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Abstract
This work demonstrates that linear stability analysis can be used to study the effect of a smooth hump

on secondary instabilities in incompressible swept-wing boundary layers. Two-dimensional Local Stabil-
ity Theory (LST-2D) and three-dimensional Parabolized Stability Equations (PSE-3D) are employed to
investigate how secondary crossflow instabilities are affected by the presence of a hump, compared to the
reference (without hump) case. Comparisons between PSE-3D and DNS results, for the dominant insta-
bility induced by the hump, show good agreement. These findings confirm the capability of PSE-3D as an
efficient tool for analyzing secondary instabilities in boundary layers affected by smooth surface humps.

1. Introduction

In recent years, increasing fossil fuel costs and growing environmental concerns have reignited interest in laminar flow
control (LFC) technology. The main goal is to reduce skin-friction drag, which accounts for nearly half of the total
drag on commercial airliners.1 To this end, significant research efforts have focused on understanding the laminar-
to-turbulent transition process in boundary layers over swept wings. However, maintaining extended laminar flow
in real flight conditions remains challenging. This difficulty is largely due to surface irregularities such as steps,2, 3

roughness,4 and waviness,5 which strongly influence the laminar-to-turbulent transition over the wings and tails of
commercial aircraft.

The boundary layer over swept wings differs from two-dimensional cases due to a favourable leading-edge pres-
sure gradient and a sweep-induced crossflow (CF) component, which vanishes at the wall and the boundary layer’s
outer inviscid edge. The CF velocity component is inherently inflectional and promotes inviscid CF instabilities.6

These instabilities manifest as corotating vortices aligned with the external streamlines of the flow. They are classified
as stationary or travelling modes.7 Stationary modes, often triggered by surface roughness, dominate in low-turbulence
conditions,8 while travelling modes become dominant at higher turbulence levels.9 Under typical free-flight condi-
tions, stationary crossflow vortices dominate the boundary layer development,6 redistributing momentum and breaking
spanwise uniformity. This lifts low-momentum fluid upward and drives high-momentum fluid downward, creating
strong shear layers prone to rapidly amplifying secondary instabilities.10–12 These instabilities, which can trigger lam-
inar breakdown, are classified into three types based on their location around the vortex. Type I mode appears on the
upwash side where the negative spanwise velocity gradient peaks. Type II instabilities form near the top of stationary
crossflow vortices and are driven by wall-normal velocity gradients, differing from type I in structure and amplification.
Type III instabilities are low-frequency modes that arise near the wall and result from the interaction between primary
travelling and stationary crossflow instabilities.10, 13–15 In swept-wing boundary layers, crossflow vortices grow near
the leading edge and often interact strongly with surface features, such as steps.16 Eppink17 found that the impact
of a Forward-Facing Step (FFS) depends on the initial vortex amplitude. Rius-Vidales & Kotsonis18 showed that a
small FFS can delay the transition, contradicting earlier findings.17, 19 Groot & Eppink20 applied two-dimensional
Local Stability Theory (LST-2D) to experimental data and identified rapidly growing instabilities, but SPOD analysis
revealed discrepancies, highlighting the complexity of step-vortex interactions. Tocci et al.21 used DNS to investigate
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the influence of FFS in three-dimensional boundary layers, motivated by the experimental findings of Rius-Vidales &
Kotsonis,22 who observed a non-monotonic relationship between step height and transition location.

Recently, Rius-Vidales et al.23 investigated the interaction between a smooth surface hump and stationary cross-
flow vortices of different amplitudes. In their experiments, the primary crossflow instability was induced using discrete
roughness elements (DREs) near the leading edge, with the vortex amplitude controlled by the DRE placement. For
high-amplitude forcing (DREs at 2% of the chord) and in the presence of the hump, transition was observed slightly
downstream of the hump at approximately 24% of the chord. Under the same CF forcing conditions, transition occurred
at approximately 44% of the chord in a clean (without surface hump) configuration. In contrast, for low-amplitude forc-
ing condition (DREs at 5% of the chord), the hump delayed the transition by approximately 14% chord length relative
to the clean (without the hump) configuration. For similar flow conditions to the experiments of Rius-Vidales et al.,23

