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Abstract— In this paper, we present a complete analytic proba-
bility based description of mobile-to-mobile uncorrelated scatter
channels. We provide a theoretical proof that the proposed
probability based description is equivalent to the correlation
based description introduced by Bello and Matz. This equivalence
is evaluated through a comparison of the hybrid character-
istic probability density function with the correlation based
description of a measured generic mobile-to-mobile channel,
both of which can be obtained directly either from theory or
from measurement data. The comparison confirms the similarity
between the probability based and correlation based description
qualitatively and quantitatively. Thus, the proposed probabilis-
tic description complements the common correlation based
description providing a comprehensive theoretical description of
arbitrary uncorrelated scatter channels.

Index Terms— Doppler frequency, mobile-to-mobile commu-
nications, geometry based stochastic channel model, hybrid
characteristic probability density function, prolate spheroidal
coordinate system, non-stationary channels.

I. INTRODUCTION

THE significance of mobile-to-mobile (M2M) communi-
cations is progressively growing. Especially vehicle-to-

vehicle (V2V) communications – just one area of modern
M2M communications – is becoming increasingly integrated
into newly manufactured cars to mitigate possible accidents
via situational awareness. Moreover, it will become an inte-
gral part of future autonomous driving vehicle solutions [1].
Similar direct communication frameworks are envisioned for
various modes of transportation such as trains, ships, aircraft,
and drones. Historically, the channel models used for the
design and testing of communication systems in the past were
wide-sense stationary uncorrelated scattering (WSSUS). They
were largely valid as they were mainly for fixed-to-mobile
channels. However, they are inadequate in an M2M context
due to the inherent non-stationarity and uncorrelated scattering
characteristics of the channel.

Scattering is ultimately a stochastic process. It has been
shown in [2] and [3] that it can be well explained by means
of postulating a power spectral density in the frequency
domain, or equivalently with an autocorrelation function in the
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temporal domain. Temporal stochastic variations can also be
described in a similar statistical fashion. Clarke derived in [4] a
model that describes the Doppler spectrum of the propagation
channel in the case of a mobile receiver, e.g., a moving
car communicating with a fixed base station. This type of
Doppler spectrum is widely known as Jakes spectrum [5].
In [6] Bello extended the mentioned models to more gen-
eral channels, describing statistical characterizations for both
WSSUS and non-WSSUS channels. M2M model extensions
for various two-dimensional (2D) and three-dimensional (3D)
scenarios are presented in [7] and [8]. Later, Matz in [9]
focused on non-WSSUS channels, which he studies from two
complementary perspectives. First, the time frequency channel
transfer function can be treated as a non-stationary process in
both time and frequency domains. Second, by assuming that
scatterers with distinct delays and Doppler frequencies are
uncorrelated, the resulting channel impulse response can be
studied as non-stationary in time and uncorrelated along the
delay. This allows to introduce the local scattering function
(LSF) and the channel correlation function (CCF), which both
describe small-scale channel statistics. The two functions are
naturally related to correlation functions introduced by Bello
in [6] via Fourier transforms.

Bello states in Section IV of his seminal work [6] that it’s
difficult to find an exact statistical description of a time-variant
channel in terms of multidimensional probability functions
and that correlation functions are a more practical approach.
This statement implies that without further physical assump-
tions on the propagation environment, an accurate statistical
characterization of non-WSSUS channels can be quite elu-
sive. It thus motivates the application of geometric-stochastic
modeling approaches, where a specific propagation geometry
is assumed, or at least some additional assumptions on the
structure of the channel are put into place.

One such approach is exemplified well in [10]. It reveals
that M2M channels typically violate the wide-sense stationary
(WSS) assumption to a greater extent than the uncorrelated
scattering (US) assumption. This, on the one hand, constrains
general non-WSSUS type of channels to more restricted
cases, while on the other hand, building a highly relevant
application scenario for the design of practical M2M com-
munication systems. Our objective in this paper is therefore
to explore such non-WSS channels in more detail, providing
a common probability based characterization describing the
non-stationary behavior of arbitrary M2M channels. The main
contributions of the paper are the following. We
• provide a complete probability based description of non-

stationary M2M channels,
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• complement and highlight the relation of the probability
based description to the correlation based description by
Bello [6] and Matz [9],

• show a general proof for the equivalence of probability
based and correlation based descriptions,

• define hybrid characteristic probability density functions,
• validate the theoretical probability based description

through a comparison with measurement data.
In detail, we extend the proof of the proportionality between
the joint delay Doppler probability density function (pdf) and
scattering function for the WSSUS case in [11] and [12] to
non-WSS channels by using the time-variant time frequency
correlation function shown in [13]. We present the hybrid
characteristic probability density function in order to enable
a direct comparison of a theoretically computed, closed-form
probability based function with a correlation based description
evaluated from measurement data. A similar concept of a
hybrid characteristic pdf was introduced in [14] to describe
multivariate pdfs, where an inverse Fourier transform was
applied only over one of the variables, resulting in a mixture
of a pdf and a characteristic function.

Since the correlation based description only allows for an
analysis after the measurement, our probability based descrip-
tion enables the prediction and simulation of arbitrary M2M
channels by only relying on the geometry of the propagation
scenario. Being able to theoretically describe high mobility
M2M channels allows to validate emerging technologies in
radio communications including new modulation schemes
like orthogonal time frequency space (OTFS) [15], [16],
or integrated sensing and communications (ISAC) as in [17].

The remainder of the paper is structured as follows.
In Section II, we provide a complete stochastic description
of the uncorrelated M2M channel and relate those functions
to the correlation functions, LSF, and CCF. In Section III,
we show, how the hybrid time delay characteristic probability
density function is calculated in closed form. The equivalence
of the theoretical probability based description is then verified
by the correlation based evaluation of measurement data from
an aircraft-to-aircraft measurement campaign in Section IV.
The paper is concluded with Section V.

II. CHARACTERIZATION OF US CHANNELS

In order to obtain analytical solutions for the probabil-
ity based description, it is essential to establish a unified
mathematical framework. Our goal is to establish connections
between the models developed by Bello in [6] and Matz in [9]
with our probabilistic approach.

Consider a classical communication channel between a
transmitter (TX) and receiver (RX), both possibly mobile.
The relationship between the transmitted signal s(t) and the
received signal r(t) can be represented as [9]

r(t) =
∫

h(t, τ)s(t− τ) dτ , (1)

where the function h(t, τ) – the time-variant channel impulse
response – fully characterizes the propagation environment
between the TX and the RX and where t is the absolute
time and τ the delay. Essentially (1) states that the received

signal is a superposition of differentially delayed copies of the
transmitted signal. The channel can be defined in terms of the
spreading function or also known as Doppler-variant impulse
response S(τ, ν) =

∫
h(t, τ)e−j2πνt dt, the time-variant trans-

fer function L(t, f) =
∫

h(t, τ)e−j2πfτ dτ , via a Fourier
transform over the delay variable τ or the Doppler-variant
transfer function T (ν, f) =

∫ ∫
h(t, τ)e−j2πνte−j2πfτ dtdτ ,

which is obtained by a double Fourier transform of h(t, τ)
over t and τ . The variable f denotes the frequency and ν
the Doppler frequency shift. Knowledge of h(t, τ), or any of
the other three functions is thus instrumental for the design,
simulation, or testing of practical communication systems.

A. Correlation Based Description

In practice, an exact form of h(t, τ) depends on the par-
ticular propagation environment. The environment, however,
is rarely known accurately or in advance at the stage of
communication system design. Therefore, as has been men-
tioned earlier, statistical properties of h(t, τ) are of interest.
Similarly, the statistical properties of the other three system
functions S(τ, ν), L(t, f), and T (ν, f) can be determined.
These statistics can be captured by the corresponding auto-
correlation functions of the four system functions according
to [6], [9], and [18] as

Rh(t, τ ; ∆t,∆τ) = E{h(t, τ + ∆τ)h∗(t−∆t, τ)} ,

RL(t, f ; ∆t,∆f) = E{L(t, f + ∆f)L∗(t−∆t, f)} ,

RS(τ, ν; ∆τ,∆ν) = E{S(τ, ν + ∆ν)S∗(τ −∆τ, ν)} ,

RT (ν, f ; ∆ν,∆f) = E{T (ν, f + ∆f)T ∗(ν −∆ν, f)} . (2)

Here the operator E{·} denotes the expectation operation,
(·)∗ the complex conjugate, and R(·, ·; ·, ·) is the autocorre-
lation function.1 By taking double Fourier transforms of the
correlation functions, a set of four equivalent, yet different
descriptions of the channel can be obtained.

