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Aviscous flux formulation at interior faces and at Dirichlet boundary conditions in the framework of unstructured

vertex-centered k-exact finite-volume schemes is presented. It is based on a geometric decomposition of the viscous

flux into orthogonal and nonorthogonal parts. Special emphasis is put on the truncation errors and the spectral

properties of the scheme, and a connection is established to the well-known α-damping scheme. The latter is also used

to introduce discretization coefficients into the method that allow a fourth and a sixth order of accuracy in space on

Cartesian grids. The effect of the scheme is presented in terms of canonical diffusion problems, as well as test cases for

laminar wall-bounded flows. It is shown that themethod preserves a second-order accuracy for the viscous operator,

even on highly distorted unstructured grids and in the presence of boundaries and that it strongly enhances the

solution accuracy with respect to a conventional scheme for viscous fluxes.

I. Introduction

H IGH-ORDER schemes for unstructured grids offer great capa-

bilities for the reduction of computation time for detailed large-

eddy simulations, while maintaining a large geometric flexibility in

the mesh generation process [1]. Promising approaches, such as the

discontinuous Galerkin method [2–5] or the spectral volume method

[6–9] offer a higher order of accuracy on unstructured grids by intro-

ducing additional degrees of freedom within computational ele-

ments. Unfortunately, implementing such schemes into established

finite-volume flow solvers, which often include many complex mod-

els, is not a trivial task and requires a high verification and validation

effort. A promising approach to improve unstructured state-of-the-art

finite-volume solvers with a higher spatial accuracy is the k-exact
multiple-correction approach by Pont et al. [10,11]. Its key is a

successive correction of approximate Green–Gauss derivatives,

which enables a high-order reconstruction with favorable parallel

scaling properties and low implementation effort. The original cell-

centered method has recently been extended to vertex-centered

median-dual grids in combination with an implicit fractional step

scheme for the solution of the Navier–Stokes equations [12]. Besides

that, a novel central convective flux approximation has been pro-

posed that is based on an adaptive dissipation control in order to

achieve a stable solution with a minimum amount of numerical

dissipation and without a tedious search for optimum empirical

simulation parameters [13]. However, the former works did not

account for a k-exact treatment of viscous fluxes in the vicinity of

wall boundaries.

Chamarthi et al. [14,15] showed that the viscous flux discretization

plays a major role for simulations on marginally resolved grids. In

particular, it was emphasized that schemes, which fall into the

category of the so-called α-damping approach, have particularly

good spectral properties and produce significantly better numerical

results than other high-order methods with a poor resolution on the
high wavenumber side. The α-damping scheme is based on the work
of Nishikawa [16] and is derived from an upwind advection scheme,
which is applied to a fist-order hyperbolic relaxation system for
diffusion. The method provides a degree of freedom (denoted α),
which controls the spectral properties of the discretization scheme. It
also influences the spatial truncation error, so that a fourth-order
scheme onCartesian grids can be realized by a suitable choice of α. In
the work of Chamarthi [14], the method was extended by a further
degree of freedom as part of a compact finite-difference approach,
which allows the method to be extended to a sixth-order on Cartesian
grids. Based on these extraordinary properties, the question arises of
how this method can be accommodated within the k-exact multi-
correction method on vertex-centered grids.
In contrast to the derivation of the α-damping scheme, our

approach is based on a geometric decomposition of the viscous
fluxes, similar to the well-known scheme by Mathur and Murthy
[17]. The latter is often used in combination with a finite-volume
discretization on unstructured grids. The advantage of this derivation
is that it can easily be applied to different k-exact reconstruction
degrees and for the discretization of viscous fluxes at Dirichlet
boundaries. We show how this approach can be turned into the α-
damping scheme by introducing certain discretization coefficients,
which, in analogy to thework of Nishikawa [16] and Chamarthi [14],
can be used to control the spectral behavior and the spatial truncation
errors of the scheme. Based on this analogy, special coefficients are
derived, for which a fourth-order accuracy can be generated with a
one-exact reconstruction and a sixth-order accuracy with a two-exact
reconstruction on Cartesian grids. Additionally, the error properties
of the geometrically derived method are highlighted, which exhibits
second-order accuracy in space for both k � 1 and k � 2 even on
truly unstructured grids.
The novel flux formulation is applied to the implicit high-order

k-exact multiple-correction scheme on vertex-centered grids [12,18,
19], which is implemented in DLR’s finite-volume flow solver
ThetaCOM (turbulent heat release extension for TAU in its combus-
tion version). The impact of the viscous flux calculation concerning
the solution accuracy is examined on a variety of flow problems.
First, canonical diffusion problems are used to verify the spatial error
convergence with regards to different discretization coefficients. In
particular, the influence of grid distortions on the error convergence is
examined. The scheme is then used to simulate various laminar and
turbulent, wall-bounded flow problems and is compared to the
original scheme by Mathur and Murthy in terms of the spatial
accuracy.
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II. Numerical Methods

The following section gives a brief overview of the used k-exact
multiple-correction approach for vertex-centered grids. The starting

point is a general transport equation for a field variable ϕ that is

convected in a fluid flow with velocity ui and subject to diffusive

transport with diffusivity D:

∂ϕ
∂t

� ∂
∂xi

�uiϕ� �
∂
∂xi

D
∂ϕ
∂xi

� 0 (1)

Equation (1) is solved with a finite-volume approach, where the

computational domainΩ is divided intoN nonoverlapping computa-

tional elements Ωα. These elements are given by the median-dual

representation of the tessellated domain. The latter is denoted as

primary grid and consists of linear elements such as triangles or

quadrilaterals in 2D and tetrahedra, hexahedra, prisms, or pyramids

in 3D. Figure 1 shows an exemplary median-dual representation of a

two-dimensional grid. Two elements Ωα and Ωβ are said to be

adjacent if they share a common face Aαβ. The set fβ�1�α g is referred
to as the first neighborhood of an element Ωα and it comprises all

elements adjacent to it. Elements that are located at the domain

boundary also comprise a set of points fδαg, which will be used to

evaluate numerical boundary fluxes. For reasons of clarity, the

respective element faces on which these points are located will be

denoted by Aαδ.
Central to the finite-volume approach is the volume average ϕα of

the considered field variable over Ωα, which is defined by

ϕα � 1

jΩαj Ωα

ϕ�x� dV (2)

The volume averaging is applied to the governing equation (1) to

obtain a set of equations where the unknown volume averages ϕα act

as degrees of freedom:

∂ϕα

∂t
� 1

jΩαj
β∈fβ�1�α g

F�αβ�
C � F�αβ�

D � 1

jΩαj δ∈fδαg
F�αδ�
C � F�αδ�

D � 0

(3)

Here, the convective and diffusive fluxes are defined for all interior

faces by

F�αβ�
C ≔

Aαβ

uiϕni dA and F�αβ�
D ≔

Aαβ

D
∂ϕ
∂xi

ni dA (4)

and vice versa for fluxes across boundary facesAαδ, where ni denotes
the unit normal vector. The goal of any finite-volume scheme is the

approximation of these fluxes in terms of the volume averages ϕα to

close the system of equations and proceed to a new time step. In this

work, we use a k-exact reconstruction approach for this task, where

the solution in the vicinity of an element Ωα is locally approximated

by a Taylor polynomial ϕ�k�1��x; xα� of degree k:

ϕ�k�1��x; xα� � ϕ
�k� 1�
xα

� ∂ϕ
∂xi1

�k�

xα

xi1 − xi1;α � · · ·

� 1

k!

∂kϕ
∂xi1 : : : ∂xik

�1�

xα

xi1 − xi1 ;α : : : xik − xik;α (5)

The point xα marks a vertex of the underlying primary grid structure,

around which the median-dual element Ωα is constructed and at

which the volume average ϕα is stored. The value ϕj�k�1�
xα denotes

the approximation of the point value ϕ�xα� with an accuracy of

O�hk�1�, where h refers to the local grid scale. In a similar fashion,

the nth derivative term refers to an approximation of the true point-

valued derivative of ϕ at xα with an accuracy of O�hk−n�1�. The k-
exact reconstruction approach aims to determine these unknown

polynomial coefficients in such a way that the respective accuracy

levels are maintained irrespective of the underlying grid structure.

