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Abstract
In this study a regional modelling framework for water mass changes is developed.
The approach can introduce geodetic observation types of varying temporal and spatial
resolution including their correlated error information. For this purpose aKalman filter
process was set up using a regional parameterisation by space-localising radial basis
functions and a process model based on stochastic prediction. The feasibility of the
approach is confirmed in a closed-loop simulation experiment using gridded water
storage estimates derived from simulated monthly solutions of the GRACE satellite
gravimetry mission and considering realistic error patterns. The resulting mass change
time series exhibit strongly reduced noise and a very high agreement with the reference
model. The modelling framework is designed to flexibly allow a future extension
towards combining satellite gravimetrywith other geodetic observations such asGNSS
station displacements or terrestrial gravimetry.

Keywords Regional gravity field modelling · Radial basis functions · Kalman filter ·
Terrestrial water storage · GRACE · Satellite gravimetry

Mathematics Subject Classification 86A30 · 60G35

1 Introduction

Geodetic measurements play a crucial role in understanding the Earth’s structure and
dynamics and are sensitive to changes in water mass on and below the Earth’s surface.
For water resourcesmanagement, for understanding the impacts of climate change and
humanwater use on the water cycle, and for an early preparedness to drought and flood
hazards, the regional monitoring of water storage, i.e. water mass changes with high
temporal and spatial resolution, is of crucial importance but currently not available.
Various geodetic techniques are able to observe mass changes in the Earth system: a)
satellite gravimetry, b) terrestrial absolute and relative gravimetry, and c) GNSS and
InSAR by observing vertical displacements. In addition, networks of optical clocks
are in development and are approaching the level of 10−18 equivalent to a precision
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of 1 cm in geoid height. According to the general relativity theory, a change in the
frequency of optical clocks can be related to a change in the gravitational potential,
which again depends on the mass distribution. The principle is described, for example
in Lisdat et al. (2016) and Müller et al. (2018). Ideally, all observation types are
combined in a uniformmodelling framework to exploit their individual advantages and
limitations in terms of sensitivity, availability, and spatial and temporal resolution with
the goal to enable the unprecedented ability to describe water storage changes from the
landscape to river basin scales with a higher than monthly temporal resolution. Such
a modelling framework should (1) be able to incorporate various observation types
with different temporal and spatial resolutions, (2) allow the introduction of complex
error information, and (3) be based on a flexible regional parameterisation.

Space-borne gravity missions like the Gravity Recovery and Climate Experiment
(GRACE, Tapley et al. 2004) and GRACE-FO (Follow-On, Landerer et al. 2020) are
able to provide global information on variations in continental water storage (Tapley
et al. 2019) with a footprint of 200km−300km and a relatively low temporal resolu-
tion (typically 1 month), and are therefore often too coarse to deliver information at
the scale of individual aquifers or river catchments that are relevant for water manage-
ment applications. Terrestrial gravimetry is primarily sensitive to local redistribution
ofwatermass at themetre to kilometre scale and their respectivemass changes, and can
be available at sub-daily resolution (Güntner et al. 2017). Global Navigation Satellite
System (GNSS) site displacements capture the elastic response of the Earth to changes
in water storage, providing insight into global to regional-scale mass variations typ-
ically on a daily basis (Argus et al. 2014). These three geodetic techniques therefore
complement each other in terms of spatial and temporal resolutions but also comewith
their system-specific error behaviour. To ensure a proper relativeweighting of the three
observation types when combining them into an integrative data set of water storage
variations, the estimation framework needs to consider the available error information.
In particular, the GRACE/-FO data are characterised by complex and spatially highly
correlated error patterns (Swenson and Wahr 2006) that need to be incorporated into
the parameter estimation process in terms of full variance-covariance matrices.

The optimal exploitation of the signal content of geodetic observations in a region
of interest requires a regional gravity field (or mass change) modelling. Gravity field
models derived from the GRACE/-FO missions are most commonly parameterised in
terms of Stokes coefficients, which are the dimensionless spherical harmonic coef-
ficients of the geopotential (Heiskanen and Moritz 1967; Wahr et al. 1998) with the
disadvantage that regional characteristics cannot be properly represented by basis
functions with global support (Eicker 2008). Such a representation with a high spatial
and a globally uniform resolution results in a large number of parameters to be used
to recover the regional water mass signal and often related instabilities during the
estimation process. A more suitable alternative for modelling of regional mass change
represent parameterisations based on space-localising basis functions. The so-called
mascon approach (Rowlands et al. 2005) uses regional mass concentration blocks and
has become a popular alternative over recent years but has in the context of GRACE/-
FO data processing mainly been used for the estimation of global gravity field models
(Watkins et al. 2015; Loomis et al. 2019; Save et al. 2016). Mascon models were also
estimated from global spherical harmonic representations, e.g. for Greenland, to mit-
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igate spatial leakage effects (Schrama et al. 2014; Ran et al. 2018). Regional gravity
models based on spherical radial basis functions (RBF) as introduced by Freeden and
Törnig (1981) have been derived by Bentel et al. (2013), Eicker et al. (2014), and Liu
et al. (2020), but focus on the static mean gravity field. Only few studies have dealt
with the estimation of temporal gravity field variations by making use of a regional
representation. An early study by Schmidt et al. (2006) used multi-resolution RBFs, in
which a wavelet-type representation provides signal approximations at different reso-
lution levels, for the determination of mass change in South America from GRACE.
Spatio-spectrally localising Slepian functions were applied to detect the gravity signal
caused by the Andaman earthquake from GRACE data (Han and Simons 2008) and
to the mapping of ice mass variations (Harig and Simons 2012; von Hippel and Harig
2019).Recently,Ramillien et al. (2020) successfully determined regional surfacewater
mass using a set of triangular surfaces of constant area for the parameterisation and
Ramillien et al. (2021) successfully estimated high-resolution water mass changes in
Africa directly from GRACE inter-satellite K-band (level 1B) data using Slepians.
Despite these promising examples, the use of regional modelling to mass change esti-
mation from satellite gravimetry is still comparably rare and not being processed on
an operational basis.

