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ABSTRACT: The push toward sustainable aviation fuels (SAFs) is
intensifying in response to global decarbonization efforts. This review
discusses the development and assessment of probabilistic fuel
property prediction methods in use today and vital for the
formulation of these next-generation SAFs. We discuss the rigorous
quality assurance specifications necessary for aviation fuels before
they can be integrated into the supply network, with a particular
emphasis on the stringent requirements for non-petroleum-based
fuels or synthetic aviation turbine fuels. In this review, the relative
merit of predictions based on component data and predictions
derived from other modeling approaches is discussed. A total of 16
scalar products between a concentration vector (mass, mole, or
volume fraction) and a property vector can be used to estimate 31
properties, counting the whole distillation curve as one property. The accuracy of these blending rules, as applied to mixtures of
aliphatic and aromatic hydrocarbons in the jet fuel volatility range, is documented here. The relative contribution of blending rule
accuracy to the fuel property prediction uncertainty is discussed. In most (if not all) cases, the predictive uncertainty is small relative
to uncertainties arising from incomplete characterization of the component concentration or property data and/or the accuracy of
reported component property data. The data used to populate the property vector comes from authoritative sources, such as the
National Institute of Standards and Technology (NIST), the Design Institute for Physical Properties (DIPPR), and the periodic
table of elements, or internal measurements. Additionally, the freeze point can be estimated from the crucial components’
concentration and property data from a simple equation-of-state model (enthalpy, entropy, and temperature) applied to each of the
crucial components. A total of 75 additional “properties” with specified criteria stated in ASTM D4054 follow directly from the
measurement of trace or bulk materials or can be determined exactly from blending rules that invoke the conservation of mass. A
total of 20 properties listed in ASTM D4054 are not discussed in this review. A total of 16 of the 20 properties not listed here are
believed to depend upon trace level impurities (such as the jet fuel thermal oxidation test or JFTOT), lacking identification or
composition data, while simple blending rules are not advised for the remainder.

1. INTRODUCTION
The aviation industry is aggressively pursuing alternative low-
carbon propulsion technologies and sustainable aviation fuel
(SAF) as a means to decarbonize the sector. This shift is driven
by initiatives from multiple national governments and the
International Civil Aviation Organization (ICAO), which have
implemented policies and challenges to accelerate the adoption
of cleaner aviation solutions. As a result, there is a growing
focus on developing chemical conversion technologies that can
transform renewable feedstocks into jet fuel. In the United
States, the SAF Grand Challenge has set an ambitious target of
producing 35 billion gallons of sustainable aviation fuel
annually by 2050, underscoring the urgency and scale of the
decarbonization effort in the aviation industry.1 In addition to

this 2050 goal, the SAF Grand Challenge aims to facilitate the
annual production of 3 billion gallons domestically by 2030, or
approximately 10% of domestic jet fuel consumption.

The United States Environmental Protection Agency (U.S.
EPA) reports that D4 and D6 renewable jet fuel production
has seen a significant increase in recent years.2 In 2023, 26
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million gallons of SAF were generated, and in the first half of
2024 alone, production has already reached 27 million
gallons.2 Looking ahead, domestic SAF production capacity
projections are expected to surpass 2 billion gallons annually
by the end of 2028.3 This projected capacity is a substantial
increase from current levels, representing nearly 80 times the
production achieved in 2023. To further contextualize this
growth, consider that in 2020, the combined production of
biodiesel and renewable diesel, which have less stringent
technical requirements compared to jet fuel, was 13.6 billion
gallons.4 The fact that SAF production is projected to reach 2
billion gallons annually by 2028, despite the more rigorous
technical standards, highlights industry expectations and
collective urgency of the aviation enterprise to decarbonizing.

Bridging the gap between decarbonization targets and actual
production values is a substantial challenge, particularly in the
case of novel SAF routes. The process of developing a new
SAF pathway is both time-consuming and expensive, with an
estimated cost of $100 million to produce sufficient volumes
(approximately 100 gallons) of material to enter the ASTM
D4054 qualification process. This qualification process alone
can take multiple years, and companies may face bankruptcy
along the way. Even after successful qualification and approval
(resulting in an update or addition to ASTM D7566), the
technology must undergo significant scale-up, initially requir-
ing a demonstration facility before a commercial facility can be
developed. These additional steps further contribute to delays
and costs in the process. To align new technologies, manage
expectations, and communicate likely approved blend ratios or
illustrate hard limits on a given pathway’s ability to produce an
acceptable aviation fuel or blend stock, predictive models are
employed from the inception of a novel SAF route.5

Currently, in the United States and Europe, aviation turbine
fuels must adhere to the stringent specifications detailed in
ASTM D1655 for Jet A and Jet A-1 to be considered fungible
and suitable for use in the existing fuel infrastructure, aircraft,
and engines. Renewable carbon can be incorporated into an
ASTM D1655-compliant fuel through two primary methods:
coprocessing with fossil carbon or blending an ASTM D7566-
approved renewable blend component (SAF) with fossil-based
fuel [it should be noted that there will likely be 100% drop-in
(ASTM D1655 compliant) and non-drop-in (or Jet-X) SAF
pathways in the coming years and decades]. These processes
and specifications must be strictly followed to ensure that the
resulting fuel containing renewable carbon meets the required
standards before it can be introduced into the fungible supply
network.

However, the specifications for renewable or synthetic blend
components (ASTM 7566) are significantly more restrictive
and rigorous compared to those for conventional fossil-based
fuels. This is because fuel properties that fall outside the range
defined by historical experience with Jet A or Jet A-16 fuel may
be incompatible with existing infrastructure, including
combustors, flow control logic or hardware, storage tanks,
seals, handling procedures, fuel additives, and software. These
heightened requirements are in place to guarantee that the
introduction of renewable or synthetic components does not
compromise the safety, performance, or compatibility of the
aviation fuel supply.

The evaluation process (ASTM D4054) identifies and
establishes appropriate property limits to control fuels made
from any process/feedstock other than petroleum refining. To
date, 11 conversion processes have fully passed through the

evaluation process and blends of up to 10 or 50 vol % of the
products of these processes with conventional jet fuel or crude
oil is allowed and controlled by ASTM D7566 or annex A1 of
ASTM D1655.7 While eight processes have a corresponding
annex to ASTM D7566 that ensures its production pathway is
in control, there are also four “extended requirements” that
apply to the finished (blended) product in addition to those
called out by ASTM D1655. Further amendments to the
controlling documents are expected as the blend fraction of
SAF in conventional fuel increases and the diversity of
commercialized SAF products potentially warrants blending
multiple SAF pathways to meet the aforementioned 2030 and
2050 goals. To inform new specifications, it is important to
characterize the impacts of fuel−fuel blending on the safety
and performance properties of the finished product using
blending rules derived from fundamental physics.

To address these challenges, it is crucial for developers of
SAF to employ probabilistic fuel property prediction methods
based on modest production volumes8,9 or the anticipated
composition of the considered production stream. These
predictions can significantly derisk pathway development of
SAF and illuminate high risk blend components early,
potentially saving thousands of gallons of fuel and tens to
hundreds of millions of dollars throughout the product
development lifecycle, from the earliest phases to full-scale
commercialization. By utilizing these prediction methods, SAF
developers can ensure that their fuels meet the stringent
specifications required for compatibility with existing infra-
structure and engines, while also minimizing the costs and risks
associated with developing new SAF pathways. Of course, for a
prediction method to be useful, it is important to quantify its
accuracy uncertainty. Here, information is collected from
numerous, independent sources in order to document the
model accuracy of simple blending rules for 17 properties, as
applied to arbitrary mixtures of aromatic and saturated
hydrocarbons within the jet fuel volatility range. Heretofore,
no such compilation of blending rule accuracy has been
published.

