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VEM Valence Electron Mobile Environment

XTL Electricity- or Solar-Radiation-to-Liquid
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List of Symbols

Greek symbols

Symbol Unit Description
a - Atom core count
B - VEM environment count
V4 VEM vertex count
A % Average change of property value by the change of the number
of contained carbon atoms
A, % Average change of property value by the change of the branching
index
A % Average difference of property value of a hydrocarbon family to
reference fuels
Mg - Topochemical atom index for branching
ntoc - Local topochemical atom index
nhoc - Local topochemical atom index for an unbranched molecule
loc Local topochemical atom index of a reference molecule containing
Tk ) only o-bonds
v mN/m Kinematic viscosity
Latin symbols
Symbol Unit Description
a;j - Molecular adjacency matrix
XHO ) Number of aromatic carbon atoms connected only to other
carbon atoms
fo - Atomic vertex for non-hydrogen a-bonds
fr - Atomic vertex for non-hydrogen m-bonds
Depends on
MAE physical Mean Absolute Error
property
Depends on
MAOE physical Mean Absolute Error of Outliers
property
nC - Number of contained carbon atoms
nR - Number of contained ring atoms

NMPIW % Normalized Mean Prediction Interval Width
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Symbol Unit Description
PICP % Prediction Interval Coverage Probability
r - Pearson correlation coefficient
PPSA - Partial Positive Surface Area
SAL - Sum of positive surface area
kg/kg,
w mol/mol, Mass, volume, or molar fraction

vol/vol



Abstract XV

Abstract

To achieve climate neutrality in the aviation sector, research on new sustainable aviation fuels (SAF) is
needed as the growing demand will exceed the production potential of established sustainable pathways.
The focus is thereby not only on the exploration of sustainable feedstocks and the development
of new production processes but also on the facilitation and acceleration of the whole fuel
development process, from its conceptualization to its approval. The critical evaluation of a new
production pathway guarantees the safe application and performance of a new fuel. The approval
poses a major challenge for fuel producers, requiring a tremendous commitment of time, fuel
volume and cost. Concepts that allow a fast-iterative, low-cost screening and design of new

candidate fuels, to assess and optimize their chances for approval are thereby seen as key enablers.

Established fuel screening concepts rely on model-based prediction, which, together with state-
of-the-art compositional analytics, allow the fast assessment of SAF candidates from volumes as
low as 5 mL. The design of new fuels, on the other hand, requires a comprehensive understanding
of the composition of a jet fuel and properties considered critical for the fuel approval. This work
describes the research and development of tools for the screening and design of jet fuels. Focusing
on data-based methods, the tools are built from a database composed of both jet fuels and fuel
components. It is thereby investigated whether and how data-based tools are able to support the

screening and design of new SAF candidates and what their limitations are.

For the jet fuel screening, three different modeling methods to predict physicochemical properties
from compositional measurements are adapted and investigated: Direct correlation (DC), Mean
Quantitative Structure-Property Relationship Modeling (M-QSPR) and Quantitative Structure-
Property Relationship Modeling (QSPR) with sampling. All developed models are probabilistic,
since the safety-relevant use case of jet fuel screening makes the consideration of uncertainties
necessary. Rather than estimating one deterministic property value, probabilistic models estimate
a distribution of values and with it the associated uncertainty. The predictive capabilities of the
developed models are assessed using specially developed metrics and compared on the prediction
of conventional and synthetic jet fuels. To put the developed models into reference, they are
compared to established deterministic models from the literature. Identifying strengths and
limitations of the different approaches, the models are applied to jet fuel screening to test their

adequacy for the assessment of new SAF candidates.

To support the design of new SAF candidates, the relationships between the fuel composition
and critical physicochemical properties are investigated. The relationships are investigated on
the basis of fuel components and the influence of their chemical families as well as the structural
aspects size and the branching. Trends and relations are characterized with graphs and
quantitative metrics that illustrate correlation and state the average value for a change in

composition.
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Both the developed models and design tools are applied to the use case of screening and then
optimizing a real SAF candidate to maximize its chances for successful fuel approval. The SAF
candidate and three optimized fuel variants with reformulated compositions are thereby screened
to assess the most suitable production route. Afterwards, a blending analysis of the SAF
candidate and the variants is conducted to estimate their maximum volume fraction in the
mixture with representative conventional jet fuels, considering both the safety requirements as

well as the potential reduction of CO, and soot emissions.

As potential next steps, this work identifies the need for advancements in the analytics of the
fuel composition as well as the extension of the existing fuel property databases. The former
would reduce the uncertainty in the property modeling, while the latter would increase both the

predictive capability of the models and the understanding of the fuel property relations.
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Kurzfassung

Der wachsende zivile Luftfahrtsektor und die begrenzte Steigerungsfahigkeit etablierter
Produktionspfade fiir nachhaltige, synthetische Treibstoffe (SAF) erfordern intensive Forschung
um das gesetzte Ziel der Klimaneutralitdt bis 2050 zu erreichen. Neben der Erforschung
neuartiger Rohstoffe und Produktionsverfahren liegt der Fokus auf einer generellen
Beschleunigung des gesamten Entwicklungsprozesses, von der initialen Treibstoffformulierung bis

hin zur finalen Zulassung.

Die Zulassung stellt fiir Treibstofthersteller eine besondere Herausforderung dar, da sie enorme finanzielle
und zeitliche Ressourcen sowie die Bereitstellung grofler Treibstoffmengen erfordert. Innovative,
kostengiinstige Konzepte, die eine frithzeitige Bewertung und Optimierung von Treibstoffkandidaten
anhand geringer Mengen ermdglichen, haben das Potenzial, den Entwicklungsprozess und die Zulassung
signifikant zu beschleunigen. Die Diese neuen Bewertungskonzepte basieren auf einer Kombination
moderner Treibstoffanalytik und modellbasierter Vorhersage kritischer Treibstoffeigenschaften und
ermoglichen so die Bewertung des Kandidaten bereits ab einem Volumen von 5 mL. In der anschliefenden
Optimierung koénnen die Treibstoffeigenschaften des Kandidaten durch gezielte Modifikation der
Zusammensetzung verbessert werden, um die Chancen auf die eigentliche Zulassung zu erhéhen. Die
Anforderungen an die Eigenschaftsmodelle und Designwerkzeuge sind hoch, da sie auch auf neuartige
Treibstoffzusammensetzungen auflerhalb des bisherigen Erfahrungsbereichs anwendbar sein miissen. Diese
Arbeit untersucht das Potenzial und die Limitierungen datenbasierter Methoden als Werkzeuge fiir die
beschriebene Treibstoffbewertung und das Treibstoffdesign. Unter Nutzung neuester Machine-Learning-
Algorithmen und Datenbanken soll geklért werden, ob und wie datenbasierte Methoden die frithe Phase der

Treibstoffentwicklung und Zulassung unterstiitzen kénnen.

Fiir die Bewertung der Treibstoffe werden drei verschiedene Methoden zur Modellierung von acht kritischen
Treibstoffeigenschaften auf Basis der Zusammensetzung entwickelt und untersucht: Direkte Korrelation
(DC), Mean Quantitative Structure-Property Relationship Modeling (M-QSPR) und Quantitative
Structure-Property Relationship Modeling (QSPR) mit Sampling. Alle drei Methoden greifen dabei auf
probabilistische Modelle zuriick, welche nicht nur einen deterministischen Wert pro Treibstoffeigenschaft
vorhersagen, sondern einen moglichen Wertebereich abschétzen und so inhérente Unsicherheiten abbilden.
Die Vorhersagefiahigkeiten der entwickelten Modelle werden anhand eigens entwickelter Metriken sowohl
fiir konventionelle als auch synthetische Treibstoffe bewertet und untereinander sowie mit etablierten
deterministischen Modellen aus der Literatur verglichen. Die Eignung der Modelle fiir die eigentliche
Bewertung von neuen Treibstoffkandidaten wird anschlieBend in einer simulierten Treibstoffbewertung von

drei Kandidaten festgestellt.

Fiir das Treibstoffdesign werden eigens Werkzeuge anhand von systematischen Untersuchungen der
Beziehungen von Treibstoffzusammensetzung und den kritischen Eigenschaften erstellt. Der Einfluss der

jeweiligen chemischen Familie, der Grofle und der Topologie der Treibstoffkomponenten auf die
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Eigenschaften wird anhand von Grafiken und quantitativer Metriken untersucht und in Korrelationen

erfasst.

Die entwickelten Modelle und Designwerkzeuge wurden anschlieBend kombiniert, um einen
Treibstoffkandidaten zu bewerten und zu optimieren und so dessen Chancen fiir die Zulassung zu
maximieren. In einem ersten Schritt wurde hierbei der Treibstoffkandidat und die drei optimierten Varianten
bewertet, um die Variante mit den gréfiten Zulassungschancen zu ermitteln. Anschlieend wird eine
Mischungsanalyse der aussichtsreichsten Variante durchgefiihrt, um den maximalen Volumenanteil in

Mischungen mit konventionellen Treibstoffen und die zu erwarten CO, und Ruflemission zu ermitteln.

Im Rahmen dieser Arbeit wurden datenbasierte Methoden erfolgreich sowohl fiir die Bewertung als auch
das Design von Treibstoffen entwickelt, untersucht und angewendet. Limitierungen wurden hierbei vor allem
aufgrund von Unsicherheiten in den Zusammensetzungsmessungen und eingeschrankter Verfigbarkeit von
Daten fiir das Training der Modelle und die Entwicklung der Designwerkzeuge festgestellt. Nachste mogliche
Schritte sind somit weitere Forschung und Verbesserung der Treibstoffanalytik, sowie die Erweiterung der
verfiigharen Datenbanken durch gezielt durchgefiihrte Messkampagnen. Ersteres wiirde die Unsicherheit in
der Modellierung der Eigenschaften signifikant verringern, Zweiteres die Vorhersagefihigkeit der Modelle
und die Verwendbarkeit und Aussagekraft der Designwerkzeuge verbessern.
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1 Introduction

1.1 Motivation

The consequences of man-made climate change make an adaptation and realignment of the
aviation industry inescapable. Politically set strategies like the “European Green Deal” of the
European Union (EU) and the “Sustainable Aviation Fuel Grand Challenge” of the Government
of the United States of America (US) foresee a need for an emission reduction in aviation of 90%
[1] and 100 % [2] respectively, to achieve the goal of climate neutrality by 2050. As a globally
growing industry, the aviation sector is expected to grow approximately 4% p.a. until 2050,
depending on the region [3]. Hence, a rapid adaptation of alternative technology is necessary to
establish a sustainable aviation industry. Recent reports by the Intergovernmental Panel on
Climate Change (IPCC) clearly state that prompt actions are required to achieve the set emission
reduction goals with technology that has high technical readiness and high chances of application
at large scale [4]. This has been recognized by aviation associations like the International Civil
Aviation Organization (ICAO). They rank the use of sustainable aviation jet fuel (SAF) as the
technology with the highest technological readiness and the highest potential emission reduction
for the aviation industry [5]. Figure 1.1 shows the potential contributions of measures for net
COs reduction as part of the long-term high aspirational goal of ICAO from 2022 prognosed to
2050 [6]. According to ICAQ's projections, sustainable aviation fuels (SAF) are expected to play
a crucial role in reducing CO2 emissions from international aviation in the future. Despite the
anticipated growth of the aviation industry, particularly in developing and emerging countries,
the widespread adoption of SAF has the potential to decrease COs emissions below the levels
seen during the 2021 COVID-19 pandemic low.

ICAO Assembly Long-term Global High Aspirational
CO3 Emission Reduction Goal

Technological improvements .........

—_ [ —_
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Figure 1.1: Contribution of measures for reducing prognosed international aviation net COq

emissions [0].
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Apart from the reduction of the greenhouse effect of the COs,, the use of SAF has also the
potential to reduce parts of the so-called non-CO, climate effects, which result from contrails
formed of emitted soot particulates. According to recent studies by Lee et al. [7] as well as Voigt
et al. [8] and Faber et al. [9], the contribution of non-CO, effects in aviation on the climate is
larger than the one of CO, emissions [8,9]. The emission of soot particles is strongly influenced
by the jet fuel composition, with low aromatic SAF fuels showing significantly lower emissions

with current technologies [8].

It is expected that the use of SAF and market-based measures like an emission trading system,
will excel the potential reductions by improvements of the burner technology significantly,
especially in later years [10]. The use of SAF on a large scale in the civil aviation industry is

therefore a necessity to reach the emission reduction targets.

The need for the large-scale application of SAF has been recognized by major political
institutions, which have released legislative proposals for SAF use and emission reduction. The
“ReFuelEU” aviation proposal of the European Parliament sets the minimum share of SAF to
2 % by 2025, 5 % by 2030, 32 % by 2040 and 63 % by 2050 in the “Fit for 55” concept for climate
neutrality [11]. The US Government announced a significant increase of SAF production from
currently 136’000 tons in 2020 [12] to 9.08 million tons by 2030 and 106 million tons by 2050 in
their “Sustainable Aviation Fuel Grand Challenge”[2].

Currently, production rates of approved SAF technologies are only able to provide a fraction of
the needed sustainable fuel with 200 000 tons, which corresponds to less than 0.1 % of worldwide
jet fuel demand in 2019 [13]. Drastic increases in production are planned by companies like Neste,
with a planned production of 1.5 million tons by 2023 [14], Shell with 2 million tons by 2025 [13]
and World Energy with 5 million tons in 2024 [15]. However, the sufficient supply of SAF volumes
required to achieve the set milestones for climate neutrality is highly uncertain, with 6.4 million
tons required in 2025, 18.3 million tons in 2030 and 359.2 million tons by 2050, as recently
estimated by the International Air Transport Association (IATA) in 2022 [16]. This becomes
especially apparent, considering that current SAF production and the production planned until
2030 consist and will consist predominantly of bio-based SAF from feedstocks like rapeseed, soy,
palm oil etc. [17]. These feedstocks are however not available in sufficient quantities without
interfering with other industries, e.g. the food industry [18], or negatively impacting existing
natural high carbon stocks though indirect land use and change (ILUC) [19]. ILUC summarizes
the potential net release of CO2 from vegetation and soil when lands with high carbon stocks
like forests and grasslands are converted to agricultural lands to compensate for the diversion of
existing croplands to biofuel production. These biogenic production routes are therefore not
expected to meet the rising demand of the growing aviation industry in the long term. The EU
therefore increasingly supports the transition from food-based biofuels and fuels with high
potential ILUC with the recast of the Renewable Energy Directive. Alternative feedstocks like

lignocellulose, byproducts and wastes, as well as alternative non-biogenic production routes like
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Power-to-Liquid pathways [18] are thereby especially promoted. These production routes,
however, have negligible market shares compared to biogenic routes or an overall small market

readiness [5].

Further research and development of new SAF production routes is therefore needed, alongside
the strongly growing SAF market. The focus is thereby not only on the identification of adequate
feedstocks and the development of new production processes, but also on the facilitation and
acceleration of the whole development process. From a laboratory concept, the process must be
developed to industrial scale under compliance of the final product with the required approval
protocol after ASTM D4054 [20], which guarantees the safe application of the produced fuel in
the aviation industry. Historically, the approval of a new SAF production pathway alone can
last up to several years and require multiple millions of dollars as well as hundreds of tons of fuel
for the extensive testing [21]. Early production capabilities of a fuel candidate are however often
on a laboratory scale and uncertain chances of success prevent additional investments for
upscaling as well as the willingness to fund the required test program. Considering the given
timeframe for the envisaged emission reduction in aviation, the process of designing a new jet
fuel and optimizing it to pass the approval process has to be reduced to a minimum in order to

meet the set goals of climate neutrality.

Extensive research projects like the National Jet Fuel Combustions Program (NJFCP) funded
by the US Government [22] and the project for Jet Fuel Screening and Optimization
(JETSCREEN) [23] of the EU were initiated to facilitate and streamline the jet fuel approval
process. Based on the findings of these research projects, Heyne and Rauch developed the concept
of prescreening in 2020, which allows the assessment of new jet fuel candidates at an early stage
of development with minimal cost and required fuel volume [24]. The prescreening assesses the
chances of a jet fuel candidate to pass the approval process and gives fast feedback to the
producer to redesign the composition and optimize the fuel accordingly. The concept thereby
focuses on a few jet fuel properties that are regarded as particularly critical for the jet fuel
approval by both the NJFCP and the JETSCREEN project. To reduce time, cost and required
fuel volume for the measurements of these critical properties, the prescreening procedure utilizes
predictive models, combined with modern analytical measurement methods. Together, these

methods allow prediction of the critical properties from fuel volumes below 5 mL.

The requirements for the models are high, since the predictions are expected to be comparable
to property measurements and substitute them if not yet available. To meet the requirements,
the predictions have to be accurate, highly reliable and reflect potential uncertainties for their
risk-informed usage. Furthermore, the models need to adequately predict desired properties not
only for the known range of jet fuel compositions but also for the compositions of new SAF that
might significantly deviate from the known compositional range. Apart from the models,
extensive knowledge about the relationship between the fuel composition and the desired critical

properties is required to design a fuel and optimize its chances of passing the approval process.
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It is against this background that the following scope of this doctoral thesis is set, with the goal
of developing highly accurate and reliable tools for the described use cases of screening and
designing new SAF candidates and supporting their development at an early stage. In the future,
these tools could be the basis for the screening and design of jet fuels under consideration of
ecological aspects like the described non-CO, effects, saving cost, time and fuel volume in the

fuel approval process.

1.2 Sustainable Aviation Fuel development and approval

The discrepancy between developing a new ecologically sustainable SAF production route under
optimal economic conditions and ensuring its safe use is a serious challenge for fuel producers,
the aviation industry and certification associations. Since 2008, seven unique production paths
and with them seven SAF types have been developed by the fuel industry and certified by the
American Society for Testing and Materials (ASTM) [25]. The approval by the ASTM is
necessary for every newly developed production path and the corresponding fuel type. It
guarantees the safe application of the fuel in the existing infrastructure of the aviation industry,

from production, transport, storage, and handling to the operability in the aircraft.

1.2.1 Jet fuel specifications and synthetic aviation fuel approval process

The ASTM (American Society for Testing and Materials) oversees three crucial specifications to
which sustainable fuels or their conventional blending counterparts must adhere: D1655 [26],
D7566 [25] and D4054. The standard practice ASTM D4054 and the specification for jet fuels
containing synthesized hydrocarbons ASTM D7566 are relevant for SAF. ASTM D4054 describes
the process for the approval of a new aviation turbine fuel, while ASTM D7566 holds the
standards for aviation turbine fuel blends containing synthetic hydrocarbons. Each approved
production path has an annex in ASTM D7566, which states the specifications for the respective
fuel type, its production path and feedstock, their maximum blending fraction and specifications
for the fuel blend itself. Blends that comply with the set specifications in the annexes of ASTM
D7566 and the requirements for jet fuel blends are considered “drop-in fuels” that can directly
be utilized in existing infrastructure and aircrafts. At the time of writing, ASTM D7566 states a
maximum fraction of up to 10 % and 50 vol% for SAF blends, depending on the SAF type.
ASTM D1655 holds the two major specifications for conventional jet fuel types civil aviation: Jet
A, defined by the ASTM itself, and Jet A-1, defined by the Defense Standard 91-91 of the
Ministry of Defense [27]. Besides Jet A and Jet A-1, specifications exist for further civil fuel types
that are country-specific and play a minor role in the commercial aviation sector: TS-1 for Russia

and the Commonwealth of Independent States and RP fuels for the Republic of China [28].
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ASTM D1655 and ASTM D7566

Both ASTM D1655 and D7566 are performance specifications and do not explicitly define an
allowed jet fuel composition or compositional range. They rather specify a combination of
minimum and maximum requirements for physicochemical and performance properties and allow
fractions of certain chemical families as well as trace compounds, e.g., antioxidants. In
combination with the approved production routes, these specification requirements implicitly
constrain the range of possible jet fuel compositions. To illustrate the compositional restriction
as a result of the requirements of property and composition, Figure 1.2 shows a schematic ternary
diagram after de Klerk for the resulting compositional range of conventional crude-oil based Jet
A-1 fuel after ASTM D1655 [29]. The possible jet fuel composition and property constrained are
thereby presented in a simplified schematic figure. The possible compositional range of Jet A-1,
indicated in gray, is graphically restricted by the minimum and maximum requirements of the

specification, e.g. the minimum aromatic content and the maximum freezing point.
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Figure 1.2: Restriction of possible fuel composition after ASTM D1655 for conventional crude

oil-based jet fuels [29].

At the time of writing, ASTM D1655 and D7566 hold specification requirements that are
classified into the following categories: composition, volatility, fluidity, combustion, corrosion,
thermal stability, contaminates and additives. All properties and compositions of a fuel have to

be measured with approved analytical methods that are also stated in the respective specification.
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ASTM D4054

ASTM D4054 describes the process for approving a new SAF production path and creating a
respective specification that can be included as an annex in ASTM D7566. ASTM D4054 is based
on the experiences from the approval processes by the British Ministry of Defense for the first
synthetic jet fuel by the company Sasol in 2009 [30]. It was developed as a guide by original
equipment manufacturers (OEM) of the aviation industry with the support of ASTM members
and includes property and composition targets that are known to impact the performance of the
turbine engines and fuel system [31]. The approval process consists of three parts: 1) Initial
screening, 2) Follow-on testing and 3) Balloting and approval. The parts have to be successfully
completed in sequential order to advance to the next. Figure 1.3 shows a schematic flow diagram

of the approval process, with the two testing phases, the balloting and approval.

Phase1: 6 Months

~ $50k (Testing Cost) 6 Months to 1 Year
~ 200 liter Neat Fuel - ~ $350k (OEM Cost)
" Tier 2
) Tier 1 S SAFRAN
o s ; | BOEING
i JFTOT PAsa;;‘l m Honeywell
wefp- L Rolls-Royce =
ey % AIRBUS
P OEM Review &

ot Fit-For-Purpose Tier 3 & 4 Requirements

Properties Properties
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| BOEING
P:s.;:nz _ Honeywell
Research w—> Rolls-Royce -
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Phase 2: 2 — 3 Years ~$1M (OEM Cost)

~ $4M (Testing Cost)
~100k — 450k liter Neat Fuel

INTERNATIONAL

FAA Review

ASTM Specification ASTM Balloting Process

Figure 1.3: Flow diagram of the approval process of a new aviation turbine fuel after ASTM
D4054 [24].

The test programs of phases 1 and 2 are comprised of four tiers that have to be completed
successfully, also in sequential order. A fuel is tested for its specification properties in Tier 1,
followed by fit-for-purpose properties in Tier 2, component and rig tests in Tier 3 and finally
engine tests in Tier 4. If a later test tier fails, there is a risk that the entire sequential testing
process will have to start all over again. All required tests or compositional analyses require a
substantial amount of volume from the fuel candidate. Tier 1 and Tier 2, in which predominantly

physicochemical properties and the chemical composition are measured, demand 200 liters and
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around 50 000 US dollars testing cost. Tier 3 and 4 can demand between 100 000 to 450 000
liters and around 4 million US dollars in testing costs. Tier 3 and 4 investigate inter alia the
spray characteristics, the ignition behavior, the cold start and lean blow-out, as well as the
operability and performance of the fuel candidate [24,31]. The extent of the tests in Tier 3 are
determined by engine OEMs based on the results of Tier 1 and Tier 2. Similarities in the chemical
composition or the measured properties are thereby considered and influence the extent of testing
in Tier 3 and Tier 4 and therefore the required fuel amounts [31]. After successfully passing the
extensive test of phases, research reports are prepared and passed to the OEMs for their internal
review. The report thereby states the results of the tests. The report of phase 2 furthermore has
to give a detailed description of the way the production process will be controlled to ensure the
same quality of the tested fuel and the fuel that will be produced in commercial quantities. In
the review, OEMs, the Federal Aviation Agency (FAA) of the US Government and the ASTM
decide if the new fuel candidate fits an existing annex in ASTM D7566 or if a new one has to be

created [31].

The specification changes in phase 3 are the final gate of the approval process, in which the
research report is balloted for comment and approval and the creation of a new annex in ASTM
D7566. The balloting process allows diverse groups of stakeholders from other areas of the fuel
and petroleum community to review the report and note concerns that might require additional

measurements to be added in the new specification annex or stop the approval process entirely
[31].