A parameter estimation method well suited for the representation of time-variable
quantities is the Kalman filter algorithm (Kalman 1960). It has successfully been
implemented for the estimation of global daily GRACE gravity field models from
level 1B data, see Kurtenbach et al. (2012) and Kvas et al. (2019). In the present study,
the Kalman filter approach shall be tailored to the estimation of regional water mass
change for a test region in central Europe, with a regional parameterisation based on
RBFs as described inEicker (2008) andEicker et al. (2014). In a closed-loop simulation
scenario based on gridded GRACE data, the feasibility and stability of the approach
is assessed and its ability to represent regional temporal water storage variations is
demonstrated. The Kalman filter allows the introduction of other observation types
such as terrestrial gravimetry and GNSS into the estimation procedure at a later stage.

The paper is organised as follows: After this introduction (Sect. 1), the following
Sect. 2 describes the simulated data sets including the generation of realistic correlated
errors. In the following Sect. 3, the regional parameterisation by space-localisingRBFs
is introduced and the shape and location of the RBFs is discussed. Section4 describes
the general setting of the Kalman filter framework including detailed information on
the process model that is chosen to predict (water) mass change from one time step to
the next. The results of the simulation experiment are presented in Sect. 5. Section6
summarises the main findings of the study and indicates future developments towards
a combination of various geodetic data sets in the developed estimation framework.

2 Simulated data sets and uncertainties

The Kalman filter is set up in a closed-loop simulation environment, i.e. in a controlled
setting with observations simulated from a known reference model, in which different
configurations, settings, point distributions and other variables can be tested. Hence,
in the study presented here no real data are applied, but the European Space Agency
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(ESA) Earth SystemModel (ESA ESM, Dobslaw et al. 2015) is used to generate time
series that serve as simulated observations in the Kalman filter. The ESA ESM is a
synthetic model for satellite gravity mission simulation studies that contains global
mass variability including a seasonal signal, year-to-year variability and multi-year
trends. The data are provided as spherical harmonic coefficients up to degree and order
180 (corresponding to an approximate spatial resolution of 111km) and cover the time
period from 1995 to 2006 with a resolution of 6h.

In this study, a Kalman filter is set up that contains only simulated GRACE data and
thus only one type of (pseudo) observations. Other observation types like e.g. GNSS
loading and terrestrial gravimetrywill be incorporated into the simulation environment
at a later stage. The test area used in this study is located in central Europe and covers
most of the inland area between France, Poland and Hungary as can be seen in a figure
shown later in the paper (see Fig. 4) denoted by ∂�I in black.

In order to simulate GRACE observations from the ESA ESM model data, the
data are processed to exhibit realistic properties very similar to (post-processed) real
GRACE data. This approach is based on the data processing used by Kvas (2020)
where residual time series ṽi are computed, which consist of the residual ESA ESM
components H (hydrology), I (land ice) and AOerr (atmosphere and ocean errors). The
latter takes into account that the largest part of the atmospheric and oceanic mass vari-
ations are already subtracted during the GRACE level 1B processing in the so-called
de-aliasing procedure. Using the Gravity Recovery Object Oriented Programming
System (GROOPS, Mayer-Gürr et al. 2021), the data are first downsampled to the
targeted resolution of one month, i.e. monthly averages are calculated from the ESA
ESM data. In order to obtain the residuals of the individual components, the time
series are reduced by its mean, linear trend, annual and semi-annual signal, and then
summed to yield the following residual time series:

ṽi = ṽHi + ṽIi + ṽAOerri . (1)

To match the spectral content of real GRACE solutions, the time series are first trun-
cated to spherical harmonic coefficients of degrees 2−96 and smoothed with a 300 km
Gaussian filter. The data are then limited to the test area in central Europe by con-
verting from spherical harmonics to gridded data in the observation area ∂�O on a
1◦ geographic grid. In Fig. 4, the observation grid (orange) is plotted together with
the locations of the RBFs. To account for the characteristic noise pattern of GRACE,
realistic noise with stochastic properties from the covariance matrix of one GRACE
month (2008-01) processed by the Institute of Geodesy, Working Group Theoretical
Geodesy and Satellite Geodesy (ITSG) at Graz University of Technology (Mayer-
Gürr et al. 2018) is added to the ESA ESM residual time series. There is a very good
agreement between empirical noise estimates and the formal covariance matrices of
ITSG-Grace products, which has been shown in previous studies (Kvas et al. 2019;
Kvas and Mayer-Gürr 2019), especially when compared to other publicly available
covariance information. While not perfect, this matrix is a realistic estimate of the
GRACE post-fit errors and the result of an immense effort to model stationary and
non-stationary observation noise (Ellmer 2018; Kvas et al. 2019). This observational
noisemodel is derived in an iterative process by performing postfit residual analysis for
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Fig. 1 300 km Gaussian-filtered
GRACE covariance matrix
(2008-01), propagated to
gridded values in the observation
area ∂�O

both types of GRACE observations (inter-satellite range rates and kinematic orbits).
Additionally, the errors of the background models (the so-called de-aliasing models)
are introduced into the estimation process (Kvas and Mayer-Gürr 2019). Modelling
these two error sources covers the current main contributors to derived gravity field
solutions (Flechtner et al. 2016) and thus provide a realistic, close approximation of the
actual uncertainties. It is therefore assumed that the covariance matrix used to derive
our synthetic noisemodel is indeed a realistic representation of the real GRACE errors.