One can see that the correlation functions in (2) are four-
dimensional (4D) functions. These functions are difficult to
work with, not to mention hard to get insights into or intuition
about their properties. To simplify the analysis, one can often
invoke the WSSUS assumption, see e.g., [6]. Its consequence
is that correlation functions in (2) become dependent only on
the corresponding time and frequency lag variables. They thus
collapse to much simpler 2D functions, see [6] and [9]. Due
to this simplification, the WSSUS assumption has dominated
channel modeling over decades, especially for non-mobile
applications or fixed-to-mobile (F2M) channels, i.e., with a
fixed base station. Yet, the mobility of TX and RX nowadays
brings in the non-stationarity of the propagation environment,
and thus of the channel. In [9] the LSF was introduced as
an alternative second-order channel statistic to account for
non-stationarities in the time and frequency domains. The LSF
generalizes the scattering function for non-WSSUS channels,
but, as mentioned above, it is a 4D function. Many M2M chan-
nels, however, in particular V2V channels, are non-stationary,

1Due to the equivalence of the expectancy operators E{f(x, y+∆y)f∗(x−
∆x, y)} = E{f(x, y)f∗(x − ∆x, y − ∆y)} = E{f(x + ∆x, y +
∆y)f∗(x, y)}, the expressions in (2) can be modified correspondingly.
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yet preserve the US property. This permits describing US
channels with only three variables instead of four.

According to [6], US channels were observed for troposcat-
ter communication and moon reflections. Recently, similar
effects were also observed for M2M channels, where the
uncorrelated scattering assumption was validated with mea-
surements, see e.g., [10]. There the author states that the
V2V channel infringes the WSS assumption much stronger
than the US assumption. In the US case the scatterers can be
modeled as a continuum of uncorrelated scatterers according
to [6]. As a result, the general correlation functions in (2)
become independent of ∆τ , since the correlation between
scatterers causing different delays vanishes. Under the US
assumption (2) can be represented, see also [6, (64)-(66)], as2

Rh(t, τ ; ∆t,∆τ) = Ph(t; τ,∆t)δ(∆τ) ,

RL(t, f ; ∆t,∆f) = RL(t; ∆t,∆f) ,

RS(τ, ν; ∆τ,∆ν) = PS(τ, ν; ∆ν)δ(∆τ) ,

RT (ν, f ; ∆ν,∆f) = RT (ν; ∆ν,∆f) , (3)

where δ(·) is the Dirac delta distribution and Ph(t; τ,∆t)
and PS(τ, ν; ∆ν) are cross-power spectral densities. Using Ph

from (3), the time-variant LSF is defined [19] as

CH(t; τ, ν) =
∫

Ph(t; τ,∆t)e−j2π∆tν d∆t . (4)

Furthermore, in [9] Matz defines the corresponding channel
correlation function, which we simplify here to

AH(∆t, ∆f ; ∆ν) =
∫

RL(t; ∆t,∆f)e−j2π∆νt dt , (5)

which brings the total available functions to describe the US
channel statistically to six, which are given in (3), as well
as (4) and (5). The reduction of dimensionality of the six
correlation based functions permits simpler visualization and
interpretation, which in turn provide valuable insights into the
correlation properties of the channel.

Again, the resulting correlation functions can be studied
both in time, time lag, or frequency and frequency lag
domains. As a consequence, for the 3D functions in (3) a
total of eight equivalent representations can mathematically
be established. However, in [6] Bello discusses only the four
proper correlation functions, where the time and frequency
variables, as well as the associated lag variables are in the
same domain, e.g. either both in the temporal or both in
the frequency domain. Later in [9] Matz proposed the time-
variant LSF and the channel correlation function, which are
obtained by Fourier transforms of the original four correlation
functions as shown in (4) and (5). As we will see, it is also
useful to consider the correlation variables in a mixed temporal
frequency domain, thus extending the available six functions
from Bello and Matz to a total of eight. All these functions
are summarized conceptually in Table I, where they are related
to their probabilistic based counterparts as shown in the next
subsection.

2Note that equations in (3) imply that the right-hand side is independent
of f in case of the US assumption.

Fig. 1. Time-variant and Doppler correlated relationships between char-
acteristic functions, probability density functions, and hybrid characteristic
probability density functions for the US channel. Time-variant functions,
which are referred to in Fig. 2, are framed by a dashed rectangle. Fourier
transforms are indicated by the sign.

In order to set all correlation based functions in a rela-
tionship with the probability based functions discussed later,
we need to make a new definition. Thus, we define

Pϱ(t; ∆f, ν) ≜
∫
CH(t; τ, ν)e−j2π∆fτ dτ , (6)

as the Fourier transform of the time-variant LSF with respect
to the delay variable τ .

B. Probability Based Description

In this subsection, we discuss the probabilistic representa-
tion of the US channel more formally. We begin by defining
τ̃ ≜ τ/τlos as the normalized delay, where τlos is the line-
of-sight (LOS) delay between the TX and RX. Similarly,
we define the normalized frequency lag ∆f̃ ≜ ∆fτlos. In the
following, we will combine the notation common in channel
modeling literature with our previous works, e.g., [20], where
the focus was on deriving the joint delay Doppler pdf p(t; τ̃ , ν)
for the M2M channel.

Note that by taking Fourier transforms along some of the
variables of these functions, we obtain equivalent representa-
tions, yet in the corresponding frequency domains. This will
allow for other, often quite revealing, interpretations of the
channel properties, as will be shown later. These different
transforms are shown for the US case in Fig. 1. Of particular
interest is the time-variant joint delay Doppler pdf p(t; τ̃ , ν)
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Fig. 2. Time-variant relationships between characteristic functions, probabil-
ity density functions, and hybrid characteristic probability density functions
for the US channel. Fourier transforms are indicated by the sign, integrals
by , and setting the ∆ variable to zero by .

that we introduced before in [20]. The time-variant joint delay
Doppler pdf p(t; τ̃ , ν) can be computed analytically, e.g.,
for M2M US channels. Furthermore, it has a finite support,
since the velocity and sensitivity limit the possible delays
and Doppler frequencies. Since the trajectories of TX and
RX are time-variant, it makes sense to use a time-variant
probability density. In our case the time t is a deterministic
variable, whereas the delay τ̃ and Doppler frequency ν are
treated as stochastic variables. Their distributions are obtained
from the assumption that scatterers are uniformly distributed
on the ground. This is followed by a variable transform from
the spatial to the Doppler domain, see [20]. To illustrate the
connection between the correlation functions from [6] and
their equivalent forms in [9], we summarize them in Table I,
using the original notation of the references.

Our objective is to relate the joint delay Doppler pdf
p(t; τ̃ , ν) [20] to the LSF [9] and, what we call, the hybrid
characteristic pdf ρ(t; τ̃ , ∆t) to the delay cross-power spectral
density in [6]. Recall that for the joint pdfs this is equivalent to
computing the characteristic function for one of the two vari-
ables. Thus, ρ(t; τ̃ , ∆t) is a characteristic function along the
∆t direction and a pdf along the delay direction. Accordingly,
this function presents a time-variant spectral density along the
τ̃ variable and a temporal correlation along the ∆t variable.
Such a hybrid characteristic pdf has been originally introduced
in [14] and can be factored as

ρ(t; τ̃ , ∆t) = p(t; τ̃)ρ(t; ∆t|τ̃) . (7)

Since M2M channels are non-stationary, this function is
particularly useful, since it allows observing a time-variant,

delay-dependent temporal correlation of the channel. Using
Fourier transforms to convert the time or frequency variables
will lead to other hybrid representations of the channel, where
the function represents a characteristic function along one
of the variables and a probability density along the other.
Thus, we consider the Fourier and inverse Fourier transform
as basically the same operation, but with different signs.
In Fig. 1 this is represented with functions, e.g., ρ(t; τ̃ , ∆t)
and ϱ(t; ∆f̃ , ν), which are neither pure characteristic nor
probability density function representations.

For an easier comparison to WSSUS channels, the eight
functions in Fig. 1 can be partitioned into (i) a time-variant
(dashed box) and (ii) a Doppler correlated description. We con-
sider time-variant descriptions as more natural and easier
to interpret, although all descriptions enjoy an equivalence
under the appropriate Fourier transform. The reasoning behind
this lies in the fact that in M2M scenarios both TX and
RX move, resulting in time-variant velocity vectors. Thus,
a time-variant channel description would be more natural. Yet,
via appropriate Fourier transform we can equivalently obtain
Doppler correlated descriptions – the lower part of Fig. 1.
These are, however, less intuitive to interpret.