The complete ASTM D4054 approval process can take up to several years, requires a sustained
commitment, millions of US dollars and up to hundreds of thousands of liters of fuel for testing
[24,31]. Since fuel producers that seek approval can often not provide the necessary fuel amounts
for testing, a “fast-track” approval process was added as annex 4 in ASTM D4054 in September
of 2020. It reduces the approval to Tier 1 testing and selected tests from higher Tiers, a fast
track research report reviewed by OEMs and FAA and the balloting and specification change
[21,32]. New production paths approved after the fast-track process are however limited to a

maximum blending fraction of 10 vol% [32].

1.2.2 Jet fuel prescreening

The need for an even faster, less fuel- and cost-intensive processes for the assessment and approval
of a new SAF candidate was constituted by OEMs and ASTM in CAAFI 2014 [33]. Based on
findings from the subsequent research projects NJFCP [22] and JETSCREEN [23], Heyne and
Rauch developed a concept for an accelerated assessment process called jet fuel prescreening [24].
This concept makes it possible to assess the chances of a fuel passing the actual approval process
at an early stage of development with minimal costs and fuel volume using model-based property
predictions. [24]. Based on the results of the screening, a fuel producer can redesign the fuel
composition to optimize it accordingly. The concept focuses on the assessment of the fuel

composition and the evaluation of critical fuel properties, especially properties that influence
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operability and safety issues, which may not be directly exhibited until Tier 3 and Tier 4 of the
approval process. Eight properties were identified as a short list by the research projects that
have a critical impact on aircraft and engine and ground handling [24]. The eight properties are

summarized in Table 1.

Property Unit Dependency Min Max
Density kg/m? 15 °C 775 840
Kinematic viscosity mm?/s 2070 i
-40 °C 12
Surface mN/s 20 °C
Net heat of combustion MJ/kg 42.8
Flash point °C 38 68
Freezing point °C -40
Derived cetane number - 30
10 vol% 150 205
50 vol% 165 229
Distillation line °C 90 vol% 190 202
100 vol% 300
Tso —T1o 10
Too — T1o 40

Table 1: Critical jet fuel properties for jet fuel prescreening.

With the exception of the cetane number, tests for all listed critical properties are part of the
Tier 1 and Tier 2 test programs of part 1 of the ASTM D4054 approval process. Detailed
descriptions of the properties and their importance for aircraft and engine and ground handling

are given in individual paragraphs in the Supplementary Material A.

To test composition and the outlined critical properties, the prescreening process provides two
test tiers, Tier o and Tier R. Tier o is a screening based on the analyzed fuel composition with
model-based property prediction and Tier B consists of experimental property measurements
verifying predictions with particularly high uncertainties [24]. For Tier o, a fuel sample of just
5 mL is required. From this sample, the fuel composition is characterized using the analytical
GCxGC method [24]. The model-based predictive models subsequently predict the outlined
critical properties based on this compositional measurement. Tier B requires 150-500 mL of fuel,
depending on the conducted tests. Based on the findings of Tier o and Tier B figures of merit for

the performance in spray and engine operations, relevant for Tier 3 and Tier 4, can be estimated
[24].

For a screened jet fuel candidate to have high chances of passing the actual ASTM D4054 test
program, the estimated and measured properties of Tier o and Tier B should lie inside set

specification limits of ASTM D4054 and ASTM D7566. If properties lie outside the specification
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limits, the jet fuel composition should be redesigned to meet the specification in the next
iterations. Figure 1.4 shows an exemplary case for the screening a property for the two fuels A
and B. While the property value of Fuel A lies inside the allowed value range, the property value
of Fuel B lies below the lower specification limits, as indicated in red. The composition of Fuel
B has therefore to be adjusted and screened again in another iteration. Ideally, the compositional
redesign of Fuel B can be conducted virtually using simulative tools to further save time and fuel
volume, resolving the need for cost- and time-intensive iterations of the process parameters. This
requires comprehensive knowledge about the relationships between fuel composition and all

relevant properties, as well as appropriate simulative tools of the production process.

Fuel A Fuel B
. : *
— Property value inside of — Property value outside of
specification limits specification limits
— No actions required — Redesign of compostion
necessary

Figure 1.4: Schematic illustration of the screening plots for Fuel A and Fuel B as part of the jet

fuel prescreening.

1.2.3 Challenges for the prescreening concept implementation

Parts of the prescreening concept were implemented and tested in the scope of the JETSCREEN
project to assess the availability and adequacy of predictive property models for the Tier o testing
[23]. The assessment identified limitations and challenges in both the availability and adequacy
of the models, which consequently limited the application of the prescreening concept [34]. The

different limitations and challenges are explored in more detail in the following.
Large variety of possible jet fuel compositions

As outlined in Section 1.2.1, jet fuel specifications do not directly specify an allowed composition
range but rather the limits for the possible value range of jet fuel properties. As a result, the
compositions of jet fuel candidates that enter the screening process can differ drastically from
the compositions of fuels from known and approved production routes. To illustrate the variation
of the possible composition range, Figure 1.5 shows plots of the composition of four representative
synthetic fuels from the DLR Jet Fuel Database: FT-SPK, HEFA-SPK, ATJ-SPK, TH? and one
conventional fuel, Jet A-1, as a reference. With the exception of the TH? fuel, all fuels are already
approved by ASTM. Detailed descriptions of the different approved and pending fuel types and

their corresponding production paths are given in Supplementary Material B.
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Figure 1.5: Plot GCzGC measurement of conventional Jet A-1 fuel (upper left), FT-SPK (upper
right), HEFA-SPK (middle left), ATJ-SPK (middle right) IH* fuel (lower left).

The comparison of the plots visualizes the drastic compositional differences between the fuel
types and the known and established conventional Jet A-1 fuel on the upper left. While the Jet
A-1 fuel shows a broad Gaussian-like distribution for all considered families over the number of
contained carbon atoms, the compositions of the SAF fuels are dominated by one or two families
with distinct distributions. For FT-SPK and HEFA-SPK the compositions are dominated by n-
alkanes and iso-alkanes and for the IH* by mono- and bi-cyclo-alkanes. The composition of the
ATJ-SPK is made up almost entirely of two iso-alkanes with 12 and 16 carbon atoms. The wide
variety of fuel compositions and the constant formulation of new candidates can pose a challenge

to predictive models, as they may be confronted with fuels for which they have not been

developed and validated.
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Limitations in compositional analytics of the fuel composition

Both the compositional comparison of a new jet fuel candidate with already approved fuels and
the property modeling of fuels require a compositional characterization of the candidate. There
exist various analytical measurement methods that can be applied for the characterization of a
jet fuel composition. ASTM D4054 lists both Mass Spectroscopy after ASTM D2425 [35] and
High-Pressure Liquid Chromatography ASTM D6379 [36]. However, these methods only yield
information about the cumulative fraction of compounds from the different hydrocarbon families.
The accurate modeling of fuels requires more detailed information beyond the hydrocarbon
family. Most modern laboratories use Two-dimensional Gas Chromatography (GCxGC) for the
compositional analysis of jet fuels [24,37,38]. This measurement method uses two sequential gas
chromatography columns for the separation of the fuel constituents with a subsequent mass
spectroscopy or a flame ionization detector [39]. The two gas chromatography columns allow for
a more precise identification of the fuel components, both by their chemical family and their
number of carbon atoms they contain. However, the identification of the exact chemical
component /isomer is currently not always possible for jet fuels due to the overlay of measurement
signals [40,41]. Figure 1.6 illustrates this for an exemplary GCxGC measurement of conventional
Jet A fuel. The colors in Figure 1.6 indicate the strength of the signal and the detected fraction
of a fuel component, going from no signal (blue) to medium signal (green) to high signal (red).
Figure 1.6 shows that signals lie in part very close to each other and can overlap. The clear
classification of a signal and the identification of every individual component is therefore not

possible.
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Figure 1.6 GCxGC measurement signal of Jet-A fuel [42].

The unidentified isomers can thereby have drastically different property values, which
consequently affects the uncertainty in the property value of the fuel; e.g. for the freezing point,
value differences of -110.15 °C to 12.6 °C are recorded in the created database for iso-alkanes

containing 10 carbon atoms. These differences become increasingly significant if a fuel
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composition is dominated by one or two families or even distinct components, e.g. like for the
ATJ-SPK. For the fuel prescreening, the models are required to reflect this uncertainty as part
of their prediction. Furthermore, the predicted uncertainties have to be put into context with

the limits of the fuel specification to illustrate the potential risk of accepting a prediction.
Availability and adequacy of state-of-the-art fuel property models

To apply predictive models for the Tier o prescreening, the models need to be 1) available 2)
able to model the large possible composition space and reflect existing uncertainty, as well as 3)
be able to predict adequate results. Models able to predict fuel properties on the basis of
composition measurements have been investigated and developed since the 1950s [43]. In a recent
publication, Vozka and Kilaz reviewed published fuel property models and compared them based
on accuracy metrics provided by the respective authors [43]. The review lists possible models for
six of the eight required properties able to predict on the basis of GCxGC measurements. All
recommended models, e.g. by Shi et al. [40] and Vozka et al. [43] are deterministic data-based
correlation models. These modeling methods directly correlated the GCxGC measurement, or
averaged values of representative species, with the property returning one value. This means that
uncertainties, e.g. due to unidentified isomers or other sources, cannot be reflected by the models
and that the outlined prescreening requirements can therefore not be fulfilled. The provided
accuracy metrics, in most cases averaged prediction errors, do furthermore not allow an
estimation of the adequacy of the models for the application of prescreening. This is because the
composition range of the fuels used for the publication and the calculation of the accuracy metric
might not cover the composition range relevant for the screening. The ability of the models to
predict adequate results is therefore highly uncertain. To assess the adequacy of the models, they
must actually be tested on a representative selection of fuels relevant to prescreening, as shown

in Figure 1.5.

To actually assess the adequacy of available models, three different state-of-the-art property
models were investigated in the scope of the JETSCREEN project for their ability to adequately
predict for a selection of conventional and synthetic fuels [34]. The project compared the
Representative Fuel Generator (ReFGen) model and the Quantitative Structure Property
Relationship (QSPR) model of the French Institute of Petroleum (IFPEN) as well as the
Continuous Thermodynamics Model (CTM) the German Aerospace Center (DLR) by Le Clercq
[44]. Models for three of the eight properties were thereby available for the comparison. Likewise
to the models of Vozka and Shi, these models are deterministic and approximate the fuel either
by representative species like the ReFGen or QSPR model, or by fitted distributions for the
hydrocarbon families like the CTM model. Inherent uncertainties of the GCxGC measurements
could therefore not be reflected and the outlined requirements were therefore also not met. The
assessment of the models showed in part significant deviations of up to 47 % from measurement
data for the CTM model, especially for synthetic fuels [34]. The models were therefore rated

inadequate for prescreening purposes. The deviations were explained by the simplified fuel
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representation of the models, which approximate the composition by only a few isomers and or
distributions for the families, as well as their original fields of application, with the CTM model

being mainly optimized for conventional fuels.

This review illustrates the need for new property models, developed and tested specifically for
the use case of jet fuel screening and design. Existing models do not fulfill the identified
prescreening requirements and were found to be inadequate or tested with metrics that do not

guarantee their predictive capability for the intended application.

Following the increased development of data-based models, new modeling methods should be
explored and created using newly developed Machine Learning algorithms. The new models
should thereby be tested using predictive capability metrics that allow the assessment of their

adequacy for the intended application of jet fuel prescreening.

1.3 Objectives and research questions

As outlined over the course of the last chapter, the aviation industry and fuel producers are in
need of linking concepts that accelerate and streamline the development and approval of new
sustainable aviation fuels. Recent scientific work developed those concepts, like the prescreening
concept introduced by Heyne and Rauch [24]. The prescreening concept itself however relies on
predictive models and a comprehensive understanding of the relations between fuel composition

and properties to optimize the fuel composition.

This thesis investigates the question whether and how new data-based models are able to provide
the tools for the outlined prescreening process. The research aims to develop both property
models for predicting critical fuel properties and design tools to optimize fuel candidates for

approval. The main objectives of this study are:

o Development of models for the prediction of the critical jet fuel properties from GCxGC
composition measurements under consideration of uncertainties

o Development of an adequate database for the development and testing of the models

o Development of predictive capability metrics to assess the adequacy of the models for the
application of jet fuel prescreening

o Development of tools for the jet fuel design based on the investigation of the relationships
between fuel composition and the critical properties

e Finally, the application of the developed tools for the screening and design of new jet fuel

candidates to optimize their chances for approval

To fulfill these objectives, this work focuses on the use of data-based methods both for the
development of the models and the investigation of fuel composition and property relations. For
the development of the necessary database, already existing data from different sources and

databases is utilized. This reduces the need for own extensive measurement campaigns, and
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allows the focus on different data-based modeling methods and correlation algorithms from the
field of Machine Learning. Critical gaps in the utilized data as well as limitations that hinder the
development of accurate and reliable tools are furthermore outlined, along with recommendations

for future research.

1.4 Chapter outline

To answer the research question and address the individual objectives, this work is structured

into the following dedicated chapters.

In Chapter 2 the theory and inner workings of the developed modeling methods are presented.
The chapter furthermore holds sections for the model training and validation, as well as the

developed predictive capability metrics and assessment process.

The database for the development of the predictive models and the fuel design is described in
Chapter 3. This chapter describes and characterizes the data and illustrates the utilized

preprocessing and outlier detection.

Chapter 4 holds the results of validation and adequacy assessment of the predictive models. The
models are thereby compared with each other as well as with established models from the
literature to relate their predictive capability with known modeling approaches. The adequacy of
the models for the jet fuel screening is subsequently assessed based on a simulated prescreening

of three fuels, which were excluded from the training and validation.

In Chapter 5 the influence of structural aspects of fuel components on the considered properties
is investigated. The influence of the chemical family, size and branching of the fuel components

on the different properties is thereby summarized in tools, as basis for the subsequent fuel design.

Chapter 6 applies all developed tools for a combined workflow of fuel screening and design for a
real jet fuel candidate. The original jet fuel candidate and reformulated fuel variants, created as
part of the fuel design, are thereby screened to assess their chances as potential applicants for
the approval process. In a subsequent blending study the variant with the highest chances for
approval is blended with a representative selection of conventional fuels to estimate their

maximum blending fraction and potential as a synthetic blending component.

Chapter 7 relates the results of this work to the set research question and objectives. Based on

this discussion, possible next steps and recommendations for further research are suggested.
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2 Fuel Property Modeling

The modeling of physicochemical properties has always been of great interest both for the
scientific fuel community and the fuel industry. The ability to predict properties, e.g., the net
heat of combustion of a fuel solely based on its composition reduces the need for respective
measurements, thereby saving time and cost and allowing the assessment of fuels [24] or

subsequent simulations of processes like evaporation [45,46].

Fundamentally, there exist two approaches of modeling a fuel: 1) modeling a fuel as a mixture
of constituents and 2) modeling a fuel as an entity. The first approach describes a fuel as a
mixture of more fundamental and underlying constituents that either exist in the fuel as
components or are sufficiently representative for the fuel composition. The bulk property of the
fuel is thereby calculated from the property values of the individual constituents using an
adequate mixing rule. The second approach directly correlates a compositional measurement, e.g.
a GCxGC measurement, or a chemometric measurement signal of the fuel with the
physicochemical properties using a regression algorithm. In contrast to the first approach, this
one does not rely on mixing rules. Over the years, research has produced several modeling
methods for both of the two approaches. The development was thereby strongly coupled to the
available compositional analytics and the availability of data for the development of the models

and their desired applications. Figure 2.1 shows a schematic illustration of the family tree of the

two approaches and their respective modeling methods, which will be explained in the following.

Fuel property
modeling

Mixture of
constituents

— -
— -
— —
— - -
e -
— —
— —

Mixture of Mixture of . .
. . Chemometric Direct
discrete continuous M-QSPR . .
L correlation correlation
components distributions

Figure 2.1: Family tree of approaches for the modeling of fuels.

For the mixture of constituents two major modeling methods emerged over the years. The method
of modeling a fuel as a mixture of discrete components and the method of modeling a fuel as
mixture of continuous distributions. The first method describes a fuel as a mixture of pure
components, that have either been identified as fuel component, or are assumed to exist in the
fuel and are sufficiently representative. The second method does not require the identification or
assumption of individual fuel components. The fuel is rather modelled as a mixture of those

continuous family distributions, where the distribution parameters are calculated from the
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compositional measurement, e.g. the GCxGC measurement. Both methods estimate the bulk

property of the fuel from the property values of the individual constituents.

For models using the method of discrete components, the property values of the fuel components
can be provided from predictions, like in the Discrete Component Model (DCM) of Le Clercq of
the German Aerospace Center (DLR) [45,47] or from measurements as in the model of Yang et
al. [48]. Mixture of continuous distribution models on the other hand, like the DLR Continuous
Thermodynamics Model (CTM) of Le Clercq [44], predict the property for each family by an
underlying correlation that relates the family distribution with the property [30]. The utilization
of models from the two methods is often strongly restricted to the use case models were designed
for (e.g. fluid dynamic simulation) as well as the available compositional analytics and validation
data. For the use case of simulating complex physical phenomena e.g. evaporation, computational
limitations often constrain the number of possible fuel constituents since each constituent requires
its own set of equations for the mass balance. For discrete component models, this limits the
number of fuel components to one representative compound per family and carbon number, as
for the DCM model of Le Clercq, or even fewer if the fuel is approximated using a surrogate, e.g.
the model of Bell [49]. CTM models are especially suitable for the study of complex physical

phenomena like evaporation [46].

The approach of modeling a fuel as an entity stands in strong contrast to the presented methods
of modeling a fuel as mixture of constituents. Both the chemometric and the direct correlation
methods directly correlate the compositional measurement of a fuel as a whole, or the
chemometrical measurement signal with the physicochemical properties. Information and
assumptions about potential fuel components are not necessary. The first models of the entity
approach were developed by Cookson et al. [50-54] in the 1980s. They followed the direct
correlation method and correlated the mass or volume fraction of the identified hydrocarbon
families using a multilinear regression algorithm. The fractions of the hydrocarbon families were
determined using GC, nuclear magnetic resonance spectroscopy, and high-pressure liquid
chromatography. Chemometric models for the application of jet fuels were firstly developed by
Morris et al. for the application of the prediction of critical fuel properties from near-infrared
absorption spectra for the US Navy [55,56]. Direct correlation methods have the distinct
advantage of using evaluated measurements in a standardized format. The standardized format
allows the utilization of measurements from multiple different laboratories for the training of the
direct correlation models. For chemometric models, the standardization of measurement signals
is very challenging, which often limits the usable data to one reference laboratory or one
particular measurement apparatus. With the increasing use of GCxGC for the compositional
analysis of fuels, direct correlation methods with GCxGC measurements as input were developed,
inter alia by Shi et al. [40] and Vozka et al. [43].

The modeling methods described up to this point are all deterministic, meaning they predict one

property value for a given fuel composition. This is inherent to the described modeling



2 Fuel Property Modeling 17

approaches, where the DCM model of LeClercq uses just one species to represent a family with
a certain carbon number and the outlined direct correlation methods solely use deterministic
correlation algorithms. Research conducted on jet fuel modeling and screening by the University
of Dayton [48] and the JETSCREEN project [47] revealed, that deterministic modeling methods
are not sufficient to adequately predict desired properties. The return of just one property value
and the neglection of uncertainties which inherently exist e.g. due to unidentified isomers, proved
to be insufficient. This is especially problematic for synthetic jet fuels, where differences in the
properties are significant for isomers of a family at a certain carbon number and need to be
reflected in the modeling. The necessity of the consideration of uncertainties induced by
unidentified isomers in the GCxGC measurement was therefore directly adopted and

implemented in the prescreening process by Heyne and Rauch [24].

To create a modeling method tailored for fuel screening, Yang et al. [48] developed a probabilistic
discrete component model. This modeling method considers multiple possible isomers by sampling
property values of isomers assumed to be present in the fuels from a measurement database using
Monte-Carlo sampling [48]. This improved the predictive capability of the model by allowing the
estimation of a possible value range of the fuel property, reflecting the inherent uncertainty of
the modeling problem. However, the model of Yang et al. proved to strongly rely on the
availability of property measurements of multiple isomers, which are often not available in
current property databases. If the number of available measurements is too low or the set of
available isomers is not representative, deviations and invalid uncertainty estimations can occur

[48].

This thesis extends selected modeling methods of the previously outlined work, with the explicit
goal to tailor these models to meet the unique needs of jet fuel screening and design processes.
The developed models should be able to accurately and reliably predict properties and
uncertainties for the prescreening process. Identified limitations of the outlined deterministic
modeling methods and the dependence of the probabilistic method of Yang et al. on measurement
data should thereby be overcome. For this, probabilistic models from both modeling approaches
are developed to model jet fuels both as entities and as mixtures of constituents. From the two
approaches, three different modeling methods are derived: 1) Monte-Carlo sampling of predicted
fuel component properties, 2) direct probabilistic correlation and 3) Mean Quantitative
Structure-Property Relationship (M-QSPR) modeling. The M-QSPR is a specifically developed
hybrid method that has characteristics of both the 1) and the 2) modeling approach. It models
a fuel as an entity, however it requires a selection of representative components. The method

therefore sits between both approaches in the family tree of Figure 2.1.

The three methods differ fundamentally from each other. This allows the comparison of their
individual advantages, disadvantages and limitations. Furthermore, potential benefits of using
multiple modeling methods simultaneously for the use cases of jet fuel screening and design can

be investigated. As part of this work, the developed models are also compared with existing
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models from literature to outline the benefits of probabilistic modeling, both with respect to

accuracy and the additional value of the estimated uncertainty.

2.1 Principles of data-based modeling methods

Data-based models have long been used in the field of fuel property modeling and most of the
methods presented in the introduction of this chapter are data-based. This section outlines the
principles of data-based modeling in comparison to physical modeling and elaborates the rationale

for the use of data-based methods in the field of fuel property modelling.

The differentiation of the physical and data-based modeling approach requires a comparison of
the underlying modeling philosophies and procedures. On a fundamental level, all modeling
approaches for physical applications have the same intention: the replication of an objective
reality in order to simulate possible events as bases for present decisions, for which experience or
measurements are missing [57]. However, the physical and data-based modeling approach differ
significantly in the way they replicate objective reality. Physical modeling approaches rely on a
combination of known physical theory and observations derived from measurements. The theory
itself must be derived from the measurements themselves or be already available from previous
evaluations. Based on both theory and measurement, a conceptual model is prepared by human
analysis, often in the form of a mathematical formula. This mathematical formula can then be
implemented as a computational model, validated and if the validation is successful, utilized to
simulate the desired events. A schematic flow diagram of the physical modeling process is given
on the left of Figure 2.2 [57].

Physical modelling Data-based modelling

Reality Reality
Measurement

Human analysis (Human) Feature Validate

engineering
Conceptual Conceptual
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Programming Programming
Computerized

Computerized
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Physical understanding Lifzquilied duif
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Programming

Computerized
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Figure 2.2: Spectrum of modeling approaches from physical models and empirical models to data-

based models.



2 Fuel Property Modeling 19

Many scientists consider this modeling philosophy and procedure the true way of scientific
modeling. However, physical approaches rely on three necessary preconditions that make the
modeling procedure possible in the first place: 1) A problem with human comprehensible
complexity and a physical theory that either already exists or can be derived from the available
measurement data or knowledge. 2) Measurements that allow the derivation of all important and
influential features; and 3) a modeling problem that can be simulated with existing computational
resources [57]. The three preconditions of cause influence each other and are themselves
interdependent, e.g. measurement methods often depend on previous knowledge about the
features of interest, which can only be derived if the problem itself is comprehensible for current
human understanding. Also, if the necessary theory does not fully exist yet, the available
measurement methods are not able to identify all influential features, or the problem exceeds the
current human understanding. If this is the case, reality can be approximated using data-based

approaches.