2. FUEL PROPERTY TARGETS
Fuel property targets based on the specifications (direct or
inferred) in the controlling documents help fuel developers
select target composition, feedstock, conversion approach,
parameters such as pressure, temperature or catalysts used in
various stages of the conversion process, biocrude refinement
strategy, and blending strategy with other bioproducts or
petroleum products. The financial impacts of these decisions
emphasize the importance of modeling final fuel properties
based on compositional data. The availability of component
composition and property values of theoretical fuels can vary
widely and generalized strategies for estimating model
parameters that account for second order mixing effects are
unknown to the authors. It is therefore difficult for researchers
or developers to assemble the information required to leverage
models that require input beyond composition and component
property values, further motivating the use of the simplest
model that affords acceptable prediction accuracy. Conversely,
gaps in compositional or component property data, as required
to leverage simple blending rules, can be filled by methods
such as Monte Carlo sampling5,10−12 or machine learning,13

which facilitate a probabilistic interpretation of fuel property
predictions.
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Multidimensional optimizations employed for distillation
cuts,14 conversion process parameters,15 specification alter-
ation trade studies,16 etc. may invoke blending rules millions of
times, magnifying the impact of computational time. In this
context the functional requirements on the chosen blending
rules may be skewed more toward ease of use and less toward
accuracy than the functional requirements on the chosen
blending rules applied to a less generalized outcome. For
example, fuel surrogate development11,17,18 is all about
matching a suite of properties of very complex, natural fuels
to those of engineered surrogates, comprised of few (<25)
components that are readily procurable in high-grade purity.
Throughout their development cycle, surrogate fuels (real or
imagined) have no gaps in component property or
composition data, and it may be possible to assemble the
information necessary to incorporate second order mixing
effects into the property predictions. Since surrogate defining
routines iterate across a relatively small number (<25) of
plausible constituents, blending rules may be invoked
thousands of times instead of millions, as required for
optimizations iterating across many (∼1150) plausible
constituents, and thus the impact of model computational
time is minor. Presumably, the more complex fundamental

models improve the probability of attaining a match to all of
the chosen property targets on the first attempt. In contrast,
simple blending rules facilitate complex optimizations and
expedite the flow of important information between aviation
fuel stakeholders.

Within the context of modeling, composition-property
relationships can be distinguished by three distinct categories.
The first category treats the fuel as a singular entity,
predominantly employing machine learning or regression
techniques.13,19−23 These models stand out for their exemption
from requiring blending rules, although their applicability is
confined to fuels similar to those in their training data sets. The
second category, in contrast, perceives fuel as a mixture of
various components. It necessitates not only precise blending
rules but also comprehensive data on all constituents present in
the fuel. The third category represents a hybrid ap-
proach.13,22,24−26 It conceptualizes fuel as a “mean compo-
nent”. This category is distinguished by its training on both
fuels and individual components, enabling it to autonomously
learn the blending rules required for accurate analysis. The
second category has an advantage in terms of accountability
and also on extrapolation to unknown fuels. In this paper, we
examine the blending rules, since they are, besides accurate

Table 1. Fuel Characteristic Listings

(A) properties derived from
blending rules

(B) properties derived from
column A

(C) composition limit specified
in ASTM D4054

(D) properties impacted by trace
levels of impurities or additives

(E) controlled bulk properties
not covered here

carbon number, C# molecular weight, Mw C8−C16 population distribution
of aromatics (report)

conductivity versus concentration of
additive

autoignition temperature

hydrogen number, H# hydrogen to carbon ratio, H/
C

C8−C16 population distribution
of paraffins (report)

corrosion of copper hot surface ignition
temperature

density, ρ percent hydrogen, %H copper distillation loss upper flammability limit
lower heating value, LHV molar volume, Vm cycloalkanes distillation residue bulk modulus versus

temperature and pressure
heat capacity, Cp higher heating value, HHV existent gum effect on clay filtration
thermal conductivity, k energy density, ED fatty acid methyl esters effect on coalescer filters and

monitors
kinematic viscosity, ν isentropic expansion factor, γ halogens electrical conductivity
surface tension, σ thermal diffusivity, αH mercaptan sulfur lubricity
freeze point, Tfp dynamic viscosity, η naphthalenes microseparometer rating
vapor pressure, Pvap Prandtl number, Pr nitrogen (fuel bound) potential gums
distillation curve (ASTM

D2887, infinite-plate limit),
Tn

Ohnesorge number (fuel-
dependent terms), Oh′

peroxides response to CI/LI additive

lower flammability limit, LFL distillation curve (ASTM
D86, one-plate limit), Tn

polar organic molecules (report
13 classes)

thermal stability

flash point, Tflash refractive index, n tetralins and indanes water solubility versus temperature
dielectric constant, ε smoke point, Sp total acidity compatibility with additives
threshold sooting index, TSI total aromatics toxicity
derived cetane number, DCN total sulfur air solubility
elastomer swell, Sw trace elements (22 listed at

<100 ppb)
water
antioxidant (approved additive)
metal deactivator (approved

additive)
fuel system icing inhibitor

(approved additive)
electrical conductivity improver

(approved additive)
leak detection tracer (approved

additive)
biocide (approved additive)
corrosion inhibitor/lubricity

improver (approved additive)
water scavenger (approved

additive)
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data of all constituents of the fuel, crucial for models of the
second category.

Within the first category, fuel properties can be estimated
from regression models that relate a set of measured
properties, e.g., nuclear magnetic resonance (NMR), Fourier
transform infrared (FTIR), Raman, etc., to the properties of
interest. An excellent review of these methods has been
reported by Vozka and Kilas in 202027 and the points made
there will not be repeated here, except as needed. These
models suffer from, not only an undetermined isomeric
population distribution but also an undetermined distribution
of carbon number within each family. Moreover, certain
properties, the distillation curve for example, are strongly
impacted by characteristics that are not significantly informed
by the optical or magnetic properties of the mixture, and thus
cannot be predicted by any model that exclusively uses such
data to inform the model. The other fundamental issue with
regression models is that input to the model would be very
difficult to determine without making a physical measurement,
and thus composition optimizations, involving property
estimates for millions of composition variants, would be
extremely difficult or problematic to execute.

Regarding simple blending rules of the second category, 16
scalar products between a concentration vector (mass, mole, or
volume fraction) and a property vector can be used to estimate
31 properties, including a nominal predicted value and
confidence intervals. The goal of this review is to document
the uncertainty of these models when applied to mixtures of
hydrocarbons that are potentially significant components in jet
fuel; C7−C18 alkanes and aromatics. These scalar product
models apply to mixtures of complex fuels as well as mixtures
of pure components and everything in-between, which is
particularly valuable for anticipating fuel properties in advance
of blending fuels from different sources. Additionally, one
model that is somewhat more complex than a scalar product
will be discussed. Each of the property models to be discussed
in this review is listed in column A of Table 1 while column B
provides a listing of other relevant properties that can be
determined from those listed in column A. Most of these
property-property relationships are exact; the uncommon
exceptions are discussed in section 3.

In addition to physiochemical properties, ASTM D4054 also
addresses the concentration of certain elements, molecules or
types of molecules, and these are listed in column C of Table 1.
Of course, measurements are required to acquire this data for
real fuel samples, but for conceptual fuels or blends of
component fuels that have fully characterized composition, the
obvious blending rules are exact.

Column D of Table 1 lists fuel properties that are controlled
by ASTM D4054 and influenced significantly by certain types
of impurities that may be present in some aviation fuel samples
at less than 1%m. While it may not be possible to estimate
these properties from detailed composition, it may be possible,
in some cases, to predict the outcome of blending two or more
fuels for which the property of interest was measured. No
attempt is made here to document or assess any such model.

Column E of Table 1 lists four properties which are
theoretically predictable from detailed bulk composition
characterization, but which are not predicted well by simple
blending rules. The models required to make predictions of
autoignition temperature or a hot surface ignition temperature
should involve detailed chemical kinetics and fully described
temperature, pressure and gas phase species concentrations as

a function of time. The upper flammability limit (UFL) can be
estimated by using a model similar to that used for the lower
flammability limit, but some of the approximations used in that
model do not hold at relatively high fuel concentration.
Intuition suggests that better estimates of UFL could be
attained from more comprehensive, yet unparameterized
physical models. The bulk modulus of fuels at standard
temperature and pressure could be predicted well by a simple
blending rule that employs component concentration and
property data inputs; however, such a model is not expected to
hold at conditions (temperature and pressure) approaching a
phase boundary or at supercritical conditions. While the
prediction of each of these four properties is certainly
interesting and important, a characterization of the generality
and accuracy of available (or developing) models is beyond the
scope of this review.

While columns C−E of Table 1 contribute to its convenient
compilation of important jet fuel properties, the focus of this
review is on documenting the accuracy of and generality of the
blending rules that can be used to predict the fuel properties
listed in column A and the property-to-property relationships
(or definitions) that can be used to predict the fuel properties
listed in column B. In most applications the uncertainties of
these blending models are small compared with the
uncertainties introduced by the values of their inputs. For
example, Hall et al.28 have recently published an excellent
presentation of properties of C8−C16 hydrocarbons from
which the undetermined isomer uncertainty term can be
inferred, and an approach (also known as category 3) taken to
reduce this uncertainty has been described elsewhere.8,9 The
uncertainty introduced through incomplete property vectors
boils down to the accuracy of a quantitative structure−
property relationship (QSPR) model or the accuracy of the
model used to describe the temperature dependence of the
property. Citations to important works describing these
models will be provided in the discussion section. Promising
recent advances in the approach for developing QSPR models
have been proposed by Pan et al.29 and a thorough discussion
of prior work on this topic has been provided by Landera et
al.30 Here the focus is on blending rule uncertainty, so
discussion of models used to get component property data is
limited.