1) Time-Variant Functions: We begin with the known
time-variant joint delay Doppler pdf p(t; τ̃ , ν) from [20] as a
starting point for further analysis. An inverse Fourier transform
along the Doppler variable leads to a hybrid characteristic pdf
representation, as we mentioned above. Let us consider the
joint delay Doppler pdf p(t; τ̃ , ν) and the corresponding hybrid
representation

ρ(t; τ̃ , ∆t) ≜
∫

p(t; τ̃ , ν)ej2πν∆t dν . (8)

It is important to note that ρ(t; τ̃ , ∆t = 0) = p(t; τ̃), since (8)
becomes a marginalization integral then. Indeed, by setting the
characteristic variable ∆t to zero, the exponential function in
the integral vanishes, and the marginal, time-variant pdf p(t; τ̃)
can be obtained. This time-variant delay pdf is proportional to
Ph(t; τ̃ , ∆t = 0), which is the power delay profile of the
channel, see Theorem 1. Thus, we have a non-parametric,
geometry based, time-variant path loss model, which we will
analytically derive for the general M2M channel. With the
time-variant delay pdf p(t; τ̃) we can obtain the factoriza-
tion of the time-variant, delay-dependent Doppler probability
density as p(t; τ̃ , ν) = p(t; τ̃)p(t; ν|τ̃), which reveals the
conditional density p(t; ν|τ̃), i.e., the Doppler pdf conditioned
on a particular delay τ̃ .

With the time-variant pdf p(t; τ̃) the hybrid characteristic
pdf can also be factorized to a delay-dependent characteristic
function. It can be shown as in [14] that with (7) the charac-
teristic function of a conditional pdf can be computed as

ρ(t; ∆t|τ̃) =
∫

p(t; ν|τ̃)ej2πν∆t dν

=
ρ(t; τ̃ , ∆t)

ρ(t; τ̃ , ∆t = 0)
=

ρ(t; τ̃ , ∆t)
p(t; τ̃)

. (9)

The other hybrid characteristic pdf contains a pdf in the
Doppler domain and a characteristic function in the frequency
domain, but here the time and Doppler frequency are in
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different domains. The function is given by

ϱ(t; ∆f̃ , ν) ≜
∫

p(t; τ̃ , ν)e−j2π∆f̃ τ̃ dτ̃ . (10)

Note that we perform a normal Fourier transform here instead
of an inverse one for a characteristic function in order to be
consistent with channel modeling literature. Similarly, by set-
ting ∆f̃ = 0 in (10), we obtain ϱ(t; ∆f̃ = 0, ν) = p(t; ν), i.e.,
the time-variant Doppler probability density. The conditional
characteristic function is obtained by

ϱ(t; ∆f̃ |ν) =
∫

p(t; τ̃ |ν)e−j2π∆f̃ τ̃ dτ̃

=
ϱ(t; ∆f̃ , ν)

ϱ(t; ∆f̃ = 0, ν)
=

ϱ(t; ∆f̃ , ν)
p(t; ν)

. (11)

The time-variant joint characteristic function r(t; ∆f̃ ,∆t) can
be directly obtained by a double Fourier transform as

r(t; ∆f̃ ,∆t) =
∫ ∫

p(t; τ̃ , ν)e−j2π(∆f̃ τ̃−ν∆t) dτ̃dν , (12)

with the property r(t, ∆f̃ = 0, ∆t = 0) = 1. Note that
in (12) we use one normal and one inverse Fourier transform
to compute the joint characteristic function to be consistent
with the channel modeling literature. This differs from the
description used in [21].

The time-variant mean delay and delay spread can be easily
calculated by using the hybrid characteristic pdf and setting
∆t = 0. This results in the first two delay moments as

µτ̃ (t) =

τ̃max∫
τ̃min

τ̃ ρ(t; τ̃ , ∆t = 0) dτ̃ , (13)

στ̃ (t) =

√√√√√ τ̃max∫
τ̃min

(τ̃ − µτ̃ (t))2 ρ(t; τ̃ , ∆t = 0) dτ̃ , (14)

with τ̃max > τ̃min > τ̃sr and

τ̃sr = max

(√
A2 + B2 + D2

A2 + B2 + C2
, 1

)
, (15)

being the delay of the specular reflection relative to the line-
of-sight delay. Parameters A, B, C and D are the orientation
coefficients of the scattering plane. Their geometric interpre-
tation and computation will be discussed Section III.

If the influence of the delay is removed, we obtain the
temporal correlation of the channel per delay. Instead of calcu-
lating the total mean Doppler and Doppler spread, we calculate
delay-dependent mean Doppler and Doppler spread. These can
be obtained from the conditional characteristic function as

µν|τ̃ (t)

=
1

j2π

∂

∂∆t
ρ(t; ∆t|τ̃)

∣∣∣∣
∆t=0

, (16)

σν|τ̃ (t)

=
1
2π

√(
∂

∂∆t
ρ(t; ∆t|τ̃)

)2

− ∂2

∂∆t2
ρ(t; ∆t|τ̃)

∣∣∣∣∣∣
∆t=0

,

(17)

where ρ(t; ∆t|τ̃) is the inverse Fourier transform of p(t; ν|τ̃)
and is therefore a characteristic function in the ∆t variable.

2) Doppler Correlated Functions: The Doppler correlated
functions in Fig. 2 constitute for ∆ν = 0 a temporal average
of the functions in the upper half. The hybrid Doppler delay
characteristic pdf ρ(∆ν; τ̃ , ν) for example is calculated as

ρ(∆ν; τ̃ , ν) ≜
∫

p(t; τ̃ , ν)e−j2π∆νt dt , (18)

with ρ(∆ν = 0; τ̃ , ν) being the temporal mean of the joint
delay Doppler probability density function due to the Fourier
properties. This was already implicitly used in describing
V2V scenarios such as two cars driving in opposite directions
in [22]. We normalize the functions in such a way, that the
joint pdf p(t; τ̃ , ν) is a time-variant probability density in
the variables τ̃ and ν. Thus, the time-variant joint charac-
teristic function r(t; ∆f = 0, ∆t = 0) = 1. The lower
half functions with ∆ν deviate from pdfs or characteristic
functions by a factor of T = 1/∆ν. The channel correla-
tion function AH(∆t, ∆f ; ∆ν) by Matz thus corresponds to
R(∆ν; ∆f̃ ,∆t). We will focus our attention in the remaining
paper on the time-variant functions, since a time-variant joint
pdf as a basis of the description seems more natural with
time-variant trajectories of TX and RX as input to our model.

Finally, as illustrated in Table I, we note that the probability
based functions r and ρ correspond to the correlation functions
R and P of Bello, respectively. Further, the joint pdf p
corresponds to the time-variant LSF CH and triple frequency
Doppler time characteristic function R to the uncorrelated
scatter channel correlation function AH. For completeness,
we further present two new hybrid functions ϱ with mixed
variables in both time-variant and Doppler correlated domains.

C. Proportionality Between the Correlation and Probability
Based Functions

The following theorem states that stochastic channel
descriptions computed based on the joint delay Doppler pdf,
as shown in Fig. 2, are proportional to the corresponding
correlation based functions derived by Bello and Matz in their
works. Note that the same variables as Matz are used.

Theorem 1: The autocorrelation of the time-variant transfer
function RL(t; ∆t,∆f̃) is proportional to the time-variant
joint time frequency characteristic function r(t; ∆f̃ ,∆t)

RL(t; ∆t,∆f̃) ∝ r(t; ∆f̃ ,∆t) .

Furthermore, due to the linearity of Fourier transforms, the
above stated proportionality applies for each pair of correla-
tion and probability based functions as outlined in Table I.

Proof: We follow here the steps similar to those in [11].
The starting point is the assumption that for the time t the
channel can be represented as a linear combination of K(t)
propagation paths

h(t, τ) =
K(t)−1∑

k=0

αk(t)e−j2πfcτk(t)δ(t− τk(t)) . (19)

Here αk(t) is the complex path weight, τk(t) is the
time-variant propagation delay, and fc is the carrier frequency.
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TABLE I
COMPARISON OF CORRELATION AND PROBABILITY BASED FUNCTIONS FOR US CHANNELS

By taking the Fourier transform over the delay, a time-variant
transfer function can be constructed as

L(t, f) =
K(t)−1∑

k=0

αk(t)e−j2π(f+fc)τk(t) . (20)

We approximate the time-variant channel with a piece-wise
linear approximation. This is done by assuming that for a
moment of time t = t′ the time-variant path propagation
delay can be locally, over the interval ∆t, approximated with a
MacLauren series. Thus, we can represent a time-variant delay
as

τk(t) =
∞∑

n=0

1
n!

dτk(t)
dt

∣∣∣∣
t=t′

tn ≈ τ̄k(t′) + t
dτk(t)

dt

∣∣∣∣
t=t′

.

(21)

Note that in general, τ̄k(t′) is constant over the assumed
interval ∆t. The derivative dτk(t)

dt

∣∣∣
t=t′

is also constant over
this interval. These parameters characterize the intercept and
local linear trend of the time-variant delay τk(t) at a point
t′. They do, however, change with time t, yet at a lower
rate. In other words, they are piece-wise constant functions
of t. In the following, we will make the dependency of these
variables on t explicit, keeping the piece-wise constant nature
of these variables in mind.