As we use filtered time series, the same 300 kmGaussian filter is also applied to the
GRACE covariance matrix of the exemplary month. The matrix is then propagated to
gridded values covering the observation area ∂�O with the same spatial sampling of
1◦ like the residual ESA ESM time series ṽ. The resulting covariance matrix of the
gridded values is shown in Fig. 1. The striped structure of the covariance matrix results
from the noise pattern of GRACE and from the sorting and assignment of indices to
the grid points in the observation area.

The generation of GRACE-like noise can be seen as a transformation from uncor-
related variables l̄ with covariance matrix C(l̄) = σ 2

0 I to a set of correlated variables l
with C(l) = σ 2

0 �. If� contains the targeted variances and covariances and is positive-
definite, the Cholesky decomposition can be used to decompose � into the product
of an upper triangular matrix W, which is the Cholesky matrix, and its conjugate
transpose WT :

� = WTW. (2)

The lower triangular matrix WT can then be used to transform the uncorrelated,
standard-normal noise l̄ into correlated noise l:

l = WT l̄ (3)

(Koch 1999;Mayer-Gürr 2006).With theGaussian-filteredGRACEcovariancematrix
� containing the variances and covariances, from which WT can be calculated, the
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Fig. 2 Example of correlated
GRACE-like noise for one
exemplary month (2006-02)

insertion into Eq. 3 gives the GRACE-like correlated noise, which is different for each
time step, with the exemplary noise for one time step being shown in Fig. 2. To account
for the non positive-definite characteristic of the gridded GRACE covariance matrix,
� is replaced by � + κI, i.e. � is regularised by adding a small value κ = 10−12 to
the main diagonal that is sufficient to make � invertible without applying a too strong
regularisation.

The correlated noise is added to the ESA ESM residual time series ṽ:

ṽnoise = ṽ + chol (� + κI)T l̄ (4)

which results in the noisy simulated observation time series that is used as input
for the Kalman filter. The Gaussian-filtered time series without added noise yields
an area-weighted mean temporal RMS (i.e. for all time steps and grid cells in the
observation area ∂�O ) of 3.03cm equivalent water height (ewh), while the noisy
simulated observation time series ṽnoise has an RMS of 3.78cm ewh in the observation
area.

3 Parameterisation

The global spherical harmonic basis functions (Heiskanen and Moritz 1967; Wahr
et al. 1998) are not well suited to represent local or regional mass changes like aimed
at in this study. Spherical harmonics are global by nature and correlated in space, thus
changes in one coefficient affect the whole sphere and changes occurring in a spatially
bounded area result in a change of all spherical harmonic coefficients, making the
modelling of a time-variable gravity field computationally expensive. Therefore, an
alternative regional modelling approach has been developed based on space-localising
RBFs (Eicker 2008; Eicker et al. 2014) which effectively differ from zero only in a
spatially limited area and can therefore be regarded as space-localising. The idea of
regional modelling is to define RBFs with a specific shape at a given grid of locations
and then to multiply each RBF with a scaling coefficient to represent the signal of
interest. These coefficients have a similar role as the Stokes coefficients in a spherical
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harmonic expansion, but they do not each refer to a specific frequency, but to a specific
RBF at a given location. The scaling coefficients serve as unknown parameters in the
Kalman filter framework.

AsRBFs are radially symmetric, they dependonly on the spherical distance between
the nodal grid point xk at which the radial basis function is located and the evaluation
grid point x, both of which lie on the unit sphere � with � = {x ∈ R

3 | |x| = 1}. A
functional s at the location x can be modelled as a sum of K RBFs �k(x, xk) placed
globally or in a spatially bounded region, with each basis function being multiplied
by an individual scaling coefficient ak according to

s(x) =
K∑

k=1

ak�k(x, xk). (5)

The properties to be specified when defining an RBF parameterisation are the shape of
the �k and their locations xk . To define the former, the radially symmetric RBFs can
be expressed as a series expansion of Legendre polynomials Pn with each Legendre
polynomial being multiplied by a shape coefficient ϕn . The basis functions �k(x, xk)
including the conversion to ewh up to a maximum degree N are then computed
according to

�k(x, xk) =
N∑

n=2

√
2n + 1 · ϕnPn(x · xk)

(
R

r

)n+1 2n + 1

4πGρr

1

1 + k′
n

(6)

with the fully normalised Legendre polynomials Pn and the radii R (nodal grid points
xk) and r (evaluation grid points x). The last part of the equation 2n+1

4πGρr
1

1+k′
n
is

needed for the conversion from gravitational potential to ewh (Wahr et al. 1998).
Here ρ denotes the water density, G the gravitational constant, and k

′
n the load

Love deformation numbers (Farrell 1972, numerical values were calculated by Pascal
Gegout, provided by Jean-Paul Boy and downloaded from http://astrogeo.org/agra/
Load_Love2_CM.dat). The ϕn , which are assumed to be identical for all �k , are the
coefficients that define the shape of the basis functions.