A partial assessment (2 data points) of models available for
the prediction of four important fuel properties has recently
been given elsewhere.31 Here, the focus is on documenting
model uncertainty for every property of interest to the
stakeholder community, and to juxtapose that uncertainty
term with other sources of uncertainty in predictions. As such,
each of the blending rules foreshadowed by Table 1 is
documented in the discussion section, along with a character-
ization of its accuracy. Uncertainties are communicated with a
unity plot when available, and by a standard deviation (σ), a
mean absolute error, or a mean error. Unless there is reason to
believe otherwise, quadrature addition of random error
originating with each term in the scalar product is assumed
for multicomponent mixtures, and in the absence of any
evidence to the contrary we assume the variance of each term
depends linearly on its concentration alone as described by eq
1. Evidence supporting the validity of this assumption is
included or cited in the discussion section relating to some of
the blending rules.

Property/property relationships (formulas) are also docu-
mented within the same subsection as the blending rule(s) that
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serve as source terms them, and the accuracy of the
approximate (or empirically motivated) property/property
relationships are qualified but not quantified. Generally, the
uncertainty terms applicable to these relationships are also
estimated by quadrature addition as represented by eq 2, where
property Z is a function of properties, x1 and x2.

c c c cmin( , (1 ))
i

i i i imix
2 2 2= | =

(1)

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz
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Z
x

d
d

d
dZ x x

2

1

2
2

2

2
2

1 2
= +

(2)

3. BLENDING RULE SELECTION, GENERALITY, AND
ACCURACY DOCUMENTATION
3.1. Conservation of Mass. The average number of

carbon or hydrogen atoms per molecule in a mixture is
determined exactly by the scalar products expressed as eq 3. In
these identities, X⃗ is the mole fraction vector, C⃗n is a vector of
integer values corresponding to the number of carbon atoms
characterizing the concentration bin (from the stenciled region
of a chromatogram) and H⃗m is a vector of integer values
corresponding to the number of hydrogen atoms characterizing
the concentration bin. While these models introduce no error
whatsoever, there is some uncertainty attributed to their
inputs.

C X C H X Handn m# = | # = | (3)

The undetermined isomer uncertainty as well as the
component property value uncertainty are zero in these
models, whenever the input data applies to discrete molecules
or bins of molecules (isomers) having the same empirical
formula. In these cases, the only uncertainty entering into
predictions of carbon number (C#) and hydrogen number
(H#) is that associated with the concentration vector, which
typically comes from a GC × GC experiment. While the GC ×
GC analytical approach has already garnered widespread use
and value, the effort to standardize it to group types
quantification of hydrocarbons32 is in its infancy. This
complicates uncertainty determination, but lab to lab
reproducibility tests have been performed33 and are expressed
here as eq 4, which fits their published reproducibility data.
The true uncertainty could be larger due to bias consistent
across experiments, such as FID response factor inconsisten-
cies,34 stencil errors, volatility overlap between isomers in
different hydrocarbon families, column health, numerical peak
integration bias, unnoticed retention time wrap-around, etc.
That being said, there are also factors that could render the
error smaller such as the fact that the concentration vector
must sum to one and the high likelihood that miss-
appropriated peaks on a chromatogram, the main source of
error, would be off by a single carbon number. For
chromatogram stencil bins that encompass thousands of
isomers, such as C15 isoalkanes for example, it is possible to
miss a large fraction of the mass in the bin if many of the
isomers are present at a concentration that is below the
detection limit of the experimental method.35

y0.26y
0.28= (4)

Armed now with C# and H#, the hydrogen to carbon ratio (H/
C) can be determined without any uncertainty contribution

from the model itself, which is, as its name implies, a
straightforward ratio, documented as eq 5. This property is
used in correlation-based models for lower heating value and
sooting propensity as well as physical models of combustion
products. The average molecular weight of the molecules
comprising a fuel sample is given by eq 6, where 1.008 g/mol is
the atomic weight of hydrogen and 12.011 g/mol is the atomic
weight of carbon, and the fuel’s mass fraction of hydrogen is
documented by eq 7. A fuel’s molecular weight is used to
convert between mass and mole concentration units and to
convert between density and molar volume, which is discussed
in the next subsection, while the mass percent hydrogen is used
in the conversion of higher heating value, HHV (i.e., gross heat
of combustion) into lower heating value, LHV (i.e., net heat of
combustion).

H C H C/ /= # # (5)

÷÷÷÷÷÷÷÷
C H XMw 12.011 1.008 Mwfuel = # + # = | (6)

H H% 1.008 /Mwfuel= # (7)

3.2. Ideal Solution. It is well-known that solutions do not
always blend linearly, and the resulting density of a
combination of two fluids is not the simple weighted average
of the two. Nevertheless, the approximation represented by eq
8 is documented here because of its simplicity and because the
uncertainty it introduces into jet fuel property predictions is
small compared to uncertainty originating from the model
inputs. In this equation, Vm is molar volume, ρ is density, and v ⃗
is the concentration vector in terms of volume fractions. The
denominator used for volume fractions is the sum of
component volumes, not the mixture volume, and thus v ⃗ is a
unit vector.

V X V vorm,fuel m fuel= | = | (8)

v v v v0.007 ( ) min( , (1 ))
i

i i i ifuel
2= | =

(8.1)

A unity plot showing 146 recently published36 measure-
ments and predictions of density at 15 °C of two-constituent
mixtures of species likely to be found in jet fuel is shown in
Figure 1. In this data set each constituent may be a single
component, a 50:50 by volume blend of single components or
a complex mixture such as jet fuel. The largest modeling errors
are observed when the final mixture contains two or three
species which is consistent with the presumption expressed by
eq 1. The standard deviation of the model error is given by eq
8.1 and is consistent with previous determinations made from
more limited data sets.37 In comparison, a recently published
regression model imbued with composition data from GC ×
GC−FID experiments attained 0.1% mean absolute percentage
error.38 In contrast, the standard deviation of the distribution
of molar volumes applicable to a given hydrocarbon class is
approximately 10% of the mean for that class.28 Moreover, the
uncertainty in the density prediction is very small relative to
the acceptable range for jet fuel which is 0.775−0.840 g/mL.
Even for compositions identified with full isomeric detail,
where the model error is not dwarfed by its input uncertainty,
having a prediction uncertainty that is less than 1% of the
nominal prediction is hardly motivation to seek out a more
accurate model in the applications of note here. Nonetheless,
readers who are interested in more accurate mixing rules to
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predict the density (or molar volume) of fuels may consult
Nabipour et al.39 as a starting point.

The fuel density is a fundamental property to which many
other properties are correlated, notably for aviation including
speed of sound and dielectric constant, which are measure-
ments taken in flight, along with fuel volume to gage fuel mass
and latent heat available to power the aircraft. The density of
the fuel that is in an aircraft should be known as accurately as
possible, through direct measurement, primarily for this reason.
Pre-application, however, equipment manufacturers design
their hardware to accommodate any fuel that conforms to
the specification range, 0.775−0.840 g/mL at 15 °C. From the
perspective of SAF developers, that is the target, period. The
density estimates noted here are used to guide blending
formulations and as input to several other property estimates as
discussed below, which are also driven by a target range. It is
presumed here that a <1% prediction error is small compared
to the margin producers develop between the fuel specification
limits and the property goals they set internally for their
product.
3.3. Conservation of Energy. Enthalpy (per unit mole or

mass) is a state function and therefore the change in enthalpy
between any two states of the system is not dependent on the
path taken to connect them. This, of course, applies to heats of
formation, heat of combustion, and the general form of the
exact blending rule is given by eq 9. In this expression ΔH
refers to a change in enthalpy, c refers to the units of the
concentration vector (mass or mole) and ΔHmixing refers to the
heat of mixing. For the liquid phase, the heat of mixing is not
quite zero in real mixtures, and by neglecting this contribution
in the application of eq 5 a negligibly small error, expressed by
eq 9.1, is introduced. The values reported here are based on
the measurements of Lundberg.40 Boehm et al.41 discussed in
detail the other sources of uncertainty in the so-called “tier
alpha” method as applied to 17 different complex mixtures.
While the modeling error received a mention in that article, it
contributes ∼100 times less than the measurement uncertain-

ties of the component concentrations and enthalpies and
∼1000 times less than the uncertainty attributed to
undetermined isomers.