We note that under the narrow-band assumption, the
Doppler frequency ν(t) can be defined as ν(t) ≜ −fc

dτ(t)
dt ,

i.e., when all transmitted frequencies experience the same
Doppler shift [13]. Using (21) the time-variant transfer func-
tion L(t, f) can be approximated as

L(t, f) ≈
K(t)−1∑

k=0

α̌l(t)ej2πνk(t)te−j2πfτ̄k(t) , (22)

where α̌k(t) = αk(t)e−j2πfcτ̄k(t). For the correlation function,
we get with τ̃ = τ/τlos and f̃ = fτlos as shown in [11]
and [13] the following

RL(t; ∆t,∆f̃) = |α̌(t)|2E
{

ej2πνk(t)∆te−j2π∆f̃ τ̃k(t)
}

, (23)

where the expectation E{·} is taken with respect to the
joint distribution p(t; τ̃ , ν). The result of E{·} in (23) is the
joint characteristic function r(t; ∆f̃ ,∆t) as given in (12).
Thus, the correlation function RL is proportional to the joint

characteristic function r(t; ∆f̃ ,∆t). This relationship between
correlation function and characteristic function is similarly
shown in [23] if complex exponentials are used for the channel
representation. Let us stress again that the proportionality is
valid for an arbitrary, but fixed t = t′ and as ∆t → 0. □

Following directly from Theorem 1, we can derive the
ensuing proportionality relations due to the linearity of the
Fourier transform of the time-variant, two-dimensional corre-
lation based and probability based functions. They are given
for the four time-variant functions by

RL(t; ∆t,∆f̃) ∝ r(t; ∆f̃ ,∆t) ,

CH(t; τ̃ , ν) ∝ p(t; τ̃ , ν)
Ph(t; τ̃ , ∆t) ∝ ρ(t; τ̃ , ∆t) ,

Pϱ(t; ∆f̃ , ν) ∝ ϱ(t; ∆f̃ , ν) . (24)

Furthermore, this allows us to define the following conditional
descriptions for the correlation based functions, which are then
equal to the conditional probability based functions as

CH(t; ν|τ̃) ≜
CH(t; τ̃ , ν)

Ph(t; τ̃ , ∆t = 0)
= p(t; ν|τ̃) ,

Ph(t; ∆t|τ̃) ≜
Ph(t; τ̃ , ∆t)

Ph(t; τ̃ , ∆t = 0)
= ρ(t; ∆t|τ̃) ,

Pϱ(t; ∆f̃ |ν) ≜
Pϱ(t; ∆f̃ , ν)

Pϱ(t; ∆f̃ = 0, ν)
= ϱ(t; ∆f̃ |ν) , (25)

where we use the fact that computing the hybrid characteristic
function at zero lag is equivalent to the marginalization of the
pdf. Similar to [24], we can compute the normalized power
spectral densities and correlation functions, which are again
equal to their probability based counterparts as

P̃h(t; τ̃) =
Ph(t; τ̃ , ∆t = 0)∫
Ph(t; τ̃ , ∆t = 0) dτ̃

= p(t; τ̃) ,

P̃ϱ(t; ν) =
Pϱ(t; ∆f̃ = 0, ν)∫
Pϱ(t; ∆f̃ = 0, ν) dν

= p(t; ν) ,

R̃L(t; ∆f̃ ,∆t) =
RL(t; ∆t,∆f̃)

RL(t; ∆t = 0,∆f̃ = 0)
= r(t; ∆f̃ ,∆t) ,

R̃L(t; ∆f̃) =
RL(t; ∆t = 0,∆f̃)

RL(t; ∆t = 0,∆f̃ = 0)
= r(t; ∆f̃) ,

R̃L(t; ∆t) =
RL(t; ∆t,∆f̃ = 0)

RL(t; ∆t = 0,∆f = 0)
= r(t; ∆t) . (26)
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Thus, a direct comparison between the correlation based and
the probability based functions becomes possible.

III. HYBRID CHARACTERISTIC PDF

In order to obtain an analytical closed-form solution for
the hybrid time delay characteristic pdf, we have to transform
the spatial coordinates into an adequate coordinate system.
We have shown in [25] that a prolate spheroidal coordinate
system is suitable for this purpose. The prolate spheroidal
coordinate system (PSCS) allows for a delay-dependent
description of the M2M channel by exploiting the symmetry of
the channel by an ellipsoid based delay description. We shortly
summarize the corresponding formal steps to obtain the spatial
distribution of scatterers from [20] and introduce the coordi-
nate system.

A. Prolate Spheroidal Coordinates

The transformation between the Cartesian coordinate system
(CCS) (x, y, z) and the prolate spheroidal coordinates (PSCs)
(ξ, η, ϑ) is given by the following equations

x = l
√

(ξ2 − 1) (1− η2) cosϑ ,

y = l
√

(ξ2 − 1) (1− η2) sinϑ ,

z = lξη , (27)

where ξ ∈ [1,∞), η ∈ [−1, 1], ϑ ∈ [0, 2π) are the
new coordinates and l in (27) is the focus distance of both
TX and RX to the origin of the Cartesian and the prolate
spheroidal coordinate system. The coordinate ξ represents the
constant distance between TX and RX via a single-bounce
reflection. Geometrically, this relationship is represented by an
ellipsoid, as shown in Fig. 3. We can also define a delay based
coordinate system. This is given by

τx =
τlos

2

√
(τ̃2 − 1) (1− η2) cosϑ ,

τy =
τlos

2

√
(τ̃2 − 1) (1− η2) sinϑ ,

τz =
τlos

2
τ̃ η , (28)

which has temporal axes in units of seconds. Note that the
variable that determines the size of the ellipsoid is denoted by
ξ. However, since 2l = cτlos with c being the speed of light,
it follows that ξ ≡ τ̃ . Furthermore, the classical delay from
channel modeling is given as τ = τlosτ̃ .

Let us consider a scattering plane via which a signal
propagates to the receiver. An arbitrarily oriented scattering
plane is given in Cartesian coordinates as

Ax + By + Cz = lD , (29)

where the four parameters {A, B,C, D} ∈ R determine its
orientation in space. For our purposes we express (29) in the
PSCs, from (27) which results in

Al
√

(ξ2 − 1)(1− η2) cosϑ + Bl
√

(ξ2 − 1)(1− η2) sinϑ

+ Clξη = lD . (30)

The scattering plane, as any 2D plane embedded in 3D
space, can be parameterized by two independent variables

Fig. 3. Prolate spheroidal coordinate system with the surfaces of constant
ξ (ellipsoid), η (hyperboloid), and ϑ (half-plane) with the TX and RX in the
foci of the ellipsoid and hyperboloid.

in the selected coordinate system. Our goal is to obtain a
parameterization that allows for a closed-form derivation of
the hybrid time delay characteristic pdf. Since we already have
ξ for a distance-dependent description, we can choose either
η or ϑ as the second variable. In fact, we need both the (ξ, η)
and (ξ, ϑ) parameterizations to cover all possible scattering
planes in 3D space. Our main parameterization, however, is in
(ξ, η)-coordinates. The remaining scattering planes, which
cannot be parameterized by (ξ, η), since they are orthogonal
to the z-axis in the local CCS, are described by the (ξ, ϑ)-
coordinates. The (ξ, ϑ) description actually complements the
(ξ, η) parameterization. In the following, we refer to these
cases as general case and complementary case, respectively.

B. Spatial Probability Density

In order to obtain the spatial distribution of the scatterers we
restrict our analysis to scatterers lying on the scattering plane.
We consider scatterers that lie on the portion of the scattering
plane circumscribed by the intersection ellipse. The resulting
scattering ellipse can be generally described by the implicit
expression q(ξ, η, ϑ) = 0, which simplifies to q(ξ, η) = 0,
if the parameterization is in (ξ, η)-coordinates or q(ξ, ϑ) = 0,
if the parameterization is in (ξ, ϑ)-coordinates. We assume
that the scatterers lying within q(ξ, η, ϑ) = 0 are identical and
uniformly distributed. Thus, the two-dimensional density s of
the scatterers within the scattering ellipse is modeled as

p(t, q(ξ, η, ϑ); s) =
1
Y

, (31)

where Y is the equivalent area of the ellipse q(ξ, η, ϑ) = 0.
The joint delay Doppler pdf is then obtained by trans-

forming the distribution of scatterers s into (ξ, ν)-coordinates
using (49) and rules of probability transformation as

p (t, q(ξ, η, ϑ); ξ, ν) = p (t, q(ξ, η, ϑ); s)
∣∣Js

−1
∣∣ , (32)
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where Js
−1 is the inverse 2×2 Jacobian matrix of the variable

transformation.
For the joint delay Doppler pdf, the transformation from

the spatial domain to the Doppler domain, i.e., s 7→ ν or
s 7→ (ξ, ν) introduces ambiguities in the mapping. These ambi-
guities, however, can be resolved by applying the algebraic
curve theory to the Doppler frequency description, see [20].
Furthermore, the locations of the extrema and thus the limiting
frequencies of the pdfs can be determined.