Besides that, it is also required that the volume average (2) of the

reconstruction polynomial (5) is satisfied on a compact neighborhood

of elements aroundΩα [20]. The latter is also referred to as the k-exact
conservation of the mean [21,22]. These tasks are typically

approached by solving a least-squares problem for the unknown

polynomial coefficients using the known volume averages from the

kth neighborhood fβ�k�α g [20,21,23]. However, for unstructured grids,
this method leads to complex data structures and hence to a high

implementation effort if it is to be integrated into established flow

solvers at a later stage. This problem is avoided in the k-exact
multiple-correction approach [10,12], where the unknown polyno-

mial coefficients (ϕj�k�1�
xα ; ∂ϕ∕∂xij�k�xα ; ∂2ϕ∕�∂xi∂xj�j�k−1�xα ; : : : ) are

estimated via successive correction steps that rely on a routine, which

is often used in state-of-the-art finite-volume solvers: the Green–

Gauss gradient algorithm. In the scope ofmedian-dual grids, the latter
approximates the gradient ofϕ at location xα from the knownvolume

averages of all direct neighbors of Ωα via

∂ϕ
∂xi

�0�

xα

� 1

jΩαj
β∈fβ�1�α g

1

2
ϕα � ϕβ S�αβ�

i (6)

where S�αβ�
i depicts the surface normal vector between two adjacent

elements Ωα and Ωβ. Given these gradient approximations, one can

construct further derivatives by applying the same method again and

again, for example, for the Hessian matrix of ϕ:

∂2ϕ
∂xi∂xj

�0�

xα

� 1

jΩαj
β∈fβ�1�α g

1

2

∂ϕ
∂xi

�0�

xα

� ∂ϕ
∂xi

�0�

xβ

S�αβ�
j (7)

Apart from Cartesian grids, these calculated derivative operators are
not suitable to be used as coefficients for the reconstruction poly-

nomial (5), because they do not fulfill the required spatial accuracy

properties (as indicated by the superscripts). The idea of the multi-

correction approach is to circumvent these accuracy limitations by

multiplying the approximate Green–Gaussian derivatives with grid-

specific correction matrices G�k�
α . For a one-exact gradient, this

correction step looks as follows:

∂ϕ
∂xi

�1�

xα

� G�1�
α;ij

∂ϕ
∂xj

�0�

xα

(8)

This gradient can be used in a subsequent step to calculate the next

derivative, which in turn is used for a further gradient correction:

∂2ϕ
∂xi∂xj

�1�

xα

� H�1�
α;ijkl

∂2ϕ
∂xk∂xl

�0�

xα

(9a)

∂ϕ
∂xi

�2�

xα

� ∂ϕ
∂xi

�1�

xα

− G�2�
α;ijk

∂2ϕ
∂xj∂xk

�1�

xα

(9b)
Fig. 1 Median-dual grid in 2D, indicated in solid lines. The correspond-
ing primary grid is drawn in dashed lines. The simulation variables are
stored at the location of primary grid nodes, that is, xα or xβ.
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whereH�1�
α andG�2�

α denote further correction matrices required for a

two-exact reconstruction. In this way, derivatives can be successively
constructed with higher levels of accuracy and in turn be used as
coefficients in the reconstruction polynomial (5). The data for
enhancing the order of accuracy are implicitly transferred through
derivatives of adjacent elements. This is a major advantage, as no

complex MPI exchange of element stencils across boundaries of
decomposed domains is required, which considerably simplifies
the implementation of the method in terms of parallelization effi-
ciency toward nonlocal k-exact finite-volume schemes. The effect of
the different correction steps is highlighted in Fig. 2, where a grid

convergence study is performed for the numerical gradient of an
example function ϕ�x�:

ϕ�x� � A sin�2πfx1x2� exp −
x21 � x22

σ2
(10)

withA � 50, f � 2∕L2, σ � L∕10, andL � 1 m. The gradients are

calculated on a quadratic computational domainΩ ∈ �−L∕2; L∕2� ×
�−L∕2; L∕2�which is discretized by distorted triangular elements, as

depicted on the right of Fig. 2 and where the mean grid width h �
L∕ N

p
is reduced successively. The results are assessed through the

L2-norm errorEL2. The exactness of the gradient and thus the number
of correction steps is denoted by k. Accordingly, k � 0 denotes the
Green–Gauss gradient (6), which runs into a constant error level due
to the strong element distortion. The two-exact gradient from Eq. (9),

on the other hand, exhibits a spatial accuracy of O�h2� even with

severely distorted elements. For k � 2, Fig. 2 also shows theL2-error

of the second derivative ∂2ϕ∕∂x1∂x2 in the form of the dashed line. Its

value range is shown on the right-hand abscissa. As a result of the
correction step (9a), this derivative preserves a first-order accuracy.

The correctionmatricesG�1�
α ;G�2�

α ;H�1�
α represent tensors of differ-

ent ranks, whose calculation for cell-centered grids can be found in
the work of Pont et al. [10] and for median-dual grids in our previous
work [12]. There, it is also shown how the costly tensor product in

Eq. (9a) can be turned to a matrix-vector product by using the
symmetry properties of the Hessian. The calculation of all correction
matrices depends primarily on grid-dependent metrics, which are
referred to as geometric volume moments. These are generally
defined by

Mi1i2 : : : ip;α �
1

jΩαj Ωα

xi1 − xi1;α xi2 − xi2 ;α : : : xip − xip;α dV

(11)

whereMi1i2 : : : ip;α refers to amoment of rankp. It remains to calculate

the point value of the solution at the primary grid node ϕj�k�1�
xα , which

represents a coefficient to be determined in the reconstruction poly-
nomial given in Eq. (5). A volumetric averaging of Eq. (5) shows

that this can be achieved using the volume average ϕα, the introduced

geometric moments Mi1i2 : : : ip;α, and the respective corrected deriva-

tives:

ϕj�k�1�
xα � ϕα −

∂ϕ
∂xi1

�k�

xα

Mi1;α− · · · −
1

k!

∂kϕ
∂xi1 : : : ∂xik

�1�

xα

Mi1 : : : ik;α

�O hk�1 (12)

Once the reconstruction polynomials are calculated, they are used
to approximate the surface integrals of transport equation (1) to close
the system of equations. In this work, the approximation of the

numerical fluxes F�αβ�
C and F�αβ�

D is realized with a single-point

integration, which is based on a Taylor series expansion around a
point xΓ � �xα � xβ�∕2 located on the surface Aαβ:

Aαβ

fini dA � fijxΓS�αβ�
i � ∂fi

∂xj1 xΓ

S�αβ;Γ�
i;j1

� · · ·

� 1

k!

∂kfi
∂xj1 : : : ∂xjk xΓ

S�αβ;Γ�
i;j1 : : : jk

�O hk�1 (13)

In this way, any flux function fi can be integrated by means of the
reconstructed point value ϕjxΓ and its derivatives at xΓ, as long as

these point values maintain appropriate orders of accuracies. The
integration method is based on the introduction of rank p geometric
surface moments, which ensure a proper integration of the surface-
integral in a single point, regardless of the shape of the surface Aαβ.

They are generally defined as

S�αβ;Γ�
i;j1j2 : : : jp

�
Aαβ

ni xj1 − xj1 ;Γ xj2 − xj2 ;Γ : : : xjp − xjp;Γ dA

(14)

where the subscripts i and jp are separatedbya comma tohighlight that

i indicates the face normal direction and jp the spatial direction of the

terms �xjp − xjp;Γ�. The superscripts �αβ;Γ� indicate the elementsΩα

and Ωβ adjacent to the face, as well as the point xΓ where the Taylor

series expansion is located. The rank zero surface moment S�αβ�
i does

not include the superscriptΓ because it only refers to the joint normal of
the face Aαβ and is thus independent of xΓ. The same surface moment

definition also holds for faces Aαδ located at domain boundaries.
The approximation of convective fluxes fi � uiϕ is based on a

novel central discretization approach with an adaptive numerical
dissipation control. It ensures the stability of the scheme while the
numerical dissipation is reduced to a minimum. This greatly enhan-
ces the simulation results compared to conventional discretization
schemes for convective fluxes, regardless of empirical flow param-
eters. The fluxes can be calculated with a one- and two-exact
reconstruction and thus achieve a second and third spatial order of
accuracy, respectively. The approach has been described in detail in
our recent work [13].