H c H Hc,fuel c mixing,c= | + (9)

H 0.0 0.3 kJ/kgmixing,kg,liq = (9.1)

Equation 9 applies to the higher and lower heating values,
HHV and LHV of the fuel (also known as gross and net heat of
combustion) as well as the gas or liquid phase heat of
formation, any of which may be used in engineering models
applied to combustion, engine performance and aircraft drag.
The product of LHV with (mass) density yields the energy
density (ED, eq 10) which may be used in engineering models
to determine volumetric flow rates, fuel system pressure losses,
and heat transfer, for example. For specialty SAF (not
conforming to ASTM D1655) the energy density of the fuel
would also be used for fuel passage and orifice sizing as well as
airplane fuel tank sizing.16

ED LHVfuel fuel= (10)

The temperature derivative of eq 5 results in the heat capacity,
Cp, and this is expressed as eq 11, where the derivative of the
heat of mixing term has been dropped as an approximation.
The uncertainty introduced by this approach is negligible in
the gas phase because intermolecular forces do not significantly
perturb the saturated degrees of freedom of motion associated
with molecular translation and rotation or the largely
unsaturated degrees of freedom of motion associated with
intramolecular vibrations. In the liquid phase however, none of
these assertions are true. The degrees of freedom associated
with “hindered” rotation of molecules or intermolecular (or
lattice) vibrations (sourced back to translation and rotation of
gases) contribute significantly to its temperature-dependent
heat capacity and these lattice vibrations are wholly
determined by intermolecular forces which are certainly
different for heterogeneous terms (the left side of eq 11)
than they are for homogeneous terms (the right side of eq 11).
The impact of these intermolecular forces is referred to here,
and in the cited literature, as excess heat capacity.

A total of 81 measurements of binary aromatic hydrocarbon
blends have indicated that the contribution of excess heat
capacity is within ±0.9% of the bulk fluid heat capacity.42

Beyond this example, the vast majority of work related to the
evaluation and prediction of multicomponent liquid heat
capacity is focused on polar molecules, which are present only
in trace amounts in aviation turbine fuel. Sharma et al.43

observed a maximum 12.8% deviation from eq 11 for 803 total
heat capacity measurements of binary and ternary polar
compound mixtures. This is consistent with 1083 measure-
ments by Malik et al.,44 who reported a maximum 12.5%
contribution of mixing toward the bulk fluid heat capacity, as
well as earlier studies.45,46 In both the polar and nonpolar
studies cited here, blend ratios containing large mole fractions
of multiple components (e.g., 0.5/0.5 binary or 0.45/0.45/0.1
ternary ratios) exhibited the highest excess heat capacity
supporting the application of eq 1 to the heat capacity blending
rule. Since this has not been proven and it is unclear whether
trace polar molecules may have a disproportional impact on
heat capacity, the evaluation of heat capacity for complex
mixtures, such as aviation turbine fuels, represents an area of
fuels research in need of attention. Nevertheless, the discussion

Figure 1. Unity plot for ideal solution approximation. Binary mixtures
of aliphatic and aromatic hydrocarbons within the jet fuel volatility
range. Type A: Both mixture constituents are comprised of a single
component. Type B: One mixture constituent is a single component;
the other is a 50:50 (by volume) mixture of two components. Type C:
One mixture constituent is a single component; the other is a complex
mixture. Type D: Both mixture constituents are complex mixtures.
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in the following paragraph applies under the assumption that
eq 1 is applicable to the heat capacity blending rule when
applied to aviation fuels.

C c Cp,c,fuel p,c= | (11)

C c c c c0.06 ( ) min( , (1 ))
i

i i i ip,c,fuel
2 | =

(11.1)

At first blush, an error of 12.5% is concerning because accurate
heat capacity is necessary (but not sufficient) to execute
accurate heat transfer analyses of fuel systems to get accurate
fuel temperature and enthalpy at inlet to the fuel nozzle and
the combustor, where fuel temperature also impacts,
exponentially, viscosity and thermal stability of fuel. However,
upon closer inspection, the estimated uncertainty of eq 11 for
many component mixtures is less concerning. Assuming the
12.5% max observed error of 1083 data points (215 mixtures)
is three standard deviations off and the mean error is zero, then
the random error in the heat capacity prediction is given by eq
11.1. The leading scalar, 6% is still concerning, but the sum of
the square of the mole fractions is a small number for many
component fuels. Even for SAF with very few components,
which are typically limited to a maximum blend ratio of 10 vol
% with a conventional jet fuel, the sum of the mole fractions
squared is unlikely to exceed 0.028, below which the standard
deviation of the model error is less than 1%.

Returning now to the gas phase, for which the error in eq 11
is negligible, there is little interest in knowing the heat capacity
of vaporized jet fuel, as it along with the fuel latent heat of
vaporization is baked into the LHV application of eq 9. A rare
demand for the vaporized fuel heat capacity occurs during
detailed redesign of premixing chambers within combustors,
where fluid dynamics is very complex, but temperature
gradient estimates which employ fuel vapor heat capacity are
necessary to illuminate potential root cause of observed coking
or autoignition issues that show during a design validation test.

The heat capacity of the combustion products is more
interesting than the heat capacity of vaporized fuel under
normal circumstances, as it is used to calculate adiabatic flame
temperature. The combustor exhaust gas heat capacity, more
precisely the ratio of the temperature derivatives of enthalpy
and internal energy at constant pressure (Cp) and volume (Cv)
respectively, should be used in turbine performance models to
calculate the work achievable through adiabatic or isentropic
expansion.47 The isentropic expansion factor (γ) is defined by
eq 12. It varies with temperature, air humidity, and the
combustion products of the fuel (which stem from the fuel to
air ratio in the combustor and the hydrogen to carbon ratio of
the fuel). Nonetheless for engineering purposes, γ is frequently
treated as a constant based on the properties of dry air at some
reference temperature.

C C/p,exhaust v,exhaust= (12)

NASA polynomials48 covering the full temperature range of
interest are available for all components of air as well as the
combustion products, so Cp(T) can be treated as a known
quantity. The other heat capacity term Cv is just a little more
complicated. A blending rule analogous to eq 11 could be used
but is not necessary. To first order the difference between Cp
and Cv is equal to the universal gas constant (R), so Cv follows
from Cp. Optionally, R may be scaled by the gas’
compressibility factor (Z) or replaced by the value of (Cp −

Cv)air at a reference temperature and pressure for which both
values are known and applicable to the operating environment
of the turbine (up to 40 atm). Engineers may even go so far as
to represent this difference for each exhaust gas component by
its exact value,49 which is given by eq 13, where T is
temperature, αT is the coefficient of thermal expansion and β is
the isothermal compressibility. This, of course, is only possible
because (PVmT) equation of state models exist for each of the
components. Fuel effects enter here through H/C as it
influences the proportion of H2O and CO2 in the exhaust gas
and through LHV as it influences the fuel to air ratio necessary
to achieve a mission-point-demanded level of thrust, both of
which are easily determined from composition.

C C TV C C ZR R( ) ( )p v T m
T

2

p v ref=
(13)

3.4. Other Thermal Properties. The Prandtl number
(Pr), defined as the ratio of kinematic viscosity (ν) to thermal
diffusivity (αH), is a significant factor in heat transfer
correlations and is represented here by eq 14.50 The thermal
diffusivity is the ratio of thermal conductivity (k) to heat
capacity per unit volume (ρCp), as indicated by eq 15. The
kinematic viscosity term is discussed in section 3.5, Fluidity
Properties, while the thermal conductivity term is discussed in
this section.

Pr /fuel fuel H,fuel= (14)

k C/H fuel p,fuel fuel= (15)

YH H= | (16)

A direct blending rule for Prandtl number might avoid
compounding of uncertainties, but to the best of the authors
knowledge, no such blending rule exists. Similarly, the authors
are not aware of any published evaluation of a blending rule for
thermal diffusivity. eq 16, where Y⃗ is the mass fraction vector, is
proposed here. However, it is unclear whether directly
measured, component thermal diffusivity data is significantly
more precise than component thermal diffusivity data that is
derived from conductivity, density and heat capacity measure-
ments. Applying eq 16 to binary mixtures of isooctane and
heptane, we found mean error of 7.43% relative to the archival
literature on thermal diffusivity data of hydrocarbon
mixtures.51,52

Thermal conductivity prediction of liquid mixtures has been
the subject of several archival studies, including most recently
Rokni et al.53 and Malatesta and Yang.54 A prevalent theme in
thermal conductivity models for mixtures is to employ a
generalized form of a thermal conductivity model for pure
materials, where a blending rule is used to generate the inputs.
These two studies employed an entropy scaling approach, for
which several inputs are required that may not be generally
available, including the reduced residual entropy, an equation
of state, and a collision integral. Most of the more sophisticated
models require the critical temperature, volume and pressure
as input to a submodel buried in layers of detail. While there is
no questioning the superior accuracy with model evolution
beyond the mass fraction weighted average model proposed in
1956,55 it remains to be seen whether such accuracy is truly
worth the cost in terms of computational resources, human
labor or outright loss of applicability to complex mixtures that
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have never been produced. This simple blending rule is
expressed here as eq 17.

