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A B S T R A C T

Understanding and predicting human mobility during disasters is crucial for effective disaster management.
Knowledge about population locations can greatly enhance rescue missions and evacuations. Realistic models
that reflect observable mobility patterns and volumes are crucial for estimating population locations. However,
existing models are limited in their applicability to disasters, as they are typically restricted to describing regular
mobility patterns. Machine learning models trained to capture patterns observable in provided training data also
face this limitation. The necessity of large amounts of training data for machine learning models, coupled with
the scarcity of data on mobility in disasters, often constrains the feasibility of their training. Various strategies
have been developed to overcome this issue, which we present and discuss in this systematic literature review.
Our review aims to support and accelerate the synthesis of novel approaches by establishing a knowledge base
for future research. This review identified a condensed field of related contributions exhibiting high methodology
and context diversity. We classified and analyzed the relevant contributions based on their proposed approach
and subsequently discussed and compared them qualitatively. Finally, we elaborated on general challenges and
highlighted areas for future research.

1. Introduction

In recent years, the economic loss and human harm caused by di-
sasters have reached consistently high levels. Large-scale events, such as
hurricanes, typhoons, and earthquakes, have caused billions of dollars in
damage and claimed thousands of lives [1,2]. Moreover, these events
severely threaten the vital function of critical infrastructures. Due to its
spatial extent, the transportation infrastructure is especially exposed to
disasters [3]. Their impact on human mobility is twofold: On the one
hand, the physical components of the transportation network may be
damaged and become unusable. On the other, the mobility behavior of
the population is affected as people may leave their routines and behave
unexpectedly [4]. Consequently, the regular spatio-temporal mobility
patterns are disrupted, introducing a complexity that is challenging to
comprehend. However, a systematic understanding and situation
assessment of human mobility during disasters is essential for devel-
oping preventive measures or planning rescue and evacuation missions.
Models that describe the mobility dynamics in such situations are
necessary to gain insights into the population’s location and its mobility
behavior. Machine learning (ML) models can adopt this role as they can

capture and reproduce patterns from observed mobility data.
The interest in ML models for predicting future mobility has raised

increasingly in recent years [5], accelerated by a growing amount of
mobility data. ML has been applied to various tasks in mobility
modeling, e.g., predicting a person’s next location, predicting crowd
flows between different regions, and generating synthetic trajectories
[6]. Despite the heterogeneity of ML applications for mobility, most
publications have focused on regular mobility behavior, and disasters
have received only limited attention. As the learned patterns of regular
mobility may not be representative of disasters, the proposed models of
these publications exhibit only constrained applicability to irregular
situations [7,8]. Nevertheless, it can be assumed that ML is a valid and
promising approach to predicting mobility during disasters: past studies
revealed that mobility after an earthquake is indeed predictable [9] and
frequently visited locations after a disaster are influenced by general
factors such as social relationships, home, and workplace [10]. How-
ever, learning these patterns requires large amounts of mobility data for
the respective situation. The general rarity of large-scale disasters and
the resulting scarcity of corresponding mobility data constrain the
training of MLmodels. Therefore, there is a great need for new strategies
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or adaptations of existing ML methods to enable predictions or simula-
tions of mobility in disasters.

To the best of our knowledge, no comprehensive overview and
analysis of ML models to predict human mobility during disasters exists.
To close this gap, we have conducted a literature review of the ML ap-
proaches, analyzing and discussing the proposed strategies. Our work
aims to stimulate future research for this critical task by providing a
foundation of knowledge, focusing on the proposed methods, their
limitations, and general challenges. This study has identified areas
where further research is needed, thus laying the groundwork for a
successful synthesis of new ideas. Moreover, our study simultaneously
provides insights into ML approaches for mobility in situations that
generally face data scarcity. Our main contribution can be summarized
as:

• a systematic and comprehensive analysis of existing approaches and
proposed methodologies for predicting mobility during disasters,

• a discussion of the specific strategies and key challenges, as well as
the opportunities and limitations of the proposed methods, and

• a foundation of knowledge and an overview of fields for future
research.

The rest of the paper is structured as follows. An overview of related
surveys and literature reviews is given in Section 2, followed by Section
3, precisely introducing this work’s context, and Section 4, outlining the
method for identifying and analyzing relevant literature. Then, Section 5
presents the findings of our review, structured in groups of similar ap-
proaches. Section 6 provides a final discussion of critical challenges and
highlights research directions for future work. Conclusions are drawn in
Section 7.

2. Previous related surveys and uncovered aspects

The popularity of ML approaches for capturing and predicting the
dynamics of complex systems has led to an increased application of such
approaches for mobility modeling. Consequently, numerous literature
reviews and surveys have been published that analyze and present the
contributions and advancements in this vast field of research. This sec-
tion presents surveys and literature reviews related to our work and
points out the limitations of these publications that this study aims to
fill.

The available reviews take various perspectives, focusing on
different aspects. A recent review by Luca et al. [6] provides a
comprehensive overview of popular deep learning (DL) methods in
human mobility and a discussion on different tasks and open challenges.
Jiang & Luo [11] surveyed a subgroup of DL methods for traffic fore-
casting. They reviewed the application of graph neural networks, pre-
senting the addressed tasks (e.g., traffic flow, speed or demand
prediction) and a collection of open datasets. Others reviewed research
on specific sub-systems of transportation. Zhu et al. [12] centered their
review on railway systems from the perspective of situation perception,
future state prediction, and operation optimization. In addition, Xie
et al. [13] enlightened the field of urban crowd flow prediction, pre-
senting and discussing popular machine learning methods in this field.
On the contrary, Veres & Moussa [14] provided a review centering on
various tasks and selected corresponding approaches. In [15], Ahmed &
Diaz listed an extensive collection of open datasets and reviewed con-
tributions addressing the tasks of passenger localization, transport mode
detection, and machine learning mobility model generation. All these
reviews focus on different ML methods, specific tasks, or specific aspects
of mobility. In doing so, they do not sufficiently address mobility during
disasters or rare events. In contrast, our work provides insights into ML
approaches for predicting irregular mobility in situations that face data
scarcity.

Several reviews address disasters and discuss the role of ML and big
data in enhancing resilience in infrastructure systems and mobility. For

example, a recent survey by Kyrkou et al. [16] explores the potential of
ML for tasks such as early warning or human recognition in the different
stages of emergency management. A focus on mobility data is attained
by Haraguchi et al. [17] in their review on human mobility data for risk
reduction and resilience. It presents different data sources on human
mobility and research on the opportunities of data analytic approaches
for different stages of disaster management. Additionally, Yabe et al.
[18] conducted a review on the role of mobile phone location data in
natural disasters and epidemics. The article provides an extensive
analysis of various types of data and their application in disaster
response and recovery. These contributions above investigate the role of
data and ML in disaster management. However, they neglect methods to
predict mobility following a disaster. This task faces high spatio-
temporal complexity and is hardly comparable to other applications of
ML in disaster management, such as remote sensing or human
recognition.

While these surveys present and synthesize relevant approaches and
perspectives, they do not thoroughly review ML methods for human
mobility in disasters. As mobility during disasters exhibits peculiar
characteristics (e.g., increased irregularity), and corresponding data is
usually scarce, popular general methods are presumably only limitedly
applicable. None of the above reviews focus onmethods that can capture
mobility in such extreme events. Our work aims to fill precisely this gap
by analyzing, presenting, and discussing existing contributions in this
field.

3. Contextual preliminaries

This section defines the scope of this review by introducing its
conception of human mobility, disasters and disaster mobility.

The term human mobility describes the movements of human beings
over a period of time. It encompasses the behavior of individuals, with
the locations visited by a person reflecting their activities. In general,
human mobility shows great periodicity, exhibiting recurring patterns
[19]. Human mobility can be observed at the individual level, for
example in the case of a person’s sequence of location visitations, or at
the aggregated level, such as in the case of aggregated crowd flows
between a set of locations, such as points of interest (POIs).

Disasters are periods of disruption in the functioning of communities
[20]. Consequently, disasters may be times in which the transportation
infrastructure is partly unavailable or human behavior is disturbed to a
degree that precludes continuing established patterns of human
mobility. The focus of this study is on large-scale disasters that result in
significant changes to human mobility patterns. Accordingly, we
consider various scenarios pertinent to our research, ranging from nat-
ural disasters such as earthquakes to large-scale emergencies such as gas
leakages in urban environments.

By disaster mobility, we refer to the response of human mobility to a
disaster. Specifically, we restrict to the immediate reaction of human
mobility to the occurrence of the disaster, without considering potential
long-term effects. Therefore, our research is focused on the transition
from typical mobility patterns to uncertain human mobility reactions to
disasters.

4. Review methodology

This work presents a structured literature review (SLR) to gain a
comprehensive understanding of ML approaches for predicting human
mobility during disasters. The SLR is opposed to the semi-narrative and
integrative reviews, which find application when a full review is hin-
dered by an extensive body of related literature or for critically
reviewing mature or emerging topics [21]. Contrarily, the SLR allows for
an analysis of the current state of the art and establishes a foundation of
knowledge and existing approaches for synthesizing future research.
Therefore, the SLR is most suitable for identifying, analyzing, and dis-
cussing the field of research of our concern. This section presents details
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of our review methodology.
First, the research questions (Table 1) were defined, sharpening the

scope of the review and supporting the goal of providing a compre-
hensive overview of the literature about ML methods for disaster
mobility. The first research question (RQ1) serves to identify existing
work and the state of the art methods within the field. Consequently, a
comparison of the approaches is enabled. Research question two (RQ2)
is designed to discern and highlight challenges that emerged from the
literature discovered by RQ1. These challenges are potential topics for
further research. By the third question (RQ3), methods are identified
which show promising results in addressing the challenges highlighted
by RQ2. These approaches may have significant potential to be further
investigated for predicting human mobility in disasters.

To properly answer the aforementioned research questions, a review
of the complete body of relevant literature was required. Therefore,
appropriate keywords were defined that reflect the field of research
framed by the defined research questions and Section 3. The three key
aspects of our research – machine learning, disasters, andmobility – served
as the cornerstone of the literature search, structuring the exploration of
the field. To find a possibly complete body of relevant literature, syno-
nyms and related terms to these main keywords were included, as shown
in Table 2. Search strings were created based on these keywords and
their synonyms, as depicted in Appendix A. With these search strings,
literature databases, including Scopus, ACM, IEEExplore, and Web of
Science, were queried by a title-abstract-keyword search to further
contribute to finding a complete body of literature.