Fig. 2 Convergence study for the gradient of Eq. (10), calculated on distorted triangular grids as shown on the right. Solid lines indicate the errors for the
gradient, and the dashed red line refers to the error of the second derivative ∂2ϕ∕∂x1∂x2 (only calculated for k � 2).
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A. Viscous Fluxes at Interior Faces

The following derivations are presented for a two-exact

reconstruction. The starting point for the calculation of viscous fluxes

at interior faces is the insertion of the flux function fi � D�∂ϕ∕∂xi�
into Eq. (13), which gives

F�αβ�
D � D

∂ϕ
∂xi xΓ

S�αβ�
i �D

∂2ϕ
∂xi∂xj xΓ

S�αβ;Γ�
i;j � jAαβjO�h2� (15)

We start by expressing the gradient ∂ϕ∕∂xijxΓ at the surface Aαβ in

terms of the reconstruction polynomial of the adjacent elements Ωα

and Ωβ. It is desirable to do this in terms of the volume averages ϕα

and ϕβ to obtain a stronger coupling of the underlying system of

equations and a resulting suppression of parasitic errors. This is also

the main idea of the discretization scheme by Mathur and Murthy

[17], which will be extended for the approximation of Eq. (15) in the

context of a k-exact reconstruction. It is also referred to as face-

tangent scheme [24–26], which is frequently used to discretize

viscous fluxes on unstructured grids [27] and which is based on the

works ofMuzaferija andGosman [28] andDemirdžić andMuzaferija

[29]. All of these schemes rely on the separation of the scalar product

between the gradient and the surface normal �∂ϕ∕∂xijxΓ �S�αβ�
i into an

orthogonal and a nonorthogonal part [30]

∂ϕ
∂xi xΓ

S�αβ�
i � ε�αβ�

∂ϕ
∂xi xΓ

Δx�αβ�i

orthogonal

� ε�αβ�
∂ϕ
∂xi xΓ

Δ ~x�αβ�i

non-orthogonal

(16)

with the distance vectors Δx�αβ�i ≔ xi;β − xi;α and Δ ~x�αβ�i ≔
S�αβ�
i ∕ε�αβ� − Δx�αβ�i . The geometric quantity ε�αβ� places a degree

of freedom for the construction of the scheme and can be used to unify

the mentioned approaches, which is shown in thework of Jasak [30].

For the present work, the parameter is calculated according to the

Mathur–Murthy scheme:

ε�αβ� � S�αβ�
i S�αβ�

i

Δx�αβ�j S�αβ�
j

(17)

This formulation is also known as an overrelaxed approach [30] and

leads to a stronger weighting of the nonorthogonal part when the

surface normal S�αβ�
i and the distance vector Δx�αβ�i are not aligned.

This relationship is shown in Fig. 3. The further derivation requires us

to introduce the points x ~α and x ~β that are defined by

x ~α � xΓ − 1
2
Δ ~x�αβ�; x ~β � xΓ � 1

2
Δ ~x�αβ� (18)

The factor 1∕2 for the definition of x ~α and x ~β is chosen to simplify the

derivation. However, it can be shown that the actual choice of this

factor does not influence the final outcome.

Our target is to approximate the scalar products �∂ϕ∕∂xijxΓ �Δx�αβ�i

and �∂ϕ∕∂xijxΓ �Δ ~x�αβ�i in terms of the reconstruction polynomials of

the adjacent elements Ωα andΩβ. For this, a Taylor series expansion

is constructed around point xΓ � �xα � xβ�∕2, which is located at

the face Aαβ. For k � 2 this leads to the following expression:

ϕ�x� � ϕjxΓ �
∂ϕ
∂xi xΓ

�xi − xi;Γ� �
1

2

∂2ϕ
∂xi∂xj xΓ

�xi − xi;Γ��xj − xj;Γ�

�O�h3� (19)

Equation (19) is used to express the point values of ϕ at the primary

grid node locations of both adjacent elements:

ϕjxα � ϕjxΓ −
1

2

∂ϕ
∂xi xΓ

Δx�αβ�i � 1

8

∂2ϕ
∂xi∂xj xΓ

Δx�αβ�i Δx�αβ�j �O�h3�

(20a)

ϕjxβ � ϕjxΓ �
1

2

∂ϕ
∂xi xΓ

Δx�αβ�i � 1

8

∂2ϕ
∂xi∂xj xΓ

Δx�αβ�i Δx�αβ�j �O�h3�

(20b)

Subtracting these two equations from each other finally leads to an

expression that allows the orthogonal part of the flux to be approxi-

mated by

∂ϕ
∂xi xΓ

Δx�αβ�i � ϕjxβ − ϕjxα �O�h3� (21)

To approximate the nonorthogonal term of Eq. (16), we evaluate

the Taylor polynomial fromEq. (19) at both pointsx ~α and x ~β that have

been defined in Eq. (18):

ϕjx ~α
� ϕjxΓ −

1

2

∂ϕ
∂xi xΓ

Δ ~x�αβ�i � 1

8

∂2ϕ
∂xi∂xj xΓ

Δ ~x�αβ�i Δ ~x�αβ�j �O�h3�

(22a)

ϕjx ~β
� ϕjxΓ �

1

2

∂ϕ
∂xi xΓ

Δ ~x�αβ�i � 1

8

∂2ϕ
∂xi∂xj xΓ

Δ ~x�αβ�i Δ ~x�αβ�j �O�h3�

(22b)

and solve for the scalar product ∂ϕ∕∂xijxΓΔ ~x�αβ�i . This results in the

following expression:

∂ϕ
∂xi xΓ

Δ ~x�αβ�i � ϕjx ~β
− ϕjx ~α

�O�h3� (23)

On fully orthogonal grids, both points x ~α and x ~β coincide with xΓ,

which causes this equation to vanish. It remains to approximate the

unknown point values of ϕ at x ~α and x ~β with respective orders of

accuracies. This is achieved by evaluating the k-exact reconstruction
polynomials from Eq. (5) of both adjacent elements Ωα andΩβ at xΓ
and by performing a central averaging:

ϕ�x ~α� �
1

2
ϕ�k�1��x ~α; xα� � ϕ�k�1��x ~α; xβ� �O hk�1 (24a)

ϕ�x ~β� �
1

2
ϕ�k�1��x ~β; xα� � ϕ�k�1��x ~β; xβ� �O hk�1 (24b)

After some rearrangement of terms and under consideration of the

definition of x ~α and x ~β, we obtain the following formulation for the

nonorthogonal part:
Fig. 3 Splitting of the surface normal Sαβ into a part ε�αβ�Δx�αβ� that is
projected onto Δx�αβ� and a part ε�αβ�Δ ~x�αβ� orthogonal to it.
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∂ϕ
∂xi xΓ

Δ ~x�αβ�i � 1

2

∂ϕ
∂xi xα

� ∂ϕ
∂xi xβ

Δ ~x�αβ�i

−
1

4

∂2ϕ
∂xi∂xj xβ

−
∂2ϕ

∂xi∂xj xα

Δ ~x�αβ�i Δx�αβ�j �O�h3�

(25)

Inserting both relations for �∂ϕ∕∂xi�jxΓΔx�αβ�i and �∂ϕ∕∂xi�jxΓΔ ~x�αβ�i

into Eq. (16) and using the relation ε�αβ�Δ ~x�αβ�i � S�αβ�
i − ε�αβ�Δx�αβ�i

yields the following expression for the viscous fluxes:

∂ϕ
∂xi xΓ

S�αβ�
i

� ε�αβ��ϕjxβ −ϕjxα� �
1

2

∂ϕ
∂xi xα

� ∂ϕ
∂xi xβ

S�αβ�
i − ε�αβ�Δx�αβ�i

Mathur-Murthyscheme

−
1

4

∂2ϕ
∂xi∂xj xβ

−
∂2ϕ

∂xi∂xj xα

S�αβ�
i − ε�αβ�Δx�αβ�i Δx�αβ�j �O�h3�

(26)

This expression calculates the scalar product �∂ϕ∕∂xijxΓ �S�αβ�
i with a

third-order accuracy in space when the various derivatives and point

values are approximated with corresponding accuracy levels. The

latter is given for the case of a two-exact reconstruction, where the

derivatives are replaced by their numerical counterparts from Eq. (9)

and where point values are approximated using Eq. (12). For k < 2,
the second term in Eq. (26) is omitted, and for k � 0 the scheme

reduces to the original scheme byMathur andMurthy [17], where the

point values of the first term are replaced by volumetric averages.
After some rearrangement of terms and by introducing a variable

discretization coefficient a, Eq. (26) can be converted into the well-

known α-damping scheme by Nishikawa [16], which mimics the

form of the Rusanov flux [16]

∂ϕ
∂xi xΓ

S�αβ�
i � 1

2

∂ϕ
∂xi xL

� ∂ϕ
∂xi xR

S�αβ�
i � aε�αβ� ϕjxR − ϕjxL

(27)

In Nishikawa’s work, this equation is obtained from a first-order

hyperbolic relaxation system for diffusion that is discretized by an

upwind advection scheme. The dissipation term of the advection

scheme manifests itself in a high-frequency damping term on the

right, which scales with the coefficient a (which is designated by α in
Nishikawa’s work). The latter can be adjusted to enhance the order of

accuracy on Cartesian grids. The first term is called the consistent

term and is used to approximate the physical flux [16]. Both terms are

calculated from reconstructed solutions from the left and the right

element (which here denote the elementsΩα andΩβ, respectively). In

Nishikawa’s work, these values are based on a linear reconstruction,

which is analogous to a one-exact reconstruction in this work. He also

showed that choosing the coefficient a to a value of 4∕3 results in a

fourth-order accurate discretization of the viscous operator on Carte-

sian grids. Note that the geometric quantity ε�αβ� � jAαβj∕�2 TrD
p �

can be related to a relaxation time Tr, which was introduced by

Nishikawa to express the diffusion equation in terms of a first-order

hyperbolic relaxation system, with jAαβj being the magnitude of the

surface normal vector. If a two-exact reconstruction is considered, the

face derivatives are calculated by

∂ϕ
∂xi xL

� ∂ϕ
∂xi xα

� 1

2

∂2ϕ
∂xi∂xj xα

Δx�αβ�j ;

∂ϕ
∂xi xR

� ∂ϕ
∂xi xβ

−
1

2

∂2ϕ
∂xi∂xj xβ

Δx�αβ�j (28)

and the reconstructed values of ϕ from both sides are approximated by

ϕjxL � ϕjxα �
1

2

∂ϕ
∂xi xα

Δx�αβ�i � c

4

∂2ϕ
∂xi∂xj xα

Δx�αβ�i Δx�αβ�j ;

ϕjxR � ϕjxβ −
1

2

∂ϕ
∂xi xβ

Δx�αβ�i � c

4

∂2ϕ
∂xi∂xj xβ

Δx�αβ�i Δx�αβ�j (29)

where the point values ϕjxα and ϕjxβ are given by

ϕjxα � ϕα − b
∂ϕ
∂xi xα

Mi;α �
1

2

∂2ϕ
∂xi∂xj xα

Mij;α ;

ϕjxβ � ϕβ − b
∂ϕ
∂xi xβ

Mi;β �
1

2

∂2ϕ
∂xi∂xj xβ

Mij;β (30)

Here we introduced the additional coefficients b and c, such that

Eq. (26) is recovered for a choice ofa � b � c � 1. This formulation

is very similar to the method presented in the work of Chamarthi et al.

[14,15] for a finite difference method, which was used to extend

Nishikawa’s α-damping scheme to a sixth order of accuracy. In fact,

it will be shown that a dedicated choice of all three parameters can also

yield a sixth-order scheme on Cartesian grids. Note that with the

chosen definition of c, the Hessian terms in Eq. (29) scalewith a factor

of 1∕4, although a straightforward extension of Nishikawa’s α-damp-

ing scheme with a two-exact reconstruction would result in the value

1∕8, similar to the Hessian terms in Eq. (20). Under consideration of

the coefficients a, b, and c, Eq. (26) can finally be written in terms of

∂ϕ
∂xi xΓ

S�αβ�
i

� aε�αβ� ϕjxβ −ϕjxα � 1

2

∂ϕ
∂xi xα

� ∂ϕ
∂xi xβ

S�αβ�
i − aε�αβ�Δx�αβ�i

−
1

4

∂2ϕ
∂xi∂xj xβ

−
∂2ϕ

∂xi∂xj xα

S�αβ�
i − acε�αβ�Δx�αβ�i Δx�αβ�j �O�h3�

(31)

where coefficient b is used in the point value approximation according

to Eq. (30). The comparison reveals that the high-frequency damping

controlled by the jump of the solution at the interface in the α-damping

scheme simply corresponds to a scaling of the geometric quantity ε�αβ�
in the Mathur–Murthy scheme. The latter can be interpreted as an

alternative orientation of the nonorthogonal distance vectorΔ ~x�αβ�i and

thus a shift of pointsx ~α and x ~β, such that the second term inEq. (31) no

longer vanishesonCartesian grids. This shift is depicted exemplarily in

Fig. 4 for the casesa � 1 anda � 4∕3. A similar effect is achievedvia

coefficient c for the two-exact correction term. On the other hand,

coefficient b only affects the calculation of the point values ϕjxα and
ϕjxβ in Eq. (30).
The insight of the former comparison to theα-damping scheme can

be used to fine-tune the coefficients a, b, and c for higher orders of

accuracy on Cartesian grids. For this purpose, a one-dimensional

diffusion equation ∂ϕ∕∂t � D∂2ϕ∕∂x21 is discretized via Eq. (31) on
a periodic domainΩ ∈ �0; L�. The latter consists ofN elementsΩα of

length h, whose centroids x1;α are placed equidistantly. Inserting a

smooth function into the scheme and expanding it reveals the numeri-

cal truncation error E:

Ωα

∂2ϕ
∂x21

dx1 �
∂ϕ
∂x1 xα�1∕2

−
∂ϕ
∂x1 xα−1∕2

� E�ϕ; h� (32)

where xα−1∕2 and xα�1∕2 correspond to the locations of the left and

right faces of Ωα. In the case of a one-exact reconstruction, where

second derivatives are equal to zero, the truncation error simplifies to
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E�ϕ; h� � 3a − 4

12
h2

∂4ϕ
∂x41 xα

O�h2�

�O�h4� (33)

Hence, a value of a � 4∕3 results in a fourth-order accurate scheme,
similarly to Nishikawa’s α-damping approach [16]. For a two-exact
reconstruction, E is given by

E�ϕ; h� � ab − 6ac� 6a − 2

24
h2

∂4ϕ
∂x41 xα

O�h2�

� 55ab − 330ac� 150a� 162

2880
h4

∂6ϕ
∂x61 xα

O�h4�

�O�h6�

(34)

Setting the coefficients to a � 68∕45, b � 0, and c � 53∕68 results
in a sixth-order accurate discretization of the viscous operator. This
choice also recovers the sixth-order finite-difference scheme that has
been given in the work of Chamarthi et al. [14]. The analysis also
shows that our original scheme, which corresponds to a � b �
c � 1, is accompanied by a second-order accuracy for both k � 1
andk � 2. Various combinations of coefficients are shown inTable 1,
which will be considered in the course of this paper.
The spectral properties of the proposed scheme can be evaluated

with a Fourier analysis. Here, the scalar ϕα is decomposed into its

Fourier modes ϕ̂j�t� exp�Iωjα�, with the scaled wavenumber ωj �
2πjh∕L and the imaginary number I � −1

p
. Insertion of these

Fourier modes into the discretized viscous operator reveals the
spectral properties by comparison with its Fourier coefficients