Y kk fuel = | (17)

Using temperature (only) dependent models published by
National Institute of Standards and Technology (NIST),56

Phoon et al.90 generated five sets of data with temperature
equal to 288, 323, 358, 393, or 428 K, spanning the range of
fuel temperature that would potentially be encountered during
the normal operation of an aircraft. The standard relative
deviation of these data points ranges from a low of 17.3% at
288 K to a high of 19.4% at 428 K with no apparent correlation
with carbon number or family. The jet fuel conductivity values
reported by Malatesta and Yang54 are all within the scatter of
the neat material conductivity values in this database, hinting
that a simple scalar product model may in fact be good enough
for engineering purposes despite the decades of development
of more elaborate models. Evidence to the contrary, perhaps
motivating some of the early work toward the development of
elaborate models, includes a fact pointed out by Baroncini et
al.57 that the conductivity of some binary mixtures of polar
(and presumably associated) organic molecules does not
follow interpolation rationale. We consider such mixtures to be
well outside the range of potential aviation fuels, which are
comprised of many non-associated species. Considering two
articles58,59 documenting the thermal conductivities of binary
mixtures of normal alkanes with other normal alkanes or
aromatics, the maximum observed error of the scalar-product
blending rule is 2.6%.
3.5. Fluidity Properties. The fuel-dependent factor (Oh′)

of the Ohnesorge number (Oh = Oh′Lchar
−0.5), defined by eq

18, combines three fuel properties that are known to influence
atomization of fluids into a single property that is significantly
more correlated with important spray characteristics and
outcomes such as ignition60,61 than viscosity, surface tension
(σ) or density. To the best of the authors knowledge no one
yet has proposed a blending rule for Oh′. Such a rule, to
directly calculate Oh′ from composition and component Oh′
could be convenient, but is unlikely to reduce prediction
uncertainty because there is no direct measurement of Oh′ to
apply to the components separately. In this section the errors
associated with the blending rules for viscosity and surface
tension are discussed, where emphasis is placed on viscosity
because it varies with composition and temperature much
more so than density or surface tension and because it also
contributes strongly to the Prandtl and Reynolds numbers.

Oh /= (18)

Hernandez et al.62 recently compared 30 different blending
rules for the viscosity of petroleum-based fuels using 303
measured data points of biodiesel and petroleum/biodiesel
binary blends. Nine of the 30 blending rules showed a relative
standard error below 5%. The Arrhenius blending rule,63

represented here by eq 19, was among the most accurate and
the most straightforward. Separately, Boehm et al.36

determined the accuracy of this model by comparing 675
measured and predicted viscosities of simple to complex
mixtures of aliphatic and aromatic hydrocarbons in the jet fuel
volatility range. eq 19.1 summarizes their accuracy assessment
where ξ(T) equals 0.132 at −40 °C and 0.096 at −20 °C. The
unity plot they published is reproduced here as Figure 2. It
very clearly shows less error with increasing mixture complex-

ity, thereby supporting the presumption expressed by eq 1 (eqs
8.1, 11.1, 19.1, etc.).

Xfuel = | (19)

T x x( ) ( ) 0.5
i

i ifuel
2= |

(19.1)

The surface tension at 22 °C of 29 jet-fuel-range molecules
extracted from DIPPR database64 is 18 to 40 mN/m, with a
strong dependency on hydrocarbon family that mirrors that of
density. The blending rule for mixtures of aliphatic and
aromatic hydrocarbons in the jet fuel range, eq 20, is simplified
from the general form published in 1986 by Hugill and Van
Welsene.65 The interaction terms are all set to 1 since aviation
fuels are non-associated mixtures and the density of the vapor
phase is set to 0 since it is much less than the liquid phase
density at −10 to 40 °C, corresponding to the reference
temperature range for which (lab-ambient-pressure) surface
temperature measurements are required by ASTM D4054.
This formulation is consistent with earlier expressions of the
blending rule dating back to 192966 but a detailed, statistical
analysis of its error, when applied strictly to mixtures of
aliphatic and aromatic hydrocarbons has not been published to
the best of our knowledge. There is, however significant, even
if anecdotal, evidence65 that a linear interpolative blending rule
for surface tension is reasonable, particularly for these types of
mixtures. Using data from Schmidt67 and Bezerra68 with a total
of 55 sets of data points, this blending rule has a mean absolute
error of 1.07 dyn/cm and a mean relative error of −2.85%.

Xfuel
0.25 0.25= | (20)

The phase transition from liquid to solid has obvious and
severe implications with regard to fluidity, so the freeze point
(Tfp) is classified here as a fluidity property. Boehm et al.69

showed that the freeze point of 41 simple to complex mixtures
containing n-tridecane and/or bicyclohexyl is determined by
the concentration of that component along with its phase
transition thermal properties; heat of fusion (ΔHfus), entropy

Figure 2. Unity plot for Arrhenius blending rule. Binary mixtures of
aliphatic and aromatic hydrocarbons within the jet fuel volatility
range. Type A: Both mixture constituents are comprised of a single
component. Type B: One mixture constituent is a single component;
the other is a 50:50 (by volume) mixture of two components. Type C:
One mixture constituent is a single component; the other is a complex
mixture. Type D: Both mixture constituents are complex mixtures.
The reference viscosity is 1 cSt. This figure was reproduced with
permission from ref 36. Copyright 2022 Frontiers.
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of fusion (ΔSfus), freeze point (Tfp), and heat capacity (Cp,solid
and Cp,liq). It was therefore proposed that the freeze point of
fuel is the maximum freeze point of its components, restated
here as eq 21, where the subscript, “mix” refers to any mixture
of aliphatic and aromatic hydrocarbons having the same mole
fraction of component i as the fuel of study. This idea goes
back to first principles and illuminates the physics supporting
earlier work70−72 that technically was directed toward
understanding the relationship between the freeze point of
fuel and normal paraffins concentration and size distribution.
In this theory, every fuel component would have a
corresponding freeze point predicted by eq 22.

T Tmax ifp,fuel fp,mix,= { } (21)
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The inputs to eq 22 pertain to the pure material unless
otherwise specified and ζ is a parameter between 0 and 1 that
can be tuned for each component, accounting for the
difference between the entropy of mixing of an ideal solution
and the actual entropy of mixing of the fuel. By default, ζ =
0.25, resulting in a conservative freeze point prediction that
could be too high (never too low) by upward 20 °C at low
mole fractions where the change in freeze point with
concentration is steep. The implication of this conservatism
from the perspective of fuel formulation is that a lower-than-
truly necessary cap on the concentration of that component
would be set. With tuning, the model error reduces to less than
5 °C, where tuning can be accomplished by varying ζ to attain
the best fit to freeze point data of prepared binary mixtures
containing the subject molecule and some low-freeze solvent
such as isooctane. Mixtures containing two or more
components that freeze out of solution at nearly the same
temperature are the least likely to be well-approximated by eq
22, however the main issue with this model is the sparsity of
input data to supply it. The DIPPR database64 contains the
freeze point temperature of approximately 200 molecules in
the jet fuel range and just a few of those also have heat or
entropy of fusion. Also, the heat capacity terms in eq 15 should
be evaluated at the midpoint temperature between the freeze
point of the pure component and the freeze point of that
component in the solvated state, meaning the liquid state is
supercooled. Boehm et al.69 suggested using the pure-
component heat capacity models proposed by Naef73 with
extrapolation to the temperature of interest. For materials with
a known freeze point temperature but unknown heat (or
entropy) of fusion, Boehm suggested using Walden’s rule of
thumb estimate for entropy of fusion, which is 56.5 J mol−1

K−1.74 It is not known how much (data input uncertainty)
error is introduced into the component freeze point prediction
by this approximation. Another issue with eq 22 is that it is
difficult to solve for materials with a low entropy of fusion as
the denominator flips between positive and negative values
during the iteration. Some revision may be necessary to ensure
that the first two terms in the denominator never sum to a
value less than zero.