The rationale behind the specific basis functions used in our study follows Eicker
(2008). It is based on the assumption that the Earth’s gravity field possesses a certain
degree of smoothness, which can be deduced from the spectral behaviour of the gravity
field as defined, e.g. by the degree amplitudes σn of a spherical harmonic expansion.
To incorporate these smoothness conditions into the shape of the basis functions, we
define the shape coefficients ϕn according to

ϕn = GM√
4πR

σn√
2n + 1

, (7)

which implies that our basis functions follow from the frequency-domain behaviour
of the expected gravity field signal. Consequences arising from this choice of the RBF
kernel are detailed in Eicker (2008) and Eicker et al. (2014).
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Fig. 3 Shape of the RBF for
max degree n=96 with shape
coefficients ϕn derived from
ESA ESM residuals for all
months (mean)

In our simulation study, the ϕn are derived from the 300km Gaussian-filtered ESA
ESM residual degree amplitudes σn by computing a set of coefficients for each month
and averaging them, leading to the RBF shape shown in Fig. 3. As an alternative
to computing the RBF shape coefficients ϕn from the ESA ESM model, they could
also be derived from σn that follow Kaula’s rule of thumb (Kaula 1966), which was
introduced as an approximation of the spectral behaviour of the gravity field signal.
As is briefly discussed in Sect. 5, this does not substantially change the Kalman filter
results.

The second important property of an RBF representation is the distribution of the
RBFs on the nodal grid points xk . The number of grid points and accordingly also the
distance between the points, defines the spatial resolution of themodelled gravity field.
Due to the advantages in terms of homogeneous distribution and adjustability of the
number of grid points as discussed by Eicker (2008), the "triangle vertex" grid, which
corresponds to the geodesic grid described by Vestine et al. (1963), is chosen for the
placement of the basis functions. The spatial resolution of the grid corresponds to the
global number of homogeneously distributed grid points determined by the triangle
vertex level j according to

K = 10 · ( j + 1)2 + 2. (8)

To define K , the number of parameters of a spherical harmonic expansion of the desired
spatial resolution with maximum degree N is taken as reference and the minimum
number of RBF scaling coefficients ak can be computed according to Kmin = (N+1)2.
It should be noted here that the number of basis functions required refers to a global
modelling and the number of basis functions is accordingly much smaller for the test
area in central Europe.

In the modelling, three different areas have to be distinguished: the evaluation or
investigation area ∂�I , where the final (water) mass changes are calculated, the area
∂�O where the observations are available and the area where the RBFs are placed:
the computation area ∂�C . The reasons for this are described, for example, by Liu
et al. (2020): In the outer regions of the observation area ∂�O , the sought scaling
coefficients ak cannot be estimated sufficiently well due to the lack of observations
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Fig. 4 Point distributions for the
investigation area ∂�I (1

◦ grid,
black, same point locations as
orange points), observation area
∂�O (1◦ grid, 300 km buffer
wrt. ∂�I , orange) and
computation area ∂�C (triangle
vertex grid of level n=30,
300 km buffer wrt. ∂�O , blue)
(colour figure online)

beyond the boundary, resulting in edge effects. To avoid these effects in the evaluation
area ∂�I , the observation area ∂�O should be larger. Since the basis functions do
not have perfect space-localising properties and oscillation effects occur especially in
the edge areas, the computation area in which the RBFs are placed should be larger
than the observation area ∂�O and thus represent the largest of the three areas. The
choice of the margins depends on the shape and placement of the RBFs, since at higher
maximum degree N the RBFs become narrower and at the same time more RBFs are
placed (see Eq. 8), consequentially a smaller margin size should be chosen for larger
N (Liu et al. 2020).

The different point distributions for ∂�C , ∂�O and ∂�I used in this study are
shown in Fig. 4. The distances between the borders ∂�C - ∂�O and ∂�O - ∂�I

are set to 300km. Different distances between 50km and 500km were tested and
the chosen 300km have shown to be sufficient to avoid edge effects from the RBF
modelling within the investigation area.

While the simulated observation data for the Kalman filter are given as gridded ewh
time series, in the Kalman filter itself the computation is based on RBFs, leading to
the output being a set of coefficients ak for each time step. For the evaluation of ewh
changes, the RBF coefficients are converted back to gridded ewh time series. This
conversion between the different parameterisations, even without the Kalman filter
computations, is not error-free, thus an uncertainty arises solely from the conversion
itself. Since the shape of the RBF coefficients is determined by the expected gravity
field signal content (300km Gaussian filtered residual ESA ESM degree amplitudes),
the introduction of noise in the simulated observations l leads to parts of the noisy
signal not being included in the parameter space that can be mapped with the RBFs.
This implies that a conversion error ê occurs during the conversion fromgridded data to
RBF coefficients ak , which can be computed using the orthogonal projection operator
as described by Koch (1999) according to

ê = −(I − A
(
ATA

)−1
AT )l = l̂ − l (9)

where the matrix A contains the �k(x, xk) from Eq. 6 and l are the Gaussian-filtered,
noisy gridded values from Eq. 4.
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(a) Original data l (b) Converted data l̂ (c) Residuals ê = l̂− l

Fig. 5 RBF conversion (from gridded data l (left) to RBF and back to gridded data l̂ (centre)) and conversion
error ê = −(I − A(ATA)−1AT )l (right) using 300km Gaussian-filtered, noisy observation data for one
exemplary month (2006-02)