Following the literature search, the found papers were subject to a
thorough filtering process. First, they were filtered by duplicates to
obtain a list of unique papers. In this step, all cover letters of proceedings
and other collections were removed as well. In the next step, all papers
that, based on title, did not match the scope of this literature review
were removed. Subsequently, all papers not written in English or not
retrievable were removed. Finally, the found papers were filtered by a
full review. In this last step, only papers that employedmachine learning
methods and addressed human mobility in disasters were retained.

As proposed by Wohlin et al. [22], a subsequent backward and for-
ward snowball search supplemented the selected articles to ensure a
comprehensive collection of all relevant literature. This snowball search
aimed to identify further relevant papers that the systematic database
search missed. Based on citing papers and citations of the previously
reviewed papers, three additional publications were revealed. In com-
bination, 27 papers were deemed relevant for this work. Fig. 1 depicts a
graphical representation of the filtering steps.1

It is important to note that some publications represent extensions of
previous work. That is, the approach presented by Song et al. [23] in-
cludes the former contributions [24,25], and Song et al. [10] present an
extension of [26,27]. The papers presenting such extensions were
considered jointly for the review to provide a concise overview of the
proposed approaches. Combining such extensions decreased the set of
unique contributions to 23 articles. This set constituted the final

selection of papers, which were subsequently reviewed regarding the
initially formulated research questions. Consequently, the review
focused on the general approaches and the proposed methodologies, the
applied strategies to address the challenges peculiar to disasters, and the
existing limitations of the contributions.

Based on the reviewed approaches, the selected papers were assigned
to different groups reflecting similar methodologies. In this context,
methodologies were considered to be similar if they were based on the
same learning framework and, where applicable, employed comparable
learning strategies or neural network architectures. First, the ap-
proaches were grouped according to their general learning framework, i.
e., reinforcement learning, unsupervised learning and supervised learning.
The approaches following a reinforcement learning or unsupervised
learning framework were not further distinguished due to their limited
number of publications. Contrarily, the approaches classified as super-
vised learning were subdivided depending on whether deep learning
methods or traditional machine learning methods were used. Then, the
deep learning approaches were grouped to recurrent neural networks and
to approaches that use networks specifically designed to capture spatio-
temporal dependencies, which were labeled spatio-temporal neural net-
works. Finally, the situation-aware approaches, which aim to adapt to
perceived situations, and those approaches that deployed a transfer
learning strategy were distinguished accordingly. This classification
resulted in a hierarchical structure containing seven final groups of
publications, as presented graphically in Fig. 2. Note that some publi-
cations could not be classified exclusively to a unique group as they
comprised hybrid approaches, combining different methods, or evalu-
ated different methods as a comparison. Such publications were classi-
fied depending on their core contribution, as depicted in Table 3.

Within the derived groups, the publications were analyzed, dis-
cussed, and compared in terms of their approaches, addressed tasks and
scenarios, and results. While a quantitative comparison of the respective
results would enable the identification of the best-performing approach,
the intricate diversity of contexts and tasks addressed posed a significant
challenge, making such an endeavor unfeasible. Moreover, most data-
sets used for training the proposed models are not publicly available,
further hindering a benchmark test of the models’ performance. A
summary of performance metrics is presented, where available, to
address this issue. If quantitative results were not provided, qualitative
information on the results is included in the presentations. The results of
the analysis and comparison of the reviewed publications are presented
in the following section.

5. Machine learning methods for human mobility in disasters

This section presents the different ML approaches for human
mobility prediction in disasters proposed in the reviewed papers. It is
structured in different subsections according to the deployed learning
framework. First, the group of supervised approaches is presented, split
into subsections according to Fig. 2. A presentation of the application
using unsupervised learning follows. Finally, the last subsection pro-
vides an overview of related reinforcement learning approaches. Each
subsection first presents the respective papers, followed by a brief dis-
cussion. This discussion compares the presented approaches and

Table 1
Presentation of the research questions. The research questions for designing the
database search and conducting the review strongly focus on proposed methods
and approaches.

Research Questions

RQ1 Which existing ML methods are suitable for predicting disaster mobility?
RQ2 What are challenges and fields of future research in disaster mobility

prediction with ML methods?
RQ3 Which approaches have been proposed for specifically addressing the

challenges mentioned in RQ2?

Table 2
Keywords and related terms for the literature search. The keywords for querying
literature databases reflect the three topics of concernMachine Learning, Disaster,
and Mobility.

Keywords

Machine
learning

Machine learning, deep learning, artificial intelligence, neural
network, big data, data mining, urban computing

Disaster Disaster, crisis, hazard, catastrophe, emergency, evacuation,
extreme event, extreme situation

Mobility Mobility, crowd flow, evacuation, relocation, traffic, trajectory,
urban dynamics

1 The work was done before December 31, 2023.

J. Gunkel et al.



Progress in Disaster Science 25 (2025) 100405

4

identifies their opportunities and most pressing limitations. Further-
more, a tabular summary is provided for each subsection, providing a
distilled overview of the respective publications. The table presents
general information about the addressed task, learning strategy, adopted
model or architecture, and used data for most subsections. In addition,
the availability of the data and code and the evaluation metrics
employed are included. For those publications that provide quantitative
results for experiments which specifically concern disasters, a brief
summary of these results is included as well. If such information is un-
available, the respective cell is marked with “n.a.” (not available). The
tables in Section 5.1.4, Section 5.1.5, and Section 5.3 have a structure
adapted to the respective subsection.

5.1. Supervised learning

This subsection concentrates on research contributions that adopt
supervised learning. First, we introduce the identified traditional ML
approaches which do not employ DL methods. Second, we present the
reviewed DL approaches, distinguishing them depending on their ar-
chitecture, as depicted in Fig. 2. We start by presenting approaches using
recurrent neural networks, followed by works proposing spatio-
temporal neural networks. Then, we highlight different architectures
and approaches to establish a situation-awareness. Finally, methods that
rely on transfer learning are presented.

5.1.1. Traditional machine learning
Traditional ML approaches such as support vector machines (SVMs)

or decision trees (DTs) have been successfully used for a variety of tasks
in mobility modeling [15]. Several works have adopted such traditional
methods to solve different tasks in disaster mobility prediction. An
overview of the according publications, including information on their
methodology and results, is given in Table 4.

Anyidoho et al. [30] addressed predicting evacuation flows caused
by a hurricane using demographic, GPS, and hurricane and flood
severity data. Their model consists of two stages. At the first stage, a
classifier is trained to decide whether a positive evacuation flow exists
between a given origin-destination (OD) pair. The classifier is a gradient
tree-boosting model with XGBoost and returns the probability of a

Included in
Review:

27

Filter by
Full Review:

24

Filter by
Language &
Availability:

165

Filter by
Title:
173

Filter by
 Unique Papers:

6536

Paper
Retrieved:

8608

Snowball
 Search:

3

Fig. 1. Literature filtering process. The initially found 8608 papers were reduced to 24 papers during the filtering process. Supplemented with 3 papers found by a
snowball search, the final set of papers comprised 27 publications.

Fig. 2. Hierarchical presentation of the found approaches. Here, the numbers indicate the amount of papers within each group. Note that the situation-aware ap-
proaches constitute a subset of the recurrent neural networks and the spatio-temporal neural networks. Additionally, the transfer learning group is only partially a
subgroup of the spatio-temporal neural networks, as it includes one approach that this framework could not adequately classify.

Table 3
The two approaches that did not allow for a unique classification were assigned
to the group reflecting their core contribution.

Authors Approach Assigned Group

Song et al. [28] Unsupervised & supervised learning Unsupervised
learning

Chikaraishi
et al. [29]

Comparison of different models including
DL models and traditional ML models

Traditional ML
approaches

J. Gunkel et al.
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positive evacuation flow. If this probability surpasses 50 %, a regressor
estimates the magnitude of the flow at the second stage. Again, the re-
gressor is based on gradient tree-boosting. Their boosting strategy aims
for a flexible model capable of capturing the spatio-temporal charac-
teristics of evacuation flows. Specifically, their results show that their
model has increased capabilities to learn long-range evacuations
compared to traditional gravity models. Moreover, the resulting OD
matrix coincides with the ground truth by more than 50 %.

Another task of disaster mobility prediction was addressed by Chi-
karaishi et al. [29]. They tested different methods to predict the traffic
flow volume and street occupancy, i.e., the share of time a car occupies a
location, after heavy rains and subsequent landslides on a highway in
Japan. The evaluated methods include ARIMA, vector autoregression,
random forests, SVM, XGBoost, and shallow and deep multi-layer per-
ceptrons. Among these methods, XGBoost and random forest performed
best in the investigated setting with a single street. However, the authors
remarked that these methods may encounter difficulties extrapolating to
unseen data.

Khaefi et al. [31] trained a model to predict the evacuation desti-
nation in case of volcano eruptions on the archipelago of Vanuatu. They
used a decision tree model with XGBoost. Based on an island’s in-
habitants’ call details records, the model estimates their individual
evacuation destination island.

Yabe et al. [32] developed a model to predict the irregularity of
commuting induced by a disaster, meaning the total temporal disruption
of daily commuting. Their method can be split into two stages. The
authors first employed a logistic regression, classifying whether a trip
from one location to the next is started with a significant delay, on time,
or significantly early. Based on the predicted class, a subsequent linear
regression estimates the duration of the irregularity. In aggregation, the
model returns the total duration of irregular mobility, providing an
overview of the disaster’s impact. Yabe et al. tested their approach with
data on earthquakes and typhoons, evaluating the performance of pre-
dicting different activity times, such as leaving home or working. Their
results show an accuracy of around 60 %–75 %, depending on the
considered activity. While the general pattern across the activities shows
high similarity among the two scenarios investigated, the results for
typhoons exhibit an overall higher accuracy.

The above-presented publications investigate heterogeneous di-
sasters and tasks following different traditional ML methodologies. In
the following, the approaches are compared and discussed in relation to
different aspects. The first aspect addresses the complexity of the scenarios
investigated in the respective publications. It concerns the suitability of

the presented approaches to capture the dynamics in the considered
disasters and transportation systems. The second aspect focuses on the
generalizability of the approaches. Here, the extent to which the proposed
models may be applied to predict the dynamics in unseen disasters is
discussed. The third aspect centers on the data requirements of the ap-
proaches. This aspect addresses the discrepancy between the quantity of
necessary data and the limited availability of data.