Subsequently, we have to determine the scattering areas of
surfaces in curvilinear coordinates in order to normalize the
spatial pdfs. To this end, we employ the concept of differential
forms, which are shortly explained hereafter.

According to [26] a differential form is similar to an
integrand. With differential forms the differential operators
like gradient, divergence, and rotation are extended to higher
dimensions. In PSCs, we apply differential forms [27] to derive
the integrands, i.e., the differential area in PSCs which is
required to normalize the pdfs in (31). We determine the
normalization constant of the spatial pdf by using differential
2-forms.

In order to calculate the area in PSCs, we have to convert
the differentials of the coordinates from the local CCS to the
PSCS. The differentials are transformed by using the Jacobian
matrix J according to [28] as

[dx, dy,dz]T = J[dξ, dη,dϑ]T ,dx
dy
dz

 =


∂x
∂ξ

∂x
∂η

∂x
∂ϑ

∂y
∂ξ

∂y
∂η

∂y
∂ϑ

∂z
∂ξ

∂z
∂η

∂z
∂ϑ


dξ

dη
dϑ

 . (33)

The differential area dS of an arbitrarily oriented scattering
plane as a nonlinear 2-form is given by [26] as

dS =
√

(dx ∧ dy)2 + (dy ∧ dz)2 + (dz ∧ dx)2 , (34)

where ∧ is the wedge product used as

β ∧ γ = (−1)kpγ ∧ β , (35)

with β being a k-form and γ an p-form. The wedge product
is alternating by construction meaning dx ∧ dy = −dy ∧ dx
and dx ∧ dx = 0 for two differential 1-forms. The complete
area of a scattering plane is computed according to [26] as

S =
∫
S

g(x, y, z)
√

(dx ∧ dy)2 + (dy ∧ dz)2 + (dz ∧ dx)2 ,

(36)

where the integral determines the scattering area of a graph
g(x, y, z) over the surface S := q(ξ, η, ϑ) = 0. The region
is bounded by ξ = ξmax corresponding to the maximum
normalized distance that the user can set arbitrarily.

For the scattering plane q(ξ, η, ϑ), the area calculation
in (36) is calculated using three different equations as

S =



∫
S

√(
∂g1

∂x

)2

+
(

∂g1

∂y

)2

+ 1 |dx ∧ dy| if C ̸= 0 ,∫
S

√(
∂g2

∂y

)2

+
(

∂g2

∂z

)2

+ 1 |dy ∧ dz| if A ̸= 0 ,∫
S

√(
∂g3

∂z

)2

+
(

∂g3

∂x

)2

+ 1 |dz ∧ dx| if B ̸= 0 ,

(37)

depending on the parametrization of the scattering plane
in (29). The plane is implicitly parametrized by z = g1(x, y),
x = g2(y, z) or y = g3(z, x). In the following, the three
square roots are referred to as ri and the differential areas
dSi are special cases of (34). At the end we determine the
weighted area Y of the intersection for computing the joint
delay Doppler pdf in (31) as

Y =
∫
S

wri dSi , (38)

where ri, i ∈ {1, 2, 3}, is the square root in (37). We select
it according to the chosen parameterization of the scattering
plane gi. The differential area dSi is either given by |dx ∧ dy|
or |dy ∧ dz| or |dz ∧ dx| depending on the scattering plane
parameterization. The path loss inspired weighting function is
given by w.

Again, we differentiate the general case and the comple-
mentary case. The former can be calculated from the last two
lines in (37), while the latter is computed with the first line
in (37) using A = B = 0.

After substituting the wedge products of the Cartesian
differentials with the differentials in PSCs according to (33),
the area of the scattering ellipse is computed in PSCs. For the
general case the differential area of an arbitrary plane is given
by

ridSi =
l2
√

A2 + B2 + C2
(
ξ2 − η2

)√
(ξ2 − 1) (1− η2) (A2 + B2)− (D − Cξη)2

dηdξ

(39)

where i ∈ {1, 2, 3} relates to the three integrals in (37). The
term ridSi provides the differential area in order to compute
the total area of the ellipse defined by the distance ellipsoid and
the scattering plane. Note that the wedge product is replaced
by a normal product, since the limits of the integrals together
with the integrand produce a positive area.

For the complementary case the differential area of a
scattering plane orthogonal to the z-axis in PSCs is given by

r1dS1 = l2
(

ξ − D2

C2ξ3

)
dϑdξ , (40)

which relates to the first line in (37) with A = B = 0 and thus
r1 = 1. The integral over the differential area computes the
area of a circle, which is caused by intersecting the scattering
plane and the distance ellipsoid, since the scattering plane is
orthogonal to the z-axis.



WALTER et al.: MOBILE-TO-MOBILE UNCORRELATED SCATTER CHANNELS 9

In order to use a spatial distribution of the scatterers,
we need to calculate the area enclosed by the delay ellipsoid.
Additionally, we need a weighting function w(ξ, η) that takes
into account the path loss, which follows from the radar
equation [29] as

w(ξ, η) =
1

(ξ2 − η2)2
. (41)

This essentially states that the received power is proportional
to the squared distances from the scatterer to TX and RX as
P ∝

(
d2
td

2
r

)−1
.

For the general case, we obtain the following equation for
the weighted elliptic area

Y1

=

ξmax∫
ξmin

2

η2(ξ)∫
η1(ξ)

w (ξ, η) l2
√

A2 + B2 + C2
(
ξ2 − η2

)
dηdξ√

(ξ2 − 1) (1− η2) (A2 + B2)− (D − Cξη)2
,

(42)

where ξmax > ξmin > ξsr is the minimum and maximum
normalized distance, which can be set by the user and ξsr ≡ τ̃sr

according to (15). The other parameters η2(ξ) > η1(ξ) are
given by (51), shown at the bottom of the next page.

For the complementary case we obtain a weighted circular
area as a special case of the elliptic area, since the semi-major
axis of the delay ellipsoid is orthogonal to the scattering plane.
It is given by

Y2 =
∫ ∫

q(ξ,η,ϑ)=0

w

(
ξ,

D

Cξ

)
dS1

=

ξmax∫
ξmin

2π∫
0

l2
(
ξ − D2

C2ξ3

)
(

ξ2 −
(

D
Cξ

)2
)2 dϑdξ, (43)

where dS1 = dϑdξ is the differential scattering area with
ξmax > ξmin > ξsr defined similarly to the general case.

For deriving the hybrid time delay characteristic pdf, we use
the spatial density of the scatterers instead of transforming the
Doppler frequency ν, as was done in previous works, e.g., [11]
and [30] for the delay-dependent description. We thus either
transform over the variable η for the general case or over the
variable ϑ for the complementary case.

Note that we do not provide the derivation with the sim-
pler delay-dependent description based on the length of the
intersection as in previous publications. Thus, we present the
more realistic case of the area of the intersection ellipse,
where the differential scatterers have a two-dimensional
displacement.

C. Hybrid Time Delay Characteristic Probability Density

In this subsection, we first derive the hybrid characteristic
pdf ρ(t; ξ, ∆t) in normalized distance ξ and time lag ∆t
domains for general M2M scattering channels. Then we show
it is equal to the hybrid characteristic pdf ρ(t; τ̃ , ∆t) in normal-
ized delay τ̃ and time lag ∆t as discussed in Section II. Since
our starting point is the joint delay Doppler pdf, we obtain

the hybrid characteristic probability density function by an
inverse Fourier transform in the Doppler frequency variable.
We show that in the limiting case, those newly derived
hybrid characteristic pdfs converge to known results of cor-
relation functions in the literature, e.g. the Bessel function as
in [4].

We obtain the hybrid characteristic pdfs for the general
case, as it was defined above, by using the spatial variable η
instead of the Doppler frequency ν. By using relationship (32),
we obtain by using (52), shown at the bottom of the next page.

ρ(t; ξ, ∆t)

=
2∑

i=1

∫
p (t, q(ξ, η, ϑ); ξ, ν) ej2π∆tν⋆

i dν⋆
i

=
2∑

i=1

∫
p (t, q(ξ, η, ϑ); ξ, ν(η)) ej2π∆tν⋆

i (η) |Js| dη . (44)

Thus, we can directly insert the differential and weighted
spatial scatterer density ridSi and Y1 according to (39)
and (42) and perform the inverse Fourier function over η as

ρ(t; ξ, ∆t)

=
1
Y1

2∑
i=1

η2(ξ)∫
η1(ξ)

×
w (ξ, η) l2

√
A2 + B2 + C2

(
ξ2 − η2

)
ej2π∆tν⋆

i (t;ξ,η)√
(ξ2 − 1) (1− η2) (A2 + B2)− (D − Cξη)2

dη ,

(45)

with the time-variant Doppler frequency ν⋆
i (t; ξ, η) according

to (52) and the integral limits η1(ξ) and η2(ξ) according
to (51) with η2(ξ) > η1(ξ).