Figure 5a shows the gridded data l (300km Gaussian-filtered, with added noise)
for one exemplary month, which are converted to the RBF representation (i.e. a set

of coefficients ak), and then converted back to gridded data l̂ = A
(
ATA

)−1
AT l,

as shown in Fig. 5b. The differences between the two sets of gridded data (Fig. 5a
vs. Figure 5b) are hardly visible and become noticeable only when computing the
residuals according to ê = l̂ − l and adjusting the colour scale in Fig. 5c by a factor
of 100. When comparing the residuals in Fig. 5c to the error pattern of the GRACE
input signal (see Fig. 2) it becomes clear that the stripes in the residuals are smaller
in their east–west extent and are mainly influenced by the spatial distribution of the
RBFs (see Fig. 4). The residuals ê range from −0.7mm ewh to 0.6mm ewh, with
an area-weighted spatial RMS of all grid cells of 0.2mm ewh for this exemplary
month. Repeating this computation for all months and computing the mean RMS for
all time steps results in a mean spatial RMS of 0.4mm ewh, i.e. slightly larger than the
exemplary month shown in Fig. 5, which can be considered the mean conversion error.
The mean spatial RMS of the simulated observations on the other hand is 37.4mm
ewh, which means that the conversion error RMS is only about 1% of the observation
RMS.

4 Kalman filter framework

The Kalman filter, first introduced in 1960 by Rudolph Kalman (Kalman 1960), was
developed to combine noisy observations in the framework of a recursive least-squares
adjustment to compute an optimal estimate (Simon 2006). It consists of an observation
model and a process model, which together form a linear dynamic system in which
the current state vector x̂i is estimated for each epoch i by combining the (noisy)
observations with the information from the process model and the state vector from
the previous epoch i −1. The computational process of the Kalman filter itself follows
the approach introduced by Kurtenbach et al. (2009), later refined (Kurtenbach et al.
2012) and also used byKvas (2020) and is based on normal equations, seeAppendixA.

The observation model contains the observations that are used in the Kalman filter.
Via the functional matrixAi , the observations li are linked to the unknown parameters
xi which describe the gravity field at epoch i . Together with the corrections vi the
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following overdetermined system of linear equations results:

li = Aixi + vi with vi ∼ N (0,Ri ). (10)

It is assumed that the expected values of the corrections vi are 0 and the corresponding
covariance matrix of the corrections is given by Ri . In the Kalman filter set up here,
the calculated time series from Eq. 4 are used for the observations li , the functional
matrix Ai contains the �k(x, xk) from Eq. 6 and the observation covariance matrix
Ri is the Gaussian-filtered GRACE covariance matrix of the grid values as shown in
Fig. 1.

The processmodel used in this study is based on the least-squares prediction (Moritz
1989), whereby the naming conventions follow the work of Kurtenbach (2011), and
represents the second part of the Kalman filter. It approximates the temporal behaviour
of theEarth’s gravity field using stochastic information fromgeophysicalmodels based
on the assumption that the gravity field does not change arbitrarily from one epoch to
the next, but is predictable during a certain period of integration. The process model
thus describes the expected variability of the state vector x̂−

i and predicts the changes
of the gravity field from one epoch xi−1 to the subsequent epoch xi using a first order
discrete Markov process according to

xi = Bxi−1 + w with w ∼ N (0,Q), (11)

with the time-constant state transition matrix B and associated stochastic process
noise w of the modelled state vector, which describes the inaccuracies of the model
with the expected values 0 and covariance matrix Q. The state transition matrix B
and covariance matrix of the process noise Q are computed using the full correlation
structure between two subsequent time steps i − 1 and i :

C
{(

xi
xi−1

)}
=

(
� �


�T

 �

)
(12)

where � is the auto covariance matrix

� := C {xi , xi } (13)

which describes the spatial variability of the expected gravity field, while the cross
covariance matrix �
 describes the temporal variability from one time step to the
next:

�
 := C {xi , xi−1} . (14)

The state transition matrix B can be computed according to

B = �
�−1 (15)
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which is based on the requirement that the error covariance matrix associated with the
error vector of the estimator B in Eq.11 becomes minimal. The covariance matrix Q
of the process noise w is then given by

Q = � − �
�−1�T

. (16)

Since the true states of the Earth’s gravity field are not known, � and �
 can only
be approximated empirically from geophysical models. For this, the residual ESA
ESM time series ṽi as described in Eq. 1 is used. The time series is again filtered with
a 300km Gaussian filter and converted to RBF scaling coefficients ai (see Eq. 5, each
vector ai contains the K scaling coefficients ak for time step i) before computing the
approximated covariance matrices �̄ and �̄
. The time series thus consist of I state
vectors ai containing the scaling coefficients:

xi ≈ mi = aTi . (17)

From these state vectors at time points i , the empirical auto covariance matrix

� ≈ �̄ = 1

I

I∑

i=1

mimT
i (18)

and empirical cross covariance matrix

�
 ≈ �̄
 = 1

I − 1

I∑

i=2

mimT
i−1 (19)

can be computed, which then can represent the temporal behaviour of the Earth’s
gravity field given in Eq. 11. At this point, it should be emphasised that this is a purely
stochastic process model, as discussed in Kurtenbach (2011). This means that only
stochastic information is derived from the geophysical model rather than using the
model output directly.