Data-based approaches approximate, meaning they do not exactly simulate the underlying
mechanisms of reality, they imitate them based on previously made observations using correlation
algorithms [58]. They therefore do not rely on a full existing theory and measurements with all
influential features, but rather try to approximate the problem with available formulas, data and
computational resources. The conceptual data-based model is not primarily derived from human
understanding and identified physical formulas but directly from the observed data [57]. The
approach thereby assumes that the available measurement methods are able to capture data,
which intrinsically provides enough variance and influential features that a sufficient conceptual
and mathematical model can be derived from it. Data is thereby generally needed in greater
amounts. Data-based models can be differentiated into empirical and Machine Learning models
[57]. For empirical models, the conceptual model is derived from human analysis such as
investigating the data using statistical analysis and fitting a selected, often low dimensional
mathematical model with foreseeable course. The influence and general correlations of the
features are thereby often known and built implicitly in the computerized model, see middle of
Figure 2.2. For Machine Learning models, the correlations of features and target value are in
most cases unknown and the conceptual and computerized model is more flexible to allow an
optimal correlation. Human analysis is thereby often limited to the selection and engineering of
appropriate features. In many cases the conceptual model can directly constitute the
computerized model, and all feature target relations are purely derived from the data, see Figure
2.2 [57]. However even for Machine Learning models meta information and domain knowledge
can be directly built into model, e.g. via hybrid modelling [59-62]. For the case of physical
applications, constraints, relations or trends can be built into or constrained in the model

development.
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The level of known theory incorporated into a model and the extent of human analysis can vary
across different use cases. The boundaries between physical, empirical, and Machine Learning-
based modeling approaches often become blurred, making it more appropriate to view them as a
spectrum rather than distinct categories. The bottom part of Figure 2.2 shows a schematic
illustration of this spectrum from, physical models to data-based models. Generally physical
models require more physical understanding and less data for model development and validation,
while data-based models generally require more data and less understanding. Examples of
physical models are Newtonian mechanics [63] and kinetic gas theory [64]. Empirical models are
often found in engineering e.g. for the correlation of the Reynolds and Prandtl number to
calculate the heat transfer coefficient of a heat exchanger [65]. Examples of Machine Learning
are found in the fields of natural language processing [66] and computer vision [66], research fields
where the underlying investigated phenomena are often not completely understood and have to
be approximated. This is also the case for the field of chemoinformatics, particularly the modeling
of physicochemical properties of pure compounds, mixtures and fuels and the reason for the use
of data-based models in this work. Similar to the field of computer vision, the complex underlying
laws in this case the relations between intra- and inter-molecular relations on physicochemical
properties required the use Machine Learning algorithms for a long time. Famous Machine
Learning based modeling methods in cheminformatics are the Group Contribution method of
Joback [67] and the Unified Functional Group Activity Theory (UNIFAC) [68]. Beyond the
complexity of the modeling problem, limitations in the compositional analytics of fuels, as the
unidentified isomers explained in Section 1.2.3 also prevent exact knowledge of the fuel

composition, which makes an approximation of the fuel necessary.

2.2 Fuel property modeling methods

2.2.1 QSPR with sampling method

Sampling methods model a fuel as a mixture of components. Since GCxGC can presently not
identify all isomers contained in the fuel, the composition has to be approximated by
representative components for each chemical family and carbon number in the GCxGC matrix.
These components are thereby assumed to be part of the fuel. Up to this point, a proven list of
possible representative molecules that describe the variability of unidentified isomers relevant for
jet fuels does not exist. Such a list might furthermore strongly depend on the respective fuel
production process. Yang et al. therefore approximated the fuel composition by using all
components tabulated in physicochemical property databases [48]. The method of Yang et al.
samples measured property values from databases like the NIST Standard Reference Database
103a [69] or the DIPPR 801 database [70]. The method has great extensibility, since new

hydrocarbon families, can easily be added if property measurements of the respective hydrocarbon
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family are available. Yang et al. illustrated the predictive capability of this measurement
sampling method for the modeling of 20 SAF using measurements of up to 1223 molecules.
However, the method is strongly limited by the availability of property data. If no measurements
are available for a certain chemical family at a certain carbon number, measurements of similar
components with a similar number of carbon atoms have to be chosen. Furthermore, outliers and
erroneous measurements have to be filtered before the sampling. This can induce a modeling
error. For this reason, this work utilizes property models that predict the physicochemical
properties of all components assumed to be in the fuel. The properties of the fuel components
are predicted from structural information of the molecules and are therefore not limited to the

availability of measurement data, assuming accurate model predictions.

There exist various approaches for the modeling of physicochemical properties based on the
structural information of molecules. Saldana et al. demonstrated the applicability of Quantitative
Structure-Property Relationship (QSPR) models for the modeling of pure compounds, which
could be present in fuels as components. Models were developed for most of the desired properties,
considering compounds from all relevant hydrocarbon families [71-73]. Following the conclusions
of Saldana et al., the QSPR method is chosen for the property modeling of fuel components in

this work.

The QSPR modeling method postulates a relationship between the structure and physicochemical
properties and assumes similar property values for components with similar structures and
substructures. In this approach, quantitative structures like the number of contained carbon
atoms or the number of methyl groups are quantified for every molecule. This approximates the
molecular structure by a quantitative description, that can be correlated with the property. The
selection of the molecular features depends on the respective modeling task. From conclusions
drawn in previous work by Saldana et al. [71-73] solely functional group count descriptors are
considered. These descriptors quantify relevant functional chemical substructures that
characterize the molecules of the considered chemical families. The substructures are quantified
based on the simplified molecular input line entry system (SMILES) of the respective molecule,
using SMILES arbitrary target specifications (SMARTS) [74]. Figure 2.3 shows a visual example
of the quantification of the functional count descriptors for 2,3-hydro-2-methly-1h-idene. The
colored substructures and the count of the occurrence of the quantitative structure SMARTS
key are displayed in the legend: e.g. for the substructure [CX4H3], the count of 1 indicates that
the molecule contains one methyl-group, while [R] 9 shows that the molecule has 9 ring atoms
etc. A full table of the utilized 49 substructures, the corresponding SMART key and a description
is listed in the Supplementary Material C. The SMART keys are quantified using the RDKit
Python package [75].
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BN [CX4H2R] 2
BN [cX3HO]-[cX3] 2

N [CX4H2]2
B [CX4H3]1

B [CX4H1]1
[R]19

[R2] 2
Bm [CX4HIR] 1

Figure 2.3: Quantified molecular features of 2,3-hydro-2-methly-1h-idene, number behind
SMART key shows count of molecular feature[76].

A schematic representation of the whole process, from the quantification of the molecular
structure of the components to the prediction of the property and the estimation of the bulk
property with random sampling is shown in Figure 2.4. The process is shown for three exemplary

isomers of the iso-alkanes with 10 C-atoms and four exemplary substructures.
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Figure 2.4: Schematic illustration of QSPR sampling modeling method from quantification of the

molecular structure of components to the property estimation of the fuel.

In the first step, compounds that are assumed to be present in the fuel as fuel components based
on the GCxGC measurement, are selected and converted into the quantified structure
representation by the functional count descriptors. Up to 1870 compounds are considered, as
described in Chapter 3, and assumed to be representative and potentially present in the fuel as
components. In the second step, property values of all components are predicted with a trained
probabilistic QSPR property model, computing a distribution of property values for each
component. The pure compound property models are trained on the measurement data of pure

compounds from the utilized database described in Chapter 3. Unity plots of the cross-validation
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results of the training and testing for fuels and pure compounds of all models can be found in
the Supplementary Material E, Figure E 1 to Figure E 39. In a last step, random samples are
drawn from the predicted value distributions of randomized isomers, as indicated by the rolling
dice on the far right in Figure 2.4. The property samples are multiplied with the fraction given
by the GCxGC measurements and summed up using a suitable mixing rule to compute the bulk
property of the fuel. By randomly sampling values from the predicted value distributions of
random isomers, both uncertainties from the predicted property values of the individual
component and uncertainty due to unidentifiable isomers are considered. The sampling process
is repeated 100 times, which proved sufficient, to create a value distribution of the bulk property
of the fuel. This distribution is described by the median value ypreq and the lower and upper

prediction intervals y}; and y¥ with 95 % confidence intervals.

The modeling of different fuel properties requires suitable mixing rules for each property, which
are presented in the following. All mixing rules were chosen based on experience and literature
recommendations [77]. For the modeling of the density, surface tension, net heat of combustion,
flash point, freezing point and cetane number, a linear mixing rule after Equation (2.1) is used,
where the bulk property value y,,;, is calculated by summing over the predicted property value
y; of the individual components weighted by their fraction in the fuel w;. All isomers are assumed
to be present with the same probability and are not weighted individually. For the density,
surface tension and net heat of combustion the mass fractions of the components are used in
Equation (2.1). For the cetane number, the mole fractions and for flash point and freezing point
the volume fractions of the components yield the best results. The necessary densities for the
calculation of the volume fractions are predicted with the QSPR, density property model for each

component.
Ymix = Zwi Yi (2.1)
i

For the kinematic viscosity the Grunberg-Nissan mixing rule without binary interaction

coefficient is utilized, see Equation (2.1) [78].

(Vi) = 2 w; In(v;) (2.2)

To predict the viscosity at low temperatures (< -10 °C) a fitting formula proposed by the ASTM
D341 [79] see Equation (2.3) and Equation (2.4) is utilized. The predicted viscosity values at -
10, 0, 20, and 60 °C are thereby utilized as base points using the QSPR viscosity model.
Afterwards, a linear Bayesian regression model is used to fit the linearized formula of Equation
(2.3) and draw random samples from the fitted distribution of the regression model, to estimate

the property value distribution.
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log1(log1(2)) = A — B log (T) (2.3)
Z=v+0.7 +exp (—1.47 — 1.84v — 0.51v2) (2.4)

For the calculation of the distillation line, the simulated distillation approach after ASTM D2887
[80] is chosen. The distillation of the fuel is thereby estimated from the predicted boiling points
of the individual components. In an iterative process, the temperature of the simulation is thereby
increased and components are assumed to evaporate immediately when the temperature reaches
the predicted boiling point. The predicted distillation line is then corrected using the correction
formula defined by ASTM D2887. To calculate the evaporated volume, the corresponding

densities of the components are calculated at 15 °C.

2.2.2 Direct Correlation method

In the Direct Correlation method (DC), the two-dimensional matrix of the GCxGC composition
measurement is reshaped into a one-dimensional vector and directly used for the correlation with
the measured properties. Assumptions about representative components, data about pure
compounds and appropriate mixing rules, as for the QSPR sampling model, are not necessary.
The property model is directly trained and validated solely on the fuel data. The probability
distribution of property values is calculated directly by the probabilistic regressor, which predicts
both a mean value and uncertainties. The uncertainties are thereby derived purely from the
measurements. The utilized probabilistic regression algorithm will be introduced in Section 2.3.
To describe the distribution, again the median value y,req and the lower and upper prediction
intervals yb; and y¥& with 95 % confidence are used, likewise to the previous method. A schematic
representation of the reshaping of a GCxGC fuel measurement and the property prediction is

shown in Figure 2.5.
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Figure 2.5: Schematic illustration of direct correlation modeling method.
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The limitation of the DC method to only train on fuel data restricts its flexibility and
extensibility. Up to this point the number of available GCxGC fuel measurements and
corresponding property measurements is low (in the few hundreds until now) compared to the
data available for the pure compounds. The potential composition and value range for training
the property model is therefore very limited. Combined with the high number of input features
(8 families * 25 carbon atoms = 200) this can lead to potential overfitting of the model and the
limitation of a high predictive capability of the property model to the training and validation
domain only. As a result, predictions outside of the training and validation domain can
consequently deviate significantly from the true values. Since the direct correlation method
estimates uncertainty based on the intrinsic noise of the training data, uncertainties due to
isomers and measurements are only estimated, if they exist in the training data. Hence, multiple
GCxGC measurements with different isomers and property measurements from different
laboratories have to be available to estimate these uncertainties as part of the predicted
uncertainty of the model. If this is not the case, the model only estimates the intrinsic uncertainty

of the training data, e.g. the distribution and distance of the individual datapoints.

2.2.3 Mean Quantitative Structure-Property Relationship method

The Mean Quantitative Structure-Property Relationship method (M-QSPR) is developed to
overcome limitations and requirements that inherently exist for the two other modeling methods:
The availability of data and the requirement of mixing rules to describe the interactions of the
fuel components. Based on the method of Ajmani et al. [81] of mole averaged quantitative
structure descriptions for mixtures, the M-QSPR approach extends the approximation of the
structure of molecules by a quantified structure representation to fuels. The fuel is thereby not
modelled as a mixture of components but as a mole averaged quantitative pseudo structure. This
pseudo structure representation is described by the same 49 structural features used for the
QSPR sampling method, see Supplementary Material C. This pseudo structure representation
can be directly used for the correlation with the physicochemical property together with the data
of pure compounds. A M-QSPR model can therefore be trained on both pure compound data like
a QSPR model and fuel data like a direct correlation model. This increases the size of available
training data and allows for a direct learning of the mixing behavior, resolving the need for an

appropriate mixing rule.

To calculate this M-QSPR, representation, the molar fractions of the GCxGC measurement are
multiplied with the average occurrence of the 49 structural features of all possible isomers of a
family at a certain carbon number and then summed up over all cells in the GCxGC matrix. The
mean occurrence of the quantitative structures is precalculated for all possible cells in the
GCxGC, creating a mean occurrences matrix for all structural features, which speeds up the
calculation of the M-QSPR representation. Likewise to the QSPR sampling method, all isomers
are assumed to be representative and potentially present in the fuel, both for conventional and

synthetic fuels. However, if further information about the possible isomers of a certain fuel or a
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certain production pathway exist, an individual mean occurrence matrix can be calculated for
the composition measurement or the production pathway. A schematic illustration of the
calculation of the quantitative pseudo structure representation is given in Figure 2.6 for the
example of iso-alkanes with 8 carbon atoms and the methyl group descriptor [CX4H3]. The
occurrence of the [CX4H3]| descriptor in all iso-alkanes 8 isomers N is thereby averaged, multiplied
with the respective molar fraction of the GCxGC measurement and summed up for all GCxGC
cells.

Mean Occurance Matrix

Reference Molecules

. C
E I \ Family atoms [CX4H3|
\
j \ N-
\‘\:\\ alkanes 25 2 M-QSPR Representation

\|
Gj?&ﬁ \‘}\Z[cxwa] Iso- Z [CX4H3] | [CX4H2]
|\ v |alkames g 152 [H—X 0.62 0.24
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atoms | alkanes | alkanes
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Figure 2.6: Schematic illustration of pseudo mean quantitative structure estimation of a jet fuel
using GCxGC measurement and a mean occurrence matriz calculated from averaging structural

features of possible isomers.

The M-QSPR representation can be directly used for the training and validation of the model
together with pure compound data in their QSPR representation, because they share same feature
space. The distribution of possible property values can then be directly predicted by a
probabilistic regressor, similar to the DC method. The distribution is again described by the
median value yp.eq and the lower and upper prediction intervals yh; and y¥ with 95 %

confidence.

2.3 Probabilistic Machine Learning correlation models

Each of the presented modeling methods relies on a correlation model to correlate the
representation of the fuel compositions (reshaped GCxGC for the DC method, mean quantitative
pseudo structure for the M-QSPR method and quantitative structure of components for the
QSPR sampling method) with the property values of pure components and fuels. For all methods
in this work, the deep neural network algorithm with the Monte-Carlo dropout technique

(MCNN) is used. Apart from the MCNN, other regression algorithms, like the Gaussian Process
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Regressor, Bootstrap Neural Networks, Probabilistic Support Vector Machine Regressor were
investigated. However, the MCNN showed the best and most consistent performance over all

considered modeling methods.

The MCNN algorithm was developed by Gal and Ghahramani [82] and uses an artificial neural
network (ANN) for the correlation of the input features with the desired output. In the following,
the working principles of the ANN and the MCNN are presented, followed by descriptions of the

validation and hyperparameter optimization methods for Machine Learning models.

2.3.1 Working principles of Artificial Neural Networks

ANNs mimic biological neural systems. They are composed of connected layers of individual
neurons that propagate an input signal if a threshold of an activation function is exceeded. The
connections are weighted to regulate the importance of inputs [83]. To illustrate the inner
workings of an ANN, the left part of Figure 2.7 shows a schematic representation of a single
neuron calculating the output y from multiple inputs x;. In this neuron, the inputs x; are
multiplied with an individual weight w; summed up under the addition of a bias b and fed
through an activation function ¢ to calculate the desired output y, see Equation (2.5) [83]. In
the case of the direct correlation method, y represents the properties and would x; represents the
individual composition features (e.g. mass fractions of the GCxGC or structural features for the
QSPR and M-QSPR models). If the activation function o would be unity function, multiplying
the term in the brackets of Equation (2.5) just by one, this single neuron model would be

equivalent to a multi-linear regression.

Figure 2.7: Schematic figures of artificial neural network neuron (left), connected artificial neural

network (right)

y(x) =0 (Z w; X; + b) (2.5)

In general, other activation functions are used for o, that only propagate the signal if a threshold
value is exceeded. This allows the correlations of complex non-linear relations between the input
features x; and the output variable y, which can excel the capabilities of multilinear regression
models. For this work, four different activation functions (Sigmoid, ReLLU, ELU und CELU) are
utilized. They are described in the respective equations Equation (2.6) to Equation (2.9). z
thereby abbreviates the terms in the brackets of Equation (2.5).
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1
7= 1+e72 (2:6)
o = max (0, z) (2.7)
z ;7 z2>0
"={e2—1;zso (2.8)
o = max(0, z) + min(0,e* — 1) (2.9)

If the single neuron model is extended both by multiple neurons in a layer j, and multiple stack
layers k, a multilayer ANN, also called deep neural network (DNN) is generated, as shown on
the right side of Figure 2.8. The individual output of the previous layer is thereby the input of
the next layer. Equation (2.10) and Equation (2.11) show the formulas for the calculation of the
output y* for a layer of an ANN and the calculation of the final output y for the ANN for a

two layered deep neural network.

m n
yk(x) = o ZZ(WUk x; + bjk) (2.10)
T T

y(x) = y*(y* (%)) (2.11)

Before accurate predictions with ANN are possible, the respective model parameters have to be
fitted / trained based on the input and output data of a dataset [83]. For neural networks, the
parameters adjusted in the training are the weights of the individual neuron connections Wijk
and the biases of the neuron bjk. The optimization is conducted by minimizing a loss function
over all data points M. In the scope of this work, the mean squared error loss function is used,
see Equation (2.12), which computes the squared deviation of the prediction for all data points

y(X;) to the measurement values Jy,.
L&
LOY) = 537 ) 00n) = )’ (212)
m

The parameters are adjusted or optimized over a set number of training intervals using the
method of backpropagation. In the backpropagation, the model predicts a property value for
each data point in a forward pass, calculates the loss using the defined loss function and then
adjusts the individual weights and biases in a backward pass accordingly [83]. The individual

changes Awi]-k and Abjk are calculated from the derivates of loss function to the respective

JaL
parameters Tk

— and (;Z—Lk, see Equation (2.13) and Equation (2.14). The learning rate € weights
ij j

the calculated change of an iteration. The respective derivates for the individual weights and
biases are calculated using the chain rule, see Equation (2.15) to Equation (2.20). The local

gradient ai—L_k , which states the individual change of the loss function for a change of the predicted
j
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values, is calculated by applying the chain rule to the nested function in Equation (2.11) for each

respective neuron [83,84].

X oL
AWij = &‘W (2.13)
Ap.K oL
i ETx (2.14)
ob;
oL OL 3y~ )
awi]-k B ay}k aWijk ( 15)
dy;*
e (2.16)
oL oL
G Ay (217)
oL dL ay*
K gyk apk (2.18)
ob; Y;j* 0b;
ay]k
k= (2.19)
db;
oL 0L
W = W (2.20)

The minimization of the loss function and adjustment of the weights and biases are carried out
by an optimizer. In the scope of this work the adaptive moment estimation (ADAM) is utilized,

a proven and widely used optimizer for regression tasks [85].

2.3.2 Working principle of Monte-Carlo Dropout Neural Networks

ANN regression models are deterministic models by default, meaning that they only predict one
value. To extend an ANN to a probabilistic model, that predicts a distribution of possible values,
the concept of Monte-Carlo Dropout Neural Networks by Gal and Ghahramani is utilized [82].
This concept applies the technique of randomly deactivating neurons of the ANN, a technique
frequently utilized to prevent the overfitting of the model during the training, also during the
prediction. The general equation of an ANN with the dropout technique is represented with a
Bernoulli distribution for each neuron P(Wl- jk), that returns 0 and 1 based on a set dropout
probability, see Equation (2.21) [82]. The dropout probability is thereby a hyperparameter that

demands tuning to optimally align with the specific requirements of the use case.
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Y = of 22 P(wy*)(wy* 71 + b") (2.21)
j i

A prediction of the ANN is thereby repeated multiple times in a Monte-Carlo sampling, each
time deactivating random neurons, which produces varying values that resemble a probability
distribution. A schematic illustration of the prediction process of the MCNN is given in Figure
2.8.

g
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Figure 2.8 Schematic representation of MCNN with dropout functionality during prediction.

Network neurons are deactivated randomly (gray) to generate a distribution of prediction values.

The predicted distribution is interpreted by Gal and Ghahramani as a Bayesian approximation,
that describes the prediction uncertainty due to noise in the data (conflicting measurements) as
well as dissimilarity between the training and test data. The predicted distribution therefore
reflects the certainty of the prediction, with a narrow distribution indicating a certain prediction
and a wider distribution indicating an uncertain one [82]. The distribution itself is described by
the mean value y ,req and the lower and upper prediction intervals yh; and y¥. The validity of
the predicted uncertainty intervals as prediction intervals (PI), is reviewed as part of the
predictive capability assessment of the models. The estimated PI therefore have to enclose a set
percentage of values for a set percent of certainty, e.g. 95% of measurements for 95 % of

certainty. The MCNN is written in Python using the PyTorch library [86].

2.4 Model development and validation

The development of a Machine Learning model consists of three main steps: the selection and
configuration of the model, the training and validation of the model and finally its application
[66]. In the first step, the utilized model and the configuration of its respective hyperparameters
have to be selected. Hyperparameters are parameters that define a model but are themselves not
adjusted during the training process, e.g. for ANN the number of layers and number of layers
per neuron. In the second step the model is trained by adjusting the trainable parameters based

on the provided training data and afterwards validated on test data not utilized in training. The
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following section gives further insights into the utilized methods for the training and testing of
the models as well as the prefixed hyperparameter optimization. Training and testing will thereby

be explained first, since the utilized hyperparameter optimization method requires both processes.

2.4.1 'Training and validation

As Machine Learning models infer the correlation of input and output variables solely based on
the provided data, training and testing are of utmost importance for the applicability of the
model. Both processes have to be conducted carefully, to validate that the model correctly
captures the underlying problem and does not overfit to the provided training data. In the field
of Machine Learning cross-validation (CV) is established and widely used concept for the
validation of models on a set amount of data [66,87]. The CV process simulates the procedure of
training and testing several times, using different training and test data derived from the same
data set. The different training and test datasets are created by randomly shuffling the data and
splitting it into set fractions for training and testing, e.g. 85 % for training 15 % for testing. The
process is repeated over several folds. In each fold the model is trained on training data and
subsequently tested on testing data. Figure 2.9 schematically illustrates the splitting of the data
for a 4-fold CV.

All data
Fold 1 Testing Training
Fold 2 Testing Training
Fold 3 Training Testing
Fold 4 Training Testing

Figure 2.9: Schematic illustration of a cross-validation.

By comparing the predictions from several folds, potential overfitting of the model to the training
data can be investigated and prevented. After a successful cross-validation, the model is trained

on the complete dataset.

2.4.2 Hyperparameter optimization

As laid out in the introduction of this section, the first step of the model development is the
selection of the model and its configuration. Since in this work the MCNN proved to be the best
predictive model overall, only the configuration with the hyperparameters, e.g. the number of
layers of the MCNN, has to be selected. The selection of the model configuration has to be carried

out before the actual cross-validation on the full dataset, typically on a subset of the data.
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Hyperparameters can be chosen based on prior or expert knowledge, a random grid search, or by
the use of an optimizer that automatically adjusts the hyperparameters based on a defined loss
function. In the scope of this work the hyperparameter selection by optimization is chosen, since
no prior knowledge for the modeling of physicochemical properties with the utilized MCNN
algorithm existed. Compared to a random grid search of different hyperparameter configurations,

the hyperparameter optimization by optimization was found to yield better results in less time.