The good news is that common sense can be applied to eq
21. There is no need to include any component whose neat

freeze point is below −40 °C and there is no need to include
any component whose mole fraction is below a threshold
value, approximately 5%. A mixture containing mostly high
freeze point components (higher than −40 °C), all at very low
concentration, may not technically freeze at −40 °C or higher,
but its viscosity may be higher than the 12 cSt limit. The freeze
point model is a good tool to catch formulations with too
much of any one high freeze point component, or to identify a
need for freeze point measurements of surrogate mixtures
containing the proposed fraction of the at-risk component(s).
The viscosity blending rule is a more convenient tool for
evaluating fluidity.

Using the data published by Affens et al.71 as additional
evidence supporting the premise behind eqs 21 and 22, the
data they provide for the normal alkanes from C12 to C17 can
be used to tune eq 22 or serve directly as a prediction curve for
any fuel mixture that contains those normal alkanes. As noted
by Solash et al.,70 these are the molecules that are most
commonly responsible for the freeze point of fossil, aviation
fuels. Similar data sets for all high-freeze-point components of
SAF that are not normal alkanes do not yet exist.
3.6. Volatility Properties. Volatility properties consist of

vapor pressure as a function of temperature, the distillation
curve corresponding to the mass recovered vs temperature
resulting from a specified procedure and apparatus at ambient
pressure, and the composition of the vapor phase throughout
the non-equilibrium transformation between the liquid phase
and the vapor phase. From the perspective of fuel formulation
design, fuel volatility is all about its vapor pressure. The gas
phase composition follows from the vapor pressure and so
does the distillation curve, given an accurate model of the still
and its operating conditions.

According to Dalton’s law, the total pressure is the sum of
the partial pressures (pi) of each component in the gas phase,
reproduced here as eq 23. There is no modeling error
associated with this blending rule. The estimation of partial
pressures of components in real gas mixtures is a topic covered
in chemistry education75,76 and differences between real gases
and ideal gases (for which the partial pressure is equal to the
component mole fraction times the total pressure of the
system, RT/Vm,gas) can be significant, particularly for dense
gases and molecules with unusually strong intermolecular
interactions. While the aviation industry stakeholders do
indeed care about gas properties at pressures up to
approximately 50 atm and temperature up to 750 °C, they
also care about understanding potential issues such as
cavitation which can be caused by incipient boiling with the
fuel delivery system, fuel leakage through valves after stopcock
caused by vapor pressure exceeding the valve’s cracking
pressure, droplet evaporation rate before/during ignition and
the accel to idle, and droplet evaporation rate at flight idle and
throughout throttle chop transients where the combustor inlet
air temperature and pressure are relatively low. At these
conditions, the deviation of real gas properties from ideal gas
properties is negligible relative to other sources of error in eq
24, which is Raoult’s law. In this equation, Pvap,i is the vapor
pressure of pure component i.

P p
i

itot =
(23)

p x P x Pi i i iliq, vap, gas, tot= = (24)
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In a provocative article published 28 years ago, Hawkes77

proclaimed that Raoult’s law is deceptive. While the tone of
that article may be harsh, at least as it applies to mixtures of
aliphatic and aromatic hydrocarbons in the jet fuel range,
additional experimental data are needed to develop any
correction to Raoult’s law. Pending this result, eq 24 should
be used only when necessary. For example, the gas phase
composition of partially evaporated droplets may be required
to evaluate the chemical properties of the front end of the
distillation.

The distillation curve represents the distribution of boiling
points present in a fuel. Typically, distillation curve properties
are reported as, Tn where n refers to a volume percent distilled,
and T is the temperature at which that amount of fuel has
vaporized. There are two common ways to measure distillation
curve: standard distillation (ASTM D86) and simulated
distillation (ASTM D2887). ASTM D86 is the referee method
called out in ASTM D7566 even though it carries more
experimental error. ASTM D2887 is a gas chromatography
method relating chromatographic elution time with boiling
point. Physically the differences in the results are dramatic;
D86 is effectively a one theoretical plate separation whereas
D2887 can be estimated as infinite theoretical plates. Both
methods are required by ASTM D4054.

Distillation curve blending has not been explored in depth.
Two distillation curves are controlled by ASTM D4054. The
relevant experiments are described in ASTM D2887 and
ASTM D86. The ASTM D2887 distillation curves are
interpreted from gas chromatographic data. As such, the
response from common peaks in each chromatogram can be
combined in proportion to their mass fraction, consistent with
the mass response of the flame ionization detector. There is no
uncertainty introduced by the blending rule, as conservation of
mass applies rigorously. However, if the raw data is obscured
by reporting, the reported data sets can be partitioned into bins
of discrete temperature range(s) and the mass in each bin
proportionately summed over all mixture constituents.78 While
conservation of mass is invoked as the rationale for this
blending rule, some uncertainty is introduced by the
transformation between reported distillation curve points and
the assignment of mass into bins. Its efficacy is shared in Figure
3, which is pulled from the work of Yang et al.78 involving 46
mixtures, 21 points each.

For D86 distillation curve prediction, the difficulties in
calculating vapor pressure manifest in uncertainty of distillation
curve prediction. While an approach like the D2887 method
described above may be acceptable, no analysis of its efficacy
has been performed. More commonly, the vapor pressure is
predicted from eqs 23 and 24 along with some model of the
distillation experiment wherein the composition of the liquid
phase is updated with each increment of vapor removed from
the system. Typically, the total pressure in the experiment is 1
atm so the vapor phase component mole fractions equal their
partial pressures.
3.7. Fire Safety Properties. The upper (UFL) and lower

(LFL) flammability limits measure, respectively, the maximum
and minimum fuel/air ratio required for ignition. In 1891, Le
Chatelier79 used a small set of data to propose a blending rule,
represented here by eq 25, for determining the flammability
limits of combustible gases commonly used in practical
applications. Le Chatelier’s rule has since been derived under
somewhat differing sets of assumptions;80−82 the most
significant being that adiabatic temperature rise or the heat
rise at the flammability limit (FL) is the same for all species.
The mole fraction vector in eq 25 includes only the
combustible components and the flammability limit refers to
either the upper or lower limit. This form of the blending rule
is particularly practical because a large amount of single-species
fuel component flammability limit data exists within the
archival literature,83−86 data compilations87 and most Material
Safety Data Sheets, to name a few sources. However, the
compiled data sources may preferentially report the most
conservative measurements.88

÷÷÷÷÷÷÷÷÷÷
FL X FL1/ 1/fuel = | (25)

The accuracy of eq 25 is satisfactory when applied to the LFL
and offers a respectable guess when applied to the UFL.
Coward and Jones83 reviewed flammability limits for a wide
range of flammable gas mixtures and qualitatively described
good adherence to Le Chatelier’s rule for light hydrocarbons
with air. More recently, Liekhus et al.85 found a mean relative
error (MRE) of 8.5% for the LFL of 27 mixtures containing
volatile organic compounds and Kondo et al.84 showed 1.21
and 7.19% MRE for the LFL and UFL, respectively, of 86
mixtures. Beneficial in the context of this work, hydrocarbons
are found to be particularly consistent with Le Chatelier’s rule,
and the predicted flammability limits tend to bracket the
experimentally observed limits. Modifications to reduce
blending rule error do exist,82,84,85 but their added complexities
render the equations impractical for most applications related
to aviation fuel. Lastly, the recent work of Qi et al.89 contains a
comprehensive review of flammability limits, including
prediction methods for flammability limit data not found in
the other cited works.

Although not represented by eq 25, the limits of
flammability also depend on the relative oxygen (or oxidizer)
to inert concentration in the mixture as well as the starting
temperature of the experiment. Rowley88 suggests modifica-
tions to the models to account for these variations, and also
suggests an extension of these concepts to predict the flash
point temperature (Tflash). While this is an intriguing idea, the
incentive to develop a new flashpoint point model is rather low
because a number of empirical correlations already exist that
appear to be satisfactorily predictive for petroleum distillate
fuels and SAF alike. Thorough reviews of these models have

Figure 3. Unity plot for distillation curve (via ASTM D2887)
predictions based on components’ distillation curves.
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been recently published.90,91 The Wickey model,92 which is
reproduced here as eq 26 was found to be the most consistent,
with a global mean absolute error of 1.72 °C.91 In this
empirical model, each flash point is converted to a unitless,
flash point index (FPI), the blending rule is applied to the
index, and the that result is then converted back into a
temperature. ÷÷÷÷÷÷÷

vFPI FPIfuel = | where each component in
÷÷÷÷÷÷÷
FPI is

determined as follows:

Tlog (FPI) 6.1188 4345.2/(383 )

( F units)
10 flash= +

° (26)