For the complementary case we insert the differential and
weighted circular area r1dS1 and Y2 given in (40) and (43)
and can calculate the hybrid characteristic pdf by an inverse
Fourier transform of the Doppler variable ν as

ρ(t; ξ, ∆t)

=
1
Y2

2π∫
0

l2
(
ξ − D2

C2ξ3

)
(

ξ2 −
(

D
Cξ

)2
)2 ej2πν(t;ξ,ϑ)∆t dϑ

=
2l2
(
ξ − D2

C2ξ3

)
Y2

(
ξ2 −

(
D
Cξ

)2
)2

νlim∫
−νlim

ej2πν∆t

νlim

√
1−

(
ν−νo
νlim

)2
dν

=
1
Y2

2πl2
(
ξ − D2

C2ξ3

)
(

ξ2 −
(

D
Cξ

)2
)2 J0 (2πνlim(t; ξ)∆t) ej2πνo(t;ξ)∆t ,

(46)

where J0 is the zeroth-order Bessel function of the first kind,

νo(t; ξ) =
fc

c

(
D
C + 1
ξ + D

Cξ

vtz +
D
C − 1
ξ − D

Cξ

vrz

)
, (47)
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is the offset frequency caused by the movement of TX and
RX along the z-axis, and

νlim(t; ξ)

=
fc

c

√
(ξ2 − 1)

(
1−

(
D
Cξ

)2
)

×

√√√√( vtx

ξ + D
Cξ

+
vrx

ξ − D
Cξ

)2

+

(
vty

ξ + D
Cξ

+
vry

ξ − D
Cξ

)2

,

(48)

is the limiting frequency. The basis for our calculations above
is the Doppler frequency in [20, (3)] as

ν(t; ξ, η, ϑ)

=
fc

c

×

(
ξη+1
ξ+η

vtz+

√
(ξ2 − 1) (1− η2)

ξ+η
(vtx cos ϑ+vty sin ϑ)

+
ξη − 1
ξ − η

vrz+

√
(ξ2 − 1) (1− η2)

ξ − η
(vrx cos ϑ+vry sin ϑ)

)
(49)

where vt = [vtx, vty, vtz]
T and vr = [vrx, vry, vrz]

T are the
velocity vectors of TX and RX in the local CCS, respectively.
Since we obtain the relationship η = D/(Cξ) for the com-
plementary case, the Doppler frequency reduces to ν (t; ξ, ϑ).
Note that in the complementary case the delay and Doppler
pdfs factor, and thus are independent of each other.

Since in the calculation of (45) and (46) the focus distance
l2 is canceled out by the normalization factor Yi, the hybrid
time distance characteristic pdf is unitless. With the relation
ξ ≡ τ̃ , we can thus infer that the hybrid time delay character-
istic pdf is equal to the hybrid time distance characteristic pdf
for normalized delays and distances. This is true, because the
two coordinate systems in (27) and (28) inherit their physical
units from either l or τlos and not from ξ or τ̃ . We therefore
finally obtain the hybrid time delay characteristic pdf by

ρ(t; τ̃ , ∆t) ≡ ρ(t; ξ, ∆t) . (50)

After having derived the hybrid time delay characteristic pdf,
we want to investigate in the following subsection the limiting
values for the delay-dependent characteristic function and
delay-dependent pdf. This is the reason, why we calculate and
compare these two functions.

D. Limiting Value Consideration

By studying the delay-dependent Doppler pdf and the
delay-dependent characteristic function in the asymptotic
regime, as τ̃ →∞, we obtain several well-known expressions,
e.g., the Bessel function and the Jakes spectrum in [4] and [5].
To this end, we derive

lim
τ̃→∞

ρ(t; ∆t|τ̃) = J0

(
2π∆t

∥vt∥E + vr∥E∥
c

fc

)
, (53)

lim
τ̃→∞

p(t; ν|τ̃) =
1

πνlim∞(t)

√
1−

(
ν

νlim∞(t)

)2
, (54)

lim
τ̃→∞

µν|τ̃ (t; ν) = 0 , (55)

lim
τ̃→∞

σν|τ̃ (t; ν) =
∥vt∥E + vr∥E∥√

2c
fc =

νlim∞(t)√
2

, (56)

with the zeroth-order Bessel function J0. The parallel velocity
vectors and limiting Doppler frequency given by

vt∥E =
nE × (vt × nE)

∥nE∥2
= vt −

(vt · nE)nE

∥nE∥2
,

(57)

vr∥E =
nE × (vr × nE)

∥nE∥2
= vr −

(vr · nE)nE

∥nE∥2
,

(58)

lim
τ̃→∞

νlim∞(t) =
∥vt∥E + vr∥E∥

c
fc . (59)

The velocity vectors vt∥E in (57) and vr∥E in (58) of TX and
RX are parallel to the scattering plane and nE = [A, B,C]T

is the normal vector of the scattering plane. The limiting
frequency νlim∞(t) in (59) for τ̃ →∞ is given by the solution
of the η variable ±

(
vtz∥E + vrz∥E

)
/
(
∥vt∥E + vr∥E∥

)
of the

polynomial in [20, (31)]. The result in (54) matches the clas-
sical Jakes result in [5]. The width of the spectrum, however,
is determined by the velocity vector components of TX and

η1,2(ξ) =
DCξ ±

√
D2C2ξ2 − (A2ξ2 + B2ξ2 + C2ξ2 −A2 −B2)(A2 + B2 + D2 −A2ξ2 −B2ξ2)

A2ξ2 + B2ξ2 + C2ξ2 −A2 −B2
(51)

ν⋆
i (t; ξ, η)

=
1

(A2 + B2) (ξ2 − η2)

(
(D − Cξη) (A (vrx (ξ + η) + vtx (ξ − η)) + B (vry (ξ + η) + vty (ξ − η)))

±
√(

(ξ2 − 1) (1− η2) (A2 + B2)− (D − Cξη)2
)

(B (vrx (ξ + η) + vtx (ξ − η))−A (vry (ξ + η) + vty (ξ − η)))2

+
(
A2 + B2

)
(vrz (ξη − 1) (ξ + η) + vtz (ξη + 1) (ξ − η))

)
fc

c
(52)



WALTER et al.: MOBILE-TO-MOBILE UNCORRELATED SCATTER CHANNELS 11

Fig. 4. Aircraft positions, velocity vectors, distance and placement of the
scattering plane in a local coordinate system for simulation.

RX, which are parallel to the scattering plane. The reason for
this is that for large τ̃ the eccentricity of the ellipsoid reduces
toward 0, thus approaching a sphere. The intersection with the
scattering plane hence results in a scattering circle on which
the scatterers are uniformly distributed. The corresponding
Fourier transform of the delay-dependent pdf in (54) results
in the typical Bessel function in (53) shown in [4] as the
delay-dependent characteristic function ρ(t; ∆t|τ̃).

IV. COMPARATIVE ANALYSIS OF THEORY
AND MEASUREMENT

In our previous works [20] and [30], we primarily examined
the scattering contributions in terms of delay and Doppler
frequency shift. However, the decrease in the scattering power
with increasing delay, reflecting the influence of the channel’s
power delay profile (PDP), has not yet been addressed and
verified. The typical approach to account for the PDP is
to empirically adjust the scattering power behavior using a
specific path loss exponent, e.g., as in [22]. In contrast to
these empirical approaches, the analytical description of the
hybrid characteristic pdf of the channel, as presented in this
work, allows the calculation of the time-variant PDP for any
scenario, taking into account the geometry of the environment
and the velocities of the transceivers.

In the following, we examine the aircraft-to-aircraft (A2A)
channel as a representative example of a US M2M channel,
being the most general channel where both TX and RX are
not confined to the scattering plane. We compare data obtained
from a measurement campaign [31] and the data obtained
from the numerical evaluation of the hybrid characteristic
pdf from (45) in Section III.

A. Measurement and Simulation Scenario

For the calculation of the corresponding theoretical data,
we use the exact same setting from the measurement cam-
paign. These parameters are only dependent on the geometry
of the scenario. We consider a scenario in which two aircraft
are flying at the same altitude above the ground. The trailing
aircraft is at a distance of dlos = τlosc = 627.5 m behind
the leading aircraft, which corresponds to a line-of-sight
propagation delay of τlos = 2.092 µs. With an absolute altitude
of ht = hr = 580 m above ground and a focus distance of

TABLE II
MEASUREMENT AND EVALUATION PARAMETERS

l = dlos/2 = 313.75 m, the equation for the scattering
plane (29) becomes y = 580m, meaning the four coefficients
are A = 0, B = 1, C = 0, and D = 1.8486. The velocity vec-
tors of both TX and RX are given by vt = [0, 0, 247.3]Tkm/h
and vr = [0, 0, 245.4]Tkm/h. An overview of the scenario
including positions of the aircraft, velocity vectors vt and vr

in a local CCS, and the parameters of the scattering plane for
the simulation is shown in Fig. 4.