∂2ϕj∕∂x2 � λ�ωj�ϕ̂j∕h2 to its analytical counterpart ∂2ϕj∕∂x2 �
−ω2

j ϕ̂j∕h2. The respective curves for the damping factor λ�ωj� are
shown in Fig. 5, where parameters a, b, and c have been chosen
according to Table 1. For k � 1, λ�ωj� is calculated according to

λ�ωj� � �a − 1� sin2�ωj� � 2a cos�ωj� − 1 (35)

The latter reduces to λ�ωj� � 2�cos�ωj� − 1� for a � 1 and thus

features similar spectral properties to a typical three-point finite-

difference scheme for the viscous operator [16]. In case of k � 2,
the damping factor λ�ωj� is given by

λ�ωj� � −
ab

12
−
ac

2
− a� 3

2
sin2�ωj�

� ab

48
−
ac

8
� 2a� 1

8
cos�ωj�

−
ab

48
−
ac

8
� 1

8
cos�3ωj� − 2a (36)

Figure 5 shows that the choice a � b � c � 1 resembles similar

spectral properties to the one-exact scheme and thus the three-point

stencil scheme. In contrast, the damping properties in the high-

frequency range are improved for the modified coefficients. Never-

theless, all schemes feature favorable damping properties of high

frequencies, which is necessary to suppress odd–even decoupling.
To calculate the final viscous flux in Eq. (15), it remains to

determine the second term ∂2ϕ∕�∂xi∂xj�jxΓS�αβ;Γ�
i;j . This term is used

to reduce the spatial error for the approximation of the flux integral, as

shown in Eq. (13). It does not apply to Cartesian grids, where the

geometric surface moments S�αβ;Γ�
i;j reduce to zero. For this reason, it

was also not taken into account in the previous error analysis. For a

two-exact reconstruction, it is calculated by a central averaging of the

two adjacent Hessian matrix entries:

∂2ϕ
∂xi∂xj xΓ

S�αβ;Γ�
i;j � 1

2

∂2ϕ
∂xi∂xj xα

� ∂2ϕ
∂xi∂xj xβ

S�αβ;Γ�
i;j � jAαβjO�h2�

(37)

The term is not calculated for k < 2 because the corresponding

reconstruction polynomials inherently lack in their polynomial

degree to approximate the required second derivatives.

Table 1 Considered combinations of the
discretization coefficients a, b, c and corresponding

labeling of the schemes

Scheme Exactness k Truncation error a b c

MM — — O�h2� 1 0 0

EX1-2 1 O�h2� 1 1 — —

EX1-4 1 O�h4� 4

3
0 — —

EX2-2 2 O�h2� 1 1 1

EX2-6 2 O�h6� 68

45
0 53

68

Fig. 5 Damping factor λ�ωj� for the considered discretization schemes
given in Table 1.

Fig. 4 Influence of the discretization parameter a on the location of the points x ~α and x ~β.
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B. Viscous Fluxes at Dirichlet Boundaries

In the following, the discretization approach for viscous fluxes

given previously will be extended for element faces located at

Dirichlet boundaries of the computational domain. An extension

to Neumann boundary conditions is straightforward, because the

respective fluxes can be directly inserted into Eq. (15). However, if

Dirichlet boundary conditions are used, the derivative at the surface

must be approximated from the imposed boundary values. To main-

tain the k-exact conservation of the mean, this requires a similar

correction as for the interior fluxes. The starting point is the viscous

flux of the scalar ϕ over the boundary face Aαδ, which is discretized

by

F�αδ�
D � D

∂ϕ
∂xi xδ

S�αδ�
i � jAαβjO�h� (38)

In contrast to the internal fluxes, we omit rank one surface moments

S�αδ;δ�
i;j for the surface integration, because they exhibit much smaller

values than interior moments S�αβ;Γ�
i;j . The justification for this neg-

ligence will also become evident from the results in Sec. IV. In

analogy to Eq. (16), the flux is separated into orthogonal and non-

orthogonal parts:

∂ϕ
∂xi xδ

S�αδ�
i � ε�αδ�

∂ϕ
∂xi xδ

Δx�αδ�i � ε�αδ�
∂ϕ
∂xi xδ

Δ ~x�αδ�i (39)

where we introduce the distance vectors Δx�αδ�i � xi;δ − xi;α and

Δ ~x�αδ�i � S�αδ�
i ∕ε�αδ� − Δx�αδ�i . The parameter ε�αδ� is calculated in a

similar fashion as for the interior fluxes given in Eq. (17). The

orthogonal part requires the product ∂ϕ∕∂xijxδΔx�αδ�i to be approxi-

mated. For k � 2, this is achieved with a Taylor series expansion

around the point xδ which is located on the surfaceAαδ. The resulting

polynomial is used to approximate the point valueϕjxα at the primary

grid node xα of the boundary element:

ϕjxα � ϕjxδ −
∂ϕ
∂xi xδ

Δx�αδ�i � 1

2

∂2ϕ
∂xi∂xj xδ

Δx�αδ�i Δx�αδ�j �O�h3�

(40)

Substituting the Hessian matrix at point xδ via the relation

∂2ϕ∕�∂xi∂xj�jxδ � ∂2ϕ∕�∂xi∂xj�jxα �O�h� leads to the following

expression for the orthogonal part:

∂ϕ
∂xi xδ

Δx�αδ�i � ϕjxδ − ϕjxα �
1

2

∂2ϕ
∂xi∂xj xα

Δx�αδ�i Δx�αδ�j �O�h3�

(41)

To compute the nonorthogonal part �∂ϕ∕∂xijxδ�Δ ~x�αδ�i in Eq. (39),

we extrapolate the gradient at surfaceAαδ from the interior of element

Ωα and multiply it with the orthogonal distance vector Δ ~x�αδ�i :

∂ϕ
∂xi xδ

Δ ~x�αδ�i � ∂ϕ
∂xi xα

� ∂2ϕ
∂xi∂xj xα

Δx�αδ�j Δ ~x�αδ�i �O�h2� (42)

Finally, inserting Eqs. (41) and (42) into Eq. (39) gives the following

expression for the scalar product �∂ϕ∕∂xijxδ�S�αδ�
i :

∂ϕ
∂xi xδ

S�αδ�
i � ε�αδ� ϕjxδ −ϕjxα �

1

2

∂2ϕ
∂xi∂xj xα

Δx�αδ�i Δx�αδ�j

� ∂ϕ
∂xi xα

S�αδ�
i − ε�αδ�Δx�αδ�i

� ∂2ϕ
∂xi∂xj xα

S�αδ�
i − ε�αδ�Δx�αδ�i Δx�αδ�j �O�h2� (43)

A decomposition of terms shows that this expression can also be
represented in the form of the α-damping scheme:

∂ϕ
∂xi xδ

S�αδ�
i � ∂ϕ

∂xi xα

� ∂2ϕ
∂xi∂xj xα

Δx�αδ�j

�1
2

∂ϕ
∂xi xL

� ∂ϕ
∂xi xR

S�αδ�
i

� ε�αδ� ϕjxδ − ϕjxα −
∂ϕ
∂xi xα

Δx�αδ�i −
1

2

∂2ϕ
∂xi∂xj xα

Δx�αδ�i Δx�αδ�j

��ϕjxR−ϕjxL �

(44)

where the face-gradient term is approximated in a one-sided way
from an extrapolated gradient of element Ωα. The jump-term at the
interface is formed with the Dirichlet boundary condition and the
extrapolated face value fromΩα. In a similar way to the inner fluxes,
we could introduce additional discretization coefficients in Eq. (44)
to influence the truncation errors of the scheme. However, due to the
one-sided extrapolation it is not possible to achieve the sameorders of
accuracy for the interior faces. In fact, the use of the coefficients a, b,
c from Table 1 for the fourth- and sixth-order accurate schemes in
Eq. (44) even degraded the overall solution accuracy toward the case,
where the equation was used without a modification. For this reason,
the viscous fluxes are only calculated using Eq. (44) in this work.