As optimizer, a Bayesian optimization with a Gaussian Process and Matern kernel is used. The
underlying principles of the Gaussian Process were published [47] and will not be explained
further as part of this work. In this optimization, the hyperparameters are adjusted over 30
iterations to find an optimal configuration of the MCNN for each modelled property. In every
iteration a 4-fold-cross-validation is conducted using 800 samples with set fraction of 15% for the
testing and 85 % for the training. The set numbers for the optimization iterations, training
samples and fractions for the cross-validation proved to be sufficient and were not investigated
further. Each iteration, the average over the prediction results of all cross validations is used to
compute a loss according to a loss function, which will be explained in the following. The model
configuration with the lowest loss over the set number of iterations is then utilized for the cross-
validation on the full dataset. Figure 2.10 shows a schematic illustration of the hyperparameter

optimization.
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Figure 2.10: Schematic workflow of the wutilized hyperparameter optimization with cross-
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validation.

As hyperparameters, the topology of the network, e.g. the number of neurons per layer, as well
as the training conditions, e.g. the learning rate are optimized. Additionally, the choice of an
adequate scaler for the scaling of the input and output data is considered as a hyperparameter.

As scalers the MinMazScaler and RobustScaler are utilized, see Equation (2.22) and Equation
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(2.23). The complete list of hyperparameters as well as their considered options for the
optimization are summarized in Table 2. The variable numy. denotes the number of input
features for the model, e.g. for the QSPR model for the flash point 49, while the count of numy.

in the brackets indicates the number of layers.

Parameter Optimization range

(NUMyear), (MUMfeat, NUMear), (MU eat, NUMeat, NUMYear),
(”Umfeat; NUMYeat, VUM feat, numf‘”‘)? (2*numfe,,,t), (g*numfmh
(Neurons per Layer) . . . . .
25 numMmyeat), (2nUMypeat, 2 NUMypear, 25 NUMypear), (2 nUMpear,

2 *numfeat, 2 *’flumfmr,, 2 *numfea,t);

Droprate 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5
Learning rate le-4, 1e-3, 1e-2
Learning weight decay 0, 1e-8, 1le-6, 1le-4, 1e-2
Number of training epochs 500, 1000, 1500, 2000
Activation function ReLU, ELU, Sigmoid, CELU
X feature scaler None, MinMazScaler, RobustScaler
y feature scaler None, MinMazScaler, RobustScaler

Table 2: Utilized parameters for hyperparameter optimization of Monte-Carlo Neural Networks

Utilized Scalers are:

. X, — X, (2.21)
MinMaxScaler =
Ximax — Ximin
xX; — X;
RobustScaler = i~ Osolxy) (2.22)

Q75(x;) — Q25(x;)

As outlined, the hyperparameters are adjusted according to a loss function. For this work, a
custom function is implemented, see Equation (2.25). The loss function is based on the Root
Mean Squared Error (RMSE), see Equation (2.24), and furthermore includes the two predictive
capability metrics PICP and NMPIW that will be explained in the next Section 2.5.1. For the
PICP a target confidence level of 95 % is set for the confidence level of the model. The NMPIW
relates the precision of the prediction to the reproducibility limits of the measurements. To
constrain the maximum influence of the precision of the predictions on the hyperparameter
optimization, a maximum of 2 is set in Equation (2.25). Without this constraint the
hyperparameter optimization could tend to dominantly focus on the precision via the NMPIW
and disregard the validity of the PI via the PICP. The optimization aims at returning
hyperparameters of an optimal model that is as accurate and precise as possible. The most
optimal model will however probably not comply with all set thresholds of accuracy, validity and

precision since the loss function describes a trade-off between the metrics. The introduction of
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additional weights for the different metrics in the loss function could force the compliance of one
metric to a critical threshold, if required. The Bayesian optimization is carried out using the

Python library scikit-optimize [88].

NTest

2
RMSE = 2 (ypred,i - ytESt,i) (224)
i=1

Nrest

max (0,95 — PICP)
100

max (0, NMPIW — 100)>>

Lopt = RMSE (1 +
(2.25)
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2.5 Predictive capability assessment methods for models

The screening and design of jet fuels solely on the basis of model predictions makes a
comprehensive assessment of the predictive capability of the models necessary. It has to be
determined if the predictions of a model comply with the requirements of the modeling problem.
Oberkampf and Roy define the predictive capability as “extrapolation or interpolation of the
model to specific conditions defined by the intended use of the model” [57]. The predictive
capability of a model and the decision of its adequacy are therefore always relative to the actual
use case itself. The use case defines the application domain of a model, which thus defines the
requirements to determine the adequacy of the model [57]. The predictive capability of the models
has to be quantified by suitable metrics and compared to requirements that are derived from the
intended use case.

The predictive capability assessment proves to be an everlasting problem since data for the model
assessment of the whole application domain is most of the time not available. Figure 2.11
visualizes this problem on the example of two schematic domains, the application domain A and
the validation domain V. V thereby often only encloses a subfraction of the intended application
domain, that a model can be trained and validated on. Especially for the use case of jet fuel
screening, this is a present problem since the composition of the new fuel candidates often lies
outside the known domain. The adequacy of the developed models is therefore conducted as a
two-step process in this work. In the first step, the models are trained and validated on property
measurements, determining the predictive capability by metrics. In the second step, the intended
use case of fuel prescreening is simulated by predicting properties for the screening of fuels
excluded from training and validation data. This will be demonstrated in the predictive capability

assessment of the models in Section 4.2.
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A Application domain A
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Parameter characterizing system or surroundings

Parameter characterizing system or surroundings

Figure 2.11: Schematic representation of application and validation domain of a model, adapted
from [57].

2.5.1 Predictive capability metrics

Rather than predicting just a single value as deterministic models, probabilistic models predict
a distribution of possible values. This characteristic requires special metrics that quantify the
different aspects of probabilistic model predictions and allow an assessment and comparison of
the models [76,89,90]. In the scope of this work, three aspects are considered: accuracy, validity
and precision. Accuracy measures the average proximity of the predicted from the true values,
precision the size of the predicted distribution and validity describes if the true values are on
average enclosed by the predicted distribution. To illustrate the three aspects, Figure 2.12 gives
visual examples on the basis of shots on target signs. The target sign illustrates the distance to

the true test value at the center, also indicated as an orange line down below.

@R
| VN

test test test test
y y y y

Figure 2.12: Schematic illustration of predictive capability aspects accuracy, validity and

precision for probabilistic models.
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A prediction should in the best case be highly accurate, valid and precise. This is shown by the
first target sign on the outer left, where all predictions lie on the target sign close to the center.
However, the three aspects are not necessarily linked together as the other cases and their target
signs visualize. For the second case, all predictions are precise because the predictions are in close
distance to each other, however they lie far from the center of the target sign and therefore have
low accuracy. In the third case from the left, the accuracy is higher, with the majority of the
predictions in close proximity to the center. However, the distribution is wide and therefore the
predictions are unprecise. In the fourth case from the left, the majority of the predictions lie

completely off the target sign, the distribution is therefore not valid.

In Figure 2.12, the predicted distributions are represented by a collection of only a few samples.
In reality, Monte-Carlo sampling returns an almost continuous distribution of samples. The
distribution can thereby be characterized by the value of the highest likelihood, i.e. the mean
value y, and a lower and upper prediction interval (PI). The PI mark the limits of the distribution
for a set confidence level. Figure 2.13 shows a schematic distribution with an indicated mean
value ¥, lower and upper limit y' and y* of the PI, for a set confidence level of 95 %. The PI
enclose the set certainty range, while the distribution range outside the PI resemble the existing

associated risk of 5% for a confidence level of 95 %.

risk certainty risk

95%
»yoy ooy
Figure 2.13: Schematic predicted distribution of a probabilistic model with mean prediction y
and lower and upper prediction intervals yt, y* for a confidence level of 95 % with the

associated risk and certainty.

The three predictive capability aspects, validity and precision outlined above can be inferred
from the distribution given in Figure 2.13. The distance of the mean value of the distribution to
the measurement states the accuracy. The range of the distribution between the lower and upper
limit of the PI reflects the certainty of the prediction; a narrow distribution indicates a certain
prediction while a wider predicted distribution indicates an uncertain one [82]. The validity of
the predicted distribution is estimated based on the accordance of the set level of confidence and
the percentage of measurement values lying inside the PI of their corresponding prediction. E.g.
for a predicted distribution with a set confidence level of 95 %, the PI that mark the lower and
upper PI have to enclose 95 % of the measurements. If this is not the case, the distribution is

invalid and the PI not meaningful.
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To quantify the three predictive capability aspects, a concept is used that was developed and
published for the assessment of probabilistic models in the safety-relevant area of jet fuel
screening [76,89]. As metric for accuracy, the mean absolute error (MAE) of the mean of the
predicted distribution yy,,¢q,; and the measurement value y.; is calculated, see Equation (2.26).
Compared to other accuracy metrics like the mean squared error or the root mean squared error
it measures the average deviation, in the same unit of the prediction, weighting all validation

values equally.

NTest

MAE = 2 Ypred,i — YVtest,i (2.26)
i=1

Nrest

As a metric for the validity of the predicted distribution, described by the PI, the Prediction
Interval Coverage Probability (PICP) is calculated, see Equation (2.27). The PICP states the
average probability, that a measured value lies inside the predicted upper and lower PI yp,! and
yer* [90]. In (2.27) ¢; is a boolean value; it is 1 if y,yeq; lies inside the interval and therefore
Veit < Viest < ¥pi* and 0 otherwise. If the PICP and the set confidence level of PI of the
prediction are comparable, or if the PICP is even greater than the set PI, predictions do on
average lie inside the PI and the PI can be considered valid. If the PI are valid both in training

and testing, the PI is considered reliable.

NTest

2 c; *100 % (227)

n
Test =

PICP =

As metric for the precision of the distribution, the Normalized Mean Prediction Interval Width
(NMPIW) is chosen. The NMPIW calculates the mean width of the PI relative to a reference
Ares, see Equation (2.28) [91]. Ay.r always has to be set individually for each use case. For the
scope of this work the A..r is set to the individual uncertainty of the property measurement
methods, the reproducibility, to put the predicted uncertainty in reference to the uncertainty of
the measurements. A..r could also be set to a range of experience, as demonstrated in a recent
paper, to determine the adequacy of models for a use case based on the estimated
uncertainty [89]. The use of the metrics for the assessment of the predictive capability of

probabilistic models will be explained in the following Section 2.5.2.

NTest
1 U L
NMPIW = § Yeri —VPLi . 100 o (2.28)
NTest = Aref

To handle cases where the predicted PI are not valid since the calculated PICP differs

significantly from the set confidence level, an additional correction factor is utilized. The Mean
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Absolute Outlier Error (MAOE) quantifies the mean deviation of outliers to the next upper or
lower PI, see Equation (2.29). The size of invalid PI can therefore be increased by the MAOE to
achieve valid PI on average at the price of an increased NMPIW. This metric is necessary if a
probabilistic prediction may not be used safely because the set PICP differs significantly from

the set confidence.

Ntest

2 Ci * min(b/m,iu - ytest,i': |ytest,i - }’PulD

n
test =4

MAOE = (2.29)

2.5.2 Example for the predictive capability assessment

To illustrate the introduced concept of a predictive capability assessment as well as the influence
of the utilization of the predicted PI for the application or probabilistic models, two examples
are given in the following; 1) A general validation of a probabilistic model, 2) Evaluation and

application of probabilistic models for the prediction of a critical property.

The first example illustrates the validation of the probabilistic models both visually and based
on the introduced predictive capability metrics. Figure 2.14 shows the schematic graph of a unity
plot, where the predicted values of a probabilistic models y,.oq are plotted against the
measurement values V- The unity line is plotted in solid black, whereas the reproducibility of
the property measurement is indicated by grey dashed lines. For a probabilistic prediction to be
valid, estimated prediction intervals have to cross the grey dash lines of the uncertainty region
of the measurement. Predictions that comply with this constraint are considered valid and are
colored blue predictions for which this is not the case are considered invalid and are colored red.
To estimate the validity based on the introduced PICP metric, the percentage of valid predictions
is related to the total number of predictions. If the calculated PICP percentage is equal to or

higher than the set confidence of the probabilistic model e.g. 95%, the model is considered valid.

Ypred + T | +
+

Ytest

Figure 2.14: Schematic illustration of unity plot for validation of probabilistic model.

The second example in Figure 2.15 shows the application of probabilistic models for the use case
of jet fuel screening for two example fuels: Fuel A and Fuel B. Similar to the example of jet fuel

screening based on measurements in Figure 1.4 the predicted value has to lie inside the set
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specification limits of ASTM D4054 and D7566, indicated in red. In contrast to the previous
example, not only the predicted mean value, indicated as a solid dot, but also the estimated
prediction intervals, indicated as error bars, have to lie inside the limits. In the given example,
this is only true for Fuel A, whereas for Fuel B, the lower prediction interval crosses the lower
specification limit, while the mean value still lies inside the specification limit. Therefore, for
Fuel B there is a risk, which can be communicated to the stakeholders, that the prediction does
not comply with the specification limit. If this risk is not acceptable, an additional property

measurement is required.

Fuel A Fuel B
—0— —f|e—

— Predicted mean value and — Predicted prediciton
prediciton intervals value intervals value outside of
inside of specification limits specification limits

— No actions required — Additional measurement

required

Figure 2.15: Schematic illustration of the screening plots for Fuel A and Fuel B as part of the

jet fuel prescreening.
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3 Composition and Property Database

Data is the cornerstone of this work. Both the development of the data-based models as well as
the intended fuel design tools require respective datasets. For the development of the property
models, both composition and property data of fuels and fuel components are necessary. The DC
method requires data of fuels, the QSPR sampling method needs data of fuel components, and
the M-QSPR method, able to train on both data from fuels and pure compounds, requires data
from both. The investigation of the fuel composition and fuel properties for the fuel design tools
are carried out on the basis of pure component data. The purpose of this work to develop tools
that can be applied to safety-relevant use cases furthermore requires high reliability and
uniformity of the data. In summary, the utilized data should be highly reliable, measured with
identical or comparable measurement methods, and provided in a uniform format for both fuels

and pure components.

Since at the time of writing no available database complied with the set requirements, providing
data for both fuels and pure components for all eight critical fuel properties, a custom database
is set up as part of this work. Data from multiple commercial, public and internal databases are
collected, unified and stored in a central database using a standardized schema. The following
chapter outlines the development of the database, the collection of the data, as well as the
preprocessing and removal of potential outliers. In the last section, the database is characterized
by estimating and visualizing the extent of the data to illustrate the database domain and
compare it to the intended application domain of the use cases. Since the database is in part

comprised of data from commercial databases, it is not published as part of this work.

3.1 Data collection

For jet fuels, the data is taken from the DLR Jet Fuel Database. This fuel database holds GCxGC
composition and property data of 75 conventional crude oil-based jet fuels and 56 synthetic jet
fuels at the time of writing. Data for conventional fuels mainly originates from the commercially
available world fuel survey of 2006 by the Coordinating Research Council (CRC) [92]. The data
of the synthetic fuels was systematically gathered from research projects like JETSCREEN,
NJFCP and Emission and Climate Impact of Alternative Fuels (ECLIF) [8]. For the fuel
components, the data is taken from the established commercially available pure component
databases like the NIST Standard Reference Database 103a [69], DIPPIR 801 database [70] as
well as the public databases Pubchem [93] and Chemspider [94]. Data from Pubchem and
Chemspider are especially used for the properties flash point and freezing point. Data for the
cetane number and the yield sooting index is taken from publications of the National Renewable
Energy Laboratory [95,96] and Li et al. [97]. All in all, data of 1870 pure compounds are used for
the training and validation of the QSPR and M-QSPR, models. Table 3 gives a detailed summary
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of the number of data points utilized for the training and validation of the models for each
property. Column #FL denotes the number of unique fuels, and column #DP lists the total
number of individual measurements. The summary is given for fuel components (Comp.),

conventional fuels (Conv.), and non-conventional synthetic fuels and blends (Syn.) as well as the

sum of all.
Comp. Conv. Syn. All
Properties #FL #DP #FL #DP #FL #DP #FL #DP
Density
1865 27347 75 425 56 260 1996 28032
Surface tension
294 4455 62 157 22 79 377 4691
Kinematic
_ _ 1795 20046 74 197 60 166 1929 20409
viscosity
Net heat of
1503 1875 74 85 45 62 1622 2022
combustion
Flash point
268 640 75 80 62 54 397 791
Freezing point
402 1053 74 80 50 58 526 1201
Cetane number
159 211 7 22 29 48 195 281
Distillation /
1825 4333 75 772 63 524 1963 5629
boiling point
Yield sooting
98 98 0 0 0 0 98 98
index

Table 3: Number of unique fuels and pure compounds #FL and corresponding datapoints #DP

used for the training and validation of the models.

Table 3 illustrates the differences in the number of data points available for the properties and
individual compounds. For properties such as density and net heat of combustion, more data
points are available for more individual compounds compared to flash point or cetane number.

The impact on the predictive ability of the models will be investigated in Section 4.1.

For the jet fuel screening, property values are needed at 15 °C for the density, 22 °C for the
surface tension, and -20 °C and -40 °C for the kinematic viscosity at 1 atm. Flash point, freezing
point, net heat of combustion, distillation line and cetane number are measured under laboratory
standard conditions. In the scope of this work, measurements for the density, surface tension and
kinematic viscosity are used from an extended temperature range of -40 to 140 °C, due to the

availability of data. The kinematic viscosity values are largely computed from dynamic viscosity
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measurements divided by density measurements at the same temperature. This is done because
most of the viscosity measurements of pure compounds are only available as dynamic viscosity.
For dynamic viscosity measurements without a corresponding density measurement, the density
is predicted using the trained QSPR model. Due to the high accuracy with of the developed
QSPR density model, with an average error of less than 6 kg/m3 as illustrated in Figure E 5,
the induces error is deemed negligible. To visualize the number of available measurements for
the temperature dependent properties density, kinematic viscosity and surface tension Figure 3.1
shows histograms with the cumulative numbers over the temperature. The number of data points

for compounds are shown in orange, for conventional fuels in blue and for synthetic fuels in green.
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Figure 3.1: Number of measurements vs temperature for density (upper left) kinematic viscosity

(upper right) and surface tension (lower left).

Figure 3.1 highlights the abundance of datasets for individual compounds compared to fuels,
owing to extensive past studies on pure compounds summarized in databases. However, a notable
gap exists for measurements below 0°C, especially kinematic viscosity of pure compounds. This
scarcity arises from solidification of many pure compounds at low temperatures and historically
limited research focus on low-temperature component properties. The influence of the availability
of the data points at different temperatures will also be investigated as part of the model

validation in Section 4.1.

To store the data uniformly in the database, the fuel property schema developed by Blakey,
Rauch, Oldani and Lee is utilized [98]. The schema has originally been developed for the storage
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and exchange of fuel data, but is flexible and extensible enough to also allow the storage of pure
compound data. The schema makes use of the JavaScript Object Notation (JSON) format, an
unstructured storage method that can be integrated in databases like MongoDB. An example of

the schema for the storage of density values is given in Supplementary Material D.

3.2 Data preprocessing and outlier detection

As mentioned in the introduction of this chapter, the reliability of the different composition and
property measurements is of utmost importance for the development of data-based tools. Ideally
only measurements from the same or comparable standardized measurement protocols are
utilized, under consideration of the reproducibility of the respective measurement method. The
reproducibility of a measurement method thereby states the expected deviation of the
measurements if a measurement is repeated by a different operator at a different site [99].
Measurements that deviate significantly from the other measurements and lie outside of the
stated reproducibility, should be identified as outliers and removed in the preprocessing of the
data. In practice and also in this work, this procedure can often not be carried out to its full

extent, for three reasons:

1. For GCxGC composition measurements of jet fuels a standardized measurement method does
not exist at the time of writing. The identification of outliers of the composition data is therefore
not possible. The reliability of GCxGC composition measurements depends solely on the

trustworthiness of the analytical laboratory.

2. For some measurements, the respective measurement method is not provided in the database.
This is the case especially for data from public databases like Pubchem and Chemspider. Due to
the availability of properties like flash point or freezing point, which are not listed in commercial
databases like the NIST Standard Reference Database, the use of these measurements is
unavoidable. Therefore, it is assumed that the property measurement methods of fuels and pure
components are comparable, an assumption that can only be verified in the later property

modeling.

3. The detection of measurement outliers requires a minimum number of reliable measurements
for the calculation of an average, from which outliers can be identified and subsequently removed.
For this work, the minimum number is set to 3. However, for some components and their
respective physicochemical properties, this number is not achieved with the available data. The
calculation of a respective measurement norm and the detection of outliers are therefore not
possible. For these cases, all measurements are assumed to be reliable and used for the

development of the data-based tools.

Due to the three outlined reasons, the preprocessing of the data, and with it the removal of

potential outliers, can only be carried out for property measurements of fuels and pure
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compounds. For the outlier detection, two detection methods are utilized: one for the detection
of significant outliers from the whole dataset of a property and one for the detection of outliers
for measurements of each individual component / fuel. For the detection of outliers from the
whole dataset, measurements with a deviation of more than 3.5 standard deviations o are

removed see Equation (3.1).
lyi—yl>35%0 (3.1)

Outliers of each individual pure compound / fuel on the other hand are removed using the
modified Z-score by Iglewicz and Hoaglin, an outlier detection method for small sample sizes as
recommended by NIST, see Equation (3.2) [100]. Data points with a score greater than 3.5 are

removed from the dataset.

0.675 * (|y; — 7
G/ iab DIPY (3.2)
median(|y; — y)

For the temperature-dependent properties, e.g. the density, the outlier detection is carried out
for measurements at different temperatures with a temperature window of +1 °C, both for the

whole dataset of a property and the measurements of an individual compound / fuel.

3.3 Data characterization

To illustrate the kind and extent of data utilized for this work, the following section describes
and visualizes the data for both jet fuels and fuel components. The characterization furthermore
serves to compare the available data to the possible application domain of the property modeling
of jet fuels. This section thereby focuses on the compositional data, to investigate the extent of
the compositional data available for training and validation of the models. Detailed illustrations
and discussions for the value range of the property measurements are also given in the later

chapter 5.

3.3.1 Data characterization of fuels

Description of fuel composition data

The compositions of fuels in this work are characterized by GCxGC measurements. As explained
in Section 1.2.3, GCxGC measurements do often not allow the exact identification of the fuel
components/isomers. Identified species are therefore classified with respect to their chemical
family and the number of carbon atoms they contain. Unidentified isomers are consequently
lumped together, yielding a two-dimensional matrix that lists the mass fractions of the detected
species. Figure 4.1 shows a representative GCxGC measurement of a conventional oil-based jet

fuel for 7 to 20 carbon atoms and eight hydrocarbon families.
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10 1.68 2.23 1.09 0.2
11 1.84 1.78 1.61 0.54
12 1.69 14 1.23 0.74
13 1.54 3.23 3.22 1.62 0.95 1.17 0.47
14 1.27 2.82 2.23 1.14 0.7 0.65 0.4
15 0.88 2.26 1.52 0.38 0.5 0.54 0
16 0.57 1.5 0.75 0.05 0.39 0 0
17 0.42 0.95 0.33 0.02 0 0 0
18 0.12 0.45 0.1 0 0 0 0
19 0.03 0.21 0.03 0 0 0 0
20 0 0.04 0 0 0 0 0

Figure 3.2: Evaluated GCrGC measurement of a conventional jet fuel with representative

molecules for each family.