5.1.1.1. Complexity of scenarios. While all these approaches appear to
achieve their objectives, they are used for scenarios without complex
spatial dependencies (i.e., [29,32]) or reduce the large spatial system to
a linear setting (i.e., [30,31]). Presumably, these approaches are limited
in their ability to predict the complex dynamics of large-scale trans-
portation systems. Moreover, it is unlikely that traditional ML ap-
proaches can outperform DLmodels, which have been proven to capture
deep spatio-temporal dependencies successfully. A recent survey dis-
cusses this aspect and emphasizes the superiority of DL over traditional
ML methods to capture the complexity of transportation systems in
different tasks, such as crowd flow or trajectory generation [6].

5.1.1.2. Generalizability. As indicated by Chikaraishi et al. [29], the
proposed models may exhibit poor performance when deployed for
events or locations other than those for which they were originally
developed and trained. While this limitation is pertinent to a wide range
of ML methods, the presented works do not include any strategies to
improve the generalizability of their approaches.

5.1.1.3. Data requirements. One striking advantage of the proposed
traditional approaches is their reduced need for data compared to DL
approaches. Therefore, they may be less impacted by the scarcity of
mobility data in disasters and thus constitute promising approaches to
attaining an overview of such situations.

5.1.2. Recurrent neural networks
Recurrent neural networks (RNNs) have been proposed to model

sequential relationships such as temporal dependencies over a period of
time [33]. Therefore, they are a popular choice for predicting mobility,
as they can learn the temporal patterns for estimating future states
[34–36]. Especially long short-term memory (LSTM) [37] and gated
recurrent unit (GRU) [38] networks have been used in several applica-
tions such as next location or future flow prediction [39,40]. Several
approaches based on RNNs have been developed to predict mobility
during a disaster. A summary of the respective publications can be found

Table 4
Comparison of different traditional ML approaches. The selected works investigate scenarios with only limited complex spatial dependencies.

Authors Disaster Task Strategy Model Data Evaluation Result Data/Code
available?

Anyidoho
et al. [30]

Hurricane Evacuation
flow prediction
between cities

XGBoost applied
to decision trees

XGBoost applied to
decision trees

GPS data,
hurricane
data, survey
data

PDE, R2,
RMSE, CPC

Incoming evacuees
PDE: 0.053, R2: 0.843,
RMSE: 1.567 OD
prediction CPC: 0.544,
R2: 0.546, RMSE:
101.635

No/No

Chikaraishi
et al. [29]

Heavy rain,
landslide

Traffic flow &
street
occupancy
prediction

Comparison of
different models

ARIMA, vector
autoregression, random
forest, XGBoost, SVM,
shallow & deep multi-
layer perceptrons

Traffic sensor
data

R2, MAE Flow (R2/MAE) RF:
0.8/0.31, XGB: 0.82/
0.29 Occupancy
(R2/MAE) RF: 0.93/
0.18, XGB: 0.94/0.17

No/No

Khaefi et al.
[31]

Volcano
eruption

Evacuation
destination
prediction

XGBoost applied
to decision trees

XGBoost applied to
decision trees

Call details
record data

AUC 0.77 No/No

Yabe et al.
[32]

Earthquake,
typhoon

Overall daily
delay
prediction in
commuting

Multi-class
classification &
regression

Logistic and linear
regression

GPS data Predictive
accuracy,
Pearson corr.

Predictive accuracy:
64.8 %, Pearson
correlation: 0.76

No/No

J. Gunkel et al.
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in Table 5.
For instance, Jiang et al. [41] proposed an LSTM encoder-decoder

model to predict the next multiple locations of a trajectory. Their
model comprises an LSTM layer that encodes the α last observed tra-
jectory locations, followed by m LSTM layers as decoders, each pro-
ducing a unique snippet of a fixed number of predicted future steps.
Concatenating these snippets yields the final multi-step prediction.
Using multiple decoders, the authors circumvented the error propaga-
tion problem in multi-step predictions [41]. An application of their
approach to the 2011 Tōhoku earthquake in Tokyo shows a performance
comparable to the application to regular weekdays. Moreover, a
graphical representation of the predictions indicates that the model can
clearly learn general evacuation routes.

Rahman&Hasan [42], Roy et al. [43], and Afrin et al. [44] predicted
the evacuation traffic speed (Rahman & Hasan) or volume (Roy et al. &
Afrin et al.), on an interstate road in Florida using LSTM networks. While
Rahman & Hasan [42] included temporal metadata, as well as the up-
stream and downstream sensor data for a location of concern, the model
by Afrin et al. [44] was trained only with traffic sensor data. Roy et al.
[43] included hurricane-related tweets from Twitter in their long-term
traffic volume prediction. All three approaches rely on a one-layer
LSTM network to capture the sequential dependencies. Opposed to the
pure LSTM network in [42,43], the model in [44] comprises an LSTM
layer, followed by a flatten and dense layer and a subsequent Kalman
Filter to compute the final output. All three works include a case study
on traffic during Hurricane Irma. Afrin et al. [44] and Rahman & Hasan
[42] presented similar results, showing notable differences in prediction
errors between consecutive sensor locations. Moreover, the model of
Rahman & Hasan achieved a high accuracy at constant traffic speeds,
while the errors increased with strong fluctuations. Roy et al. [43]
demonstrated the ability of their model to predict long-term traffic
volumes up to 24 h in advance.

A different task is addressed by Mahmud et al. [45], as they incor-
porated a recurrent network for modeling evacuation decisions in an
evacuation path planning system. They deployed a Latent RNN [46],
which contains an additional latent variable, allowing the network to
model more complex dependencies. This latent variable is supposed to
encode the relationship between people’s evacuation responses and the
hurricane features. The evaluation of their approach in a hurricane
scenario showed the superiority of their Latent RNN model over stan-
dard RNNs. For most points in time, their model reliably predicted the
evacuation response time but clearly deviated from the ground truth

directly before and after the hurricane’s landfall.
Jiang et al. [47] proposed an LSTM network to predict short-term

population density during earthquakes. The authors considered a pop-
ulation density map as an image (each pixel corresponds to a grid cell in
a city). They trained their model to predict the next population density
map, similar to the next frame in videos. They tested their model with
different history windows: the single most recent step and the last five
most recent steps. Generally, their results show the model’s ability to
capture short-term changes in population density. However, the results
for the different history windows exhibit significant differences, as a
history window of the last five steps results in an improvement of more
than 40 % compared to the history window of only one step.

Fan et al. [48] adopted an ensemble of GRUs to learn the dynamics of
trajectories on single days of historical data. For each day, a single
stacked GRU network is trained to predict the next location of a given
trajectory. These GRU networks are combined in an ensemble frame-
work. This framework further features an online GRU learner, ac-
counting for short-term dynamics. The online ensemble framework’s
purpose is to predict a trajectory’s future locations as a combination of
the individual networks’ output. This combination is created using an
attention mechanism as a gating function. This gating function decides
on a linear combination of the different GRU networks. The online
ensemble approach is designed to adjust dynamically to observed situ-
ations and thus is further discussed in Section 5.1.4.

All proposed models were developed for tasks that exhibit sequential
dependencies of temporal (e.g., evacuation decisions [45], traffic vol-
ume [44], or traffic speed prediction [42]) or spatial extent (e.g., next
location(s) [41,48] or traffic volume prediction [44]). These tasks are
predestined to be solved with recurrent architectures, as presented in
this section. Although there exist differences regarding the specific tasks,
several aspects are similar across the respective publications.

5.1.2.1. Complexity of scenarios. As previously stated, the presented
RNN approaches aim to predict sequential phenomena. However, the
considered settings exhibit spatial dependencies of only limited
complexity (e.g., fixed and strictly ordered sensor location [42] or single
trajectories with dependence on limited historical steps [41,48]). For
predicting the mobility in large-scale transportation systems, which
exhibit complex spatial dependencies, incorporating these may be of
great importance. The presented RNNs may be insufficient to capture
these dependencies adequately. In contrast, augmenting recurrent
modules with DL modules such as convolutional neural networks (CNN)

Table 5
Comparison of different works that adopt RNNs. All of these works propose approaches to predict sequential phenomena.

Authors Disaster Task Strategy Architecture Data Evaluation Result Data/Code
available?

Jiang et al.
[41]

Earthquake Next locations
prediction

Sequence
learning

RNN encoder-
decoder

GPS data MAE, RMSE 30 min/60 min prediction
MAE: 1250/2050, RMSE:
1400/2300

No/No

Rahman &
Hasan [42]

Hurricane Evacuation traffic
speed prediction

Sequence
learning

LSTM Traffic sensor data RMSE, MAE,
MAPE

RMSE: 2–4, MAE: 1.5–3,
MAPE: 2 %–4.5 %

No/No

Roy et al.
[43]

Hurricane Evacuation traffic
volume prediction

Sequence
learning

LSTM Traffic sensor
data, Twitter data

RMSE, MAPE 1 h/15 h prediction RMSE:
110/160, MAPE: 13 %/25
%

No/No

Afrin et al.
[44]

Hurricane Evacuation traffic
volume prediction

Sequence
learning

LSTM, Kalman
filter

Traffic sensor data MAE MAE: 39.312 No/No

Mahmud
et al. [45]

Hurricane Evacuation
decision
prediction

Sequence
learning

Latent RNN
[46]

GPS data, road
network data,
weather data

RMSE, MAPE RMSE: 0.0005, MAPE: 30
%

No/No

Jiang et al.
[47]

Earthquake Population density
prediction

Sequence
learning

LSTM Mobile data, land
use data

MSE MSE: 11029/6742 (1 step/
5 step history window)

No/No

Fan et al.
[48]

Earthquake Next location
prediction

Online
ensemble
learning

GRUs,
attention

GPS data Prediction loss
(cross entropy)

Prediction loss during
earthquake: 0.2–0.9

No/No

J. Gunkel et al.



Progress in Disaster Science 25 (2025) 100405

7

or graph convolutional networks (GCN) has become a popular approach
for capturing spatial and temporal dependencies simultaneously [6].

5.1.2.2. Data requirements. As stated in Section 5.1.1, the presented DL
models require a substantially larger quantity of training data to pro-
duce meaningful results than traditional ML methods. In principle, data
on mobility in disasters exist, such as the GPS data from Japan used by
Jiang et al. [41] and Fan et al. [48], or as the mobile data used by Jiang
et al. [47]. However, such data sources are often undisclosed (Table 5),
which restricts reproducing the presented results and comparing the
performance of different approaches. One exception is given by traffic
sensor data, as used by Rahman & Hasan [42], Roy et al. [43], or Afrin
et al. [44]. In many cases, such data is provided by governmental in-
stitutions. However, it should be noted that these data cannot be
assumed to be representative of mobility in general, as they commonly
restrict to motorized traffic on major streets and fail to represent full
trips from origin to destination. Moreover, traffic sensor networks
depend on power supply, which may be disrupted during disasters,
resulting in incomplete data. Generally, the rarity of disasters restricts
the amount of any corresponding mobility data. Consequently, all ap-
proaches face the challenge of reduced training data. Fan et al. [48]
addressed this challenge by basing their model on large mobility data on
regular situations and adjusting it based on limited disaster data.