III. Canonical Diffusion Problems

In this section, the influence of the proposed viscous flux formu-
lation is verified via the following diffusion equation for a variableϕ:

∂ϕ
∂t

� D
∂2ϕ
∂x21

� ∂2ϕ
∂x22

(45)

which is solved in a two-dimensional computational domain Ω ∈
�0; L� × �0; L� with L � 1 m and with various starting and boundary
conditions. The test cases are used to examine the error convergence
and accuracy levels of the viscous flux schemes given in Table 1. The
temporal discretization of Eq. (45) is performed by a second-order
accurate Crank–Nicolson scheme,which is solvedwith a biconjugate
gradient stabilized method (BiCGSTAB) and Jacobi precondition-
ing. The implicit discretization of the fluxes is achieved with a

deferred correction approach, so that only the volume averages ϕα

and ϕβ in the flux equations are treated implicitly. This has the

advantage that the time-consuming calculation of derivatives only
has to be carried out at the beginning of a time step, whereas the
temporal error and the stability are only marginally affected.

A. Two-Dimensional Diffusion of a Dirac Pulse

To verify the accuracy of the internal diffusive fluxes, a first test
case is considered, where ϕ is defined as Dirac pulse δ�x� at time t �
0 s in the center of the domain xc � �L∕2; L∕2�T , which evolves
radially in time according to the following equation [31]:

ϕ�x; t� � 1

4πDt
exp −

�x1 − x1;c�2 � �x2 − x2;c�2
4Dt

(46)

A simulation is initialized withϕ�x; t1 � 1:5 s� and is then solved up
to the time t2 � 2:5 s. The diffusivity D � 10−4 m2∕s is set suffi-
ciently small to ensure the solution is not affected by the domain
boundaries, where symmetry boundary conditions are applied. This
way, the influence of the latter can be neglected. A grid convergence

study is performed, where the mean grid scale h � L∕ N
p

varies
between L∕20 and L∕160. Two different primary grid types are
used—a Cartesian one, as well as an irregular triangular grid. The
latter is shown exemplarily in Fig. 6 with the initial solution of the
test case.
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Figure 7 shows the L2-error norms calculated on the Cartesian

(left) and the unstructured (right) grid type, where the four considered

k-exact schemes are labeled according to Table 1 and the original

Mathur–Murthy scheme is denoted by “MM”. The L2-norm is

calculated from the volume-averaged solution by

EL2�ϕα� �
N
α�1�ϕα − ϕex

α �2jΩαj
N
α�1 jΩαj

1∕2
(47)

whereϕex
α is the exact solution. On the Cartesian grid type, theEX1-2

scheme features very similar accuracy levels to the Mathur–Murthy

scheme, which has already been indicated in the analysis for the

spectral properties of the schemes. With the EX2-2 scheme, the error

is slightly reduced towardEX1-2 andMM. All threemethods achieve

a second-order accuracy, as predicted by the truncation error analysis.

By adjusting the coefficients a, b, c accordingly, a fourth-order

accuracy can be achieved with the EX1-4 method and a sixth-order

of accuracywith theEX2-6 scheme. However, the results on the right

of Fig. 7 indicate that these accuracy levels can no longer be obtained

on the unstructured grid type, where both schemes feature similar

errors to theMathur–Murthy scheme.With theEX1-2 and theEX2-2
method, however, a second-order of accuracy is achieved despite the

strong element distortion and both schemes yield similar error levels

to those on the Cartesian grid.

B. Two-Dimensional Diffusion with Dirichlet Boundaries

In the next step, Eq. (45) is solved in the same computational

domain as defined previously, but with the following prescribed

values for ϕ at the domain boundary:

ϕ�x1 � 0� � 0; ϕ�x1 � 1� � sin�πx2�;
ϕ�x2 � 0� � 0; ϕ�x2 � 1� � sin�πx1� (48)

so that the following stationary solution is obtained for t → ∞ [32,33]

ϕ�x� � sinh�πx1� sin�πx2� � sinh�πx2� sin�πx1�
sinh�π� (49)

At the beginning of a simulation, the solution is initialized in the entire

domain by ϕ�x� � 1. Equation (45) is then solved until the L2 error

norm of ϕα changes by less than 10
−12 between two consecutive time

steps. Again, the calculation is performed on a Cartesian and an
unstructured grid, as in the previous test case. The stationary solution
is shown together with the unstructured grid in Fig. 8. The results are
evaluated by means of convergence study in which the mean step size

h � L∕ N
p

is successively refined from L∕20 to L∕160. The result-
ingL2-error norms are shown in Fig. 9, where the left side corresponds
to theCartesian and the right side to the unstructured grid, respectively.
On the Cartesian grid, a second-order of accuracy is obtained with the
MM, the EX1-2, and the EX2-2 schemes. Interestingly, the EX1-2
scheme shows lower errors than the EX2-2 scheme on this grid type,
even though the latter is based on a higher reconstruction level. When
using the EX1-4 and EX2-6 schemes, which correspond to a modifi-
cation of the discretization coefficients a, b, c at the interior fluxes, the
order of accuracy collapses to a first order. This behavior can be traced
back to the elements closest to the boundaries, where the element
stencils do not exhibit the required symmetries due to the one-sided
extrapolation in Eq. (44). As already mentioned, using the coefficients
a, b, c in this boundary equation as well leads to even greater errors in
bothmethods. On the unstructured grid, theMM scheme also switches
to a first-order accuracy and exhibits similar error levels to the EX1-4
and EX2-6 methods. For the latter, the error levels increase compared
to theCartesian grid simulations. In contrast, both theEX1-2 andEX2-
2 schemes still preserve a second-order of accuracy despite the strong
element distortion, with the EX2-2 method now having the lowest
error values. Interestingly, the EX2-2 scheme generates even lower
error values on this grid type than on the Cartesian one. This is due to

Fig. 6 Enlarged section of the initial solution for the two-dimensional
diffusion of a Dirac pulse, together with the corresponding distorted
primary grid structure with a mean scale of h � L∕160.

Fig. 7 Grid convergence of theL2-error norm for the two-dimensional point source diffusion test case, calculated on theCartesian (left) and the distorted
(right) grid type.

Fig. 8 Solution for the two-dimensional diffusion test casewithDirichlet
boundary conditions, together with the corresponding distorted primary
grid structure with a mean scale of h � L∕20.
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the fact that the median-dual elements on the unstructured grid have a
significantly higher number of direct neighboring elements, which
reduces the reconstruction error. The latter can be seen from the ratios
between primary grid edges and nodes, which are shown in Table 2 for
the investigated computational grids. Since twomedian-dual elements
are always connected througha primarygrid edge, this ratio scaleswith
the average number of neighboring elements in a grid.
The results confirm the previous analysis regarding the truncation

error with respect to the discretization coefficients a, b, and c. On the
one hand, they show that on Cartesian grids both EX1-4 and EX2-6
schemes can achieve an enormous improvement in accuracy. How-
ever, in the presence of boundary conditions or grid irregularities, the
error of both variants drops to a level similar to that of the Mathur–
Murthy scheme. In contrast, the error can be considerably reduced
with both EX1-2 and EX2-2, regardless of the grid structure or the
presence of boundary conditions. Similar results could also be con-
firmed for the following test cases, which is why only the two
schemes EX1-2 and EX2-2 are considered in the following course
of this work and compared with the conventional MM scheme.

