycles (31 m) and pedestrians (15 m) having shorter
average lengths. The detailed distribution of trajectory length
per object class is shown in Fig. 6.
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Fig. 6: Distribution of trajectory length per object class.

3) Interactions: As is typical for signalized intersections,
vehicles going straight do not interact with other road users.
However, right-turning vehicles frequently come into contact
with VRUs. Therefore, additional cameras were installed
specifically for the right turn from east to north. The fields
of view (FOV) of these cameras are highlighted in yellow in
Fig. 2. Detailed information about this interaction is provided
in the studies [36] and [37].

The left-turning vehicles from the north, east, and south do
a protected left turn as they have dedicated left turn arrows,
which generally prevent interactions with other road users.
However, the left-turn from west to north is an unprotected
left turn, and thus, vehicles must yield to oncoming traffic
before proceeding. This scenario results in the most interac-
tions in motorized traffic, which is why it has been studied
in [33].

U-turns are allowed for all left-turning vehicles except
those from the west. Despite this restriction, U-turns are
frequently performed, and as such, they were investigated in
[29]. VRUs interact throughout the periphery of the entire
intersection. During special events, such as traffic jams,
demonstrations, or police blockades, unusual interactions
take place. Their effects on traffic safety and efficiency were
explored in [30].

4) Traffic Volume: This section presents the traffic volume
on the road, while traffic volume on the sidewalks and
bike paths is not detailed. The data was extracted from the
digital map of the intersection [38]. In the dataset, traffic
volumes are provided for individual lanes, but here they are
summarized by route to give a general overview. A route
is defined by an entry from one of the four directions and
an exit in one of the four directions at the intersection,
resulting in 16 possible routes. The routes of the trajectories
are estimated using the method presented in [39]. In the
dataset, trajectories for all possible routes at the intersection
are available. The most common trajectories are found on
the routes from east to west and west to east. U-turns, with
106 trajectories, are the least frequent. The exact number
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Fig. 7: Total number of objects per route.

of trajectories per route can be found in Fig. 7, while Fig. 8
shows the traffic volume per lane and hour. The highest traffic
volume per hour is recorded on the route from east to west
at 12:00 UTC+0, which corresponds to 14:00 local time.
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C. Traffic Light Data

The status of the 30 traffic signals is recorded every
second. Therefore, the dataset contains 2,585,610 signal
states. General analyses of the traffic signal states at the time
when vehicles enter the intersection are presented in [33].

D. Weather Data

Weather data is recorded every 10 s, resulting in 8,640
records in the dataset. The dataset was recorded under
very favorable weather conditions in late summer. There
was no precipitation, snow, or hail, and visibility remained
predominantly at the maximum sensor value of 20 km, only
decreasing to aproximately 13 km for a duration of 10 min.
The wind blew from various directions at speeds ranging
from 0 to 4 m/s. The air temperature fluctuated between

12.9 and 20.2 °C, and the sun shone almost throughout the
entire day as shown in Fig. 9. The figure also clearly shows
that the air temperature remained high from 15:00 UTC
to 22:00 UTC, even after solar radiation had significantly
decreased.
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Fig. 9: Solar radiation and air temperature data from the
dataset.

E. Road Condition Data

The data is recorded every 30 s, resulting in 2,880 records
in the dataset. Due to the favorable weather conditions, the
road condition remained consistently good. Since there was
no precipitation and the road surface temperature did not
reach critical levels of negative temperature as depicted in
Fig. 10, no influence on driving behavior is assumed.
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Fig. 10: Road surface temperature from the dataset.

F. Air Quality Data

Weather data is recorded every 60 s, resulting in 1,440
records in the dataset. The data trend throughout the day is
shown in Fig. 11. A more detailed analysis of the weather
station data in relation to traffic volume can be found in [32].

V. DISCUSSION

In this discussion, we will highlight the key contributions
of our dataset, address its limitations, and outline potential
directions for future work.
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A. Dataset Contributions

The analysis in Table I shows that our dataset stands out
from existing publicly available datasets by providing richer
contextual information essential for accurately modeling traf-
fic situations. Many datasets focus solely on trajectory data,
often recorded under optimal weather conditions, lacking the
comprehensive environmental context necessary for devel-
oping robust models that can operate in challenging traffic
scenarios [7].

The presented DLR-UT dataset addresses these limitations
by integrating trajectory data from various traffic participants
with critical environmental factors. This multifaceted ap-
proach enhances understanding of real-world traffic dynam-
ics and supports a wide range of research questions related
to automated driving and urban mobility.

For example, the local weather data in the DLR-UT
dataset offer advantages over publicly available sources like
the German Weather Service. Parameters such as ice layer
thickness and road grip are vital for traffic research because
they significantly influence the safety of traffic situations.
Moreover, air quality data is essential for studying traffic
emissions in urban areas as demonstrated in [32].

B. Dataset Limitations

Our dataset has some limitations that impact the analysis
of traffic behavior. Although pose estimation data for VRUs
is feasible and already available in existing datasets, our
dataset does not provide pose estimation data. This absence
constrains the understanding of interactions, such as the
hand gestures of a turning bicyclist. Additionally, objects are
categorized into just six classes, whereas a more nuanced
classification could be achieved using neural networks, as
supported by many other datasets [7]. Image data are also
absent from our dataset. While other datasets include traffic
images [7], we lack them due to limited upload capacity on
the Zenodo platform. However, these images can be provided
upon request.

C. Future Work

To address these limitations, we recommend expanding the
AIM Research Intersection and releasing additional datasets
to provide a broader data foundation for researchers, facili-
tating studies on traffic safety and efficiency. We encourage
users to share analyzed metadata to create a more compre-
hensive picture of traffic dynamics. Our future plans include
publishing datasets from different time periods, including
winter or autumn, to capture varied environmental condi-
tions.

The dataset’s versioning allows for continuous expansion,
including potential raw data like audio signals. In addition,
higher-level metadata, for instance, red light violations can
be identified from raw data and added to the dataset. This
facilitates efficient analyses of red-light violations, without
users needing to detect these events on their own.

Despite including more environmental data than other
datasets, as shown in Table I, the data foundation in all
publicly available datasets is still insufficient for a complete
understanding of traffic conditions. Additional data types are
required, which could potentially enhance the 6 Layer Model.
Future work could focus on collecting data from individuals
inside vehicles, such as age, or emotional state facilitated by
the growing use of wearables. This could improve analyses
of human experiences and predictions of driver behavior.

VI. CONCLUSION

This study presents the DLR Urban Traffic dataset, which
contains traffic data collected at the AIM Research Intersec-
tion in Braunschweig, Germany, from Sunday, September 24,
2023. To provide a comprehensive representation of traffic
conditions, the dataset includes not only trajectory data, but
also traffic light, weather, road condition, and air quality
data. Additionally, the dataset features processed informa-
tion such as traffic volume and data in OpenSCENARIO
format, enabling direct simulation of the data. The provided
metadata simplifies the process of working with the raw
data and offers a detailed description of traffic conditions.
Furthermore, the study outlines potential extensions to the
dataset and the 6 Layer Model, which can be used to describe
traffic in greater detail. Overall, it can be concluded that the
dataset distinguishes itself from already published datasets
by including a wealth of environmental data. This provides a
broad data foundation for researchers to study traffic safety
and efficiency. Currently, the dataset contains data from a
single day, but plans are already in place for future releases
of one week of data from a winter period.
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