The measurement parameters that are given by the channel
sounding equipment are provided in Table II. The detailed
measurement description, the flight routes, and pictures can
be found in [31]. We repeat the most important measurement
parameters in the following. The channel sounder generates a
periodic, crest factor optimized multitone signal [32], which
was transmitted on the TX aircraft with an effictive radiated
power of 10 W at a carrier frequency of fc = 250 MHz.
The transmitted signal, comprising NC = 513 carriers, was
set to a bandwidth of B = 20MHz, which results in a
frequency resolution of ∆f = 39.1 kHz. On the RX aircraft,
the received signal was recorded every ∆t = 2.048 ms.
Further, we combine NB = 1023 successively received signals
into one block. Based on this setting, we can derive all
relevant measurement and evaluation parameters, which are
comprehensively summarized in Table II.

The time-variant channel transfer function is thus sampled
at discrete frequencies and discrete times and can be written
as L̂(i∆t, n∆f) with discrete indices i = 0, . . . , (NB − 1)
and n = −(NC − 1)/2, . . . , (NC − 1)/2. It is calculated as a
cross-spectrum between the received data Y (i∆t, n∆f) and
the calibration data C(n∆f) according to [33] as

L̂(i∆t, n∆f) =
Y (i∆t, n∆f)C∗(n∆f)

|C(n∆f)|2
=

Y (i∆t, n∆f)
C(n∆f)

.

(60)

By applying (inverse) discrete Fourier transforms (DFTs) on
L̂(i∆t, n∆f), we obtain the estimated time-variant impulse
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response ĥ(i∆t, k∆τ) with k = 0, . . . , NB − 1 and the esti-
mated Doppler-variant transfer function T̂ (j∆ν, n∆f) with
j = −(NB − 1)/2, . . . , (NB − 1)/2. From ĥ(i∆t, k∆τ) and
T̂ (j∆ν, n∆f), we can determine the estimated time-variant
correlation functions Ph(t; τ,∆t) and RL(t; ∆t,∆f) using (2)
and (3). The remaining two time-variant correlation based
functions CH(t; τ, ν) from (4) and Pϱ(t; ∆f, ν) from (6) can
be calculated indirectly by DFTs.

Using the parameters of the measurement campaign, see
Fig. 4 and Table II, we can now calculate the theoretical hybrid
characteristic pdf ρ(t; τ̃ , ∆t) with equations (45) and (50). Fur-
thermore, we calculate the joint delay Doppler pdf p(t; τ̃ , ν)
using the closed-form solution provided in [20]. Similar to
the correlation based function, the remaining two probability
based functions ϱ(t; ∆f̃ , ν) and r(t; ∆f̃ ,∆t) are calculated by
(inverse) Fourier transform.

B. Validation Metrics

We evaluate the match of the theory and measurement
with the normalized mean squared error (NMSE) and the
Pearson correlation coefficient (PCC). The NMSE quantifies
the absolute difference in values and therefore provides a
measure of how well the measurement matches the model in
terms of both magnitude and scale. The PCC measures the
linear relationship between the measurement and the model
and thus quantifies how strongly variations in the measurement
are related to variations in the model. In contrast to the NMSE,
the Pearson correlation coefficient indicates, how much the
measurement and the model follow the same pattern instead
of the how close the values are.

The equation for the NMSE is given by [34]

NMSE =

∑
i,k (Ph(t; ∆ti|τ̃k)− ρ(t; ∆ti|τ̃k))2

σ2
Ph

, (61)

and the PCC is defined according to [23] as

PCC =

∑
i,k (ρ(t; ∆ti|τ̃k)− µρ) (Ph(t; ∆ti|τ̃k)− µPh

)
σρσPh

,

(62)

where µρ and µPh
is the mean and σρ and σPh

is the standard
deviation of ρ(t; ∆ti|τ̃k) and Ph(t; ∆ti|τ̃k), respectively. The
values of the NMSE are ≥ 0, where 0 indicates a perfect
match and values < 1 indicate an error smaller than the
variance of the data. The values of the PCC are in the range
of −1 and 1, where a value of 1 indicates perfect linear
correlation.

In order to show the advantages of the probability based
channel description functions with respect to real world
measurements and the corresponding correlation functions,
we first compare the conditional and normalized versions
of both probability based and correlation based functions.
In a second step, we use the non-normalized probabilistic
2D functions and marginalize them to obtain the delay and
Doppler spectra and the correlation in the time and frequency
domain. We discuss the 2D functions in the same order as in
Section II-B.

C. Equality of Probability and Correlation Based Functions
In this section we compare the conditional probability

and correlation functions according to (25). Additionally,
we validate the 2D normalized correlation R̃L(t; ∆f̃ ,∆t) and
joint characteristic function r(t; ∆f̃ ,∆t) according to (26).
We begin by examining the factorized pdf p(t; ν|τ̃) =
p(t; τ̃ , ν)/p(t; τ̃) in Fig. 5 and compare it with the time-
variant, delay-dependent LSF CH(t; ν|τ̃) in Fig. 6. Here the
joint pdf p(t; τ̃ , ν) can be directly computed from [20] and the
time-variant LSF CH(t; τ̃ , ν) is obtained by Fourier transform
using (4). As Matz predicted in [9] the imaginary and negative
parts of the LSF are negligibly small, since we have a
doubly underspread channel. Furthermore, we illustrate the
delay-dependent mean Doppler µν|τ̃ (t) from (16) and Doppler
spread σν|τ̃ (t) from (17) in Fig. 5. Since the spectra are
symmetric, the mean Doppler stays zero, but the Doppler
spread is increasing with delay τ̃ and approaches, according
to (56), the value σν|τ̃→∞(t) = 80.65 Hz. In the limiting case,
the delay-dependent spectrum conforms to a Jakes spectrum
according to (54), consistent with the literature. The analysis
of the theoretical results in Fig. 5 reveals that the shape and
the values of both the probability based and the correlation
based functions are the same. The scattering power in the mea-
surement data is very weak and close to the noise threshold.
Furthermore, the scattering does not occur uniformly on the
ground as in our assumption. Thus, we can observe gaps in
Fig. 6. This will lead to slight differences in the marginalized
one-dimensional functions. The structure of the measured
channel, however, is well captured with the delay-dependent
Doppler pdf p(t; ν|τ̃).

We continue our comparison with the real parts ℜ
of the delay-dependent temporal characteristic function
ρ(t; ∆t|τ̃) in Fig. 7 and the conditional temporally correlated
delay-dependent cross-power density Ph(t; ∆t|τ̃) given in
Fig. 8. The hybrid time delay characteristic pdf ρ(t; τ̃ , ∆t)
can be directly calculated by using (45) and the time corre-
lated delay cross-power spectral density Ph(t; τ̃ , ∆t) with (2)
and (3). Both theoretical results and measurement data demon-
strate a strong agreement in the temporal correlation of the
channel. The correlation decreases noticeably with increasing
delay. For large delays, τ̃ →∞, the delay-dependent charac-
teristic function converges to a Bessel function as described
in (53) aligning well with theoretical expectations. Since
both the delay-dependent Doppler pdf and delay-dependent,
time-variant LSF get wider with increasing delay, the cor-
relation in the ∆t variable naturally decreases, as can be
seen in Figs. 5 and 6. The influence of the LOS signal and
the specular reflection (SR) reflection, which was eliminated
from the measurement data for comparison reasons, is still
slightly observable for delays τ̃ close to τ̃sr = 2.1 according
to (15).

Next, we compare the real parts ℜ of the newly introduced
time-variant, Doppler-dependent frequency characteristic func-
tion ϱ(t; ∆f̃ |ν) with Pϱ(t; ∆f̃ |ν). Both functions can only be
indirectly obtained by (inverse) Fourier transforms. The time-
variant hybrid frequency Doppler characteristic pdf ϱ(t; ∆f̃ , ν)
is thus divided by its Doppler spectral density p(t; ν).
Therefore the correlation in normalized frequency lag ∆f̃
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Fig. 5. Theoretical time-variant, delay-dependent Doppler pdf p(t; ν|τ̃) with
mean Doppler µν|τ̃ (t) and Doppler spread σν|τ̃ (t).

Fig. 6. Measured time-variant, delay-dependent local scattering function
CH(t; ν|τ̃).

becomes visible. The theoretical results in Fig. 9 show that
the correlation is largest for the Doppler frequency ν = 0Hz.
Both with increasing and decreasing Doppler frequency, the
correlation symmetrically diminishes along the normalized
frequency axis. The correlation of the measurement data in
Fig. 10 shows a similar behavior.