Moniripiri et al.24 performed DNS to understand the mechanisms leading to transition delay and transition advance-
ment in both forcing conditions of the experiments. For the low-amplitude perturbation case leading to transition delay,
they showed that CF velocity reversal occurs downstream of the hump, altering the orientation of stationary CF pertur-
bations. This reduces the lift-up effect and weakens the spanwise gradients, ultimately contributing to transition delay
by shifting the neutral point of the type I secondary instability farther downstream compared to the clean case. In the
high-amplitude perturbation case, DNS revealed the emergence of counter-rotating vortices downstream of the hump,
which increased the spanwise gradients in the flow field. This, in turn, promoted the rapid amplification of unsteady
secondary instabilities at a frequency of approximately 1100 Hz, ultimately leading to transition downstream of the
hump. These findings are in agreement with experimental observations reported in.23

While DNS provides highly detailed and accurate results, it is computationally expensive for studying the evo-
lution of the secondary crossflow instabilities. The present work employs two-dimensional Local Stability Theory
(LST-2D) and three-dimensional Parabolized Stability Equations (PSE-3D), within a linear framework, to investigate
secondary crossflow instabilities in three-dimensional base flows previously studied, using DNS, by Moniripiri et al.24

LST-2D and PSE-3D provide a computationally efficient alternative to DNS and are well-suited for systematic para-
metric analyses. The main goal of this work is to illustrate that PSE-3D and LST-2D can be effectively used to analyse
secondary crossflow instabilities in three-dimensional boundary layers in the presence of smooth surface hump.

The structure of the paper is as follows. § 2 presents the coordinate systems, geometry, flow configuration, details
of the numerical simulations, and the formulation employed for the LST-2D/PSE-3D approaches. Details of the base
flows used for the instability computations are given in § 3. § 4 presents the results of the stability analysis downstream
of the hump geometries. A quantitative comparison between the instability methodologies and DNS data is provided
in § 5. Finally, § 6 provides the concluding remarks of this work.

2. Numerical methodology and flow configuration

This section briefly introduces the different coordinate systems used in this work, the flow configuration under investi-
gation, and the numerical methodology employed for the base flow computation. Moreover, § 2.4 provides the details
on the instability methodologies adopted in this work.

2.1 Coordinate systems

This study employs multiple coordinate systems for computation and visualization purposes. DNS (cf. § 2.3) is per-
formed in a Cartesian coordinate system (xg, yg, z), where z is the spanwise direction (parallel to the leading edge), xg

is perpendicular to the leading edge and yg is normal to those two directions (cf. figure 1). The corresponding velocity
components are (ug, vg,wg). Some results are presented in the curvilinear coordinate system, denoted as (x, η, z). It
has the same origin and the same spanwise coordinate z as the Cartesian coordinate system, with x being tangent to
the wing surface and η normal to it. The corresponding velocity components in this frame are denoted as (uc, vc,wc).
Stability results are computed in a non-orthogonal system (ξ, η, ζ), where ξ aligns with the direction of least variation
of the base flow derivatives at each x position and will be referred to as streamwise direction. The ζ-direction is parallel
to the leading edge but shifted relative to z, such that ζ = 0 along ξ, while z = 0 along x. The contravariant velocity
components used in the linearized equations are (u, v,w), related to the curvilinear ones by:u = uc sec(θ),

w = wc − uc tan(θ).
(1)

The angle θ represents the deviation of the ξ-coordinate from the chordwise direction x (see figure 1). The details about
the evaluation of the angle θ and its impact on the instability computations can be found in Ambrosino et al.25
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Figure 1: Overview of the geometry alongside the Cartesian (xg, yg, z) and the orthogonal curvilinear (x, η, z) coordinate
systems. The origin of the Cartesian coordinate system is shifted for an improved visualization in the plot. The insets
displays an enlargement around the hump location (bottom) and the smooth hump geometry before projection on
the airfoil (top). The two dashed purple lines on the wing mark the location of the inlet (x/cx = 0.055) and outlet
(x/cx = 0.69) of the 3D DNS domain, on the pressure side of the wing.