The eight hydrocarbon families in Figure 4.1 are the most relevant for jet fuels and the standard
chemical families considered in scope of this work: n-alkanes, iso-alkanes, mono-cyclo-alkanes, bi-
cyclo-alkanes, tri-cyclo-alkanes, cyclo-aromatics, mono-aromatics and di-aromatics. Components
with up to 25 carbon atoms are thereby considered. Table 4 shows representative molecules for
all eight hydrocarbon families, as well as their general molecular formula and the structural

criteria for their classification in the respective families.
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Family Formula Structural criteria Example

N-alkanes CuHanso - No atoms in rings
- No branched carbon
bonds

Iso-alkanes CuHanso - No atoms in rings
- At least one branched

carbon bond

Mono-cyclo-alkanes CuHan - One aliphatic ring

- No aromatic rings

Bi-cyclo-alkanes CuHans - Two aliphatic rings

- No aromatic rings

Tri-cyclo-alkanes CuHans - Three aliphatic rings

- No aromatic rings

Mono-aromatics CuHous - No aliphatic rings

- One aromatic ring

Cyclo-aromatics CuHaus - One aliphatic ring

- One aromatic ring

Di-aromatics CuHopio - No aliphatic rings

- Two aromatic rings

|G 9 2 L

Table 4: Table of considered chemical families with the corresponding formula, structural

criteria and an illustrated representative.

Characterization of variability and extent of the fuel data

Apart from conventional oil-based jet fuel production, there currently exist seven approved
synthetic production routes with a registered annex in ASTM D7566. Two co-production routes,
for production sights optimized for e.g. for bio-diesel, are furthermore annexed to ASTM D1655.
Four new production pathways actively seek certification. Of those seven approved and four
pending production routes, the fuel dataset holds fuels of six different fuel types as well as blends
with conventional fuels: Alcohol-To-Jet process (ATJ-SPK), Fischer-Tropsch process (FT-SPK),
Synthesized kerosene with aromatics (SPK/A), Hydroprocessed Esters and Fatty Acids process
(HEFA-SPK), Catalytic Hydrothermal Conversion process (CHJ) and Integrated Hydropyrolysis
process of Shell (IH?). For conventional fuels, the datasets hold representatives from all major

fuel types both for commercial and military applications: Jet A, Jet A-1, JP-5, JP-8 and TS-1.
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W
\]

The different production paths differ substantially from each other, using different chemical

process operations and conditions. The production paths can however be classified based on the

respective utilized resources for the feedstock: Fossil resources, biomass and XTL that utilize

either electricity or solar radiation to produce fuel from carbon dioxide and water. Figure 3.5

gives a schematic overview of the production paths, with their resources on the left, the principal

processing operation in the middle and the corresponding fuel type on the right. Approved SAF

that can be flown as drop-in fuel as blends is thereby shown in blue boxes with solid borders.

SAF that is still in the approval process is shown in blue boxes with dashed borders. The variety

of feedstocks from the three resources and processing technology results in a large variety in jet

fuel composition, which is only insinuated by the number of fuel types on the right.
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Figure 8.3: Overview of current jet fuel production processes, extended from Blakey et al. 2011

[101].
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To visualize the extent and variety of the jet fuel compositions, Figure 3.4 shows a scatter plot
for the mass fractions from the GCxGC measurements, summed up for each hydrocarbon family.

Conventional fuels (Conv.) are thereby displayed in blue, synthetic fuels (Syn.) in green.
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Figure 3.4: Scatter plot of GCxGC measurements with summed hydrocarbon families. Blue:
conventional fuels. Green: synthetic fuels and blends. Blue and green shaded areas indicate the

observed range.

The plot illustrates on the one hand the extent and distribution of available fuel composition
measurements and on the other hand the variety of both conventional and synthetic jet fuels.
For all families except the cyclo-aromatics synthetic fuels cover a broader and more evenly
distributed composition range. Differences of up to 90 mass% in a family are observed for
synthetic fuels. For conventional fuels, the differences in their composition range are less
extensive; however depending on the family, differences of 20 mass% are possible. This shows the
variability of conventional jet fuels and illustrates, that one cannot speak of one typical
conventional fuel composition. The broader composition range overall of the synthetic fuels can
be explained by the large variety of different crude oils and other feedstocks outlined in Figure
3.3. The extent of this composition space illustrates the challenge for the modeling of fuel
properties, especially considering that the information about the distribution along the number
of carbon atoms of the individual fuels is not displayed. The variability of the fuel composition
makes a continuous adaptation and extension of the fuel dataset beyond this work necessary,

both for the development and validation of the models.
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3.3.2 Data characterization of pure compounds

Description of pure compound data

As mentioned in Section 2.2.1 pure compounds are represented in this work using the simplified
molecular input line entry system (SMILES) [74]. Using the canonical SMILES representation of
the RDKit Python package [75] allows a unique string represenation of each pure compound.
From the SMILES representation, a quantitative structure representation of each compound is
derived using a selection of distinct molecular substructures, see Section 2.2.1, which can now be

utilized for the characterization and visualization of the dataset.
Characterization of variability and extent of the fuel data

Before the visual characterization of the pure compound dataset, the extent of available
compound data and the number of compounds that could theoretically exist as possible fuel
components are illustrated. As explained in Section 1.2.3, the exact molecular composition can
presently often not be identified with state-of-the-art GCxGC measurement methods. Since no
widely accepted selection of pure compounds as potential fuel components exists, this work
assumes that all compounds of the eight considered hydrocarbon families can potentially be
present as components in both conventional and synthetic fuels. This approximation is
undoubtedly a very cautious one, as the range of possible components that could realistically
exist in conventional and synthetic fuels is likely to be significantly narrower. The pure compound
databases used for this work list 1870 relevant compounds. However, these are only a small
fraction of all theoretically possible molecules. Table 5 shows a comparison of the number of
theoretically possible compounds and the number of compounds listed in the databases and
considered in this work. The theoretically possible compounds were systematically generated
using the molecule generator MOLGEN version. 5 [102]. Their number is listed in the column
MG, the number of molecules listed in databases and used for this work is shown in the column
DB. The compounds are classified into the eight considered hydrocarbon families using
characteristic molecular substructures outlined in Section 3.3.1. Due to the exponential increase
of possible isomers and computational limitations for the classification, only calculations up to
molecules with 12 carbon atoms are executed. For iso-alkanes the numbers above C 12 were

taken from theoretical calculations [103].
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C . mono- bi-cyclo- cyclo- mono- ) .
number n-alkanes iso-alkanes cyclo-alkanes alkanes aromatics aromatics di-aromatics
DB MG DB MG DB MG DB MG DB MG DB MG DB MG

1 1 1

2 1 1

3 1 1 1 1

4 1 1 1 1 2 2 0 1

5 1 1 2 2 5 5 2 4

6 1 1 4 4 12 12 5 14 0 4 1 1

7 1 1 8 8 27 29 5 46 0 9 1 1

8 1 1 17 17 43 73 8 150 0 31 4 4

9 1 1 32 34 52 185 18 477 2 75 8 8

10 1 1 49 4 58 475 18 1503 8 218 22 22 0 5
11 1 1 37 158 33 1231 12 4680 16 588 42 51 2 21
12 1 1 45 354 29 3232 18 14461 27 1657 60 136 9 103
13 1 1 34 801 14 >3232 15 >14461 32 >1657 51 >136 24  >103
14 1 1 29 1857 17 >3232 16 >14461 31 >1657 60 >136 38  >103
15 1 1 27 4345 18 >3232 14 >14461 29 >1657 34 >136 17 >103
16 1 1 32 10358 8 >3232 15 >14461 16 >1657 22 >136 9 >103
17 1 1 11 24893 6 >3232 8 >14461 7 >1657 15 >136 3 >103
18 1 1 12 60 522 8 >3232 17 >14461 6 >1657 22 >136 13 >103
19 1 1 14 147283 13 >3232 6 >14461 12 >1657 11 >136 4 >103
20 1 1 20 366 318 1 >3232 10 >14461 9 >1657 13 >136 9 >103
21 1 1 9 >366317 6 >3232 2 >14461 0 >1657 3 >136 1 >103
22 1 1 14 >366317 5 >3232 4 >14461 6 >1657 14 >136 4 >103
23 1 1 5  >366317 3 >3232 0 >14461 0 >1657 4 >136 0 >103
24 1 1 17 >366317 4 >3232 3 >14461 1 >1657 9 >136 0 >103
25 1 1 2 36797587 4 >3232 5 >14461 1 >1657 7 >136 1 >103

Table 5: Comparison of the number of representative molecules available in the database (DB)
and the number of theoretically possible molecules, calculated by MOLGEN (MG).

Table 5 illustrates the large extent of potential fuel components based on the assumption that
all isomers of a hydrocarbon group (chemical family, carbon number) can possibly exist in a fuel.
The number of isomers increases exponentially with the carbon number for all families. For
isomers containing over nine carbon atoms, the pure compound database utilized for this work
holds only a small fraction of the potential fuel components. These differences even increase for
higher carbon numbers, where the number of available measurements decreases, while the number
of possible isomers increases. Since jet fuels are typically composed of components containing 7
to 16 carbon atoms, uncertainty might actually be underestimated, because the set assumption
states, that all isomers of the hydrocarbon groups can be present in a fuel. The results of the
validation of the developed property models will show the validity of the set assumptions and
illustrate if further compositional information and a constrained selection of the isomers are

necessary.

To visualize the extent of the pure compound data, the molecular structures of the fuel
components are converted into the introduced quantitative structure representation, as explained
in Section 2.2.1. Each pure compound is represented by a vector with 49 dimensions as a
quantitative structure representation. Additionally, the composition of the jet fuel dataset is
visualized as stars, in blue for conventional fuels and green for synthetic fuels. Similar to the fuel

components, the GCxGC compositions of the fuels are converted to their mean quantitative
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structure representation, introduced in Section 2.2.3. The 200 dimensions of the GCxGC matrix
are converted to the same 49-dimensional feature space and then reduced to two dimensions
using a t-distributed stochastic neighbor embedding algorithm. The dimension reduction
algorithm allows the transformation of the 49 dimensional space into a two-dimensional one,
keeping the relative distance between the data points as similar as possible [104]. The results of
the dimension reduction are visualized in Figure 3.5, fuel components are thereby displayed as

dots in a color corresponding to the hydrocarbon family.
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Figure 8.5: Scatter plot visualizing the compositional similarity of fuels and fuel components
based on the dimensional reduced representation of their respective mean quantitative structure

and quantitative structure representation.

The scatter points in Figure 3.5 form a clear pattern and the position and distance of the
respective scatter points visualize the affiliation of the fuel components to their respective
hydrocarbon families and the similarity to other components / fuels. Different clusters are visible
for different hydrocarbon families and fuels. N- and iso-alkanes form a cluster, as do cyclo-alkanes,
mono- and cyclo-aromatics and the di-aromatics. The cluster of the n- and iso-alkanes, cyclo-
alkanes and aromatics lie thereby close together, illustrating their structural similarity and the
respective absence / presence of cyclic and or aromatic bonds. For the fuels, four clusters are
visible. One big cluster composed of both conventional and synthetic fuels is located in the middle
of the figure, with two clusters close to the n- and iso-alkanes and one cluster close to the cyclo-

alkanes. The central fuel cluster contains fuels that are composed of components from all
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hydrocarbon families, with no particularly dominating family. As a result, fuels from this cluster
cannot be affiliated with one of the clusters of the hydrocarbon families and form their own
cluster, separate from the others. The fuels in this cluster are predominantly conventional fuels
and blends, with broad compositions of all other hydrocarbon families. The three residual fuel
clusters all overlay one of the hydrocarbon families. The fuels of these clusters are thereby
themselves mostly composed of the respective family, ATJ-SPK, FT-SPK and HEFA-SPK form
the clusters overlaying the iso-alkanes and TH? fuels form the cluster overlaying the cyclo-alkanes.
On the one hand, the figure therefore visualizes the compositional similarity of both fuel
components and fuels. On the other hand, it illustrates the compositional space and extent of

the data utilized for the training and testing of the models, both for pure compounds and fuels.
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4 Predictive Capability Assessment of Models and Adequacy

Assessment for Fuel Screening

The predictive capability assessment of the models is presented in two parts. In the first part,
the results of the cross-validation and testing of the property prediction for both conventional
(Conv.) and synthetic (Syn.) fuels are presented. This part investigates the general ability of the
different methods to model the respective properties and reviews their predictive capability on
the basis of the metrics introduced in Section 2.5.1. Models are thereby compared with respect
to each other and deterministic reference models from the literature. The comparison with
existing literature models will investigate the accuracy of the developed models relative to
available state-of-the-art models and demonstrate the use of the additional estimated prediction
uncertainties. In the second part, the developed models are applied for a simulated jet fuel
prescreening after the Tier o protocol of Heyne and Rauch [24] to review the model adequacy for

the desired use case.

In the first part, only predictions from the testing, for fuels not seen by the models in training,
are used to determine predictive capability metrics. Since the DC model and the M-QSPR, model
are directly trained on fuel data, the predictions are taken from the testing of the 4-fold cross-
validation of the models described in 2.4.1, which is performed with a 15 % test fraction. To
investigate the influence/importance of synthetic fuels for the predictive capability of the DC
and M-QSPR models, results are also provided for models trained solely on conventional fuels

(no-Syn.).

For the comparison with state-of-the-art models from the literature, models like the DLR Discrete
Component Model (DCM) developed by Le Clercq [45,47] or respective multilinear regression
models (MLR) by Liu et al. [105], are utilized. At the time of writing, these models were the only
ones available in full code for comparison, able to predict properties from the GCxGC format
outlined in Section 3.3.1. The DCM models a fuel as a mixture of constituents, similar to the
QSPR sampling method, as described in the introduction of Chapter 2. The MLR models of Liu
et al. are direct correlation models that predict the fuel properties based on the summed-up
fractions of the respective fuel families, e.g. iso-alkanes, mono-cyclo-alkanes etc. Short

descriptions of both models can be found in the Supplementary Material F.

For the adequacy assessment of the models, hold-out fuels are screened that have not been part
of the previous training and testing process. The second part critically cross-checks the results of
the first part and evaluates the adequacy of the models for the actual practical use case of jet
fuel screening. The predictions are thus evaluated not only in relation to the measurements, but
also in relation to the specification limits as adequacy requirements, to examine the impact of

limited predictive capability on decision making in prescreening.



54 4.1 Part 1: Predictive capability assessment of models

4.1 Part 1: Predictive capability assessment of models

Before the validation results of the individual properties are presented, the schema for the
presentation of the validation results is outlined. This schema will be used in the following for
the results of all properties. First, the general ability of the method to model the property without
a systematic error on the basis of the GCxGC measurement is investigated. The prediction results
are thereby presented in unity plots, where the predicted values are plotted against the
corresponding measurements, similar to the predictive capability example in 2.5.2. Markers for
conventional fuels (Conv.) are shown in blue and synthetic fuels (Syn.) in green. If the prediction
and the measurement are in perfect agreement, the markers lie on the unity line, which is
displayed in black. If strong deviations and even systematic deviations of the predictions from
the unity line are visible, the model is unable to model the property on the basis of the GCxGC
data.

For the developed models, the prediction intervals (PI) are indicated as error bars for a 95 %
confidence level. As a reference for the accuracy and precision of the predictions the
reproducibilities of the measurements, taken from the CRC Report No. AV-23-15/17 [106], are
indicated as grey dashed lines. For a prediction to be valid, the corresponding PI have to lie
inside or cross the indicated grey reproducibility lines. The reproducibilities of the corresponding

measurement methods are listed in Table 6.

Property ASTM Method Reproducibility
Density [kg/m’| D4052 0.52
Flash point [°C] IP 170 3.2

Freezing point [°C] D5972 0.8
Net heat of combustion [MJ/kg] D4809 0.324
Surface Tension, [mN/m]| D971 0.1*X
Viscosity, [mm?®/s] D445 0.019*X
Cetane number [-] D6890 0.0385*(X+18)
Distillation 10 vol% [°C] D86 3.15
Distillation 50 vol% [°C] D86 3.46
Distillation 90 vol% [°C] D86 3.83

Table 6: Reproducibilities of ASTM property measurement methods [106]
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In the second step, the predictive capability of the models is assessed based on the introduced
metrics. The calculated metrics are provided in separate tables. The accuracy is calculated using
MAE from Equation (1.26). In the assessment, the accuracy of the developed models is compared
with respect to each other and the reference models from the literature. The validity of the
predicted PI is quantified by the PICP, see Equation (1.27). For a model to be considered valid,
the calculated PICP must be on average equal to or greater than the set confidence level of 95
%. For the evaluation of the precision, the NMPIW from Equation (1.28) is calculated with the
measurement reproducibility to compare the uncertainties of the models with those of the
measurements. Based on these comparisons, the models with the highest predictive capability

and therefore the highest potential for fuel screening are outlined.

In the upcoming figures, the testing results of the developed models (DC, M-QSPR and QSPR
sampling model (a-c)) trained on all datapoints are shown in the first row of the unity plots. The
second row shows the DC model (d) and M-QSPR model (e) trained solely on conventional fuels
as well as the validation results of the reference model (f) from the literature. The respective

models are additionally labeled with an alphabetical suffix for clarity (a-f).

4.1.1 Density

For the density, almost all predictions of the considered models lie close to the unity line, as
visible in Figure 4.1. Exceptions are visible for the predictions of Syn. fuels for the DC model,
trained only on conventional data (DC -no Syn.) Figure 4.1 (d), and the reference DCM model
Figure 4.1 (f). All developed models (DC, M-QSPR and QSPR sampling (a-c)) are therefore
generally able to model the density of fuels from the GCxGC data without a systematic error;
however the DC method requires synthetic fuels to be present in the training data. The deviations
of the predictions of DC -no Syn.(d) and the DCM model (f) correspond to synthetic fuels with
a low fraction of aromatics. Synthetic fuels with a high fraction of aromatics are still predicted
correctly. For the DC -no Syn. model (d), this indicates a dependence of the DC method on
similar fuels in training and testing. For the reference DCM model (f), the systematic deviation
might be due to the wrong selection of the representative isomer or the consideration of just one
isomer per chemical family and carbon number. The deviations are not observed for the QSPR
sampling model (c), which likewise to the DCM model (f), models the fuel as a mixture of
components. This illustrates the benefit of considering multiple isomers in a probabilistic

modeling approach compared to the deterministic approach of the DCM model.

The striking outlier at 726 kg/m? is visible for almost all models. Since this is the only consistent
outlier observed for different models, an erroneous GCxGC or density measurement might be the
reason. The measurement was not made in house a verification of this observation is therefore

not possible.
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Figure 4.1: Validation results of the density prediction. Results for conventional fuels are

displayed in blue, results of synthetic fuels in green.

Conv. Fuels Syn. Fuels

MAE PICP NMPIW | MAOE MAE PICP NMPIW | MAOE

[kg/m?3] [%] [%] [kg/m?] [kg/m?] [%] [%] [kg/m?3]

DC (a) 0.96 99.4 | 1667.9 0.42 2.39 81.8| 1847.6 2.86

M-QSPR (b) 2.59 98.1 | 29275 0.52 4.59 88.2 | 3057.4 3.37

QSPR sampling (c) 3.6 87.7| 1874.9 0.93 4.67 73.4 | 2257.1 4.17

DC -no Syn. (d) 1.23 96.6 | 1280.3 1.11 14.4 44.0 | 3496.0 11.97

M-QSPR -no Syn. (e) 2.16 98.8 | 2889.7 1.52 5.55 74.7 | 2943.3 4.14
DCM model (f) 4.0 7.6

Table 7: Predictive capabilities of density models.

The previous observations are reflected in the metrics in Table 7. High accuracies are achieved
for the DC (a), M-QSPR (b), QSPR sampling (c¢) models with a MAE of 0.96 kg/m’to 3.6 kg/m?
for conventional and 2.39 kg/m?* to 4.67 kg/m?* for synthetic fuels, which corresponds to less than
0.5 % relative error. The developed models are highlighted in dark grey in Table 7. The accuracy
of the deterministic reference DCM model (f) with 7.6 kg/m?® for synthetic fuels is thereby excelled
by all developed probabilistic models (DC, M-QSPR and QSPR sampling (a-c)). For the validity,
PICP values close or even above the desired 95 % threshold are achieved for the conventional
fuels. This means that on average 95 % of the measurements are enclosed by the PI. For the
synthetic fuels the 95 % threshold is not reached by any model. Therefore, the use of the
estimated Mean Absolute Outlier Error (MAOE), see Section 2.5.1, is recommended to

additionally extend the estimated PI for the prediction of synthetic fuels, to statistically enclose
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the measurements. The NMPIW exceeds the reproducibilities of the measurements multiple
times. The uncertainty of a model prediction is therefore significantly greater than the one of a
measurement. This is comprehensible, since the density measurement method is highly accurate,
with a reproducibility 0.52 kg/m?®. In the later prescreening the predicted PI will be set in

reference to the specification limits to see if they are adequate for the actual use case.

4.1.2 Surface tension

Similar to the predictions of the density, the predictions for the surface tension closely follow the
unity line and most of the predictions are located inside the reproducibility region of the
measurement method, see Figure 4.2. Exceptions are again visible for predictions of synthetic
fuels of the DC -no Syn. Model Figure 4.2 (d). For the DC -no Syn. model, this again shows the
dependency on the presence of synthetic fuels in the training data. Striking is the systematic
deviation of predictions from the QSPR sampling model (c¢) and the reference DCM model (f)
for a few synthetic fuels with values above 30 mN/m, see Figure 4.2 (c¢) and Figure 4.2 (f). These
predictions correspond to research fuels from the JETSCREEN project with an unusually high
fraction of aromatics (up to 30 mass%). This deviation could be due to a false prediction of the
property values for the components in the QSPR model or a false selection of isomers for QSPR
sampling and DCM model. In general, all models are able to model the surface tension without
a significant systematic error outside of the reproducibility region on the basis of the GCxGC
data.
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The metrics in Table 8 show a similar predictive capability for all models, with a PICP over
95 % and a NMPIW that is comparable to the reproducibility of the measurements. With respect
to the accuracy, MAE of 0.36 mN/m to 0.54 mN/m are achieved for conventional fuels and 0.35
mN/m to 0.95 mN/m for synthetic fuels. The surface tension can therefore be accurately
predicted with all methods. The accuracy of the DCM model (f) of 1.04 mN /m is slightly excelled
by all developed models (DC, M-QSPR and QSPR sampling (a-c)), however the main advantage

of the probabilistic models are the PI that correctly estimate uncertainty.

Conv. Fuels Syn. Fuels

MAE PICP NMPIW | MAOE MAE PICP NMPIW [ MAOE

[mN/m] [%] [%] [mN/m] | | [mN/m] [%] [%] | [mN/m]

DC (a) 0.36 100.0 51.4 0.37 0.35 100.0 54.3 0.08

M-QSPR (b) 0.38 100.0 46.3 0.55 0.78 100.0 57.6 1.19

QSPR sampling (c) 0.54 100.0 44.3 0.51 0.96 98.9 78.3 0.79

DC -no Syn. (d) 0.22 100.0 17.4 0.26 1.49 93.5 51.1 1.2

M-QSPR -no Syn. (e) 0.42 100.0 49.1 0.53 0.82 98.3 48.2 0.8
DCM model () 1.15 1.04

Table 8: Predictive capabilities of surface tension models.

4.1.3 Net heat of combustion

For the net heat of combustion, stronger differences between the accuracies of the different
models are visible in Figure 4.3. For both conventional and synthetic fuels, only the predictions
of the developed DC and M-QSPR models lie inside the reproducibility regions, see Figure 4.3
(a) and (b). For the QSPR sampling, the DC -no Syn. and the M-QSPR -no Syn. models in
Figure 4.3 (c-e), deviations and outliers are visible, especially for synthetic fuels. For the DC and
M-QSPR method, this illustrates again the need for synthetic fuels in the training data for this
method. For the reference MLR model by Liu et al. Figure 4.3 (e) only some predictions for
conventional fuels lie inside the reproducibility region, while most of the predictions lie almost
parallel to the measurement axis, indicating a systematic error. The low accuracy and the
systematic error of the reference MLR model can probably be explained by the missing
information about the average carbon numbers of the hydrocarbon families [105]. The model of
Liu et al. was referenced by Wang et al. [107] in a recent review and the only deterministic model

fully available in literature, able to predict the net heat of combustion on the basis of the utilized
GCxGC format.