5.1.2.3. Generalizability. The sequential phenomena that the presented
contributions aim to predict are all linked to a specific event and a given
location. Therefore, the trained models are likely to be inapplicable to
other locations or events, being location-specific or event-specific,
respectively. Especially the models relying on traffic sensor data (i.e.,
[42–44]) face the limitation of being location-specific due to the specific
spatial arrangement of the sensors. This limitation also applies to the
contributions aiming to predict the next location of trajectories (i.e.,
[41,48]). As these models are trained with sequences of coordinates,

they are restricted to the corresponding areas. In contrast, these models
may be applicable to other disasters with similar severity and equal
spatial extent, as the resulting mobility patterns may be comparable. In
particular, the work presented by Fan et al. [48] reaches beyond the
event-specificity by creating a model that can adapt continuously to
short-term observations. Moreover, the model developed by Mahmud
et al. [45] may be applicable to other hurricanes, as the authors aim to
establish a connection between general hurricane features (e.g., wind
speed or distance to hurricane center) and the evacuation decision.
However, if the spatial extent of a disaster deviates from previously
observed ones, one cannot assume to predict the mobility in such a
situation with the proposed approaches reliably.

5.1.3. Spatio-temporal neural networks
Deep learning has been used extensively to capture the complex

spatio-temporal patterns in human mobility [6]. Specific network ar-
chitectures, which may be referred to as spatio-temporal neural net-
works, have been proven particularly effective in achieving this
objective. These architectures often consist of combinations of recurrent
networks (e.g., LSTM, GRU) to capture sequential dependencies and
convolutional networks (e.g., CNN, GCN) to discern spatial de-
pendencies. Examples of such combinations are graph convolutional
recurrent unit (GCRU) [49] or convolutional LSTM network
(ConvLSTM) [50]. An overview of approaches incorporating these
combinations in human mobility in disasters is presented in Table 6.

Jiang et al. [7] and Wang et al. [8] leveraged GCRUs in their pro-
posed models. The model developed by Wang et al. [8] comprises an
encoder-decoder setup based on GCRUs. Here, the encoder and the
decoder share the same architecture of a two-layer GCRU network in a
pyramidal structure. In this structure, the sequential outputs of the first
layer are pairwise concatenated and used as input for the second layer,
reducing the dimension of the inputs. In contrast, the model proposed by
Jiang et al. [7] relies on a one-layer GCRU encoder. The encoder,

Table 6
Comparison of different spatio-temporal neural networks. These networks combine recurrent networks and convolutional networks to capture the spatio-temporal
characteristics of human mobility.

Authors Disaster Task Strategy Architecture Data Evaluation Result Data/Code
available?

Jiang
et al.
[7]

Typhoon,
hurricane

In- and outflow
prediction of regions
(typhoon)/POI
visitation prediction
(hurricane)

Meta learning GCRU encoder,
one-shot decoder

GPS, POI
visitation, Twitter,
spatial metadata

RMSE,
MAE,
MAPE

Typhoon RMSE: 2470.5/
2491, MAE: 805.8/822.1,
MAPE: 9.62 %/9.87 %
Hurricane RMSE: 718.6,
MAE: 247.2, MAPE: 28.96
%

Yes/Yes

Wang
et al.
[8]

Blizzard Multi-modal mobility
volume prediction

Dynamic filter
generation

Pyramidal GCRU
encoder-decoder,
attention

Bike-sharing, taxi
trips, POI
visitation

RMSE,
MAE,
MAPE

Blizzard NYC RMSE:
23.63, MAE: 15.79, MAPE:
33.33 % Blizzard DC
RMSE: 4.103, MAE: 2.004,
MAPE: 35.03 %

Yes/Yes

Jiang
et al.
[51]

Earthquake,
typhoon

Crowd flow and
density prediction

Multitask
learning

Convolutional
LSTM

GPS MSE MSE (density/flow)
Earthquake: 5.549/0.102,
Typhoon: 6.753/0.17

No/Yes

Rahman
&
Hasan
[52]

Hurricane Edge flow prediction
in transportation
network

Transfer
learning

LSTM, GCN Traffic detector RMSE,
MAE, R2

RMSE: 399.69, MAE:
268.03, R2: 0.943

No/No

Hao &
Wang
[53]

Hurricane Mobility volume
prediction on census
tract level

Explainable AI GCN, LSTM,
attention

GPS, demographic,
land use, flood
vulnerability,
weather

RMSE RMSE: 0.065 (seen city
and event)/0.112 (unseen
event)/0.151 (unseen
city)

Yes/Yes

Zhiwen
et al.
[54]

Typhoon Causal impact
prediction on mobility
volume

Continuous
treatment
prediction

RNN, GCN GPS, weather,
Google trend

RMSE,
MAE

RMSE: 0.012–0.118, MAE:
0.008–0.077

No/No

Wang
et al.
[56]

Typhoon Traffic speed
prediction

– GCN, GRU Car hailing data,
weather data

SMAPE,
MAE,
RMSE

SMAPE: 7.2 %, MAE: 0.67,
RMSE: 1.03

No/Yes

J. Gunkel et al.
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augmented with social, temporal, and spatial metaknowledge, is deco-
ded in one step to reduce error accumulation [7]. Both models [7,8]
incorporate strategies to establish a situation-awareness and thus are
further examined in Section 5.1.4.

Jiang et al. [51] addressed the challenge of simultaneously predict-
ing crowd density and flow as a multi-step prediction. Their model
consists of an encoder-decoder network based on stacked ConvLSTM
networks. In the initial step, the dimension of the crowd flow data is
reduced to support an equal treatment of crowd density and crowd flow
tensors. This task is done by a CNN autoencoder, which compresses the
relevant information in a low-dimensional embedding. The actual
encoder-decoder model comprises four stacked ConvLSTM layers. In the
first layer, flow and density data from a fixed number of preceding time
steps are encoded independently. The resulting encodings are combined
in the second layer to produce a single vector representation of the input
data. The decoding process is conducted in a reverse order to the
encoding. The third layer decodes the vector representation to produce
joint representations of flow and density. The last layer then splits these
representations and produces the final multi-step prediction. This
approach was evaluated for an earthquake and a typhoon in Tokyo. A
visual comparison of the graphical presentation of the predicted time
series and the ground truth demonstrates that the model can predict
disturbed mobility. However, the graphs indicate a tendency for the
model to overestimate crowd density during disruptions slightly.

Other works consider synthesizing GCN and LSTM networks. For
instance, the model proposed by Rahman & Hasan [52] is based on a
GCN to capture the spatial dependencies, with the underlying graph
representing the transportation network. The convolution operations on
the graph are computed using a dynamic adjacency matrix. It represents
the time-dependent evolution of the connectivity (i.e., travel time) be-
tween the graph nodes by adapting the edge weights to the observed
traffic situation. An LSTM layer further processes the GCN output and
returns the traffic flow on each edge of the graph. This model is
embedded in a transfer learning framework, further presented in Section
5.1.5.

Hao & Wang [53] chose a different approach, predicting the fre-
quencies of mobility flows between census tracts during extreme
weather. In their model, various census tract-level metadata are first
embedded by a dense layer. The resulting representation of a census
tract is fed into an LSTM layer that encodes the mobility frequencies for
each census tract at each time step. Subsequently, these encodings are
processed by an attention layer, enabling the capture of potential delays
between the occurrence of weather hazards and human response. In the
next step, a GCN layer aggregates this information from neighbored
census tracts. This aggregated information is combined with the
encodings to compute the output. Different experiments were conducted
to analyze the performance of the model in comparison to different
model variations. This comparison shows that the full model out-
performed most of the chosen variations. Moreover, experiments were
conducted to evaluate the model’s performance when applied to pre-
viously unseen cities or hurricanes rather than those observed during
training. The results demonstrate that the performance declined by
approximately 50 % or 33 %, respectively. Given that the approach does
not include any strategies to adapt to unseen events or locations, these
results arouse hope toward a general machine learning model for
disaster mobility.

The original RNN, in combination with a two-layer GCN, was pro-
posed by Zhiwen et al. [54] to predict the causal impact of typhoons on
mobility volume. Their model aims to minimize the influence of con-
founders by interpreting this task as a continuous treatment problem
[55]. Here, the treatment is the weather hazard, and the treatment’s
effect is the weather’s impact on human mobility. The confounder
represents observed situations by encoding spatial metadata, google
search trends, and past mobility. Their model comprises an RNN layer,
followed by a GCN to compute an encoding, representing the con-
founders. A subsequent softmax layer represents the conditional density

of the weather hazard, given the confounder. This layer tightly links the
confounder encoding to the treatment, eliminating undesired features of
the observed situation to estimate the causal effect of extreme weather
on mobility. The authors conducted experiments on the responses of
walking, car, and train traffic affected by a typhoon. The results show
that train-based mobility strongly responds to winds, whereas car-based
mobility correlates with rainfall. Moreover, the results indicate that the
decision to stay at home is not strongly influenced by rainfall or wind.

Wang et al. [56] combined GRUs with GNNs to predict the traffic
speed during hurricanes. Using car-hailing data, the authors constructed
a graph representing the road network. The nodes of this graph contain
the up- and downstream traffic speed and meteorological data. For this
graph, the authors combined a GNN with a GRU in an encoder-decoder
setup to predict the traffic speed for several future hours. Furthermore,
they used the traffic speed predictions to estimate the resilience of the
traffic network under consideration.

The presented spatio-temporal neural networks employ architectures
based on RNNs combined with different convolutional networks. Addi-
tionally, several other aspects are common to the approaches covered in
this section.

5.1.3.1. Complexity of scenarios. The combination of recurrent and
convolutional networks benefits from its increased capability to capture
deep dependencies in large spatio-temporal systems. Consequently,
these models enable to consider scenarios with large-scale trans-
portation systems such as entire cities [8,51,56] or countries [7,54].
However, the enhancement of the models to capture spatial de-
pendencies may be accompanied by an increase in complexity, i.e., an
increase in the number of model parameters that must be optimized
during training.

5.1.3.2. Data requirements. The increase in model complexity necessi-
tates a greater quantity of training data. This need for training data
opposes the naturally scarce data on disasters. Consequently, the data
scarcity may constrain the models’ expressiveness, thereby impeding
their performance. The works presented by Jiang et al. [7] and Wang
et al. [8] specifically address this limitation. Their strategy involves
learning general mobility patterns and adapting to currently observed
situations. Therefore, they can rely on more training data without being
dependent on extensive disaster mobility data. Similarly, Rahman &
Hasan [52] circumvented the lack of disaster mobility data by pre-
training a model on general mobility data and fine-tuning it with
limited data to reflect the disaster.