5 Simulation results

To assess the performance of the Kalman filter results, the simulation output is com-
pared to a reference, which in this case are the 300km Gaussian-filtered time series
from the ESA ESM. As described in Sect. 2, in order to simulate the GRACE obser-
vations, correlated noise is added to the filtered time series, which is to be minimised
using the Kalman filter. Therefore, the goal is that the Kalman-filtered time series is
as close as possible to the 300km Gaussian-filtered reference time series.

The evaluation of the results is done both in the time and spatial domain. The time
series are assessed using the evaluation metrics correlation coefficient to determine
the linear relationship between the data, and root mean squared deviation (RMSD) to
show how well the different data sets fit together in terms of absolute differences.
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Fig. 6 Exemplary grid cell time
series at 12.5◦ E, 49.5◦N, see
black dot in the small map.
Reference data (red), noisy
simulated observation data
(blue, including error band in
light blue) and Kalman-filtered
time series (black, including
error band in dark grey) (colour
figure online)

Figure 6 shows the time series for the simulated observation (blue), Kalman-filtered
(black) and reference (red) data for an exemplary grid cell of size 1◦ ×1◦ in the centre
of the investigation area (12.5◦E, 49.5◦N). While the simulated observations show
distinct deviations from the reference time series due to the added noise with a corre-
lation coefficient of 0.84 for this grid cell, the Kalman-filtered time series fits much
better to the reference. This shows the ability of the Kalman filter to minimise most of
the added noise, which is also indicated by the much higher correlation coefficient of
0.98. The good agreement between the time series is also reflected in the RMSD with
respect to the reference time series, which is 2.02cm ewh for the observations and
much lower and thus better for the Kalman filter result with 0.62cm ewh. As also visu-
ally apparent, the temporal RMS of the reference (3.11cm ewh) and Kalman-filtered
time series (3.10cm ewh) are similar, while it is slightly larger for the simulated obser-
vations (3.72cm ewh). If instead of the grid cell in the centre of the investigation area
a grid cell at the edge is selected, the results of the agreement are very similar, so that
the grid cell shown is representative for the area.

In addition to the time series also the error bars are plotted for the observations
(light blue band) and for the Kalman filter result (dark grey band). The former are
derived by error propagation from the covariance matrix Ri of the observations, see
Eq. 10, and the latter from the a posteriori covariance matrix P+

i of the Kalman filter
update, see Eq. A8 in the appendix. The standard deviation of the observation amounts
to around 2.13cm ewh, while the post-fit standard deviation is considerably smaller
with around 0.77cm ewh. Furthermore, almost all points of the time series of the
reference signal (red curve) lie within the estimated error bars of the Kalman filter
update.

While the time series shown in Fig. 6 provide a comparison of the data in the
temporal domain for one particular grid cell, Fig. 7 shows the gridded data in the
spatial domain for an exemplary month (2006–02) for the simulated observations
(Fig. 7a), the Kalman filter result (Fig. 7b), and the difference between the Kalman
filter result and the reference data (Fig. 7c), all of them evaluated in the investigation
area ∂�I . From Fig. 7 it can be seen that the Kalman filter result is very similar to
the reference data, as shown by the differences between the two data sets, which are
an order of magnitude smaller than the signal itself. The GRACE-like noise stripes as
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(a) Simulated observations (b) Kalman filter
(c) Kalman filter vs.

Reference

Fig. 7 Noisy observation data (left), Kalman-filtered result (centre) and difference Kalman-filtered minus
reference data (right) in evaluation area ∂�I for one exemplary time step (2006-02)

in the simulated observations are no longer present in the result of the Kalman filter,
indicating its ability to effectively minimise the noise.

However, the Kalman filter result grid contains slightly lower absolute values than
the reference, as can be seen from Fig. 7c. The differences between the individual grid
cell values (Kalman filter result minus reference) range from −0.40cm to 1.10cm
ewhwith a spatial RMS of the differences of 0.44cm ewh. The lower absolute values
can also be seen when comparing the three monthly grids (simulated observations vs.
Kalman filter result vs. reference) in terms of the spatial RMS, which shows that the
Kalman filter result with an RMS of 3.48cm ewh is lower compared to the simulated
observations with an RMS of 4.07cm ewh, and also slightly lower compared to the
reference data with 3.72cm ewh for this exemplary month.

Figure 7 shows only one snapshot for a specific month (2006-02). To take all time
steps into account, the mean RMS (i.e. the temporally averaged spatial RMS) can be
calculated for each of the three data sets. The simulated observations yield ameanRMS
of 3.83cm ewh, while the Kalman filter and the reference data both have a mean RMS
of 3.12cm ewh. Despite having the same mean RMS, the individual monthly grids of
the Kalman filter result and the reference can still be different from each other. This
can be concluded from the mean RMS of the difference between the Kalman filter and
the reference being 0.59cm ewh. The larger RMS value of the simulated observations
is attributed to the introduction of correlated noise, which is effectively minimised
using the Kalman filter, so both the Kalman filter and reference data sets show the
same variability.

For a further evaluation of the Kalman filter results for all time steps in the whole
investigation area ∂�I , the correlation coefficient and RMSD in the temporal domain
are computed for all grid cells, i.e. the analysis of the exemplary grid cell time series
(Fig. 6) is carried out for all grid cells. Figure 8 displays the two evaluation metrics
correlation coefficient (top row) and RMSD (bottom row) in the investigation area
∂�I .