IV. Wall-Bounded Flow Problems

For this section, we will investigate the influence of the proposed
viscous flux formulation on the overall solution accuracy of wall-
bounded flow problems. This requires the numerical solution to the
incompressible Navier–Stokes equations

∂ui
∂xi

� 0 (50a)

∂ui
∂t

� ∂
∂xj

�uiuj� − ν
∂2ui
∂xj∂xj

� −
1

ρ

∂p
∂xi

(50b)

with the fluid velocityu, the pressurep, and the kinematic viscosity ν.
A fractional step scheme is used for the pressure-velocity-coupling,
which is second-order accurate in time. This involves the implicit
solution of a Poisson equation for a pressure difference δp between
two consecutive time steps

∂2δp
∂xi∂xi

� Sp (51)

where Sp represents a source term that enforces a divergence con-

straint on the velocity field in a subsequent correction step. For a
detailed description of this approach and respective extensions to
enhance its accuracy with the k-exact reconstruction approach, we
refer to our recent work [12,13]. It should be mentioned that besides
theviscous fluxes in themomentumequations, Eq. (31) is also used to
discretize the Laplacian operator in the pressure correction equation.
The scheme is implemented in DLR’s in-house code ThetaCOM,

which features a multigrid preconditioning for the Poisson equation
and an efficient matrix-free Krylov solver for the system of linear
equations. All test cases are simulated with a one- and a two-exact
reconstruction approach, where the convective fluxes are approxi-
mated with second- and third-order accuracy, respectively. Besides
that, we use the central convective flux discretization approach from
our recent work [13], which minimizes the introduced amount of
numerical dissipation to a minimum. As already mentioned, we will
only examine the EX1-2 andEX2-2 schemes in the remainder of this
paper. This is due to the fact that both theEX1-4 andEX2-6 schemes
did not yield any increase in accuracy on truly unstructured grids in
the previous test cases. In addition, it has also been found that both
schemes have more restrictive stability constraints and may cause
divergence problems, especially for grids with high aspect ratios. To
assess the impact of the proposed viscous flux formulation on the
spatial accuracy, the two additional schemesEX1-MM andEX2-MM
are introduced. For these, the conventional Mathur–Murthy scheme is
applied to both viscous and Laplace fluxes and combined with a one-
and two-exact approximation of the convective fluxes, respectively.

A. Hagen–Poiseuille Flow

For the first test case,we consider a pipe of radiusRwith an applied
axial pressure gradient G, such that a parabolic laminar flow profile
emerges. The solution of this problem is given analytically by the
following normalized velocity profile [34]:

u� � Umax

uτ
1 −

r�

Reτ

2

(52)

with the radial coordinate r� � x21 � x22∕δν, the maximum center

velocity Umax � GR2∕�4μ�, and the shear Reynolds number Reτ �
ρuτR∕μ. Thevariablesuτ and δν refer to the shear velocity and thewall
length scale. The parameters are chosen to G � 0:48 Pa∕m, μ �
0:01 Pa ⋅ s, ρ � 1:0 kg∕m3, and R � 0:5 m, which gives Reτ≈
173, δν ≈ 2:886 mm, and uτ ≈ 3:464 m∕s. Several simulations are
conducted where the pipe cross section is discretized as shown by the
median-dual representation in Fig. 10. We apply a no-slip wall con-
dition at the outer boundary of the pipe, whereas a periodic boundary
condition is applied in the axial direction. In this way it is possible to
compute the problem with only two element layers in the axial
direction,which significantly reduces the computational effort. Several

Fig. 9 Grid convergence of theL2-error norm for the two-dimensional diffusion test casewithDirichlet boundary conditions, calculated on theCartesian
(left) and the distorted (right) grid type.

Table 2 Properties of the considered primary grids for the two-
dimensional canonical diffusion problems

Primary grid nodes Primary grid edges Edge/node ratio

Cartesian grids

441 840 1.904
1681 3280 1.949
6561 12960 1.976
25921 51520 1.988

Distorted grids

441 1240 2.809
1681 4880 2.899
6561 19360 2.950
25921 77120 2.976
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grid refinement levels are used, which are given in Table 3. For all
simulations, the flow field is initialized with u � 0 and the axial
pressure gradient is applied to the momentum equations as a source
term, thus leading to the emergence of a steady laminar flow profile.
Figure 11 shows the normalized volume-averaged velocity pro-

files that are calculated with the considered schemes and a mean grid
width h� � 1:63, which refers to the second grid in Table 3. It can be
observed that the proposed formulation generally enhances the accu-
racy of the simulated profiles for both discretization schemes, even
though the increase in accuracy is greater when combinedwith a two-

exact reconstruction. This result is supported by the L2-norm of the
volume-averaged flow field, shown in Fig. 12 for the volume-
averaged axial velocity EL2� �uax�, as well as for the axial velocity
gradient EL2�∂uax∕∂x1�. All presented schemes preserve a second-
order accurate convergence of EL2� �uax�. The results imply for the
two-exact schemes that the error convergence of its third-order
accurate convective operator is deteriorated by the second-order
accurate diffusive operator. This is probably related to the fact that
the error terms of the viscous fluxes dominate over the convective
fluxes due to the low Reynolds number of the flow. However, when
using theEX2-2 orEX1-2 scheme, the error in the prediction of �uax is
reduced by at least one order of magnitude and the error in the axial
velocity gradient is even reduced by almost two orders of magnitude.
It can also be observed that the errors of the solution gradients
collapse to a first-order accuracy when the Mathur–Murthy scheme
is used, whereas otherwise it features a second-order accuracy.
However, for the EX2-2 scheme the second-order accuracy of
EL2 �∂uax∕∂x1� reduces to O�h� as the curve falls below a certain

threshold of h� ≈ 8 ⋅ 10−5. This can be explained by the fact that the
gradient approximation is based on volume averages that exhibit an

error of O�h2�. This error is cascaded in the gradient approximation
via Eqs. (8) and (9) and thusmanifests itself withO�h� in the gradient
field. But because this first-order error is comparatively small, it only
appears below the aforementioned threshold.

Fig. 11 Normalized axial flow profiles for the Hagen–Poiseuille test case, calculated with a mean grid width h� � 1:63, 390 median-dual elements, and
for both one- and two-exact schemes.

Fig. 12 Grid convergence study for theL2-error of the volume-averaged axial velocity �uax and for the axial velocity gradient ∂uax∕∂x1jxα of the Hagen–
Poiseuille flow, calculated for both one- and two-exact schemes.

Table 3 Grid properties for the

Hagen–Poiseuille flow

Grid N h�rad;1 h�tan;1 h�

1 78 1.79 9.07 3.55
2 390 0.57 3.89 1.63
3 1734 0.24 1.81 0.76
4 7302 0.12 0.88 0.37
5 29958 0.06 0.43 0.18

Given are the number of nodes N in the x1−x2
plane, the radial and tangential gridwidthsh�rad;1
and h�tan;1, as well as the mean grid width h�

along the entire radius.

Fig. 10 Normalized axial velocity field for the Hagen–Poiseuille flow
and a considered grid for the numerical simulation with a mean grid
width h� � 1:63 and 390 median-dual elements.
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B. Laminar Cylinder Flow

This test case has been proposed by Schäfer et al. [35] in the

workshop Flow Simulation with High-Performance Computers. It

has already been used in a prior work [12] to verify the accuracy

properties of the proposed k-exact reconstruction scheme, but due to

stability reasons with a reduced reconstruction order in boundary

elements. Furthermore, no clear distinction was made between the

contributions of convective and diffusive flux corrections on the

solution accuracy. These issues will be addressed in the following

by investigating the influence of the viscous flux discretization on the

solution in a way similar to the previous test case. The flow of an

incompressible fluid around a cylindrical obstacle of diameter D �
0:1 m within a channel of size 2:2 m × 0:41 m at Reynolds number

of Re � 100 is conducted. The latter is based on the cylinder’s

diameter. The obstacle experiences a periodic change in drag and lift

force as a result of the downstream vortex shedding. The aim of the

simulations is to predict the resulting maxima in the cylinder’s drag

and lift coefficients CD;max and CL;max, as well as the frequency f of

these oscillations. The latter is characterized by the Strouhal number

St � Df∕U which is based on cylinder diameter D and the mean

flow velocity U � 1:0 m∕s. For a detailed overview of the test case

and the actual definition ofCD;max andCL;max, we refer to thework by

Schäfer et al. [35]. The simulation is conducted on five meshes with

varying numbers of primary grid vertices N � f2753; 5583; 10887;
22152; 43332g. Themeshes consist of triangular elements, and, apart

from the cylinder curvature, there is no significant refinement of the

elements in the vicinity of walls. The coarsest mesh is shown in

Fig. 13 by means of its median-dual representation. At the beginning

of a simulation run, the velocity field is initialized with u � 0.
Subsequently the time-dependent Navier–Stokes equations (50a)

and (50b) are solved for a simulation time of 8 s with a Courant

number of approximately 0.4.