For the QSPR sampling model (c), a systematic offset is visible for the predictions of conventional
fuels with the QSPR sampling model. The offset could be explained by the inapplicability of the
mass fraction based mixing rule, or differences in the measurement methods of pure compounds
and fuels, which could not be verified. For the M-QSPR model (b), this offset is not observed
the model is able to adapt the offset with the presence of fuels in the dataset. Since the offset is

smaller than the reported reproducibility, the offset is not significant, but further investigations
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might be necessary to understand the observation. Another striking systematic error is observed

for the M-QSPR -no Syn. model (e) and the QSPR sampling model (c) for a group of synthetic

fuels in the value range of 43.8 to 44.3 MJ/kg. The models predict very similar values for different

fuels with different measurement values. These systematic errors were also observed by Yang et

al. [48]. The corresponding synthetic fuels all contain a large fraction of iso-alkanes. Yang et al.

explained the systematic errors with errors in the net heat of combustion measurements of the

fuels and the high uncertainties due to the low reproducibility of the measurement method. Since

most of the predictions with this systematic error still lie inside the reproducibility region, this

is not significant.
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Figure 4.3: Validation results of the met heat prediction. Results for conventional fuels are

displayed in blue, results of synthetic fuels in green.

Conv. Fuels Syn. Fuels

MAE PICP NMPIW | MAOE MAE PICP NMPIW [ MAOE

[M]/kg] [%] [%] [M]/kg] [M]/kg] [%] [%] [M]/kg]

DC (a) 0.05 100.0 17.7 0.03 0.09 100.0 28.6 0.1

M-QSPR (b) 0.14 100.0 67.9 0.1 0.09 100.0 87.0 0.09

QSPR sampling (c) 0.18 92.9 29.6 0.16 0.19 86.4 27.6 0.18

DC -no Syn. (d) 0.05 100.0 15.3 0.04 0.26 87.2 58.6 0.19

M-QSPR -no Syn. (e) 0.13 100.0 92.3 0.03 0.17 100.0 89.9 0.07
MLR model (f) 0.11 0.61

Table 9: Predictive capabilities of net heat of combustion models.
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Considering the reproducibility of 0.324 MJ/kg of the measurement method and the explanation
for the systematic outliers of the synthetic fuels, the DC, M-QSPR and QSPR sampling models
(a-c) are able to accurately predict the net heat of combustion on the basis of the GCxGC

measurement.

In the predictive capability metrics, the high accuracies are visible in the MAE, ranging from
0.05 MJ/kg to 0.18 MJ/kg for conventional fuels from 0.09 MJ/kg to 0.19 MJ/kg for synthetic
fuels, see Table 9. The developed probabilistic models (DC, M-QSPR and QSPR sampling (a-
c)), thereby clearly outrival the MLR model (f) of Liu et al, with comparable accuracies for
conventional fuels with a MAE of 0.11 MJ/kg and significantly higher accuracies for synthetic
fuels with a MAE of 0.61 MJ/kg. The calculated PICP close to or even above of 95 % and
NMPIW values below 30 % illustrate, that all predictions are valid and highly precise.

4.1.4 Kinematic viscosity

For the kinematic viscosity, the predictions of the DC, M-QSPR and QSPR sampling model,
closely follow the unity line for measurements up to 12 mm?/s in Figure 31 (a-c). Above this
range, significant deviations for a group of synthetic fuels are visible, especially for the QSPR
sampling model and the M-QSPR -no Syn model, see Figure 31 (c) and Figure 31 (e). The
erroneous predictions belong to research fuels from the JETSCREEN project, with an unusually
high fraction of aromatics, particularly di-aromatics with mass fractions up to 18 mass% and

temperatures below -30 °C.

_ DC (a) M-QSPR (b) QSPR sampling (c)
wn ()
NE 20 ® Conw (33
E‘ 0 @ Syn ® 060
[77] [
[=} 99%
2101 5
9 . : )/ &
g s ;
A O T T T T T T
0 10 20 0 10 20 0 10 20
Measurements [mm?2/s] Measurements [mm?/s] Measurements [mm?/s]
_ DC -no Syn. (d) M-QSPR -no Syn. (e) DCM model (f)
w0 T @
E 201 t ; . .
£ 20 X n N .
g i v 't
.4% 10 ] [} e® 5°
'L") # ‘ * .i [) S ; ®
2 ) T >
A O T T y T T T
0 10 20 0 10 20 0 10 20
Measurements [mm?2/s] Measurements [mm?/s] Measurements [mm?/s]

Figure 4.4: Validation results of the kinematic viscosity prediction. Results for conventional fuels

are displayed in blue, results of synthetic fuels in green.

For the reference DCM model shown in Figure 31 (f), significant deviations are visible both for

conventional and synthetic fuels. While the predictions for the conventional fuels start to
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significantly deviate at around 8 mm?/s, corresponding to temperatures below -20 °C, most of
the synthetic fuels are underpredicted over the whole value range. Generally, the DC, M-QSPR
and QSPR sampling (a-c) are therefore able to model the kinematic viscosity from the GCxGC
measurements without systematic errors, while the reference model shows significant systematic

deviations for both conventional and synthetic fuels.

Conv. Fuels Syn. Fuels

MAE PICP NMPIW | MAOE MAE PICP NMPIW | MAOE

[mm?/s]| [%] [%] | [mm?s]| | [mm?%s]| [%] [%] | [mm?/s]

DC (a) 0.24 92.5| 2001.8 0.24 0.61 75.9 | 2775.1 0.86

M-QSPR (b) 0.33 97.1 | 2699.5 0.46 0.58 84.9 | 2807.1 0.58

QSPR sampling (c) 0.89 31.3| 1207.7 0.46 0.81 54.5 | 1437.2 0.66

DC -no Syn. (d) 0.26 86.4 | 1650.8 0.45 1.44 59.5(11003.9 1.07

M-QSPR -no Syn. (e) 0.32 97.8 | 2572.1 0.21 0.94 63.5| 21474 0.93
DCM model (f) 2.65 3.03

Table 10: Predictive capabilities of kinematic viscosity models.

The visual observations are reflected in the accuracy metrics in Table 10. The highest accuracies
are observed for the DC model (a) and the M-QSPR model (b) with a MAE of 0.24 mm?/s and
0.33 mm?/s for conventional fuels and 0.61 mm?/s and 0.58 mm?/s for synthetic fuels. The
accuracies of the reference DCM model (f) are significantly lower, with MAE of 2.65 mm?/s for
conventional and 3.03 mm?/s for synthetic fuels. The developed models (DC, M-QSPR, QSPR
sampling (a-c)) excel the accuracy of the reference DCM model therefore 10 times for
conventional fuels and 5 times for synthetic fuels. The DC (a) and M-QSPR (b) model, which
directly learn from fuel data, show thereby the highest accuracies. The scattering and deviations
of the DC -no Syn. model and the M-QSPR -no Syn. model (e) illustrate the need for synthetic
fuel data as part of the training data for those models. The deviations of the predictions from
the QSPR sampling model (¢) above 12 mm?/s can probably be explained by the low number of
available measurements of single components at low temperature ranges, below -10 °C. For the
pure compounds, only a small number of low temperature viscosity measurements are available,
as illustrated in Figure 3.1. As a result, the underlying QSPR model might predict the kinematic
viscosity value of the sampled aromatic components to low, which subsequently leads to an
underestimation of the kinematic viscosity of the fuel. Intermolecular interactions of the fuel
components at the lower temperature ranges of -20 °C to -40 °C not covered by the utilized
mixing rule also play a role. Since the reference DCM model (f) also relies on the selection of
isomers, but only one per chemical family and carbon number, the deviations can probably be
attributed to the wrong selection of the respective isomers. Furthermore, the underlying viscosity
model of the DCM model that predicts the viscosity over the temperature range could also be a

reason for the strong deviations. For this work, the property model of Mehrotra [108] is utilized,
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which differs from the temperature model recommended in ASTM D341 utilized by the QSPR

sampling model.

With respect to the validity the M-QSPR model (b) showed the highest PICP with 97 % for
conventional and 85 % synthetic fuels. The PICP of the other models differ significantly from
the set confidence level of 95 %. Generally, the use of the estimated MAOE is recommended to
increase the predicted PI, especially for synthetic fuels. The elevated NMPIW for the models is
understandable, as the measurements come from various laboratories and the measurement
technique employed is highly precise. A model prediction has therefore higher uncertainty than

a measurement.

All in all, the DC model (a) and the M-QSPR model (b) show the highest predictive capability.
For the QSPR sampling model (c) significant deviations can occur for fuels with a high fraction
of aromatic components, at low temperatures below -20 °C and high viscosity ranges above

12 mm?/s.

4.1.5 Flash point

The results of the flash point are presented in Figure 4.5. For the DC, M-QSPR and QSPR model
(a-c) most predictions follow the unity line however, stronger scattering and significant deviations
are observed in part, especially for synthetic fuels. Striking is the erroneous prediction at 49 °C,
which is observed for all models. It corresponds to a synthetic fuel produced by the Alcohol-To-
Jet process, which is solely composed of iso-alkanes. Other outliers also correspond to synthetic
fuels composed of only one or two hydrocarbon families with GCxGC measurements dominated
by components with distinct carbon numbers. For the reference MLR model shown in Figure 4.5
(f), the predictions for both conventional and synthetic fuels lie almost parallel to the
measurement axis, indicating a systematic error. Likewise to the net heat of combustion, the
model of Liu et al. was the only one fully available and able to model the flash point on the basis
of the given GCxGC measurements. The reference model is therefore not able to model the flash
point from the GCxGC data. A comparison with the predictions of the DC model Figure 4.5 (a),
which also uses the method of direct correlation, shows that information about the number of
carbon atoms is probably needed to estimate the flash point accurately. For the DC no-Syn.
model in Figure 4.5 (d), strong deviations are visible for synthetic fuels. The modeling of the
flash point with the DC method therefore strongly relies on the presence of synthetic fuels in the
training data. In sum, all developed models (DC, M-QSPR and QSPR sampling (a-c)), are
generally able to model the flash point of fuels from the GCxGC measurements without a

systematic error.
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Figure 4.5: Validation results of the flash point prediction. Results for conventional fuels are

displayed in blue, results of synthetic fuels in green.

Conv. Fuels Syn. Fuels

MAE PICP | NMPIW | MAOE MAE PICP | NMPIW | MAOE

[°C] [%] [%] [°C] [°C] [%] [%] [°C]
DC (a) 0.99 100.0 98.3 0.08 2.4 92.1 158.2 2.39
M-QSPR (b) 3.77 91.7 451.0 2.78 6.8 80.0 468.1 6.65
QSPR sampling (c) 3.63 89.3 258.2 2.43 7.36 77.2 322.1 4.96
DC -no Syn. (d) 0.81 100.0 116.8 1.59 6.37 73.8 405.8 6.29
M-QSPR -no Syn. (e) 2.13 100.0 444 .4 0.24 4.62 83.3 295.8 4.12
MLR model (f) 16.9 21.39

Table 11: Predictive capabilities of flash point models.

The observed deviations of the outlined synthetic fuels can probably be explained by the smaller
datasets of fuels and pure compounds and larger variance of the property values for the flash
point of isomers. Only data for 397 unique pure compounds and fuels is available for the flash
point, compared to 1622 unique pure compounds and fuels for the net heat of combustion.
Simultaneously, the variance of the property values increases for different isomers. E.g. for iso-
alkanes with 10 carbon atoms the flash points recorded in the database range between 15.85 °C
and 51.7 °C. This will be shown and discussed in more detail in Section 5.3.5. This has a
significant influence on the QSPR sampling model shown in Figure 4.5 (c), where the stronger
deviations and larger uncertainties for synthetic fuels can be explained by the differences in the

values of the fuel components. For conventional fuels, the influence of individual isomers is
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smaller due to more evenly distributed compositions. Therefore, the QSPR sampling method
requires more detailed compositional information, down to the individual fuel component or a
restriction of the possible isomers, especially for synthetic fuels, to reduce the uncertainties in
the prediction. For the DC model displayed in Figure 4.5 (a), the comparably small PI can be
explained by the utilized data, composed solely of fuels without the strong variances due to

possible isomers.

Comparing the computed metrics, the highest accuracies are observed for the DC model (a), with
a MAE of 0.99 °C for conventional and 2.4 °C for synthetic fuels. The PICP of the DC model
are comparable to 95 %, while the NMPIW of 100 to 500 %, which illustrates that the prediction

uncertainty exceeds the measurement reproducibility multiple times.

4.1.6 Freezing point

For the freezing point strong, differences in the accuracy of the predictions for synthetic and
conventional fuels are visible in Figure 4.6. While the predictions of the developed DC, M-QSPR
and QSPR sampling models for conventional fuels are aligned with the unity line, the predictions

for synthetic fuels strongly deviate in part, see Figure 4.6 (a-c).
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Figure 4.6: Validation results of the freezing point prediction. Results for conventional fuels

are displayed in blue, results of synthetic fuels in green.

For the DC model and M-QSPR in Figure 4.6 (a) and (b) strong deviations are observed,
particularly for synthetic fuels with freezing points below -60 °C. For the QSPR sampling model
in Figure 4.6 (c) the large uncertainties are striking for the predictions of most of the synthetic
fuels. The developed models trained solely on conventional fuels, DC no-Syn. and M-QSPR no-

Syn. model, over- and underestimate the freezing points of the synthetic fuels significantly, see
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Figure 4.6 (d) and (e). For the reference MLR model in Figure 4.6 (f), the predictions for
synthetic fuels also deviate and some form a parallel line to the measurement axis, indicating a
systematic error. Likewise, to the flash point, the large uncertainties and significant deviations
of the M-QSPR model (b) and the QSPR sampling model (c¢) can be explained by the smaller
dataset and the strong influence of the different isomers on the freezing point. For iso-alkanes
with 10 carbon atoms, value differences of -110.15 °C to -12 °C are listed in the pure compound
databases. Examples for other families will be given in later in Section 5.3.6. This explains the
strong deviations and the uncertainties for the QSPR sampling model (c¢) and shows the need for
more detailed compositional information down to the individual fuel component or a restriction
of the sampled isomers. Generally, the influence of the isomers on the modeling of the freezing
point is observed to be significant. Based on the unity plots, only the DC model (a) and the M-
QSPR (b) show the ability to model the freezing point without a systematic error.

Conv. Fuels Syn. Fuels

MAE PICP NMPIW | MAOE MAE PICP NMPIW | MAOE

[°C] [%] [%] [°C] [°C] [%] [%] [°C]
DC (a) 1.51 89.7 633.3 54.07 7.31 47.2 | 1303.5 62.78
M-QSPR (b) 2.24 78.9 | 1148.0 52.42 7.3 50.0 | 1557.7 57.45
QSPR sampling (c) 5.75 41.6 949.2 49.16 9.16 63.8 | 23975 55.67
DC -no Syn. (d) 1.12 92.7 464.3 52.52 30.6 21.1| 3088.0 39.72
M-QSPR -no Syn. (e) 2.33 88.6 | 2023.0 50.7 11.62 42.0| 1780.4 62.87
MLR model (f) 5.02 12.24

Table 12: Predictive capabilities of freezing point models.

The predictive capability metrics in Table 12 also show the highest accuracies for the DC and
the M-QSPR models with MAE of 1.51 °C and 2.24 °C for conventional fuels and 7.14 °C and
7.3 °C for synthetic fuels, see Table 12. The strong deviations observed for fuels with freezing
points below -60 °C would however limit the application domain to a value range above -60 °C.
Furthermore, the use of the calculated MAOE is recommended since the calculated PICP are
significantly lower compared to the confidence level of 95 %, with 89.7 % and 79 % for
conventional fuels and 48.65 % and 50 % for synthetic fuels for the DC (a) and M-QSPR (b)
model respectively. The precision of the predictions expressed by the NMPIW exceeds the
reproducibility of the measurements multiple times, illustrating the high level of uncertainty

associated with the predictions.

4.1.7 Cetane number

Since the number of available fuel data points for the modeling of the cetane number is strongly
limited with only 36 unique fuels, the input format of the DC model is modified to prevent
overfitting. Therefore, the mass fractions of carbon atoms in the ranges 1-12 and 12-25 are

summed up, creating the features n-alkanes 1-12, n-alkanes 12-25, iso-alkanes 1-12 etc. The DC
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input features are thereby reduced from 200 to 16. The results for this modified DC model and
all other models are shown in Figure 4.7. According to Vozka and Kilaz [43], there is currently
no deterministic reference model that predicts the property value of GC or GCxGC measurements
of fuels for the cetane number. Therefore, no predictions of a reference model are provided in the

following.

The unity plots for the different models are displayed in Figure 4.7. For both conventional and
synthetic fuels, only the predictions of the DC model and the M-QSPR model in Figure 4.7 (a)
and (b) follow the unity line. For the QSPR sampling model and the models trained solely on
conventional fuels in Figure 4.7 (c-e), the predictions deviate from the measurements, especially
for values higher or lower than the range of conventional fuels. For the QSPR sampling model

(c), large uncertainties are thereby observed.
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Figure 4.7: Validation results of the cetane number prediction. Results for conventional fuels are

displayed in blue, results of synthetic fuels in green.

The cetane number is strongly influenced by the branching of a component. Low-branched
components similar to cetane (hexadecane) have a high cetane number, while highly branched
isomers show lower cetane numbers. For iso-alkanes with 8 carbon atoms differences between 4.9
to 47 are recorded in the data. More detailed examples that illustrate the difference in the cetane
number for different isomers will be given in Section 5.3.7. Since the QSPR sampling method
assumes all isomers of the considered hydrocarbon families to be equally present, significant
deviations and large uncertainties are possible for synthetic fuels composed of only a few specific
isomers in Figure 4.7 (¢). For the QSPR sampling model, more detailed composition information

down to the component level of the fuel or a restriction of possible isomers is necessary to improve
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the accuracy for those synthetic fuels. Based on the unity plots, only the DC (a) and M-QSPR

(b) models are able to model the cetane number without a systematic error.

The predictive capability metrics in Table 13 list the accuracies of the DC (a) and M-QSPR (b)
models with a MAE of 1.02 and 1.4 for the conventional fuels and 3.74 and 3.7 for the synthetic
fuels. For conventional fuels, the PI are valid with a PICP of 100 %, for synthetic fuels a PICP
of 82-84 % would however recommend the use of the MROE. The NMPIW is over 5 and up to
10 times higher than the reproducibility of the measurement. Predictions are therefore associated

with significantly higher uncertainties than measurements.

Conv. Fuels Syn. Fuels
MAE PICP | NMPIW | MAOE MAE PICP | NMPIW | MAOE
[-] [%] [%] [-] [-] [%] [%] [-]
DC (a) 1.02 100.0 321.8 0.0 3.74 82.6 444.8 3.96
M-QSPR (b) 1.4 100.0 236.9 0.0 3.7 84.2 448.3 3.23
QSPR sampling (c) 2.39 100.0 323.5 0.89 7.51 82.2 789.4 3.59
DC -no Syn. (d) 0.71 100.0 103.0 1.06 15.79 62.5 555.6 13.39
M-QSPR -no Syn. (e) 1.21 100.0 576.2 0.0 9.56 57.8 710.6 7.2

Table 13: Predictive capabilities of cetane number models.

4.1.8 Distillation line

ASTM D4054 lists limits for the distillation of jet fuels at 10, 50 and 90 vol% recovery. Likewise
to the cetane number, the current literature provides no alternative deterministic model, that
predicts the distillation line from GCxGC measurement data, according to Vozka and Kilaz [43].
The results of the distillation line prediction are therefore presented without the comparison to

a reference model.

Figure 4.8, Figure 4.9 and Figure 4.10 show the results for 10, 50 and 90 vol% evaporated
respectively, for the DC model (a) and (c¢) and the QSPR sampling model (b). Modeling the
distillation line with the M-QSPR method would be equal to the DC method since only fuel data
can be used for the correlation. For the distillation, strong differences are visible between the
accuracy of the predictions for conventional and synthetic fuels. For conventional fuels, the
predictions of both the DC model and the QSPR model lie close to the unity line. For synthetic
fuels, this is only the case for the DC model trained on both conventional and synthetic fuels,
see Figure 4.8, Figure 4.9 and Figure 4.10 (a). The predictions of the QSPR sampling model
show deviations for some synthetic fuels, especially at 10 vol%, see Figure 4.8 (b). For the DC -
no Syn almost all predictions for the synthetic fuels strongly deviate from the unity line, see
Figure 4.8, Figure 4.9 and Figure 4.10 (¢). For the DC model, this again shows the need for

synthetic fuels as part of the training data.
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Figure 4.8: Validation results of the distillation with 10 vol% evaporated volume prediction.

Results for conventional fuels are displayed in blue, results of synthetic fuels in green.
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Figure 4.9: Validation results of the distillation with 50 vol% evaporated volume prediction.

Results for conventional fuels are displayed in blue, results of synthetic fuels in green.
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Figure 4.10: Validation results of the distillation with 90 vol% evaporated volume prediction.

Results for conventional fuels are displayed in blue, results of synthetic fuels in green.

The deviating predictions of the QSPR sampling model (b) correspond to fuels with distinct

compositions composed solely of iso-alkanes with certain carbon numbers like fuels produced by

the ATJ process and fuel surrogates. These fuels are composed of only a small number of distinct

components, which results in an unsteady distillation line. It was observed that the utilized

correlation of the ASTM D2887, which is used to convert the simulated distillation line calculated

on the basis of the boiling points to ASTM D86 values [109], returns erroneous and unphysical

values for these synthetic fuels: Increasing temperatures are partially calculated for decreasing

evaporated volumes. In those cases, the temperature at the higher evaporated value is utilized.
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An update of the ASTM D2887 correction for synthetic fuels like ATJ-SPK might therefore be

necessary in the future.

Compared to the predictions of the DC model (a), the predictions of the QSPR sampling model
in Figure 4.8, Figure 4.9 and Figure 4.10 (b) show relatively large uncertainties both for
conventional and synthetic fuels. The large uncertainties are mainly due to the uncertainties of
the ASTM D2887 correction of 10.73 % for 10 vol%, 6.96 % for 50 vol% and 8.85 % for 90 vol%
that are propagated in the QSPR sampling model. For conventional fuels, the reproducibilities
clearly overstate the true uncertainty of the measurements, as indicated also by PICP values
close to 100 % in Table 14 to Table 16. For synthetic fuels, the estimated uncertainties are on
average sufficient with PICP close to 95 %. This underlines the necessity of more detailed
composition information for synthetic fuels composed of only a few molecules. More detailed
information about the fuel composition would probably not only increase the accuracy of the

predictions but also allow a reduction of the reproducibilities of the ASTM D2887 correction

model.
Conv. Fuels Syn. Fuels
MAE PICP | NMPIW | MAOE MAE PICP | NMPIW | MAOE
[°C] [%] [%] [°C] [°C] [%] [%] [°C]
DC (a) 1.27 100.0 206.3 0.78 2.2 100.0 321.0 1.77
QSPR sampling (b) 1.26 100.0 985.9 0.0 18.15 78.2 1292.1 25.49
DC -no Syn. (c) 0.65 100.0 157.1 0.0 38.5 62.2 1457.5 44.22

Table 14: Predictive capabilities of distillation models at 10 vol%.

Conv. Fuels Syn. Fuels
MAE PICP | NMPIW | MAOE MAE PICP | NMPIW | MAOE
[°C] [%] [%] [°C] [°C] [%] [%] [°C]
DC (a) 1.6 100.0 266.5 0.0 4.38 95.8 291.1 13.06
QSPR sampling (b) 4.74 96.7 748.8 11.08 12.2 86.4 926.4 16.76
DC -no Syn. (c) 0.92 100.0 244.1 0.0 30.13 52.6 1543.1 24.46

Table 15: Predictive capabilities of distillation models at 50 vol%.
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Conv. Fuels Syn. Fuels
MAE PICP NMPIW | MAOE MAE PICP NMPIW | MAOE
[°C] [%] [%] [°C] [°C] [%] [%] [°C]
DC (a) 3.67 100.0 331.0 2.35 3.22 100.0 354.5 1.71
QSPR sampling (b) 4.49 100.0 785.1 0.0 6.89 100.0 917.6 1.22
DC -no Syn. (c) 1.54 100.0 287.4 0.0 35.62 52.8 | 1687.9 32.75

Table 16: Predictive capabilities of distillation models at 90 vol%.