Extension of flammability models to non-standard inlet
temperatures, pressures, and “air” compositions is more
intriguing because combustors within turbine engines operate
over a wide range of inlet temperatures and pressures (and
potentially water content−such as some ground-based power
plants that are subject to stringent NOx emission regulations),
while afterburners operate with inlet air that is approximately
1000 °C, which is well above the standard reference
temperature of 20 °C and they receive vitiated air instead of
clean air to oxidize the fuel that is supplied to them.
Nonetheless, flammability models extended to non-standard
inlet conditions are regarded as out-of-scope for this review.
3.8. Electromagnetic Properties. For non-magnetic

materials with no permanent dipole, the dielectric constant,
εr (also known as relative permittivity), refractive index, n and
polarizability (α), are all relatable through simple algebraic
expressions written below as eqs 27 and 28, in which NA is
Avogadro’s number and ε0 is the permittivity of free space.76 A
blending rule, can be applied to either polarizability93,94 or
dielectric constant.94,95 These blending rules are reproduced
here as eqs 29 and 30, respectively. Since the “effective”
polarizability of a mixture (αfuel) is not directly observable, the
accuracy assessment of eq 29 is tied to eq 27. In other words,
the dielectric constant of a mixture can be estimated from eq
30 directly or it can be estimated from eq 27 by using the
effective polarizability from eq 29 along with a known molar
volume as independent variables to determine the dielectric
constant. In recent benchmarking against 160 dielectric
constant measurements99 of samples consisting of both simple
and complex mixtures of aliphatic and aromatic hydrocarbons
within the jet fuel range, Yang et al.94 found 0.0013 MAE and
0.0003 ME between measured and predicted values of
dielectric constants when the fuel dielectric constant was
calculated from eqs 27 and 29, and 0.0038 MAE and 0.0037
ME when the dielectric constant was calculated directly from
eq 30. While these metrics indicate superior accuracy by using
the eqs 27 and 29, Yang et al. emphasize that the accuracy of
this approach depends on the concentration of species with
non-zero dipole moments and the magnitude of those dipole
moments. eq 30, however, is more generally applicable, easier
to use and its accuracy is believed to be well represented by the
assessment they executed. In contrast, a particularly useful
utility of eq 27 is to calculate dielectric constant data for
nonpolar fuel constituents based on modeled polarizabilities.96
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Xfuel = | (29)

vr,fuel r= | (30)

3.9. Chemical Properties. With rare exceptions to be
discussed here, the chemical properties of complex mixtures
such as fuel do not lend themselves to prediction by simple
algebraic models. Rather, chemical kinetic models are needed
and excellent work has been published showing that kinetic
models of surrogate fuels that match the H/C, Mw, derived
cetane number (DCN) and threshold sooting index (TSI) of a
corresponding real fuel are able to predict its combustion
properties.17,18 The execution of such a model to predict
combustion properties is too computationally intensive to be
done within the innermost loop of a fuel composition
optimization. That said, algebraically simple blending rules
for H/C and Mw, two of the four target properties used for fuel
surrogate development, are exactly accurate as discussed in
section 3.1, Conservation of Mass. The other two property
targets (TSI and DCN) are discussed in this section, before
discussion of elastomer/fuel compatibility.

The threshold sooting index, defined by eq 31, was
introduced in 198397 as a tool to normalize smoke point
data from different experiments. A year later, it was leveraged
to establish a method to predict the sooting tendency of
mixtures based on the sooting tendencies of its constituents98

which was later validated by several research teams.99−102 This
blending rule is reproduced here as eq 32. A similar blending
rule can also be applied to a unified sooting index103 or a yield
sooting index104 which invoke different raw data to represent
sooting tendency. Motivated by a dearth of experimental data
to supply the blending rule, Boehm et al.102 integrated the
(linear) TSI blending rule with a linear QSPR (quantitative
structure−property relationship) model to estimate TSIfuel
based on the integrated carbon fragment counts of the fuel,
where the blending rule for each carbon fragment is exact,
obeying the conservation of mass principle. The standard
deviation of that QSPR model was estimated to be 4.5 TSI,
slightly less than a more general QSPR model for sooting
tendencies of oxygenated fuels that was published a few
months earlier.103 In contrast, the standard deviation of the
uncertainty ascribed to the blending rule, eq 32 was estimated
to be less than one index point. On the other side, the real
variation between isomers within the same concentration bin,
as defined by a stenciled region with a chromatograph from a
GC × GC−FID experiment is much, much larger than one
index point because branching has a large impact on TSI but
no impact at all on molecular weight.

Sp b aMw /(TSI )fuel fuel fuel= (31)

a and b are calibration coefficients for a specific operator and
experimental arrangement and are calibrated by the smoke
points of methylcyclohexane and 1-methyl naphthalene.

÷÷÷÷÷÷÷
XTSI TSIfuel = | (32)

Historically, the cetane number, or the propensity of a fuel to
autoignite under reference conditions, was measured in a CFR
engine per ASTM D613. Over the last several decades the
derived cetane number or DCN has gained favor in the
combustion field for its ease of use, repeatability, modest
footprint in the lab, and reproducibility across laboratories.
Subsequent to its widespread use, the DCN has been found to
correlate to aviation relevant metrics. The derived cetane
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number is calculated from the ignition delay according to the
procedures and equipment described in ASTM.105 DCN and
the initial metric, cetane number, have long been used as
metrics to characterize ignition quality of fuels used in
compression-ignition engines. It has also been shown106 to
be strongly correlated with lean blow out of continuous flow
combustors. Moreover, its correlation with gas-phase auto-
ignition delay time is strong over a range of temperature,
pressure and equivalence ratio conditions.107,108 Regression
models leveraging input from FTIR analysis of drop-size fuel
samples have been shown to predict DCN of validation set
samples with an RMS error of 1−2 index points.109−111 Similar
efforts have also used liquid phase IR absorption to predict
DCN using linear and nonlinear models with similar
accuracy.23 Aside from the drawback of needing at least a
drop of sample fuel to get the FTIR spectral feature inputs, the
regression models cannot predict the DCN of partially
vaporized fuel because the FTIR spectrum may vary
significantly from one distillation fraction to another and to
the best of the authors knowledge there is not yet a
standardized experimental method to attain FTIR data of the
vapor fraction of two-phase samples, nor is there a processing
methodology to relate such data to distillation fractions.

The extent of vaporization and the mixedness of the vapor
phase of the fuel inside a jet-engine combustor, leading up to
forced ignition, lean blow out, autoignition forward of the
intended flame front and even normal operating conditions for
that matter are difficult to model accurately with computa-
tional fluid dynamics, or any other approach. To assess fuel
effects on combustion metrics such as these, complex chemical
kinetic models are required, but the human and machine labor
involved to do this is extensive, requiring days or weeks to
complete each fuel assessment on each combustion metric. At
low fuel readiness level, such a drain on resources is
impractical. A more tractable approach, relating the vapor
fraction of the fuel throughout the vaporization transient to its
DCN, in combination with other 1D models of the combusting
system, affords stakeholders an early indication of whether the
compositional differences between a SAF concept product and
a conventional jet fuel will have a deleterious effect on the
combustion metric of study. eq 33 is one model for making this
connection.

÷÷÷÷÷÷÷÷÷÷÷
cDCN DCNfuel(gas) = | (33)

The maximum uncertainty associated with eq 33 is large; see
Figure 4. The model itself has a mean absolute relative error of
2.9%. Moreover, when the blending rule is applied to partially
vaporized fuel, the gas phase composition uncertainty can also
be significant, as discussed in section 3.6, Volatility Properties.
Additionally, the uncertainty regarding the property vector
input is particularly substantial for a DCN blending rule. The
database of measured pure component DCN values is so
sparse that other models1,23,110,112,18,114 must be used to
populate

÷÷÷÷÷÷÷÷÷÷÷
DCN, which leads to significant database uncertainty.

Moreover, the undetermined isomer uncertainty is particularly
large for DCN because this property is known28 to be strongly
impacted by branching, while the GC × GC stencil regions
encompass all molecules having the same number of carbons
that belong to the same hydrocarbon family.

The material compatibility of fuel is primarily concerned
with the intercalation of certain fuel constituents into
elastomeric materials. Effects of the fuel/elastomer interaction

are commonly quantified with volume swell measurements
during an O-ring soak test. These tests require days or even
weeks of soak time to complete and the results vary between
manufacturing batches of O-rings.118−122 The testing compli-
cations present a challenge to the establishment of material
compatibility requirements in the fuel approval process, as a
comprehensive database of standard component swell values is
sparse and therefore limiting for both proposed fuel
evaluations and scientific studies aimed at predictive blending
rules. Informed by the available literature, Kosir et al.123

proposed the linear volumetric blending rule found in eq 34.
÷÷÷÷÷

Sw v Swfuel = | (34)

This rule was validated by Faulhaber et al.118 for binary blends
of 4 single dopant molecules from different hydrocarbon
classes at 3−40 vol % in a SAF comprised entirely of aliphatic
hydrocarbons. These 24 results, along with 28 additional swell
measurements of binary and ternary mixtures, are found in
Figure 5. For this demonstration, single-species swell was

Figure 4. Unity plot showing DCN blending rule error. Data sources:
refs 113−117.