Figure 14 shows the calculated flow field bymeans of the absolute

velocity and the vorticity. The solution stems from the two-exact

scheme on a grid with 10887 primary grid vertices during the state of

maximum lift and with the utilization of the viscous flux correction.

The actual influence of theviscous flux schemeon the target variables

CD;max, CL;max, and St is shown in Fig. 15 by means of a grid

Fig. 13 Median-dual grid for the laminar cylinder flow problem with 2753 elements, colored by the normalized element size jΩαj∕D2.

Fig. 14 Contours of the absolute volume-averaged velocity j �uαj and vorticity �ωα for the laminar cylinder flow problem with 10,887 vertices, calculated
with the EX2-2 scheme.

Fig. 15 Grid convergence study results for the laminar cylinder test case. The dashed areas correspond to reference values given by Schäfer et al. [35].
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convergence study. Clearly, using the EX2-2 and EX1-2 schemes
results in a more accurate approximation of the maximum lift and
drag coefficient CD;max and CL;max, whereas the Strouhal number is

less affected by the choice of the viscous flux discretization. In
particular for theEX2-2 scheme, bothCD;max andCL;max are approxi-

mated with a reasonable accuracy atN � 10887 nodes. On the other
hand, using the Mathur–Murthy scheme causes the maximum drag
coefficient to converge toward too low values. This indicates that it is
necessary to maintain the underlying k-exact reconstruction for both
convective and diffusive fluxes in order to achieve accurate simula-
tion results. This becomes particularly clear in the comparison
between EX1-2 and EX1-MM, as these methods only differ in the
calculation of the jump-terms of Eqs. (31) and (44). In the EX1-MM
scheme, the latter is simply calculated from volume averages,
whereas, for EX1-2, a conversion to point values is carried out via
Eq. (12). Figure 15 also shows the shear stress contribution of the
maximum drag coefficient, which is denoted by CD;ST;max. The latter

varies only marginally withN, and, with regard toCD;max, the results

of the all schemes for CD;ST;max only differ by a few percent. This

suggests that the improvements inCD;max withEX2-2 andEX1-2 are
mainly attributed to the pressure contribution and hence to the
modified Laplace operator in the pressure-correction equation (51)
of the fractional step method.

C. Laminar Flow Around a Sphere

For this test case, we consider a sphere of radius R � 1 mm
in a rectangular domain of size 120 mm × 30 mm × 30 mm. The
latter consists of an inlet, an outlet, and four symmetry boundary
conditions. The sphere, whose surface is modeled by means of a no-

slip boundary condition, is surrounded by a flow at Re � 300 based
on the sphere’s diameter, at which a characteristic shedding of
hairpin-shaped vortices occurs in its wake. This phenomenon is
described in detail in the work of Johnson and Patel [36] and is
depicted exemplarily in Fig. 16 by means of the λ2 vortex criterion
[37], where a value of λ2 � −100 is selected to represent the iso-
contours. The sphere is placed 20mmdownstream from the domain’s
inlet boundary condition. For the demonstration of the proposed
viscous flux discretization, four fully unstructured grids are consid-
ered, which consist of prismatic and tetrahedral elements and which
vary in their number of primary grid vertices by N � f92381;
139589; 252101; 610159g. The prismatic elements are used to
account for the sphere’s boundary layer. Figure 17 shows the mesh
with N � 139589 vertices. The velocity field is initialized with
u � 0, followed by the flow simulation for a time of 0.88 s. The
time step size is based on the grid so that aCFL number of σ ≈ 0:2 is
achieved. To validate the solution, the temporal variation of the drag
coefficient CD and the lateral force coefficient CL are calculated,
which result from the corresponding surface forces on the sphere due
to the vortical structures. Here, the lateral component is defined as the
force that is acting in the direction of the symmetry plane of the
vortical structures in the wake of the sphere.
The quality of the simulations is assessed on the basis of the mean

drag coefficient CD;m, the amplitudes of both drag and lateral force
coefficient CD;amp and CL;amp, as well as the Strouhal number St,
which is calculated from the frequency of the drag force. Figure 18
shows these target quantities as a function of the number of primary
grid vertices of the four considered grids and the four considered
discretization schemes. The dashed areas correspond to reference
values from the literature [36,38–40], which are used to assess the
simulation results. For the EX1-MM scheme, an outlier in the
Strouhal number and in CD;amp can be observed for the grid with

139,589 nodes, which is due to errors caused by the strong grid
anisotropy.A sufficient accuracy for all four target quantities can only
be obtained on the finest grid with this scheme. With the EX2-MM
scheme no outliers are present, but the amplitudes of both coefficients
CD and CL are underestimated on all grids. In comparison, all four
target variables can be accurately predicted with methods EX2-1 and
EX2-2 on the much coarser grids. This can be seen in particular for
the mean value of the drag coefficient CD;m.

V. Conclusion

In this work, a formulation for the discretization of viscous fluxes
at interior faces and at Dirichlet boundaries in the scope of k-exact
schemes and unstructured median-dual grids was proposed. The
approach has been incorporated in conjunction with the k-exact
multiple-correction method for vertex-centered grids of the DLR
in-house code ThetaCOM. Similar to various viscous flux schemes
for the unstructured finite-volumemethod, for example, the approach
by Mathur and Murthy [17], the proposed scheme is based on a
geometric decomposition of the viscous flux into parts that are
orthogonal and nonorthogonal to the flux surface. It is shown that
the introduction of additional discretization coefficients can be used
to connect this decomposition approach to the well-known α-damp-
ing scheme [16] for viscous fluxes, which is derived from a fist-order
hyperbolic relaxation system for diffusion. The introduced coeffi-
cients act as degrees of freedom for the numerical properties of the
scheme,which has been analyzed in terms of both the truncation error
and the spectral properties. An analogy to the α-damping scheme
was also shown for the viscous flux calculation at Dirichlet bounda-
ries, although no additional discretization coefficients were intro-
duced here.
By means of canonical diffusion test cases, it has been shown that

special coefficients can achieve fourth- or sixth-order accuracy on
Cartesian grids when combined with a one-exact or two-exact
reconstruction, respectively. However, on truly unstructured grids
or in the presence of Dirichlet boundary conditions, these accuracy
levels collapsed to similar error thresholds as achieved with the
conventional scheme by Mathur and Murthy, which has also been
taken into consideration. On the other side, when using the initial

Fig. 17 Primary grid structure with 139,589 vertices for the laminar
flow around a sphere at Re � 300.

Fig. 16 Vortex structures of the laminar flow around a sphere, repre-
sented by the λ2 vortex criterion and colored by the vorticity magnitude
jωj, which is scaled by the x1 distance to the sphere and the ambient
velocity U. The results correspond to the EX2-2 scheme and the finest
grid with 610,159 vertices.
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discretization coefficients that stem from a perspective of the k-exact
reconstruction framework, the proposed method is capable to reduce
the numerical error toward the conventional scheme with a second
order of accuracy on both Cartesian and irregular meshes as well as in
the presence of Dirichlet boundaries. Considering these results, the
latter approach has been investigated in three wall-bounded, laminar
flow problems: a steady Hagen–Poisseuille flow in a pipe, a laminar
cylindrical flow in 2D, and a laminar flow around a sphere in 3D.
Again, simulations with the conventional Mathur–Murthy scheme
have been performed for comparison. For all three test cases, the
proposed method was able to accurately predict various target vari-
ables on coarser grids and with a greater independence from the
underlying grid structure than the conventional method. The most
accurate results were obtained when combining a two-exact
reconstruction with the proposed viscous flux formulation at both
interior and boundary faces.
In future work, it should be investigated how the proposed flux

formulation affects other diffusion-driven flow problems, for exam-
ple, in laminar flames with multispecies transport. Furthermore, it
should be examined whether the introduced discretization coeffi-
cients can be varied locally in hybrid grids on the basis of certain
grid metrics in order to realize fourth- or sixth-order accuracy for the
viscous operator in selected regions of complex geometries.
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