The observations from the unity plots are reflected in the respective predictive capability metrics
in Table 14 to Table 16. The accuracies for the predictions of conventional fuels are high, with
a MAE around below 5 °C for both models. For synthetic fuels, the observed erroneous
predictions reduce the accuracy with a MAE of 6.89 °C to 18.15 °C QSPR sampling model (b),
while the accuracy of the DC model (a) remains high at 2.2 °C to 4.38 °C. For the DC model,
the PI are valid with PICP values over 95 %. For the QSPR sampling model, this is only true
for the conventional fuels. For both models, the NMPIW is several times greater than the
reproducibility of the measurements, illustrating the significantly higher uncertainty of the

predictions.

4.2 Part 2: Adequacy assessment of models for fuel screening

In the second part of the predictive capacity assessment, the adequacy of the developed models
for the fuel prescreening is assessed based on a simulated fuel prescreening of hold-out fuels,
neither seen by the model in the training nor in the testing. A model is thereby rated adequate,
if the fuel screening based on the predictions yields the same results and leads to the same
conclusions as the measurement. In the prescreening the predicted properties are compared with
the specification limits of ASTM D4054, considering both the mean prediction and the prediction
intervals (PI). If the predicted mean value and PI completely lie either inside or outside the
specification limits, the prediction of the model is completely accepted; if the PI cross the
specification line, a measurement is recommended, similar to the example in Section 2.5.2. If a
model correctly predicts all properties inside or outside the specification limits with or without a
measurement recommendation and the measurement values are enclosed by the PI, the model is
considered adequate for fuel screening. In addition to the adequacy of each model, the potential
benefits of considering multiple models and comparing their results to assess a jet fuel are also

examined.

Three fuels are screened: one conventional oil-based fuel and two SAF fuels, one produced by the
Alcohol-To-Jet process (ATJ-SPK), one produced by a Fischer-Tropsch process (FT-SPK). The
conventional fuel and the ATJ-SPK fuels were composed and measured as part of the
JETSCREEN project, whereas the FT-SPK fuel with the POSF 5018 was investigated in the
NJFCP project. Figure 4.11 shows the plots of the GCxGC compositions of the fuels.
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Figure 4.11: Composition plots of jet fuels used for Tier a prescreening: conventional oil-based
fuel (upper left), SAF produced by the Fischer-Tropsch process (upper right) and SAF produced
by Alcohol-to-Jet process (lower left).

The compositions of the three fuels differ significantly. The fuels are chosen intentionally to
investigate the suitability of the models for a wide range of possible fuel compositions: a
conventional fuel consisting of all hydrocarbon families with a broad distribution of components
with different carbon numbers, a FT-SPK fuel with a composition dominated by two hydrocarbon
families but with a broad distribution of components with different carbon numbers, and an
ATJ-SPK fuel with a composition dominated by isomers with two specific carbon numbers from

one hydrocarbon family.

To review the results from the first part of the predictive capability assessment, all developed
models are used for the fuel screening. In the following plots, predictions of the DC model are
shown in blue, the predictions of the M-QSPR model in green and the predictions of the QSPR
model in purple. The property measurements of the fuels are displayed in black, with error bars
indicating the reproducibility of the measurement method. The specification limits of the
respective properties are shown as red lines. The range outside of these specifications are shaded
in red. To additionally indicate if the property is predicted inside the specification, the frame of
the individual plots is colored: green if both the mean prediction and the predicted PI of all
models lie inside the specifications; orange if the PI cross the specification limits; and red if the

mean prediction of one model lies outside the specification limit. The results of the prescreening
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are displayed in Figure 4.12 with individual columns for each fuel and rows for each property

value.
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Figure 4.12: Results of Tier o prescreening: Jet A-1 fuel (left row), FT SPK (middle) and ATJ
SPK (right). DC model predictions are displayed in blue, of the M-QSPR model in green and

the QSPR sampling model in purple.
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For the Jet A-1 fuel and the FT-SPK fuel, in the first and second columns of Figure 4.12, the
predictions of all models are in high agreement with the measurements. The mean values are
predicted correctly either inside or outside of the specification limits. With the exception of
distillation Tgq — T1o and Teg — T4, as well as the kinematic viscosity at -40 °C and the freezing
point for the FT-SPK this is also true for the PI. For these properties, measurements would be
recommended. As explained in the distillation testing Section 4.1.8, the high level of uncertainty
for the distillation is mainly due to the conversion correlation of ASTM D2887. Uncertainties
could therefore be reduced if the conversion correlation would be optimized. For the kinematic
viscosity at -40 °C and the freezing point the PI of all models are comparable and the
specifications are exceeded due to the proximity of the values to the limits. For the Jet A-1 and
the FT-SPK, the high accuracy and precision of all models can probably be attributed to the
composition of the two fuels. Both fuels have broad distributions of components for multiple
families. For the M-QSPR model and the QSPR sampling the broad distribution over the families
corresponds to the underlying assumption, that all isomers are present with the same likelihood.
For the DC model the high accuracy and precision can be explained by the high similarity of the
two hold-out fuels, to fuels in training data, as observed in the previous Section 4.1.

As result of the screening, the Jet A-1 would correctly be assessed as fuel with high chances for
approval with the recommendation for a measurement of the distillation line. For the FT-SPK
the density would be correctly assessed as too low, while the other properties indicate high
chances for approval. The low density could be adjusted in a blending operation. Due to the
exceeding PI of the viscosity at -40 °C, the freezing point and the distillation line, measurements
would however be recommended for these properties. For these two fuels, all three developed
models with their underlying assumptions showed high predictive capability and are rated
adequate for the fuel prescreening. The high agreement of the model predictions with overlapping
PI and close mean predictions was thereby observed as a trust indicator that correctly illustrated

that the true value was close to the predictions.

For the ATJ-SPK fuel differences between the predictions of the models increase and also greater
deviations from the measurements are visible. Accurate predictions and high agreement between
the models are only observed for the density, surface tension and kinematic viscosity at -20 °C.
For the other properties, the model predictions differ in part from each other and even contradict
in their prediction of the properties as being inside or outside of the specification limits. Large
uncertainties are thereby observed, particularly for the QSPR prediction of the flash point,
freezing point and cetane number. For the kinematic viscosity at -40 °C the M-QSPR and the
QSPR sampling model predict the viscosity inside the specification limits with a recommendation
for a measurement. The DC model however, falsely predicts the viscosity value completely outside
the specification limit with the mean value and PI. For the cetane number and the distillation
Too-Tyo and Ts-Tyo the mean values are falsely predicted as being inside the specification limits

by both the QSPR model and for Tgy-T; and the DC model. For these predictions, measurements
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are recommended as the PI cross the specification line. But if the measurements are not
conducted, the results of the screening would be erroneous and would not correspond to the
measurements. Only the M-QSPR model correctly predicted all properties as inside and outside
of the specification, pointing out both the low density and cetane number. However, the inability
for modeling the distillation line prevents a screening based on this model alone. Considering the
predictions of all models simultaneously does not help in this situation. Kinematic viscosity and
cetane number are predicted correctly by the majority of the models, however the Tyy-Tyq is
predicted wrong both with the DC and the QSPR sampling model. Therefore, none of the models
is adequate for the screening of ATJ-SPK.

The lower accuracy and precision of the model for the ATJ fuels can be explained considering
the composition of the ATJ-SPK, and the set modeling assumptions. The ATJ-SPK consists to
91 mass% of certain iso-alkanes isomers with 12 and 16 carbon atoms. For the DC model no fuel
similar enough e.g. with the same isomers is present in the training data to explain the deviation
for the distillation at Tyg. For the QSPR sampling and M-QSPR, models the assumption, that all
isomers are present with the same likelihood in the composition is no longer viable. For the QSPR
sampling model this results in the large observed PI and inaccurate predictions. To illustrate the
influence of different isomers on the prediction of the ATJ-SPK with the QSPR sampling model,
the predicted values for the flash point, freezing point and cetane number of all considered iso-

alkanes isomers with 12 and 16 carbon atoms are shown in Figure 4.13.
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Figure 4.13: Predicted mean values for iso-alkanes isomers with a carbon number of 12 and 16

for the flash point (left), freezing point (middle) and cetane number (right).

Figure 4.13 clearly illustrates the large range of the property values, spanning multiple
magnitudes and crossing the specification limits. To therefore reduce uncertainty and increase

the accuracy of the QSPR sampling model, the selection of possible isomers must be constrained.

Prediction with constrained isomer selection for ATJ-SPK

To investigate if a constrained selection of the isomers changes the predictions and overall
adequacy of the QSPR sampling model for the ATJ-SPK fuel, the prescreening with this model
is repeated. For the investigated ATJ-SPK a special situation applies, since the fuel components
that make up over 90 mass% of the composition are actually known: 2,2.4,6,6-pentamethyl
heptane for iso-alkanes C 12 and 2,2,4,4,6,8,8-heptamethyl nonane for iso-alkanes C 16. Since the
QSPR sampling is a flexible modeling approach, that allows the direct selection of identified

components, the properties can again be predicted using these two isomers and randomly
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sampling the isomers for the other carbon numbers. The results of the repeated screening are
shown in Figure 4.14. The predictions with the constrained isomer selection are shown in a lighter
purple, the previous predictions of the QSPR sampling model considering all isomers are also

indicated as reference.
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Figure 4.14: Results of Tier o prescreening for ATJ SPK with constrained isomer selection,

predictions of the QSPR sampling model.
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For the flash point, the freezing point and the cetane number, significantly lower Pls are visible
for the restricted isomer selection compared to the reference predictions taking all isomers into
account. Increases in the accuracies are observed for the flash point and cetane number where
the property values are correctly predicted inside and outside the specification limits respectively.
Increased accuracy is also observed for the distillation line for Tyg, Tso and Tgg. The increased
uncertainty for the viscosity prediction can probably be attributed to the uncertainty of the
predictions for the individual pure compounds at these low temperatures. The individual
predicted value ranges of the components have a greater impact when fewer molecules are

considered, resulting in more uncertainty in the prediction of the bulk property.

The predictions with the constrained isomer selection change the adequacy of the prediction
results for the three outlined properties. Flash point, freezing point and cetane number are now
predicted correctly inside and outside of the specification limits, yielding the correct screening
result. With the constrained isomer selection, the QSPR sampling model can therefore be rated
adequate. Measurements would still be recommended for the viscosity at -40 °C and the

distillation line.

4.3 Summary and conclusion

Probabilistic modeling methods play a central role in the prescreening concept of Heyne and
Rauch and enable the assessment of jet fuel candidates from low volume composition
measurements. Their ability to predict critical physicochemical properties and corresponding
uncertainties accurately and reliably, allows for risk-informed decision making in the early

development stage of fuel candidates.

In this chapter, probabilistic property models from three different methods were investigated and
compared: Direct correlation (DC), Mean Quantitative Structure-Property Relationship
Modeling (M-QSPR) and Quantitative Structure-Property Relationship Modeling (QSPR) with
sampling. The models are compared on their predictive capability for the modeling of
physicochemical properties in general and investigated for their adequacy to support the jet fuel
prescreening. To put the predictive capability of the developed models in context, they are
compared with state-of-the-art deterministic models from the literature, to compare differences
in accuracy and illustrate the benefit of predicted uncertainties. As reference models the DLR
Discreate Component Model (DCM) by Le Clercq and multilinear regression models (MLR) by

Liu et al. were selected.

Using a Monte-Carlo Dropout Neural Network as probabilistic regression algorithm, the models
were trained and tested for their predictive capability to model the eight critical physicochemical
properties relevant for the jet fuel prescreening. The assessments were conducted on 75

conventional oil-based jet fuels and 56 synthetic fuels, as well as fuel blends.
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Screening

The predictive capability assessment proved that all developed models are in general able to
model the eight properties on the basis of the GCxGC measurements, without a systematic error.
The highest predictive capability was on average observed for the DC method. With the
exception of the freezing point, highly accurate and precise predictions were achieved for fuels of
all considered fuel types and production paths. However, a comparison with the results of DC
models trained solely on conventional fuels revealed the need of this method for fuels similar to
the predicted fuels as part of the training data. If the DC model is trained solely on conventional

fuels, accuracy and precision for the prediction of synthetic fuels are significantly reduced.

The M-QSPR model showed less dependence on the synthetic fuel data, and the second-best
performance for most of the properties. The possibility to learn from both data of pure compounds
and fuels proved to be beneficial, especially for cases with a low number of available fuel

measurements as training data, like for the modeling of the cetane number.

For the QSPR sampling model, the predictive capability was highly dependent on the fuel
composition and the predicted property. For fuels where the underlying assumption, that all
considered isomers are present with the same likelihood, was valid, a high predictive capability
was observed for all properties. For synthetic fuels, where this assumption was invalid, large
uncertainties and deviations were visible, especially for properties where the values of the
different isomers differs significantly, e.g. freezing point and cetane number. Since the QSPR
sampling model is the most flexible modeling method, that allows the definition of the fuel down
to the component level, higher accuracies could probably be achieved, if more detailed fuel

composition is known, or if the range of possible isomers is constrained.

In comparison with the deterministic state-of-the-art reference models, all developed probabilistic
models showed higher accuracy and outperformed the predictive capability of the reference
models for all eight critical properties. This was especially visible for the prediction of the
kinematic viscosity, where the strong deviations of the DCM predictions can be attributed to the
use of just one isomer as representative component for a family and carbon number. The
additionally estimated prediction intervals proved to be particularly useful to illustrate
uncertainty associated with each prediction, an important information deterministic models

cannot provide.

To review the adequacy of the models for the actual fuel prescreening, the prescreening was
simulated for three different hold-out fuels that were not seen by any model, neither in training
nor in validation. One conventional Jet A-1 fuel and two synthetic fuels produced by the Fischer-
Tropsch process (FT-SPK) and the Alcohol-to-Jet process (ATJ-SPK). For both the Jet A-1 and
the FT-SPK all three models proved to be adequate for the screening correctly predicting all
properties as either inside or outside the specification limit. The high accuracy and precision of
the model predictions were explained by the compositions of the fuels. Jet A-1 and the FT-SPK

are composed of components with a broad range of different carbon numbers, for the Jet A-1
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from different families. The underlying assumption of the models, that all considered isomers are
present in the fuels with the same likelihood, was therefore found valid for these fuels.

For the ATJ-SPK stronger differences in the property predictions of the different models were
visible. Only the predictions of the M-QSPR models correctly predicted all properties inside and
outside the specification, pointing out the low density and cetane number of the fuel. For the
DC and QSPR sampling models, erroneous predictions were observed, which would have yielded
a false screening result for the fuel. For the QSPR models enlarged PI were visible that indicated
high uncertainty in the property predictions. For both models this was again attributed to the
composition of the ATJ-SPK, which in contrast to the previous models is dominated by certain
iso-alkanes isomers with 12 and 16 carbon atoms. For the DC models no fuel similar enough was
available in the training data, while for the QSPR sampling models the assumption that all
isomers occurred with the same likelihood was no longer valid. To investigate if a constrained
isomer selection would change the adequacy of the QSPR sampling model, the prescreening was
repeated. Known isomers were thereby set for the composition input of the QSPR sampling
model. The constrained selection led to significantly improved results with the QSPR sampling
model. The uncertainties of the predictions for the flash point, freezing point and cetane number
were reduced and the cetane number correctly predicted as too low. The QSPR sampling model

with the constrained isomer selection was thereby rated adequate.
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5 Development of Fuel Design Tools

The design of jet fuels is the second intended application area of the data-based tools developed
in this work. Fuel design methods shall support the formulation of jet fuel candidates to optimize
the chances for passing the fuel approval process after ASTM D4054. In contrast to the fuel
prescreening, the fuel design not only explains the reasons for the non-compliance but also

proposes reformulation measures for the fuel to optimize the properties accordingly.

To support the fuel design, tools are required that illustrate the relationship between fuel
composition and properties. In contrast to previously described predictive models, these tools
should provide insights into how modifications in fuel composition can affect its properties. The
influence of various aspects of fuel composition on properties, such as the proportion of
hydrocarbon families or the size of components, must be understood in order to derive tools that
allow estimation of changes in properties with corresponding changes in composition. This
chapter investigates the correlations between fuel composition and properties of interest. From

these investigations, tools are created that serve as basis for the later fuel design in Chapter 6.

Fuels are mixtures of hundreds of compounds, which are present in the fuel as components with
a set mass fraction. The properties of fuels are consequently determined by the contributions of
the individual components as well as by their interactions. The design of jet fuels therefore
requires a comprehensive understanding of the components and their properties relevant for the
fuel approval. This is becoming increasingly important as synthetic jet fuels often consist of a
smaller number of families and thus a smaller number of components compared to conventional
crude oil-based jet fuels. As shown in Section 4.2, the bulk properties of fuels like the ATJ-SPK
are primarily determined by a few distinct components that make up a large portion of the fuel

composition.

The underlying processes of the production of synthetic fuels allow a more and more precise
tailoring of the fuel composition, close to the individual component. Chemical family, size, and
topology of components are key design parameters that can be adjusted to formulate a promising
fuel candidate [73,110,111].

To support the fuel design and understand the relations between fuel compositions and
properties, the present research investigates the influence of structural aspects of the fuel
components relevant for jet fuels based on their chemical family, size and topology. Braun-
Unkhoff et. al. investigated the relation between the size of typical fuel components and their
physicochemical properties on the basis of measurements from the DIPPR 801 Database [70].
They especially pointed out the potential influence of the branching as a molecular topology
parameter on properties like the freezing point [111]. Wang et. al. summarized the work of
different publications for a selection of five critical jet fuel properties (e.g., density, net heat of

combustion, and flash point) [107] and identified the hydrogen content and molar mass as



80

important component features for correlations with properties. The search for possible single
compound jet fuels illustrated the importance of the chemical family by pointing out certain
cyclo-alkanes as most promising candidates due to the similarity of their physical properties to
the average properties of conventional jet fuels [112-114]. Work on the fuel design of diesel and
gasoline fuels investigated the structural influence of compounds on the ignition behavior
characterized by cetane and octane numbers, pointing out the influence of the fraction of certain
chemical families, e.g., with high fractions of n-alkanes leading to increased cetane number, but

also the number and size of side chains [115,116].

The influence of quantitative structural features on the modeling of properties like the density,
flash point, freezing point, and cetane number was described inter alia by Saldana et al.
[71,72,117], Creton et. al. [118], and Cai et al. [119] as part of their development of QSPR
predictive property models for fuel components. By sensitivity analysis or investigation of
importance of the utilized QSPR features, they outlined the influence of chain length and
hydrocarbon family, but also structural aspects like the number and position of methyl groups
on the listed properties. Apart from statistical analysis and analysis of the trained models, direct
molecular design is an emerging research topic [120,121]. This technique couples predictive
property models with a molecular generator in an optimization loop to iteratively find / optimize
the molecules with properties as components the intended fuel application. Up to now, recent
research focusses predominantly on fuel components and low compound mixtures for gasoline
fuels, with the goal to optimize properties that characterize the combustion behavior like the
octane number, and other relevant properties for the field, e.g., vapor pressure, distillation
behavior, density, and viscosity [122-125]. The molecular optimization is thereby carried out in
a closed loop, where the molecular design is fully conducted by the interplay of property models
and optimizer [125-127]. The property models estimate the desired characteristics of candidate
molecules, while the optimizer generates new molecular structures based on these predictions,
iteratively refining the search towards molecules with optimal properties. Information about
structural aspects is not directly investigated but could be inferred by sensitivity analysis of the
utilized models or comparison and analysis of the molecular structures over the optimization

iterations.

The listed publications investigated the relationships between the fuel components and their
properties either primarily qualitatively, with the focus on investigating trends, low compound
mixtures and in part other application areas. No publication has yet provided a comprehensive
investigation for all eight critical properties, relevant for the jet fuel screening with the focus on
identifying and quantifying the relations between compound structures and properties. This work
extends the outlined publications, providing investigations for all critical properties and all
relevant hydrocarbon families. Using a significantly larger database compared to previous
publications, with 1870 possible fuel components, the influence of the chemical family, size and
branching on the properties of the component is investigated. Investigations are conducted both

visually and with the use of uniform quantitative metrics. The investigations solely rely on
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measurement data, since predicted property values, e.g. with a QSPR model, would assume the
correct property prediction for each individual component. This can however not be guaranteed,
especially for properties with a smaller number of measurements for the training of the model,
see e.g. flash point in Section 3.3.2. Erroneous predictions for individual components could lead
to the misidentification of correlations, in contrast to fuel modeling, where the high number of
components reduces the individual influence for most of the fuels, especially for conventional
ones. A comprehensive investigation of the relations between composition and properties based
on the available measurement data is therefore the safest approach to derive reliable fuel design

tools, while simultaneously pointing out missing data and the need for further research.

The component-property relations are quantified for the three aspects: hydrocarbon family, size
and branching of the components. Eight relevant physicochemical properties are considered:
density, surface tension, kinematic viscosity, net heat of combustion, flash point, freezing point,
cetane number and the distillation line. Since non-CO; effects of aircraft emissions, especially via
soot emissions and contrail formation, are of growing concern [8], the sooting tendency of the
components is considered additionally. As a quantitative metric for the sooting tendency, the

yield sooting index of the components is utilized [128,129].

5.1 Molecular descriptors

To investigate the influence of the topology of the fuel components, five molecular descriptors
are introduced that quantify different aspects of the topology of the fuel components. To quantify
the size of the components, the number of contained carbon atoms or carbon number (nC), is

utilized.

To quantify the branching, the Topochemical Atom Index for branching (ng) is utilized [130].
This index quantifies the branching based on the Valence Electron Mobile environment (VEM).
The VEM considers the number of connections, the kind of bond, as well as the position of the
atoms. Calculating the VEM involves two steps. In a first step, the vertex count y; is calculated
for every atom i, by relating the atomic number of an atom a; to the VEM count f; [131], see

Equation (5.1).

Yi = % (5.1)
i = ot T
B Zy@f o (5.2)

For a carbon atom the a; in Equation (5.1) equals to 0.5. The VEM count g; is calculated from
two local vertex invariants f; and f;, accounting for non-hydrogen ¢ bonds and m bonds, see
Equation (5.2). The VEM count f; therefore depends on the bonds of the individual atom to all

atoms in the fuel component it is connected to. For a carbon atom with non-hydrogen a-bonds
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f» equals to 0.5, for m-bonds f; equals to 1 [132]. In the second step, the VEM vertex counts y;
of all atoms A are multiplied with their neighboring y; to calculate the local Topochemical Atom
Index n'°¢, under consideration of the adjacency matrix a; j, see Equation (5.3). The adjacency
matrix is a two-dimensional matrix that indicates which atoms of a molecule are bonded. Figure
5.1 gives an example of the calculation of the adjacency matrix for iso-pentane. The adjacency
matrix has rows and columns that correspond to the vertices of the molecular structure.

Connections between atoms in Figure 5.1 are indicated by 1 while 0 indicates no connection.

A-1 A
0.5
n'oc = Z 2 ai * (vi *v)) (5.3)
i j=i+1
ne = NS —n'°° + 0.086 * nR (5.4)

The branching index ng is finally calculated from the difference between the ni¢of the
unbranched isomer of the component (e.g. pentane for iso-pentane) and the 7'°¢ of the component
of interest (e.g. iso-pentane). To account for ring structures Equation (5.4) contains an additional

term that takes the number of rings (nR) in the molecule into account (e.g. 1 for toluene, 2 for

naphthalene)
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Figure 5.1: Molecular structure of isopentane (left) and its calculated adjacency matriz (right).

As additional structural descriptors for the topology, the partial positive surface area (PPSA)
and the number of ring atoms (nR) as well as the number of aromatic carbon atoms connected
only to other carbon atoms are (cXHO) considered. All three descriptors were identified as
particularly important by Saldana et al., as features for the QSPR modeling of fuel component
properties [71,72]. Likewise to the nC, nR states the number of atoms in a circular structure. nR
is considered to investigate the influence of circular structures on the properties. cXHO similarly

counts the number of carbon atoms in an aromatic ring, connected only to other carbon atoms.