5.1.3.3. Generalizability. Reducing the amount of required mobility
data on disasters not only circumvents the scarcity of such data but may
also improve the model’s performance in unseen events. For instance,
the approaches by Jiang et al. [7] and Wang et al. [8] mentioned above
may be applicable to a variety of disasters that happen in the exact
location. However, these approaches are based on the assumption that
mobility during a disaster may be represented as a combination of
mobility patterns from previously observed situations, even regular
situations. This assumption is further discussed in Section 5.1.4.
Furthermore, learning deep spatial features adapts a model specifically
to the location of consideration. Therefore, the spatio-temporal net-
works are likely to be highly location-specific and generalize poorly to
unseen locations. This limitation is reflected in the results presented by
Hao & Wang [53], which demonstrate that their proposed model per-
formed better for unseen events than for unseen locations.

5.1.4. Situation-aware approaches
As discussed before, ML approaches for human mobility are typically

limited to reproducing patterns present in the training data. To address
this limitation, dynamically adapting to observed situations has been
incorporated in various models. During the training process, these

J. Gunkel et al.
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models store situation-specific information. In order to predict future
states, the models first perceive the current situation. Subsequently, they
adapt dynamically to accommodate the perception. For instance, spe-
cific components, such as the weights of particular modules, are modi-
fied. By doing so, these models establish a situation-awareness that
increases their flexibility, possibly leading to improved performance in
unseen situations. An overview of such approaches in disaster mobility
prediction is given in Table 7. This table builds upon the information
presented in Table 5 and Table 6 and only provides details pertinent to
this section.

Jiang et al. [7] proposed a model based on meta learning. In general,
meta learning can be described as “learning to learn” [57] and refers to
gaining experience during training, often from a distribution of related
tasks. In meta learning, there are various methods to acquire that
experience. Here, Jiang et al. [7] followed a model-based memory
augmentation [58], where memory storage is established during
training. As described in Section 5.1.3, their model is based on GCRUs
and is split into two networks that attain the role of teacher and student,
respectively. The teacher network learns spatial, temporal, and social
metaknowledge and builds a memory pool that stores the learned met-
aknowledge during training. Given observed social metadata, an ac-
cording state from the memory pool is queried for augmenting the data
processed by the student network. The student network consists of a
GCRU encoder that depends on the teacher network in two respects: On
the one hand, the GCRU is parameterized by spatial metaknowledge
from the teacher network, which adapts the graph convolutions to
observed spatial metadata. On the other hand, the human mobility data
is augmented with social metaknowledge processed by the teacher
network, representing the population’s situation perception. A subse-
quent decoder generates the final output of the model. To test their
model, Jiang et al. [7] mined Twitter data as a social covariate repre-
senting the disaster context and the population’s situation perception.
They conducted experiments on mobility during a typhoon’s landfall in
different prefectures in Japan and a hurricane’s landfall in several
counties in Florida. Their results show that their approach outperformed
the chosen baselines without a memory pool, indicating the model’s
capability to detect anomalous situations and adjust the output
accordingly. Additionally, they performed a case study on typhoon
Hagibis. The study demonstrates that their model reliably estimates the
pattern of short-term human outflow from the affected prefectures
before and during the landfall.

A similar approach is taken by Wang et al. [8], who employed a
dynamic filter generator to adapt the model based on its perception of
the current mobility. Their model is trained to generate a memory pool
of parameter sets depending on the mobility states observed in the
training data. For predicting future mobility states, this memory pool is
queried by an encoding of current mobility data and returns an initial set

of parameters. A dynamic filter network [59] further processes these
parameters, which returns a set of weights. This resulting set of weights
parameterizes a GCRU encoder-decoder module that predicts the
mobility demand. Here, the current situation is perceived solely through
mobility and time data. An evaluation of this approach for taxi demand
during a blizzard shows that the model detected the immediate drop in
demand and adjusted its prediction accordingly.

Fan et al. [48] adopted a different perspective on situation-aware
mobility prediction. They proposed an online ensemble learning
approach. In ensemble learning, multiple base learners are combined to
form a more robust prediction with enhanced generalization capabilities
[60]. Fan et al. [48] trained an ensemble model of base GRU predictors
with data from distinct single days, learning mobility patterns in his-
torical data of only the respective days. In addition, their model is
supplemented by an online GRU network based only on recently
observed data. Thus, this online network introduces a short-term pre-
diction of the current mobility. Finally, a gating function based on a one-
layer GRU network computes a linear combination of the different
predictors, yielding the model’s output. Applying this approach to the
2011 Tōhoku earthquake in Tokyo, the authors found that the online
GRU network was assigned a significantly higher weight than the others,
reflecting the unprecedented nature of the earthquake. This result
further highlights the discrepancy between mobility during regular sit-
uations and disasters.

The approaches presented above aim to acquire a situation percep-
tion upon which the models adjust their output dynamically. Although
the approaches aim at a similar goal, they differ significantly in their
methodologies. While Jiang et al. [7] leveraged various metadata to
establish the perception, the model by Wang et al. [8] perceives the
current situation solely through mobility and time data. Moreover, the
teacher network proposed by Jiang et al. [7] only appends and informs
the student network in the meta learning framework, whereas the dy-
namic filter generator approach by Wang et al. [8] intervenes deeper by
adapting the weights of the encoder-decoder setup directly. In contrast,
the ensemble learning model by Fan et al. [48] follows a different
strategy. Instead of adapting upon querying a stored state, this model
combines different networks that store knowledge from different situa-
tions. Still, all presented approaches may benefit from increased flexi-
bility and robustness, as well as their ability to adapt to observed
situations. Moreover, as the different methods build memory from pre-
viously observed situations, they inherit an increased capability to learn
from rare events. In the previous sections, these presented approaches
have already been discussed in terms of complexity, data requirements,
and generalizability. For this section, the uniqueness of disasters emerges
as an additional aspect that requires discussion. Here, the particularity
and discrepancy of mobility in different disasters and its relevance to the
presented approaches are examined.

5.1.4.1. Uniqueness of disasters. The methodologies presented in this
section are based on the assumption that the mobility patterns in an
unseen situation can be inferred from the knowledge gained from past
mobility events. In particular, this assumption also encompasses the
possibility of extrapolating patterns of disaster mobility from regular
mobility patterns. This assumption may conflict with the irregularity of
mobility during disasters. Depending on the severity of a disaster, pat-
terns of regular mobility may be insufficient to describe patterns of
disaster mobility. To address this limitation, Fan et al. [48] included an
online learning predictor in their ensemble learning framework,
enabling the incorporation of recent observations of disaster mobility.
This strategy may enhance the model’s capacity to adapt to a specific
disaster under consideration, as the resemblance of currently observed
patterns to past ones may decrease proportional to their temporal dis-
tance, especially in disasters. Moreover, the uniqueness of disasters is
linked to the generalizability discussed in the previous sections. A model
can only predict future mobility satisfactorily if the event under

Table 7
Comparison of different approaches aiming to train a situation-aware model.
These models benefit from their ability to actively adapt to observed situations
by relying on stored information. This table presents an extension for the in-
formation about the considered approaches given in Table 5 and Table 6.
Consequently, it does only contain information that is relevant to this section.

Authors Strategy Approach

Jiang et al.
[7]

Meta learning Teacher-student network, memory pool.
The teacher network establishes a situation
perception and passes this information to the
mobility encoder-decoder.

Wang et al.
[8]

Dynamic filter
generation

Memory pool, weight adaption.
The filter (weights of the encoder-decoder
network) is computed based on the situation
perception.

Fan et al.
[48]

Ensemble
learning

Ensemble of networks trained on single days.
An attention mechanism combines these
multiple predictors based on the perceived
situation.

J. Gunkel et al.
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consideration shares central properties with the events in the training
data.

5.1.5. Transfer learning
Transfer learning (TL) refers to leveraging learned knowledge from

data on a source domain to enhance the performance of a model for a
related target domain [61]. In the context of mobility, TL has been
employed to estimate the mobility in an unseen city or during an unseen
event based on sufficient data from another city or similar event [62,63].
Similarly, for disasters, this strategy enables predicting future mobility
or generating trajectories during disasters as a transfer from one city to
another or as a transfer from regular to disastrous events. However, to
date, only a limited number of related works exist, resulting in only two
publications that have been deemed relevant for this section of the re-
view. In Table 8, an overview of contributions based on TL for predicting
human mobility in disasters can be found.

Rahman & Hasan [52] investigated pre-training a model with
extensive data on regular situations and adapting it to the disaster by
fine-tuning it with scarce corresponding mobility data. As presented
previously in Section 5.1.3, their model consists of LSTM networks and a
GCN, where the underlying graph represents the transportation
network. This model is pre-trained with extensive traffic sensor data on
regular traffic in Florida. To predict evacuation traffic, a gating function
is trained with limited evacuation data while keeping the pre-trained
parameters frozen. This gating function learns the relevance of
different traffic flow features for the evacuation context and reweights
the output of the pre-trained model. Enhanced with an encoding of
current evacuation demand features, the gating function’s output gives
the final prediction as flows on the graph’s edges. Rahman & Hasan
conducted a case study on mobility during the evacuation before a
hurricane. They found that the predictive performance for the evacua-
tion performance was significantly increased by including the trained
gating functions, as MAE and RMSE decreased by at least 74 %. How-
ever, compared to the performance for regular mobility, the model
showed an increase in RMSE and MAE of more than 75 %, emphasizing
the challenge of transfer across different events with scarce data.

A different perspective on TL was adopted by Fan et al. [64].
Methodologically, their work can be assessed as transfer learning in a
more expansive sense. The authors developed an approach that aims to
translate observed trajectories during a disaster across cities. The first
stage of their methodology involves establishing a cell-to-cell matching
between grids in two cities based on trajectory data obtained under
regular conditions. Initially, this matching is estimated based on the
cities’ population densities over a given period. Subsequently, the
matching of cells is updated iteratively by consulting a trajectory simi-
larity metric and a subset of trajectories for each city. The final cell-to-
cell matching can serve as a translator of trajectories between cities.
To translate observed trajectories, the authors proposed a Hidden Mar-
kov Model. Here, the Viterbi algorithm is adopted to generate

trajectories from sampled emission and transition probabilities of new
trajectories. The authors demonstrated the applicability of their
approach to disasters by simulating the impact of an earthquake in
Osaka based on trajectories during an earthquake in Tokyo. First, the
cell-to-cell matching was generated using large amounts of trajectory
data on normal conditions for both cities. Second, limited data on tra-
jectories during the earthquake in Tokyo served as the basis for gener-
ating trajectories in Osaka. The simulation indicates a significant
disruption immediately after the occurrence and an increased number of
trajectories leaving the city in the following hours.