The area-weighted mean temporal correlation with respect to the reference data
is 0.83 for the simulated observations and 0.98 for the Kalman filter result and thus
much higher as can clearly be seen in Figs. 8a and 8b. The increase of the correlation
coefficient for the individual grid cells ranges from 0.08 to 0.27. The area-weighted
mean RMSD with respect to the the reference is 2.16cm ewh for the simulated obser-
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(a) Correlation: Reference vs. simulated
observations

(b) Correlation: Reference vs. Kalman filter
result

(c) RMSD: Reference vs. simulated
observations

(d) RMSD: Reference vs. Kalman filter
result

Fig. 8 Computed correlation coefficients (top) andRMSDvalues (bottom) between the reference time series
and the simulated observation time series shown on the left (Figs. 8a and 8c) and between the reference time
series and the Kalman-filtered time series on the right (Figs. 8b and 8d) for all grid cells in the evaluation
area ∂�I

vations (Fig. 8c) and decreases to 0.62cm ewh for the Kalman filter result (Fig. 8d),
where the individual RMSD grid cell values decrease by 1.12cm to 2.10cm ewh. The
improvement in correlation shows that there is a strong linear relation between the grid
cell time series of the Kalman filter and the reference signal. The decrease in RMSD
implicates that also the absolute differences between the Kalman filter and reference
have strongly improved compared to the noisy observations.

As shown in Fig. 6 and calculated for the exemplary grid cell, the observation
accuracies from Ri and the a posteriori accuracies of the Kalman filter updates from
P+
i can be variance propagated for all grid cells. The comparison shows that the

standard deviations of the Kalman filter for the individual grid cells lie between 0.69
and 0.81cm ewh and is thus considerably smaller than the standard deviations of the
observations, which lie between 1.92 and 2.55cm ewh.

If the calculations are carried out with the RBF shape coefficients ϕn (see Eq. 6)
that use the degree amplitudes σn from Kaula’s rule instead of the empirical σn from
the ESA ESM data, the Kalman filter gives similar results with only minor changes of
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(a) Correlation (b) RMSD

Fig. 9 Area-weighted mean correlation (left) and RMSD (right) between all time steps of reference and
Kalman filter (black), simple moving average filter (green) and weighted moving average filter (orange) for
filter lengths 3 – 13 months (colour figure online)

the evaluation metrics with respect to the reference. The mean correlation coefficient
deviates by 0.07% and the RMSD by 1.18% when using the ϕn from Kaula’s rule
instead of those defined by Eq. 6. This emphasises the invariance of the Kalman filter
result in this simulation framework to the specific choice of degree amplitudes from
which the RBF shape coefficients are derived.

To investigate whether a simple boxcar (simple moving average, SMA) or weighted
moving average (WMA) filter could achieve similarly good results as the Kalman filter
approach, we tested different filter lengths of SMA andWMA filters. The comparison
with the reference is shown in Fig. 9, again in terms of the (area-weighted) mean
correlation coefficient (Fig. 9a) and themeanRMSD in the investigation area (Fig. 9b).
The different filter lengths of the moving average filters ranging from 3 to 13 months
are shown on the x-axis and the respective evaluation metrics are displayed on the
y-axis. The agreement of the Kalman filter with the reference is shown by the constant
black line, since no different filter lengths are applied.

The SMA filter is computed using the same filter weights for all months included
in the computation of the average, i.e. weights 1

3 ,
1
3 ,

1
3 for 3 months and similarly for

the other number of months. The resulting agreement with the reference time series is
shown in green. TheWMA filter gives a higher weight to the current month and lower
weights to the preceding and subsequent months, i.e. weights 1

4 ,
2
4 ,

1
4 for 3 months,

1
9 ,

2
9 ,

3
9 ,

2
9 ,

1
9 for 5 months and so forth, with the results displayed in orange.

Figure 9a shows that the correlation for both the SMA and WMA filter is lower
than that of the Kalman filter. However, the moving average filters also exhibit large
correlations with the reference time series. The WMA filter outperforms the SMA
filter for all choices of filter lengths showing the best performance at 5 months with
a correlation of 0.93 (SMA: 0.91), compared to a correlation of 0.98 for the Kalman
filter. Comparing the RMSD values makes the added value of the Kalman filter setup
even more evident. The agreement with respect to the reference is 0.62cm ewh for the
Kalman filter, and considerably lower for both moving average filters. This is reflected
by the larger RMSD values, ranging from 1.32cm to 1.74cm ewh for the SMA
filter and 1.22cm to 1.41cm ewh for the WMA filter. Both filters again demonstrate
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their best performance at a filter length of 5 months. Filtering always represents a
compromise between filtering out noise and retaining as much signal as possible, with
this ratio being optimal for a filter length of 5 months in the present example and
gradually decreasing with increasing filter length. However, no specific geophysical
meaning is attributed to this number.

The results hence indicate that the Kalman filter consistently outperforms both the
simple and weighted moving average filters, indicating the strong added value of the
additional information contained in the process model and uncertainties that are used
in the Kalman filter.