The PPSA quantifies the sum of the surface area SA} of a molecule, see Equation (5.5) [131]. The
individual surface areas of the molecules SA} are thereby calculated with an underlying rolling
ball algorithm. In contrast to the other descriptors, the PPSA is a 3D descriptor, meaning it

calculates the PPSA for a 3D representation of the molecule.

PPSA = 2 SAZL (5.5)
a+
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All descriptors are calculated using the PaDEL software [133] and the corresponding Python
wrapper PaDELPy [134], that calculates the descriptors on the basis of the SMILES

representation of the component.

5.2 Property correlation metrics

To quantify the correlations of the properties with the structural descriptors nC and 1y, as well
as the hydrocarbon family of the components, four respective property metrics are introduced.
The influence of the nR, cXHO and the PPSA are only investigated based on visual property

correlations, since their relevance is observed only for some hydrocarbon families and properties.

The first metric Ay investigates the influence of the hydrocarbon family on the respective
properties, keeping the size of the components and their branching constant. Therefore, the
average property value of a hydrocarbon family (}7?7 C—clﬁ) is calculated considering all components
of a family with 7 to 16 carbon atoms. 7(1}’7 C—cm is calculated using components with 7 to 16 carbon
atoms, since this is the typical carbon range for jet fuels. The conventional reference fuels hold
on average 99 % of their mass fraction in the interval of 7 to 16 carbon atoms. The average
difference Agyc (?Elf_cm) is then calculated by relating 37{;’76_% to the average property value of
conventional crude oil-based jet fuels (§/%¢%), see Equation (5.6). As data for the conventional
reference fuels, property measurements from the CRC world fuel survey from 2006 are used [92].
This metric provides an estimate of the difference in property values as the fraction of the
hydrocarbon family in the fuel is increased or decreased.

Ve, — e
Duc (T8 cys) == }iffuels % 100% (5.6)

The second metric quantifies the overall correlation of property values with the structural
descriptors on the basis of the Pearson Correlation Coefficient (r). The Pearson Correlation
Coefficient is a common metric for the identification of correlations between two variables x and
¥, see Equation (5.7). The value range for r lies between -1 and 1, where -1 indicates a strong
negative and 1 indicates a strong positive correlation. A r value below -0.5 or above 0.5 is
normally used as threshold for an identified correlation [57]. For reasons of clarity, the r is scaled
between -10 and 10 in this work. The thresholds for the identification of a correlation are moved
to -5 and 5 respectively. For the correlation of property values with nC, all components with 7
to 16 carbon atoms are considered. For the calculation of the correlation with ng however, only
the components of one set carbon number and hydrocarbon family are considered, to exclude the
influence for changes in nC, e.g. iso-alkanes with 10 carbon atoms. The correlation of ng is
thereby conducted always for the components with the greatest number of available

measurements.
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cov(y,x)
r=———>

> (5.7)

The third metric quantifies the average differences in the property values of fuel components
with different carbon numbers from one hydrocarbon family. This metric A, thus provides an
estimate of the difference in property values when the carbon number of the fuel components is
increased or decreased by one, keeping the hydrocarbon family and average branching constant.
To compute A, the absolute differences of the average value of components with a set carbon
number (yci) to the average values of components with all other carbon numbers (376#1.) are
calculated, e.g. average density of iso-alkanes with 8 carbon atoms to iso-alkanes with 9 carbon

atoms etc. The difference of y¢and Yz are divided by the difference of the carbon numbers

(Ci, Gj), see Equation (5.8). Ay is calculated for every hydrocarbon family individually.

N=C;<16 M:Cj516

A_1221
TN+ M C;—C
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ij

+100%  (5.8)

To quantify the influence of the branching, the absolute average difference of isomers 4, at a

set carbon number is estimated using Equation (5.9).

N
1Ny =Yl
Bpp=7 ST 100 % (5.9)
i

This fourth metric estimates the average difference in a property values that can be observed for
two different isomers. Due to the limited availability of the data and the clarity of the
presentation, A, is only calculated once for every hydrocarbon family, always for isomers with
the highest number of available measurements, e.g. iso-alkanes with 10 carbon atoms. The made
observations are consequently assumed to be representative for all isomers in a hydrocarbon

family.

5.3 Investigation of fuel component structure-property relations

The component structure-property relations are investigated both visually by plots and
quantitatively by the introduced metrics. While the plots serve the visually identification of
correlations for one structural descriptor, the metrics allow the simultaneous comparison of the
correlations for all properties. Detailed explanations of the individual plots and tables for the

metrics are given in the upcoming Section 5.3.1 Density, but applied for all other properties.

For the temperature dependent properties density, surface tension and kinematic viscosity,
ASTM D1655 and D4054 specify a measurement temperature of 15 °C for the density, 22 °C for

the surface tension and -20 °C and -40 °C for the viscosity. Since most of the component property
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measurements in the available databases, do not contain measurements at these exact
temperatures, the values for the density and surface tension are interpolated using linear
interpolation. Since all relevant fuel components do not undergo a phase change at these
temperatures, the linear interpolation is very reliable. For the low temperatures of -20 °C and -
40 °C however, only very few property measurements are recorded. The property values would
therefore have to be extrapolated for most of the components. Since correct extrapolation can
neither be guaranteed nor verified, values are interpolated at 0 °C for the investigation, using
the ASTM D341 equation presented in Section 2.2.1. It is assumed that the observations made
at 0 °C also apply to viscosity at -20 and -40 °C, an assumption that cannot be verified due to
the low availability of measurements at those temperatures. More low temperature measurements

are therefore needed in the future to verify this assumption in later work.

5.3.1 Density
As a fundamental physicochemical property of a fuel, the density impacts the loadable weight of
an aircraft, the energy content of the fuel together with the net heat of combustion, and it is an

important parameter for metering and balancing of the aircraft, e.g. for fuel gauging.

To investigate how the density of fuel components and consequently the density of fuels is
affected by changes in the values of the structural descriptors, correlations are first investigated
visually. First, the differences of the density values of the different hydrocarbon families and the
change of the density values over the carbon number of the components is investigated.
Therefore, Figure 5.2 displays the density values of components for all hydrocarbon families over

nC. Values are plotted for components with carbon numbers in a range of 5 to 20.
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Figure 5.2: Density values at 15 °C of the hydrocarbon families over the carbon number nC.
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The mean density values for each nC of a hydrocarbon family are indicated by a large dot in the
middle of smaller scatter dots, that display the single values of the respective isomers. As an
additional reference, values of conventional jet fuels (Conv. fuels) from the utilized database are
displayed as purple stars. The specification limits of the respective properties are shown as red
lines. The respective descriptor values for the fuels are calculated from their mean quantitative

structure representation, introduced in Section 2.2.3.

Figure 5.2 shows increasing density values over the carbon number nC for all alkanes. For mono-
cyclo-aromatics no clear correlation is visible, while the density values of cyclo- and di-aromatics
decrease with increasing nC. Saldana et al. [72], and Braun-Unkhoff et al. [111] also observed
those trends. The correlations indicate, that increasing the carbon number of the fuel components
would increase the density of a fuel for alkanes, and decrease the density for cyclo- and di-
aromatics. The density range of n-alkanes and iso-alkanes lies below the value range of
conventional reference fuels (Conv. fuels), while the value range for mono-cyclo-alkanes is
comparable. The value ranges of the other families exceed the value range of the reference fuels.
For the design of fuels, this consequently means, that a high fraction of n- and iso-alkanes with
carbon numbers below C 13 can result in fuel densities that lie below the specification range.
This is e.g. the case for FT-SPK and HEFA fuels as shown by the density measurements in
Figure 4.12. For synthetic fuels with high fractions of cyclo-alkanes on the other hand, densities

similar to conventional fuels can be expected.

Next, the influence of the branching and potentially other descriptors on the density values of
the components is investigated. The correlations are thereby investigated separately for each
family and descriptor in individual plots in Figure 5.3 to Figure 5.5. For reasons of clarity and
to limit the number of figures in this chapter, the following figures only show the plots for n- &
iso-alkanes, mono-cyclo-alkanes and mono-aromatics. The plots for the other families are listed
in Supplementary Material G. The values of the n- & iso-alkanes as well as bi- & tri-cyclo-alkanes
are shown together for illustration purposes and similarity of the property values. Plots with the
subscript (a) on the left show the property values of the fuel components over nC, plots with
subscript (b) in the middle over the branching index nz and (c) on the right plots over additional
descriptors, for which correlations are identified. To additionally illustrate the general trend over
the respective first order regression lines are indicated, if more than three measurements are
available. In plots with the subscripts (a) and (b), the indicated molecular structures also

illustrate the context of the branching structures for selected components.
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Figure 5.3: Density values at 15 °C of n-alkanes and iso-alkanes over molecular descriptors:

carbon number nC' (a), branching index ng (b) and partial positive surface area PPSA (c).
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Figure 5.4: Density values at 15 °C of mono-cyclo-alkanes over molecular descriptors: carbon

number nC' (a), branching index ng (b) and number of ring atoms nR (c).
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Figure 5.5: Density values at 15 °C of mono-aromatics over molecular descriptors: carbon number

nC (a), branching index ng (b) and partial positive surface area PPSA (c).

The plots with the subscript (a) again show the density of the components at different carbon
numbers. The indicated trendlines confirm the correlations of the density with nC observed in
Figure 5.2. For the branching index (np) a correlation with the density is only observed for mono-
cyclo-alkanes, with decreasing density values for an increasing branching index in Figure 5.4 (b).

As explained in Section 5.2, plots for the branching display the property values of isomers at one
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set carbon number, e.g. iso-alkanes with 10 carbon atoms in Figure 5.3 (b). Due to the limited
number of available measurements, the investigations are conducted only for isomers with the
highest number of available measurements. The identified correlations are assumed to be valid
for all other isomers of the family. If measurements of different isomers are available also for
other carbon numbers, this assumption is verified by respective investigations. For the density,
the observations are verified e.g. for the iso-alkanes by investigating isomers at 9, 11 and 12

carbon atoms.

Apart from the branching index, correlations with other descriptors could be identified. For
mono-cyclo-alkanes, bi-cyclo-alkanes and cyclo-aromatics correlations with the number of ring
atoms nR are observed, see Figure 5.4 (c), Figure G 1 (c¢) and Figure G 2 (c). For the iso-alkanes
and the di-aromatics, further correlations with the partial positive surface area descriptor (PPSA)
are visible in Figure 5.3 (c¢) and Figure G 3 (c). For Mono-aromatics and di-aromatics correlations
with the cXHO descriptor are visible in Figure 5.5 (c¢) and Figure G 3 (c). These findings are in
accordance with Saldana et al., who list these descriptors as important features for their QSPR
model [72].

To compare the correlations of all families and later all properties simultaneously, as well as to
estimate the change of the property value for a change in the descriptor value, the correlations
are quantified using the described metrics in Section 5.2. The metrics gives a rough estimate of
the impact of the descriptors on the property and indicate how and to what extent the density
would be affected when a descriptor is increased or decreased. The calculated metrics with the

average differences A and correlation coefficients r are summarized in Table 17.

nC Ns
Anc [%] T Anc [%] r Ap, [%] | Annotation

n-alkanes 8.0 1.3

. 5.9 70 1.5 4.0% 1.7% gl?g;elation with partial positive surface
mono-cyclo-alkanes 0.6 6.0 1.2 -5.0% 2.1%* gl?;:zlﬁgc;ﬂlr‘ggg rp(?frlliii?llgp;tsoirtri;;e surface
bi-cyclo-alkanes 81 | 40 | 09 | 20+ | 14+ |Correlationwith rp(f‘frlﬁiiigp&fg‘;e surface
tri-cyclo-alkanes 14.5 2.0 2.5 ] (%)

mono-aromatics 8.6 2.0 0.2 2.0* 0.8* ggg;zlatei3%%?2522&??;%230;2??8'
cyclo-aromatics 17.2 -5.0 0.5 -1.0* 1.1* gl?er:zlﬁ(tii(:ﬁlr‘;vlggrpjfrgigp;tfg‘;e surface
di-aromatics 244 | 4.0 1.1 4.0% | 2.4% ggg;zlg‘ttégnomﬁfgghm;“cca‘;ﬁgzo;ggns

Table 17: Summary influence of different hydrocarbon families and molecular descriptors on the

density at 15 °C, * indicates an annotation for the correlation, @ indicates insufficient data
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The metric in the first column Ay of Table 17 quantifies the average differences of the densities
of the hydrocarbon families with respect to the conventional reference fuels. Ay thereby allows
a comparison of the average densities of the families with respect to each other. The average
differences Ay state that n-alkanes have densities which are on average 7.7 % lower compared
to conventional fuels. Di-aromatics on the other hand, are found to have the highest densities,
24.4 % higher than conventional fuels on average. The order of the Ay, values corresponds to
the order observed visually in Figure 5.2. To additionally illustrate the order of the average
property values of the families, the background of the Ay, values in Table 17 is colored. The
color scheme ranges from blue, indicating lower values than the reference fuels, to orange,
indicating higher values than the reference fuels. White corresponds to the value range similar

as reference fuels.

The next two columns hold metrics for the influence of the carbon number nC and the branching
ng. First the strength of the correlations is indicated by the correlation coefficient r. For nC the
r values correspond to the observations made in Figure 5.2, with strong positive correlations for
alkanes and negative correlations for aromatics. For ng only a correlation for the mono-cyclo-
alkanes with a value of -5 is identified. Observations and correlations with other descriptors like
the nR and the PPSA are indicated by a “*” suffix in Table 17. For cases were the low number
of measurements prevents the calculation of metrics, like fore the tri-cyclo-alkanes, Table 17
holds a @ symbol.

Apart from the general correlations, the average differences: A,¢ and A, are calculated, which
state the average change of the property value for a change in the descriptor value, likewise to
Apc. Despite the large correlation coefficients, the density changes only slightly for changes in
the carbon number and the branching. The calculated average differences show values below 2.4
% for Apc and 0.8 % for Ay, which are significantly lower compared to the Ay values. However,
significant differences of up to 50 kg/m? are possible between different isomers, even though small

or no correlations are observed, e.g. mono-aromatics see Figure 5.5 (b).

In summary, the density is predominantly affected by the hydrocarbon family. If the density of
a fuel should therefore be increased or decreased in the fuel design, the strongest effects are
achieved by changing the fraction of the families accordingly. Changes in the density by
increasing or decreasing the average carbon number and therefore the size of the components are
only relevant for smaller components with nC below 10 to 12, see Figure 5.2 to Figure 5.5
subscript (a). For larger components with a nC above 13, the average values differ only slightly.
The branching was found to have no systematic impact on the density, however the consideration
of property differences of different isomers can be relevant for low component fuels with densities

close to the specification limits.
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5.3.2 Surface tension
The surface tension influences the atomization of a fuel, together with the density and viscosity,
it is a fundamentally physicochemical property relevant for the ignition and reignition of fuels.

Surface tensions that are too high can consequently lead to problems in atomization and ignition.

As for the density, first the influence of the carbon number and the hydrocarbon family on the
surface tension are investigated. The order of the hydrocarbon families observed in Figure 5.6 is
thereby similar to the order observed for the density in the previous Section 5.3.1. Iso- and n-
alkanes show the lowest surface tension, followed by mono-cyclo-alkanes and mono-aromatics, as
well as bi-cyclo-alkanes and cyclo-aromatics. For tri-cyclo-aromatics and di-aromatics the highest
surface tensions are observed. This order is observed for a range of 10 to 13 carbon atoms. For
higher and lower carbon numbers, changes in the relative order can be observed due to the
limited availability of measurement data. For e.g. nC 16 the average surface tension of cyclo-

aromatics is higher than the one of the di-aromatics.

surface tension at 22°C
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Figure 5.6: Surface tension values at 22 °C of the hydrocarbon families over the carbon number

nC.

The relative order of the average surface tensions of the different hydrocarbon families is reflected
in Table 18 by the average differences Ay and the corresponding background colors. Similar to
the density, the value range of n- and iso-alkanes lies below the one of the reference fuels with a
relative difference Ay of -5.6 % and -10.8 % respectively. The average surface tension of mono-
cyclo-alkanes is comparable with the values of the reference fuels, while the property values of
the other families exceed the range, e.g. 43.4 % for di-aromatics. Over the carbon number, similar
correlations of the average surface tensions of the families are visible as for the density in Figure

5.6. Increasing surface tensions with nC are visible for all alkanes. Mono-cyclo-aromatics show
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no clear correlation, while the surface tension of cyclo- and di-aromatics decreases with increasing
nC.

To lower the surface tension, e.g. to improve the atomization of the fuel, the fraction of n- and
iso-alkanes with low carbon numbers should be increased. Increased fractions of mono-cyclo-
alkanes would lead to a surface tension similar to conventional fuels, while increased fractions of
of other families would increase the surface tension of a fuel on average. A change in the average
carbon number would only be relevant for the surface tension of components with smaller carbon

numbers, below 10.

The correlations of the property values with nC is reflected in Table 18, with high positive r
values of 8 and 10 for the alkanes, negative values of -7 for di-aromatics. For ng a negative
correlation is observed for iso- and mono-cyclo-alkanes in Figure 5.7 (b) and Figure 5.8 (b). For
the mono-aromatics, the positioning and number of branches has a notable effect on the surface
tension see Figure 5.9 (b). While the surface tension decreases with increased branching for
components with one side chain, it increases for components with multiple side chains. The trend
over the cXHO descriptor is able to resolve this relationship further and illustrates a correlation
of the surface tension of mono-aromatics with the number of carbon atoms connected only to
other carbon atoms in Figure 5.9 (c). The other families do not allow an investigation due to the
limit number of available measurements. Compared to the density, the average value differences
nC and A, are higher. For a change in nC, Ap¢ values between 2.7 % to 4 % are calculated. For

changes in the branching, the differences 4, are between 4.0 and 5.2 %.

Similar to the density, the surface tension is mostly affected by the hydrocarbon family. The
surface tension of fuels can be lowered by increasing the fraction of n- and iso-alkanes and
increased by increasing the fraction of mono-, bi- and tri-cyclo-alkanes as well as aromatics. Size
and the branching of the components have a slightly stronger influence on the surface compared

to the density, but the effects are still of minor significance.
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Figure 5.7: Surface tension values of n-alkanes and iso-alkanes over molecular descriptors: carbon

number nC' (a), branching index ng (b).
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Figure 5.8: Surface tension wvalues of mono-cyclo-alkanes over molecular descriptors: carbon
number nC' (a), branching index ng (b).
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Figure 5.9: Surface tension values of mono-aromatics over molecular descriptors: carbon

number nC' (a), branching index ng (b).
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nC ns
Apic [%] T Anc [%] r Ap, [%] | Annotation

n-alkanes -5.6 8.0 3.3

iso-alkanes -10.8 6.0 4.0 -3.0 4.0

mono-cyclo-alkanes 2.3 4.0 3.3 -9.0 4.0

bi-cyclo-alkanes 23.2 10.0 3.3 1%} %)

tri-cyclo-alkanes 43.1 (4] (4] 1%} 1%}

mono-aromatics 195 | 20 | 27 | a0 | 52+ gggﬁfgggﬁmﬂ aromatic carbon atoms,
cyclo-aromatics 28.8 (4] (4] 1%} 14}

di-aromatics 43.4 -7.0 3.2 14} (%]

Table 18: Summary influence of different hydrocarbon families and molecular descriptors on the
surface tension at 22 °C, * indicates an annotation for the correlation, @ indicates insufficient

data.

5.3.3 Kinematic viscosity

The kinematic viscosity is another fundamental property that is of great importance for the
operability of pumps, nozzles and the atomization process, which are critical especially at low
temperatures. Similar to the surface tension too high viscosity values can lead to problems in

atomization and ignition.

The comparison of the different hydrocarbon families in Figure 5.10 shows an exponential increase
of the viscosity, with increasing values for increasing nC values for all families. While the values
of all components are very similar at small nC up to 8-10, the differences increase rapidly at an
nC of 10-12. This exponential increase was also observed by Saldana et al. for n- and iso-alkanes
at 15 °C [72] and by Wang et al. for alkanes and aromatics in general [107]. The observations
are reflected in the correlation coefficients r for nC in Table 19 with strong positive values of up
to 9 for the different families and average differences A, over 30 %. Apart from the exponential
increase, strong scattering of the viscosity values is visible for nC values above 9 meaning, that
strong differences in the property values of the different isomers exist at higher carbon numbers.
The scattering also explains the comparably low correlation coefficients r of 5 and 6 for the bi-
and tri-cyclo-alkanes as well as the cyclo-aromatics for nC, even though a clear correlation with

the carbon number is visible in the plots.
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Figure 5.10: Kinematic

number nC.

viscosity values at 0 °C of the hydrocarbon families over the carbon

r Anc [%] r A, [%] | Annotation

9.0 39.7

8.0 37.1 5.0% 36.0% Correlation with partial positive surface
: : : ’ area

7.0 42.3 4.0% 45.9% Correlation with partial positive surface
: : : ’ area

5.0 43.5 4.0% 50.4% Correlation with partial positive surface
: : ’ ’ area

5.0 104.9 (4] (%]

7.0 41.1 3.0 39.1

6.0 30.9 -4.0 46.3

7.0 54.6 -3.0 34.0

Table 19: Summary influence of different hydrocarbon families and molecular descriptors on the

kinematic viscosity at 0 °

data.

C, *indicates an annotation for the correlation, @ indicates insufficient

The strong scattering of the viscosity values makes a visual identification of the relative order of

the different property values difficult. The order is therefore inferred based on the Ay values in

Table 19. N- and iso-alkanes are ranked as the least viscous, followed by mono-aromatics, mono-

bi-, and tri-cyclo-alkanes and cyclo- and di-aromatics. Wang et al. confirm the observed order
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and list n- and iso-alkanes as the least viscous, followed by cyclo-alkanes aromatics, without
differentiating between mono-, cyclo- and di-aromatics [107]. High viscosities can therefore be
expected for fuels with a high average carbon number or high fraction of bi-cyclo-alkanes, cyclo-

and di-aromatics.

As indicated by the scattering in Figure 5.10, the viscosity values of different isomers of the
hydrocarbon families differ significantly, compared to the previous temperature dependent
properties. The individual plots in Figure 5.11 to Figure 5.13 subscript (a) illustrate this more

clearly. The differences in the viscosity values are reflected by high A, values in Table 19 with

MB
values above 34 %. The different viscosities can partially be explained by the branching with
slight positive correlations visible for iso-alkanes, bi-cyclo-alkanes and mono-aromatics in Figure
5.11, Figure G 7 and Figure 5.13 subscript (b). However, stronger correlations are visible with
the PPSA for iso-alkanes, mono-, bi- and tri-cyclo-alkanes, see Figure 5.11, Figure 5.12 and
Figure G 7 subscript (c¢). For the other hydrocarbon families slight trends are also visible. Similar
to the density, the correlations of the kinematic viscosity with the PPSA indicate a strong
influence of Van-der-Waals interactions for these families. Saldana et al. also mention descriptors
related to the Van-der-Waals interactions as the most influential features for their QSPR
viscosity model [72]. For the mono-aromatics the viscosity values are furthermore strongly
affected by the number and position of side chains, similar to the surface tension. The indicated
components in Figure 5.13 (b) show lower viscosities for components with side chains in ortho!
and higher viscosities for components in meta® position. The influence of the branching for

aromatic components and the importance of the position of the branches was also described by

Wang et al. [107] and Cai et al. [119] using their QSPR model.

In summary, the kinematic viscosity of fuel components is affected by all aspects: the
hydrocarbon family, the carbon number and the topology of the individual isomers. For jet fuels,
the viscosity can therefore be influenced by increasing the fraction of the respective hydrocarbon
families, the average size of the components, as well as the content of specific isomers. The
viscosity of fuels can e.g. be decreased by increasing the fraction of n- and iso-alkanes and
lowering the average carbon number of the components, or by increasing the fraction of alkanes
with a high PPSA. The influence of the carbon number should be especially considered for
components with a carbon number above 10, where rapid increases in the viscosity values can be

expected.

! opposing branches in an aromatic ring structure
2 opposing branches in 1,3 position in an aromatic ring structure
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kinematic viscosity at 0°C for n-alkanes & iso-alkanes
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