Finally, we compare the joint time frequency character-
istic function with the normalized autocorrelation of the
time-variant transfer function. The joint time frequency
characteristic function r(t; ∆f̃ ,∆t) is obtained by (inverse)
Fourier transform from one of the hybrid characteristic pdfs
and the autocorrelation of the time-variant transfer function
RL(t; ∆t,∆f) can be directly calculated from measurement
data using (2) and (3). The real parts ℜ of the time-variant joint
time frequency characteristic function r(t; ∆f̃ ,∆t) and the
time frequency correlation function R̃L(t; ∆f̃ ,∆t) are shown
in Fig. 11 and Fig. 12. They both have a peak at zero time
and zero frequency shift. Along the time and frequency axes,
both functions further exhibit the typical decreasing correlation
behavior depending on the geometry of the scenario.

After the qualitative analysis of the three conditional and
one normalized 2D correlation based and probability based
functions, we now verify the presented model with the

Fig. 7. Theoretical time-variant, delay-dependent temporal characteristic
function ℜ{ρ(t;∆t|τ̃)}.

Fig. 8. Measured time-variant, delay-dependent temporal correlation function
ℜ{Ph(t;∆t|τ̃)}.

two validation metrics presented in Section IV-B. Therefore,
we use the delay-dependent temporal characteristic function
ρ(t; ∆t|τ̃) and its delay-dependent correlation based coun-
terpart Ph(t; ∆t|τ̃), since they are the only functions that
can be directly calculated from closed-form equations in (45)
and (9) or from measurement data with (2), (3), and (25).
Due to the linearity of the Fourier transform, the obtained
values for the NMSE and the PCC are the same in the
other three domains. For the NMSE we obtain a value of
0.47, which shows that the match between our model and
the measurements is reasonably accurate, but not perfect due
practical constraints like noise and the rather coarse bins.
Considering the scattering power is very close to the noise
threshold of the channel sounder, such a value is still very
good. Similarly, for the PCC we obtain a value of 0.81,
which indicates a strong positive linear relationship between
model and measurement data. Thus, both metrics confirm
the validity of the probability based functions introduced in
this paper.

D. Full Probability Based Description of a US Channel

In this subsection, we examine the full time-variant 2D
probability based description of the US channel. In reference
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Fig. 9. Theoretical time-variant, Doppler-dependent frequency characteristic
function ℜ

{
ϱ(t;∆f̃ |ν)

}
.

Fig. 10. Measured time-variant, Doppler-dependent frequency correlation
function ℜ

{
Pϱ(t;∆f̃ |ν)

}
.

to Fig. 2, the block diagram in Fig. 13 shows the relationship
between the different channel descriptions and their corre-
sponding mutual transformations. Furthermore, we compare
the normalized one-dimensional (1D) correlation based func-
tions with the probability based functions in Figs. 13(i)-(iv)
according to (26) and check their similarity.

We begin with the joint delay Doppler pdf p(t; τ̃ , ν) in
Fig. 13(I). Note the similarity to the conditional pdf in Fig. 5.
Yet, the key difference is the obvious drop of the probability
mass, or equivalently signal power, with increasing delay. This
drop of probability with increasing delay, as captured by the
marginal p(t; τ̃) in Fig. 13(i), is explicitly transferred to the
hybrid time delay characteristic pdf ρ(t; τ̃ , ∆t), see Fig. 13(II).
Notably, the joint pdf descriptions correctly account for the
weighting of the functions in the delay domain. A comparable
weighting occurs in the Doppler domain with the Doppler
pdf p(t; ν) affecting ϱ(t; ∆f̃ , ν) as shown in Fig. 13(III).
Naturally, the joint characteristic function r(t; ∆f̃ ,∆t) in
Fig. 13(IV) accounts for both of these weightings implicitly
through the Fourier transform.

The clear advantage of these joint descriptions is their com-
putability from environmental models and location information
of transceivers, as demonstrated in [35]. Moreover, they enable

Fig. 11. Theoretical time-variant, joint time frequency characteristic function
ℜ
{

r(t;∆f̃ , ∆t)
}

.

Fig. 12. Measured time-variant, joint time frequency correlation function
ℜ
{

R̃L(t;∆f̃ , ∆t)
}

.

the calculation of four time-variant marginalized descriptions:
the delay pdf p(t; τ̃), the Doppler pdf p(t; ν), as well as the
temporal characteristic function r(t; ∆t) and the frequency
characteristic function r(t; ∆f̃) following the properties of
pdfs or corresponding characteristic functions. In Fig. 13, the
respective relationships of these marginalized descriptions are
depicted by arrows.

The time-variant probability densities p(t; τ̃) and p(t; ν)
are computed by integrating the joint delay Doppler pdf
p(t; τ̃ , ν) of Fig. 13(I), where the integration variable is ν
for p(t; τ̃) and τ̃ for p(t; ν). Alternatively, the same result
can be obtained by setting the Delta variables ∆t = 0 in
ρ(t; τ̃ , ∆t), Fig. 13(II) and ∆f̃ = 0 in ϱ(t; ∆f̃ , ν), Fig. 13(III),
respectively. This is a general property of a characteristic
function. As illustrated in Figs. 13(i)-(ii), the analytically
computed pdfs p(t; τ̃) and p(t; ν) align remarkably well with
the two derived from measurement data P̃h(t; τ̃) and P̃ρ(t; ν).
Note again, as mentioned above, that in order to reveal the
scattering in the channel, the signal components from LOS
and SR are eliminated. Therefore, the decreasing behavior
of the scatter channel caused by path loss can be clearly
observed in Fig. 13(i) and is well reflected by the delay
pdf. Regarding the Doppler pdf shown in Fig. 13(ii), it is
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Fig. 13. Time-variant probability based functions of Fig. 2 for the aircraft-to-aircraft scenario described in Sec. IV-A. Calculation of (I) using the closed-form
solution provided in [20], (II) using (45) and (50), and (III)-(IV) through corresponding (inverse) Fourier transforms. Calculation of (i)-(iv): The probability
based functions ( ) are derived from (I)-(IV), following the relationships indicated by the arrows in the diagram. The correlation based functions ( ) are
computed using equation (2) in combination with (3) and (26) for cases (i), (iii), and (iv). For case (ii), the calculation additionally incorporates equations (4)
and (6). Fourier transforms are indicated by the sign, integrals by , and setting the ∆ variable to zero by .
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evident that the shape deviates from the traditional Jakes
spectrum. While the theoretical model shows a concave shape,
the measurements exhibit a higher probability at zero Doppler
due to the imperfect elimination of LOS and SR, along with
a slight increase at the limiting Doppler frequencies.

Finally, let us analyze the two time-variant characteris-
tic functions r(t; ∆f̃) and r(t; ∆t). The former, shown in
Fig. 13(iii), can be obtained via marginalization of the hybrid
frequency Doppler characteristic pdf ϱ(t; ∆f̃ , ν) or by setting
∆t = 0 in r(t; ∆f̃ ,∆t). The temporal characteristic function,
shown in Fig. 13(iv), r(t; ∆t) can be similarly computed
from ρ(t; τ̃ , ∆t) or r(t; ∆f̃ ,∆t). We observe that the zero
crossings and sidelobes of the theoretical curves closely match
the two normalized correlation based functions computed
from measurement data R̃L(t; ∆f̃) and R̃L(t; ∆t) both in
Fig. 13(iii) and Fig. 13(iv). Further, we can determine the
coherence bandwidth as a solution to ℜ

{
r(t; ∆f̃ ,∆t = 0)

}
=

1/2. The normalized coherence bandwidth is about B̃C =
0.126, which corresponds to a physical bandwidth of BC =
60.239 kHz. Note that in Fig. 13(iv) the empirical evaluations
show a slight elevation of the sidelobes. This discrepancy
can again be attributed to the imperfect elimination of the
LOS and SR components. Equivalently to the coherence
bandwidth, we derive the channel coherence time as a solution
to ℜ

{
r(t; ∆f̃ = 0,∆t)

}
= 1/2, resulting in TC = 6.4 ms.

V. CONCLUSION

In this work, we presented a complete analytic probability
based description of the mobile-to-mobile uncorrelated scatter
channel. The proposed theoretical description is based purely
on the geometry of the propagation environment and enables
the prediction and simulation of such a channel. We provided
a theoretical proof of the equivalence of the proposed prob-
ability based description and the common correlation based
description, as introduced by Bello and Matz.

For a direct comparison with measurement data, we intro-
duced a so-called hybrid characteristic probability density
function and derived a closed-form expression. Using measure-
ment data from an aircraft-to-aircraft measurement campaign,
we specifically compared the hybrid time delay characteristic
probability density function with the time correlated delay
cross-power spectral density. Note that this measured channel
represents the most general mobile-to-mobile channel, since
the transmitter and receiver are arbitrarily located in 3D space.
Both the qualitative and quantitative comparison have shown a
strong agreement and confirm the equivalence of the proposed
probabilistic description with the correlation based description.

Therewith, our proposed probabilistic description comple-
ments the correlation based description of Bello and Matz and
provides a comprehensive theoretical description of arbitrary
mobile-to-mobile uncorrelated scatter channels.
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