The proposed models demonstrate the potential of TL in disaster
mobility prediction. They are promising approaches, particularly in di-
sasters where data is usually scarce. That is, as these methods directly
address the generalizability of mobility predictions. Nevertheless, such
approaches may be limited by their underlying assumptions, which are
opposed by the uniqueness of disasters.

5.1.5.1. Generalizability. TL offers the opportunity to transfer captured
patterns from the source domain to the target domain. Consequently,
this strategy represents a promising approach to simulating mobility in
unprecedented disasters. A meaningful and realistic simulation may be
achieved by directly incorporating the relationship between the source
and the target domains in the training process. However, this strategy is
constrained by its potential inability to achieve universal generaliz-
ability, as the resulting models are typically tailored to the specific
target domain and situation of concern.

5.1.5.2. Data requirements. The principal advantage of adopting TL for
mobility predictions is the reduced need for data on the target domain.
Therefore, scarce mobility data on disasters may no longer present a
restriction for training ML models. For instance, the approach proposed
by Fan et al. [64] does not require any mobility data on disasters in the
considered target domain. However, leveraging extensive data on the
source domain transfers mobility patterns to the target domain. Conse-
quently, the central properties of the source and target domains must be
similar to predict the dynamics in the target domain realistically.

5.1.5.3. Uniqueness of disasters. Similarly to the contributions pre-
sented in Section 5.1.4, transferring mobility patterns between cities or
events is based on the assumption that central properties of mobility are
common to the source and target domain. In this section, this assump-
tion is expressed in two ways. The first version states that mobility
during disasters can be modeled as a combination of regular mobility
patterns. This version is identical to the assumption for the situation-
aware approaches presented in Section 5.1.4 and applies particularly
to the work of Rahman& Hasan [52]. As previously discussed in Section
5.1.4, this assumption may conflict with the irregularity of mobility
during disasters. The second version concerns the mobility transfer
across cities (i.e., as in [64]) and expresses a general resemblance of

Table 8
Comparison of different approaches using transfer learning. These approaches capture patterns in a data-rich source domain, enabling predictions in a data-poor target
domain. As no other table reports [64], this table presents the complete set of columns. For the sake of completeness, the corresponding information about [52] is
included.

Authors Disaster Task Setting Transfer Strategy Model Data Evaluation Result Data/Code
available?

Rahman &
Hasan
[52]

Hurricane Edge flow
prediction in
transportation
network

Transfer from
regular situation
to evacuation
situation

Train gating function
to distill relevant
features of pre-trained
model

LSTM,
GCN

Traffic
detector
data

RMSE, MAE, R2 RMSE:
399.69,
MAE:
268.03, R2:
0.943

No/No

Fan et al.
[64]

Earthquake Trajectory
generation in a
new city

Transfer from
one city to
another

Region to region
correspondence

HMM,
Gibbs
sampling

GPS data Population
variation
covariance,
CityEMD [65],
average speed

n.a. No/No
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mobility between different cities. More specifically, transferring
mobility patterns observed in one city to another postulates that general
mobility patterns are common in different cities. In addition, simulating
mobility events (e.g., disasters) in the target domain that were initially
observed in the source domain is based on the assumption that there are
common changes of mobility in such events for different cities. A
limiting factor for such a strategy may lie in the uniqueness of mobility
patterns in different cities and their changes in disasters. However, by
explicitly learning a correspondence between the regions of the
respective cities, Fan et al. [64]) partially addressed this limitation.

5.2. Unsupervised learning

Only Song et al. [28] used unsupervised learning as the main
component in their proposed framework. As indicated in Table 3, their
framework consists of unsupervised and supervised learning. However,
the component based on unsupervised learning was deemed the main
contribution, resulting in an assignment of the approach to the group of
unsupervised learning. A condensed presentation of the work can be
found in Table 9.

The proposed model comprises a deep belief network (DBN) [66] to
compute deep representations of mobility data. DBNs are based on
stacked Restricted Boltzmann Machines that are trained layer-wise in an
unsupervised way to learn deep features inherent in the data. Song et al.
[28] adopted two parallel DBNs, one trained on trajectory data and the
other trained on data describing the behavior context of the observed
mobility. In the proposed model, these DBNs are combined by regression
layers to learn joint representations for mobility and its behavior
context. Finally, an output layer is trained in a supervised manner to
compute the mobility prediction. This output contains a sequence of
mobility behavior, i.e., the context of the next location such as home,
shelter, or workplace, and the corresponding locations. The authors
conducted experiments with earthquake mobility data and compared
the performance with previous works [10,23], which are presented in
Section 5.3. They found significantly increased predictive accuracy and
concurrence of generated trajectories with their ground truth. Addi-
tionally, the results show a decline in performance as the earthquake’s
intensity increases, demonstrating a correlation between the severity of
disasters and the irregularity of mobility.

The presented approach aims to enhance the prediction by learning
deep features of disaster mobility. More general mobility features may
be learned by decoupling the behavior context from the respective tra-
jectories, representing the humans’ motivation and decisions. Conse-
quently, this approach is a direct attempt to improve the generalizability
of such predictive models.

5.2.1.1. Generalizability. Learning deep behavior context features may
distill general behavior during a disaster. Due to their disentanglement
from specific locations, these features may encode location-invariant
information that is common to different disasters and locations. How-
ever, the generalizability of such features can be assumed to be limited.
This is because the extent of mobility change may vary considerably

depending on the severity of the disaster. Therefore, learned behavior
context features are presumably only common to disasters of similar
severity and extent. Furthermore, the learned trajectory features are
strictly linked to a specific location. Consequently, their expressiveness
is limited to this specific location and the specific spatial extent of the
considered scenario. Nevertheless, the disentanglement of trajectories
and respective behavior contexts is a promising approach as it may
enable the capture of general mobility information.

5.3. Reinforcement learning

In reinforcement learning (RL), an agent learns how to behave in its
environment by receiving feedback on its performed actions in the form
of reward values [67]. The agent optimizes its actions by maximizing the
rewards using a trial-and-error approach. To accomplish this task, the
reward function, a key component that evaluates the actions of the
agent, is required in RL. Inferring such a reward function from observed
data is the task in inverse reinforcement learning (IRL). The combination
of IRL and RL provides a framework for simulating mobility in an agent-
based manner. The selected publications that aim to simulate human
mobility during disasters following an RL or IRL approach are summa-
rized in Table 10.

Fan et al. [68] proposed a framework to simulate the potential
impact of a flood on mobility based on trajectory data. Their framework
consists of reward function inference using IRL, reward shaping to
reflect the flood situation, and trajectory generation using deep RL. First,
the authors adopt a k-nearest neighbor (k− NN) regression to generate
OD pairs for trajectories. For a given location, k-NN regression identifies
the k most similar origins of observed trajectories for estimating the
location’s corresponding destination as the average of the k origins’
destinations. For each pair, maximum entropy inverse reinforcement
learning [69] is adopted to estimate a reward function from extensive
trajectory data. This reward function evaluates each possible step on a
city grid. Subsequently, the rewards are adjusted to ensure robust
learning. Additionally, a flood scenario is incorporated by imposing
penalties on rewards for severely affected areas. Finally, Fan et al. [68]
employed a deep RL approach, using the prioritized experience replay
algorithm [70] for computing the behavioral policy. Following this
policy, possible trajectories of vehicles can be predicted for each OD pair
under the influence of a flood. Fan et al. [68] tested their method for a
flood scenario in the Houston metropolitan area. They found that the
differences between predicted and actual locations were minor
compared to the length of trips. More than half of the predicted desti-
nations differed by less than three miles from the ground truth. More-
over, the length of the predicted trips showed high accuracy, exhibiting
a mean percentage error of below 5 % for travel distances.

Song et al. [23] combined IRL with a Bayesian approach to predict
human trajectories after an earthquake. Their model is based on a
mobility graph constructed using trajectory data and collaborative
learning [71]. Trajectories on this graph are modeled as Markov Deci-
sion Processes, which take the nodes of the constructed mobility graph
as states. To represent the decisions of changing locations as observed in
the data, a cost function for the trajectories is computed. For choosing
the transitions between states, represented as edges between nodes,
Song et al. [23] proposed maximum entropy inverse reinforcement

Table 9
Summary of the covered approach for modeling mobility in disasters using unsupervised learning. Here, unsupervised learning was adopted to learn deep repre-
sentations of mobility features.

Authors Disaster Task Strategy Architecture Data Evaluation Result Data/Code
available?

Song
et al.
[28]

Earthquake Next behavior
and locations
prediction

Deep feature
representations

DBNs GPS, earthquake,
disaster report,
road structure, POI

Prediction
accuracy, log-
likelihood,
expected distance
error

Prediction acc. (behavior/
mobility) small earthquakes:
92.32 %/81.58 %, large
earthquakes: 83.19 %/75.27
%

No/No
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learning [69] to infer a cost parameter for each possible transition. This
parameter enables the generation of trajectories by estimating the final
destination of a partially observed trajectory with Bayesian inference.
Here, a region-specific prior, deduced from the mobility graph, and the
likelihood of the partially observed trajectory, calculated using the cost
parameter, are combined to give the probability of the respective
destination. The authors tested their approach with trajectories in the
Greater Tokyo Area during and after the 2011 Tōhoku earthquake. They
found that their model achieved an accuracy of 50 % to 60 % for next
locations predictions. For the aggregated population flow, they found a
notably higher accuracy, ranging from 86 % to 92 %. Moreover, in an
earlier version of this work, Song et al. [24] divided the training process
into different stages of the disaster, resulting in a significant increase in
performance compared to training jointly over the entire disaster period.