6 Summary and conclusions

In this study, a parameter estimation framework was developed that allows the estima-
tion of regional (water) mass variations from geodetic observations based on a tailored
regional parameterisation introducing for the first time radial basis functions into a
Kalmanfilter estimationprocedure for gravityfield parameters. Todemonstrate the fea-
sibility and robustness of the approach, a closed-loop simulation framework has been
set up, which employs time-variable simulated GRACE data in a test region located in
central Europe. The simulated observation data used in our study are derived from the
ESA Earth SystemModel, filtered with a 300kmGaussian filter and then corrupted by
realistic correlated noise derived from a real GRACE covariance matrix. The process
model implemented in the Kalman filter introduces the predicted behaviour of the
residual gravity field using stochastic information from the ESA ESM. To compute
water mass changes in the investigation area, a regional modelling approach using
space-localising radial basis functions is implemented in the Kalman filter, which
offers the advantage of a parameterisation with high spatial resolution using only a
small number of parameters. It also allows to incorporate observables which are only
locally or regionally available. The shape of the RBF coefficients ϕn reflects the gen-
eral spectral characteristics of the gravity field and is also derived from ESA ESM
data in this study. However, using Kaula’s rule for the computation of the coefficients
ϕn yields comparable results.

A comparison to the reference (simulated data without added noise) shows a very
high agreement of the Kalman-filtered time series with a correlation coefficient of 0.98
and RMSD of 0.62cm ewh, demonstrating the ability of the Kalman filter to minimise
the added noise. This also manifests when comparing the temporally averaged spatial
RMS, which is 3.83cm ewh for the simulated observations and 3.12cm ewh both for
the Kalman filter and reference data. The comparison to less sophisticated filters such
as a simple and weighted moving average filter shows that the Kalman filter result
outperforms both filters, proving the added value of the incorporation of the process
model and of the uncertainties in the Kalman filter framework. Compared to a global
spherical harmonic representation, the number of unknown parameters to be estimated
in each time step is only about 1% of the coefficients needed for a spherical harmonic
expansion of equivalent spatial resolution (i.e. the fraction of the Earth’s surface cov-
ered by our investigation area). In our current simulation experiment the estimation of
9.409 spherical harmonic parameters (corresponding to a maximum expansion degree
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of 96) instead of 106 RBF coefficients would of course be possible. However, the tar-
geted future increase of the spatial resolution when including additional observation
types to achieve, e.g. a 50km−100km resolution or below, would easily lead to the
demand of estimating several hundred of thousands of global coefficients per time
step, which demonstrates the computational advantage of regional modelling. As a
proof of concept, we repeated the analysis using the same regional observations, but
exchanging the parameterisation to spherical harmonics. The results are almost iden-
tical, which give confidence that the regional modelling provides reasonable results.
Please note that throughout our simulation post-processed (filtered) global models
were used as input data and it can thus not be expected that the regional processing is
able to extract any additional information from these data compared to a global mod-
elling. Furthermore, it was not the goal of this study to show that regional modelling
provides superior results over a global representation.

By implementing the Kalman filter in a closed-loop simulation environment, a sta-
ble framework with a functional process model was created that can be used for the
calculation of time-variable, regional gravity fields with high spatio-temporal reso-
lution. The implementation of the Kalman filter based on normal equations enables
the flexible and successive integration of other observation types with varying tem-
poral and spatial resolution such as GNSS and terrestrial gravimetry. The closed-loop
simulation environment provides a solid basis for future applications of real data. Fur-
thermore, it is possible to extend the Kalman filter with the direct implementation of
GRACE and GRACE-FO Level 1B data. So far, we have used gridded, post-processed
(filtered) global spherical harmonic time series as input for our Kalman filter. How-
ever, this global post-processing prevents the optimal extraction of regional signal
content in a specific area. In earlier studies (e.g. Eicker 2008; Eicker et al. 2009),
it was shown that a direct tailored regional processing, which directly estimates the
scaling coefficients of the RBFs from the inter-satellite ranging observations, allows
to extract additional high-resolution information from the observations.

Appendix A Kalman filter

The first step of the Kalman filter procedure is the prediction, in which the state vector
of the current epoch x̂−

i is predicted using the previous state vector x̂+
i−1 and the state

transition matrix B:

x̂−
i = Bx̂+

i−1. (A1)

The covariance of the prediction P−
i is calculated by variance propagation using the

accuracy of the previous step P+
i−1, with the addition of the process noiseQ, since the

process dynamic cannot be assumed to be error-free:

P−
i = BP+

i−1B
T + Q. (A2)

The second computational step of the Kalman filter procedure is the update, for which
different algorithms can be used, all of which give the same result. One approach is
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based on the computation of the Kalman gain matrix Ki , which is used to weight the
prediction x̂−

i and the observations li based on their covariance matrices:

Ki = P−
i A

T
i

(
Ri + AiP

−
i A

T
i

)−1
. (A3)

The difference di = li − Ai x̂
−
i between the prediction x̂−

i and the observations
li , also referred to as innovation, is scaled by Ki and added to the prediction x̂−

i to
compute the update x̂+

i and its covariance matrix P+
i :

x̂+
i = x̂−

i + Ki
(
li − Ai x̂

−
i

)
and P+

i = (I − KiAi )P
−
i . (A4)

The second approach, which is used in this study, is based on normal equations in
which a functional relationship, given in Eq. 10, is established between the observa-
tions li and the parametersxi describing the gravity field.By inserting and transforming
the system of normal equations

Nixi = ni (A5)

with

Ni = AT
i R

−1
i Ai and ni = AT

i R
−1
i li (A6)

into the classical Kalman filter approach using the Kalman gain matrix then results in
the formula

x̂+
i = x̂−

i + P+
i

(
ni − Ni x̂

−
i

)
(A7)

for computing the newpredicted system state x̂+
i . The corresponding covariancematrix

of the update P+
i is then calculated by

P+
i =

((
P−
i

)−1 + Ni

)−1
. (A8)

The detailed reformulation for this can be found e.g. in Kurtenbach (2011).
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