Figure 5. Unity plot showing O-ring volume swell blending error for
42 mixtures measured using optical dilatometry method of Faulhaber
et al.118 The legend indicates hydrocarbon type of species doped in
SPK, except for “fuel” and “ternary”, which indicate fuel−fuel blends
and single-species/single-species/SPK blends, respectively.
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quantified using measurements of each molecule doped at 8
vol % in synthetic paraffinic kerosene (SPK) and extrapolated
to 100 vol %. This was done to avoid O-ring test sample
degradation that can occur during soak tests using single
species aromatic solvents. Volume swell of fuels, on the other
hand, were simply measured at 100 vol %.

The MAE for these 52 total measurements is 1.23% (v/v).
Comparing this to the O-ring swell experience range for
conventional jet fuel found with this experimental method
(8.3−17.1%, v/v), the total uncertainty ranges between 7 and
15% of the swell expected for elastomer compatibility.
However, it is expected that experimental error comprises a
large portion of this uncertainty. Further O-ring swell
measurement campaigns will afford more comprehensive
validation of this rule and associated experimental error,
including investigation of potential interaction effects in
complex mixtures and the impact of trace amounts of
heteroatoms.119,121,124,125 A key part of these continuing
efforts will be the collection of single component swell data
to construct a model based on observed relationships between
elastomer swell and other molecular properties or structural
identifiers to predict the swell of compounds that are not
readily available for measurement, building on the works of
Graham et al.121 and Landera et al.30 whose respective models
relate elastomer swell with Hansen solubility parameters.11,126

4. CHALLENGES TO PROPERTY PREDICTIONS FOR
JET FUEL DESIGN AND QUALIFICATION

Looking forward, there are five themes poised for advance-
ments. These include (1) quantification of prediction
uncertainty category one (regression) and three (hybrid)
models, (2) dissemination of probabilistic property prediction
software, (3) integrating category one (regression) with
category two (blending rules) models to refine the
composition characterization, (4) addition hybridization
opportunities to reduce model uncertainty, and (5) prediction
impurity-sensitive properties such as those listed in column D
of Table 1. A brief paragraph is devoted to each of these
themes.

Throughout the sciences, there has been widespread
application of machine learning to develop interpolative
relationships between different characteristics of the popula-
tion. Few of the articles that showcase these models address
potential overfitting errors or uncertainties arising from
epistemic errors (population is not representative of the
sample for which a property estimate is desired) or
heteroscedastic errors arising from non-uniformity of variances
over the range of independent variables. Two notable
exceptions include the works of Oh et al.21 and Hall et al.13

Tools that are excellent at finding and leveraging strong
correlations between features that are distributed throughout a
large population127 are not necessarily applicable to problems
where the variation in the uncharacterized population (desired
prediction) may be substantially different from the variation
observed in the characterized population (training, validation
and test sets). To the point, more education is needed around
the application limits of regression-based models.

Frequently, the results of machine-learning models are
published, absent disclosure of the model itself. While it may
be reasonable to presume that independent researchers could
acquire the same data used in the original research and follow
the same prescription to derive a similar, interpolation scheme,
this presumption is unprovable without definition of the

original model. Demotivating the creation of such models or
models for which uncertainty quantification is incomplete
could be accomplished by making the models that do include
comprehensive uncertainty quantification more readily avail-
able. This review assists to that end. Additionally, the revision-
controlled software that utilizes the blending rules discussed in
this review and makes the uncertainty determinations could be
made available online along with the NIST database upon
which it relies.

One potential application of machine-learning models which
has not been explored in detail is an integration with blending
rules; tier-alpha models,10 where both models use species
concentration data from a GC × GC experiment as input.
Perhaps the coefficients of the regressed model could serve as
probabilistic constraints to be imposed on the selection of
isomers used to represent a particular hydrocarbon bin in the
tier-alpha model framework. The isomeric population dis-
tributions that bring the tier-alpha-like10 prediction into
alignment with the regressed model interpolation for one
property (or set of properties) may be used to narrow the
undetermined isomer contribution to the tier-alpha-like
predictions of other properties.

There are, in fact, many opportunities to integrate different
modeling approaches and to maximize their utilization of
disparate data streams to reduce overall prediction uncertainty.
Simple examples of this notion include utilization of C#, H#
and total aromatics content to bound the total concentration of
cycloalkanes. It is more complicated to simultaneously leverage
GC × GC data, spectroscopic data, and physiochemical
properties. One tactic would be to let any piece of data serve as
a constraint within the tier-alpha framework. For example,
NMR data could provide information on chain branching,
which could, in principle, be imposed on the isomeric
selections within the tier-alpha framework. Another possibility
would be to create a model integration method whereby the
probabilistic predictions of different modeling approaches are
encouraged to inform one another; resulting in an integrated
property prediction with a narrower uncertainty band.

While each of the four potential advances which have been
noted so far are interesting in the own right, the biggest gap in
SAF property predictions has to do with the properties listed in
column D of Table 1. These properties are believed to be
strongly influenced by impurities and other components that
may be present in fuel at very low concentration; perhaps even
below the detection limit of analytical methods that focus on
qualification and quantification of individual components
within a mixture. A review of existing models to estimate
these properties is needed, and we believe such a review will
reveal significant gaps to be filled by future research and
development.

5. CONCLUSION
A summary of each blending rule assessment is provided in
Table 2. Raoult’s law, for vapor pressure is left off the list
because its accuracy, when applied to mixtures of many
components, is not known. This is the most impactful gap
within our collective knowledge of model accuracy because it
has a direct bearing on the ASTM D86 distillation curve (e.g.,
T10, T50, and T90) and the gas phase concentration. Overall,
thirty-two different fuel properties can be estimated from
simple algebraic models involving 16 scalar products, one
simple equation of state model, and well-known property-
property relationships. Six of the base properties including
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carbon number, hydrogen number, lower heating value, heat
capacity of the gas phase, dielectric constant and the
distillation curve as defined by ASTM D2887 are predicted
essentially exactly by the scalar product blending rule since
intermolecular forces have no substantive effect on these
properties. Another six base properties can be predicted from
composition and component data with model uncertainty that
is small relative to other sources of uncertainty. These
properties include density, liquid-phase heat capacity, thresh-
old sooting index, elastomer seal swell, flash point, and the
lower flammability limit. Three properties that depend
significantly on intermolecular forces include kinematic
viscosity, surface tension and thermal conductivity. Even
these properties are reasonably well approximated by a
scalar-product blending rule, having prediction uncertainties
less than 4% when applied exclusively to mixtures of aliphatic
and/or aromatic hydrocarbons. The freeze point can also be
predicted well (<5 °C) from composition provided there is
also a collection of reference data for each high-freeze-point
component as a function of concentration in a reference,
hydrocarbon solvent. Absent the reference data, however,
freeze point predictions can be too high by as much as 20 °C.
The derived cetane number, which intuitively should be
modeled through detailed kinetics is well approximated by a
simple blending rule for many mixtures. However, the scalar-
product blending rule applied to some mixtures does result in a
DCN prediction error greater than 20%.
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Table 2. Summary of Blending Rule Accuracy Assessments

property
blending rule
uncertainty

number of
data points

used source

carbon number 0 CoMa

hydrogen number 0 CoM
density MARE 0.24 (%) 675 36
lower heating value ME 0.15 (kJ/kg) 27 40
liquid heat capacity MRE 0.9 (%) 81 43
thermal

conductivity
max 2.6 (%) 22 58 and 59

kinematic viscosity MARE 3.9 (%) 675 36
surface tension MRE −2.85 (%) 55 67 and 68
freeze point max 20 (°C) 41 69
distillation curve

(ASTM D2887)
MAE 1.5 (°C) 966 78

lower flammability
limit

MRE 1.3 (%) 86 84

flash point MAE 1.72 (°C) 153 91
dielectric constant MAE 0.0038 200 94
threshold sooting

index
MAE <2 confounded 102

derived cetane
number

MARE 2.9 (%) 278−100 113,
115−117,
and 128

elastomer swell MAE 1.23 (%, v/v) 52 118
aCoM = conservation of mass.
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