In [10], Song et al. proposed to extend the previous work by
modeling mobility as a Hidden Markov Model (HMM). Here, the
observable states represent the locations of a trajectory, and the hidden
states represent the underlying behavior, such as staying at home or
going to work. For inferring the required probability distributions for the
HMM, the authors adopted the Baum-Welch-Algorithm [72], yielding
initial hidden state probabilities, hidden state transition probabilities,
and output probabilities of observable states. Given a partially observed
trajectory, the next hidden state is then estimated using Bayesian
inference and a particle filter approach [73], enabling the prediction of a
person’s state in the subsequent step. The proceeding sequence of cells
that a person traverses to reach this state is created using maximum
entropy inverse reinforcement learning [69] on a mobility graph, as
previously described for [23]. Finally, the approach described in [74] is
used to obtain the actual movement of a person as the most likely route
from a given origin to the desired destination. Additionally, the authors
presented an adaption of their model, aiming to increase its ability to
generalize across different disasters. It is based on an HMM, where the
hidden states represent the context of a location (e.g., home or working
location), and the observable states represent different disaster infor-
mation, as well as travel time and distance of observed trips. The
methodology for generating trajectories using the new HMM generally
remains as described above, but it incorporates the possibility of
including different modes of transportation for the actual mobility
generation. This new model no longer depends on specific locations but
on underlying activities and general disaster properties. As such, Song
et al. [10] showed that it exhibits increased performance for predicting
mobility in the Greater Tokyo Area after an earthquake, compared to
both the former model and the model proposed in [23]. The authors
found an accuracy exceeding 60 % for predicting the next locations 20
days after the disaster.

While following the same goal of simulating mobility in disasters, the
approaches presented above differ in methodology. On the one hand,

Fan et al. [68] presented a pipeline combining IRL and RL. On the other,
Song et al. [23] and Song et al. [10] leveraged IRL to infer the cost
function but predicted the mobility following a Bayesian approach or by
choosing the most likely route, respectively. As such, the methods in
[10,23] do not rely on any DL strategy or classical reinforcement
learning to generate a sequence of states. Contrarily, to simulate tra-
jectories, Fan et al. [68] adopted a deep Q-network to train the agent’s
policy in a large-scale environment. Nevertheless, several aspects of
these publications are similar, as will be discussed in the following
paragraphs.

5.3.1.1. Complexity of scenarios. The large-scale environments consid-
ered in the presented works represent a challenge from a computational
perspective. As IRL is usually an iterative process that exhibits dispro-
portionate growth of computational expense [75], inferring a reward
function for mobility in a large-scale transportation system is expensive.
This expense may even be more significant when each possible origin
and destination pair is considered individually.

5.3.1.2. Uniqueness of disasters. As reinforcement learning bears the
opportunity to consider actions on an agent level, it enables taking
human interdependencies into account, e.g., the tendency to move in
crowds during disasters [10]. Song et al. [10] and Song et al. [23]
partially incorporated such interdependencies as they included route
popularity in their mobility graph construction. With this exception, the
selected publications neglect such direct mutual dependencies to a vast
extent, potentially missing a promising opportunity.

5.3.1.3. Generalizability. Reward functions inferred from expert dem-
onstrations are better transferable to other environments than computed
policies, which often are unstable to small changes in the environment
[75]. In the case of individual mobility, the reward function aims to
account for human decision-making and may, therefore, generalize
across similar situations. Previous research on trajectory simulation
leveraged this property, exploring the possibility of transferring a
reward function between cities [76]. Fan et al. [68] considered this idea
differently for approaching ‘what-if’ analyses by manipulating the
reward function according to a specific disaster. While providing an
initial estimation of possible mobility during disasters, it is open to
discussion of how realistic such simulations are. It is important to note
that the realism of mobility simulations may decrease as the severity of
disasters increases. In such cases, mobility decisions are influenced by a
more complex set of factors than just road network availability or
regional flood depth. Song et al. [10] addressed this limitation as they
aimed to generalize across different events and locations by focusing on

Table 10
Comparison of identified reinforcement learning approaches. The approaches consist of two stages: In the first stage, a reward a cost function is inferred. Following this
function, trajectories are generated in the second step.

Authors Disaster Task Strategy Data Evaluation Result Data/Code
available?

Fan et al.
[68]

Flood Trajectory
generation for
flood scenario

IRL & deep RL GPS, flood
information

RMSE, MPE Travel distance MPE: 4.29 %,
RMSE: <0.1 for 80 % of trajectories

No/No

Song
et al.
[23]

Earthquake Next location
prediction

IRL & Bayesian
inference

GPS Predictive accuracy, log-
likelihood, expected distance
error, Jaccard similarity
coefficient

Prediction accuracy: 50 % - 60 %,
log-likelihood: − 4, distance error:
0.04

No/No

Song
et al.
[10]

Earthquake Next behavior
and location
prediction

Baum-Welch-
Algorithm,
Bayesian
inference & IRL

GPS, earthquake,
disaster report,
road structure,
POI

Predictive accuracy, log-
likelihood, expected distance
error, matching of trajectories
[69], 90 % matching of
trajectories [69], log-probability
[69]

Behavior prediction accuracy: 60 %
- 70 %, log-likelihood: − 3, distance
error: 0.03 Mobility prediction
matching: 82.75%, 90%matching:
61.69 %, log-prob: − 6.17

No/No
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general, location-independent mobility features. However, this
approach might conflict with the uniqueness of different disasters and,
therefore, depend on the heterogeneity of disasters included in the
training data.

6. Discussion

Our review identified and analyzed a heterogeneous body of ML
approaches for human mobility prediction in disasters. Despite its
relevance and the profound potential impact of these approaches on
revolutionizing disaster management, the field of study comprises only a
limited amount of work to date. Generally, the identified approaches
exhibit a rich diversity, from traditional ML models to sophisticated DL
methods. However, DL approaches dominate the field, primarily
leveraging common DL architectures and mechanisms such as GCNs,
LSTMs, and attention, reflecting the current trend in the field.

Following the employed methods, the addressed tasks and scenarios
also vary in their extent and complexity, as elaborated in Section 5. This
variety is because the respective models have specific capabilities or
limitations in capturing different mobility phenomena. For instance, the
RNNs presented in Section 5.1.2 are predestined to predict sequential
processes such as the locations of a trajectory. In contrast, the spatio-
temporal networks elaborated in Section 5.1.3 often outperform RNNs
in capturing spatially distributed phenomena, such as crowd flows in a
transportation system. Moreover, certain approaches excel in directly
addressing the specific challenges posed by disasters The subsequent
discussion will address these challenges, highlighting the identified
strategies to address them, and noting the remaining limitations.

6.1. Challenges & limitations

We discuss the most pressing challenges and limitations in the field
of question based on the discussions that completed the subsections of
Section 5. The complexity of scenarios, as discussed in Section 5, does not
center on disasters but on mobility prediction in general. Therefore, this
aspect is not included in this section. The remaining challenges dis-
cussed below apply generally to each of the approaches reviewed.

6.1.1. Data-induced constraints
One significant challenge pertains to the availability of data. While

datasets on mobility are publicly available in large numbers [77], public
datasets that include mobility during large-scale disasters are rare. Only
a fraction of the presented literature used publicly available data, as
most datasets were provided by a third-party company (Fig. 3). More-
over, the general rarity of large-scale disasters limits the amount of existing
training data in general. This limitation contrasts the need for large
amounts of training data with the increasing complexity of DL models.

Strategies exist to leverage mobility data on regular situations as a
partial substitute for mobility data on disasters. For instance, such
strategies are given by the situation-aware approaches (Section 5.1.4) or
by adopting transfer learning (Section 5.1.5). However, these strategies
rely on assumptions that may be infeasible for certain situations.

Furthermore, the type of data available imposes constraints on the
applicability of different models. It is not possible to employ approaches
that focus on individual-level mobility when only aggregated mobility
data is available. For example, aggregated flow data hinders the training
of an RL model, which necessitates individual-level trajectories. In
general, the further aggregation of data results in the further abstraction
of the mobility represented. Data on the absolute volumes of location
visitations or in- and outflows of POIs, for instance, exhibit only greatly
reduced spatial dependencies and therefore limit the possibility of
training a model for predicting complex spatio-temporal mobility
patterns.

6.1.2. Generalizability
In order to meaningfully impact disaster management, developed

models must be especially capable of predicting mobility in unprece-
dented future events. Therefore, these models need to generalize to other
locations and disasters. However, mobility in different locations and di-
sasters will likely exhibit different extents. Consequently, applying
corresponding models to situations not covered by the training data may
be unsuitable.

Several approaches have been discussed in Section 5, which
distinctly address this challenge. The proposed approaches range from
models that dynamically adapt to short-term observations of mobility, as
those presented in Section 5.1.4, over TL strategies that transfer mobility
patterns from one city to another, as discussed in Section 5.1.5, to an RL
method that manipulates an inferred reward function to represent a
disaster, as seen in Section 5.3.

Although these approaches are promising contributions, significant
limitations exist to their generalizability. On the one hand, the situation-
aware approaches are presumably restricted to known situations. There-
fore, they may encounter difficulties predicting mobility that deviates
significantly from the training data. Moreover, given their reliability on
the short-term situation perceptions, these approaches are limited to now-
casting, or forecasting with a short time horizon. On the other hand,
transferring disaster mobility patterns between cities restricts to the
specific disaster and its severity. Furthermore, a manipulated reward
function may be highly sensitive to the unknown impact and spatial
extent of a disaster, potentially resulting in a lack of realism and
expressiveness in the corresponding simulation. Therefore, the proposed
approaches are expected to be insufficient to predict or simulate the
mobility in a city of concern with an unprecedented disaster.

6.1.3. Uniqueness of disasters
Disasters usually occur as short-term events of limited duration during

which the mobility may be disrupted significantly. Therefore, predicting
mobility during disasters involves predicting mobility patterns that
exhibit a high degree of irregularity compared to regular situations.
However, when investigating a potential disaster that has not happened
before in a location of concern, one can only resort to data on similar
disasters, potentially from another location, or to mobility data on
regular situations. By doing so, one implicitly assumes that the mobility
patterns of past disasters or even regular situations resemble those

available not available

Provided by
3rd party

Available upon
request

Not reported

Percentage of
publications

25 %

100 %

75 %

Data
availability

50 %

Fig. 3. Percentages of availability of data. The majority of the used datasets
were obtained from 3rd parties. While the authors of 13 % of the contributions
disclosed the data they used, the authors of the remaining 87 % did not provide
their datasets. Of these datasets, 21.7 % are available upon request. An addi-
tional 13 % of the publications did not report the data source.
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expected in the disaster of concern. In other words, the mobility patterns
of different locations or events are assumed to be similar. This assumption
introduces an inductive bias, which is likely to limit the expressiveness
and the degree of realism of the corresponding model’s output.

Instead, the impact of a disaster on mobility may be influenced by a
large number of different factors such as the disaster’s severity, its
spatial extent, the people’s preparedness, or location-specific factors. As
these factors may vary between different disasters, their effect on human
mobility may differ greatly, even when the disasters appear to be similar
(e.g., two floods: one with official warning in advance and one without).
Therefore, this uniqueness of disasters and the disasters’ unique effects
on mobility pose a limitation on predictive models for disasters.

As a concluding remark, the presented challenges and limitations are
inseparably intertwined. For instance, the uniqueness of disasters rep-
resents a significant hurdle for the generalizability of models, as
mobility in dissimilar events or disasters may not be predictable by a
single model. Furthermore, the scarcity of data on disaster mobility
complicates the development of a model that generalizes well across
different locations and disasters, as the heterogeneity of scenarios
observable in the data is limited. Accordingly, capturing the unique
mobility patterns in different disasters could be improved if more data
on disaster mobility were available. Therefore, the availability of
disaster mobility data from a variety of locations and disasters could
significantly contribute to overcoming the aforementioned challenges to
a considerable extent.

6.2. Future work

Following these challenges and limitations, we present different
areas for future work. The challenges of data scarcity and generaliz-
ability imply the need for further research on capturing complex pat-
terns from limited data and successfully transferring patterns of mobility
in disasters between different cities and situations. Moreover, increasing
a model’s degree of realism by further incorporating social dynamics,
such as the interaction between people, is an understudied field that
demands additional investigation.

6.2.1. Increasing the generalizability
As discussed in the previous section, developing a model that gen-

eralizes across locations and disasters constitutes a significant challenge.
By focusing on techniques to increase these two aspects of generaliz-
ability, future work has the potential to significantly improve the
simulation of unprecedented disasters, thereby profoundly impacting
the field of disaster modeling. Potential approaches may be motivated or
adopted from an increasing body of literature on models that aim to
recreate mobility patterns in unseen locations. Corresponding ap-
proaches may leverage spatio-temporal adaptions from a source to a
target city (e.g., [78–80]). Another promising approach may be to adopt
methods from graph matching [81] to specifically translate observed
mobility patterns during a disaster across cities. Alternatively, further
investigating how to exploit reinforcement learning to simulate mobility
during a disaster and location of concern based on observed mobility
data from a similar but different context (e.g., from a different city, or
from the same city with a disaster of different spatial extent) is an
interesting research direction (e.g., [76]).

6.2.2. Incorporating mutual influences
The presented approaches in Section 5.3 which simulate individual

trajectories of the population consider the respective route choices
mostly isolated, neglecting collective behavior in groups of people. It is
crucial to investigate how to include the possibility of dependence be-
tween agents’ actions in simulations, as this may significantly enhance
the realism of the model by introducing emergent and collective
behavior observed in disasters. Multi-agent reinforcement learning,
which enables an agent’s action to be dependent on other agents’ ac-
tions, might serve this purpose. Investigating how to model the

simulation of disaster mobility as such a multi-agent reinforcement
learning problem is an exciting direction for future work.

6.2.3. Foundation models as few-shot learners
Recently, foundation models such as pre-trained large language

models (LLMs) have been proposed increasingly to learn general pat-
terns from sparse data, including time series data [82]. Their ability to
capture complex patterns from a limited number of samples makes them
suitable for learning mobility patterns from sparse data. First publica-
tions have leveraged LLMs to learn mobility patterns in rare events
where data is scarce, such as sports venues [83]. Exploring the potential
of LLMs for a few-shot prediction of mobility during disasters is an
exciting field that can be addressed by future work.

6.2.4. Application in disaster management
In order to have a meaningful impact, developed models must pro-

vide an actual benefit for disaster management. Generally, developed
models may serve as a basis for what-if simulations, up to their general-
izability. Future work may analyze the potential of such disaster
mobility models to improve evacuation, resource allocation and rescue
mission planning. Furthermore, investigating how these models may be
included in holistic disaster management systems to introduce human
behavior in multi-infrastructure models, such as digital twins [84,85], is
an interesting field for future research.

These directions present a non-exhaustive list as motivation for
further research. In the future, we plan to investigate how to translate
mobility patterns between cities with DL approaches to address the
challenge of generalizability.

7. Conclusion

This study presented a comprehensive review and analysis of ML
methods and approaches for predicting human mobility in disasters. Our
review included a systematic search for all relevant literature and a deep
analysis and comprehensive presentation of the identified contributions.
We grouped the proposed approaches hierarchically and compared them
qualitatively. While a quantitative comparison would enable the
approach with the best performance, the heterogeneity of the scenarios
and tasks prohibited such an endeavor. Moreover, we thoroughly dis-
cussed all selected publications’ limitations and open challenges. In
contrast to regular circumstances, disasters introduce distinct particu-
larities to mobility prediction. In this context, we identified the scarcity
of disaster mobility data, the uniqueness of disasters, and the general-
izability of models as the most significant challenges and limitations.
While a significant proportion of publications adopted common network
architectures to predict disaster mobility, several strategies have been
proposed to specifically address these challenges. Notable strategies that
emerged in our review include employing transfer learning, equipping
networks with situation-awareness (the ability to perceive and adapt to
the current situation), and distilling location-invariant behavior fea-
tures. We proposed a set of potential research directions based on the
identified open challenges, limitations, and research gaps in the existing
literature. Future work should focus on enhancing the generalizability of
models and developing approaches to learn complex mobility patterns
from limited data. These directions have the potential to significantly
advance the field of disaster mobility prediction.

Although the field of research in question has the potential to have a
significant impact, it has yet to receive the attention it deserves, as
evidenced by the limited number of relevant publications. Moreover, the
significant diversity of approaches indicates that the potential for
further research is yet to be fully exploited. Efforts to do so are inevitable
to produce trustworthy models which can be used in practice. In
conclusion, our review represents a comprehensive synthesis and
foundation of knowledge that is of great value for both new and estab-
lished researchers, enriching the existing literature and guiding future
research directions. As such, it contributes to facilitating further
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research and the development of new approaches.
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Appendix A. Appendices

A.1. Query strings

A.1.1. IEEE xplore
((“All Metadata”: Machine AND “All Metadata”: Learning) OR (“All

Metadata”: Deep AND “All Metadata”: Learning) OR (“All Metadata”:
Artificial AND “All Metadata”: Intelligence) OR (“All Metadata”: Neural
AND “All Metadata”: Network) OR (“All Metadata”: Big AND “All Met-
adata”: Data) OR (“All Metadata”: Data AND “All Metadata”: Mining)
OR (“All Metadata”: Urban AND “All Metadata”: Computing)) AND (“All
Metadata”: Disaster OR “All Metadata”: Crisis OR “All Metadata”: Haz-
ard OR “All Metadata”: Catastrophe OR “All Metadata”: Emergency OR
“All Metadata”: Evacuation OR (“All Metadata”: Extreme AND “All
Metadata”: Event) OR (“All Metadata”: Extreme AND “All Metadata”:
Situation)) AND (“All Metadata”: Mobility OR (“All Metadata”: Crowd
AND “All Metadata”: Flow) OR “All Metadata”: Evacuation OR “All
Metadata”: Relocation OR “All Metadata”: Traffic OR “All Metadata”:
Trajectory OR (“All Metadata”: Urban AND “All Metadata”: Dynamics))

A.2. Web of science

AB = (((Machine AND Learning) OR (Deep AND Learning) OR
(Artificial AND Intelligence) OR (Neural AND Network) OR (Big AND
Data) OR (Data AND Mining) OR (Urban AND Computing)) AND
(Disaster OR Crisis OR Hazard OR Catastrophe OR Emergency OR
Evacuation OR (Extreme AND (Event OR Situation))) AND (Mobility OR
(Crowd AND Flow) OR Evacuation OR Relocation OR Traffic OR Tra-
jectory OR (Urban AND Dynamics))) OR TI = ((((Machine AND
Learning) OR (Deep AND Learning) OR (Artificial AND Intelligence) OR
(Neural AND Network) OR (Big AND Data) OR (Data AND Mining) OR
(Urban AND Computing)) AND (Disaster OR Crisis OR Hazard OR Ca-
tastrophe OR Emergency OR Evacuation OR (Extreme AND (Event OR
Situation))) AND (Mobility OR (Crowd AND Flow) OR Evacuation OR
Relocation OR Traffic OR Trajectory OR (Urban AND Dynamics)))) OR
AK = ((((Machine AND Learning) OR (Deep AND Learning) OR (Artifi-
cial AND Intelligence) OR (Neural ANDNetwork) OR (Big ANDData) OR
(Data AND Mining) OR (Urban AND Computing)) AND (Disaster OR
Crisis OR Hazard OR Catastrophe OR Emergency OR Evacuation OR
(Extreme AND (Event OR Situation))) AND (Mobility OR (Crowd AND
Flow) OR Evacuation OR Relocation OR Traffic OR Trajectory OR
(Urban AND Dynamics)))).

A.3. Scopus

TITLE-ABS-KEY(((Machine AND Learning) OR (Deep AND Learning)
OR (Artificial AND Intelligence) OR (Neural AND Network) OR (Big
AND Data) OR (Data AND Mining) OR (Urban AND Computing)) AND
(Disaster OR Crisis OR Hazard OR Catastrophe OR Emergency OR
Evacuation OR (Extreme AND (Event OR Situation))) AND (Mobility OR
(Crowd AND Flow) OR Evacuation OR Relocation OR Traffic OR Tra-
jectory OR (Urban AND Dynamics))).

A.4. ACM digital library

Abstract:(((machine AND learning) OR (deep AND learning) OR
(artificial AND intelligence) OR (neural AND network) OR (big AND
data) OR (data ANDmining) OR (urban AND computing)) AND (disaster
OR crisis OR Hazard OR catastrophe OR emergency OR evacuation OR
(extreme AND (event OR situation))) AND (mobility OR (crowd AND
flow) OR evacuation OR relocation OR traffic OR trajectory OR (urban
AND dynamics))) OR title:((((machine AND learning) OR (deep AND
learning) OR (artificial AND intelligence) OR (neural AND network) OR
(big AND data) OR (data AND mining) OR (urban AND computing))
AND (disaster OR crisis OR Hazard OR catastrophe OR emergency OR
evacuation OR (extreme AND (event OR situation))) AND (mobility OR
(crowd AND flow) OR evacuation OR relocation OR traffic OR trajectory
OR (urban AND dynamics)))) OR keyword:((((machine AND learning)
OR (deep AND learning) OR (artificial AND intelligence) OR (neural
AND network) OR (big AND data) OR (data AND mining) OR (urban
AND computing)) AND (disaster OR crisis OR Hazard OR catastrophe
OR emergency OR evacuation OR (extreme AND (event OR situation)))
AND (mobility OR (crowd AND flow) OR evacuation OR relocation OR
traffic OR trajectory OR (urban AND dynamics)))).
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