2.2 Flow configuration and hump geometry

The geometry under study is a 45-degree swept wing at an angle of attack of AoA = −3◦, which mimics the exper-
imental setup of Rius-Vidales et al.23 in the Low Turbulence Tunnel (LTT) at Delft University of Technology. The
symmetric airfoil used in the swept-wing model is a modified version of the NACA 66018 geometry12 (cf. figure 1).
Measurements were performed on the pressure side of the wing. The swept wing has a normal to the leading edge
chord length cx = 0.9 m. The free stream turbulence intensity is less than 0.03% in the experiment, ensuring that sta-
tionary crossflow vortices dominate the laminar-turbulent transition.8 The primary crossflow instability is promoted in
the experiment with the use of spanwise distributed DREs, with a nominal height of 25 µm and placed with a spanwise
spacing of λ = 7.5 mm, corresponding to the wavelength of a critical and dangerous CFI mode reaching high levels of
amplification prior to natural transition. Two forcing configurations were tested, with the DREs placed at x/cx = 0.02
(i.e., at 2% of the chord from the leading edge) for the high-amplitude perturbation case (referred to as A2 case) and at
x/cx = 0.05 for the low-amplitude perturbation case (referred to as A1 case). In the former setup, the DREs are located
closer to the neutral point of the CFI mode, resulting in stronger vortex development at the hump location. The clean
geometry, i.e., with no surface hump, is referred to as the reference case. The reference parameters employed in the
DNS are listed in table 1. The Reynolds number, based on cx, is Recx = (ρ∞U∞cx)/µ∞ ≈ 1.68 × 106.

Table 1: Flow and geometry parameters
Parameter Symbol Value

Normal to the leading edge chord length cx 0.9 m
Angle of attack AoA -3.0◦

Free stream velocity U∞ 26.21 m s−1

Reference pressure p∞ 1.035 26 × 105 Pa
Reference density ρ∞ 1.2648 kg m−3

Reference viscosity µ∞ 1.77 × 10−5 kg m−1 s−1

Reynolds number Recx 1.68 × 106 [-]

The hump geometry used in this study is similar to the shape employed in the experimental investigations by
Rius-Vidales et al.23 The hump is installed on the pressure side of the airfoil such that its apex is located at a chordwise
position of x/cx = 0.15, and it expands over 0.122 ≲ x/cx ≲ 0.177. The hump is spanwise homogeneous (along
the z direction) and features a symmetric concave-convex-concave shape. Its dimensional height is 1 mm, and has a
height-to-width ratio of 1:50. The nominal shape of the hump, prior to its projection onto the curved airfoil surface, is
illustrated in the upper inset of the figure 1. The resulting wing geometry in the vicinity of the hump, after projection,
is depicted in the lower inset of figure 1. The details about the projection of the hump onto the airfoil surface can be
found in Moniripiri et al.24
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2.3 Direct Numerical Simulation

This section briefly describes the setup employed for the DNS. The numerical simulations conducted in Moniripiri et
al.24 not only provide the steady base flow for the instability analysis, but also provide the unsteady results that are
used as a comparison for the secondary instability results from the instability methodology, as will be shown in § 5.

The DNS are carried out using the spectral element method (SEM) code Nek5000.26 Due to the significant
computational cost associated with three-dimensional (3D) DNS, these simulations are conducted on the pressure side
of the wing, and within a relatively small domain (i.e., 0.055 < x/cx < 0.69, cf. figure 1), requiring carefully defined
boundary conditions. A two-step approach is implemented to establish these conditions. First, a 2.5D Reynolds-
Averaged Navier-Stokes (RANS) simulation is performed on a section of the wind tunnel that includes both the airfoil
geometry and tunnel walls. The resulting flow field from this computation provides the far-field boundary conditions
for a subsequent 2.5D DNS, which generates a highly accurate spanwise-invariant steady-state flow in an intermediate
domain. The output from this second step is then used to define the boundary conditions for the final 3D DNS.

To minimize the computational expenses, the 3D DNS performed here does not account for the generation of
crossflow vortices by the DRE arrays, as observed in the experiments. Instead, the stationary crossflow vortices are
introduced in the DNS by imposing the crossflow instability (CFI) mode as an inlet boundary condition, superimposed
onto the spanwise-invariant base flow obtained from the 2.5D DNS. The shape and amplitude of the CFI mode were
matched to the experimental results using nonlinear PSE.27 To accurately replicate the experimental setup of Rius-
Vidales et al.23 numerically, the computational domain in the spanwise direction is restricted to a single wavelength,
λ = 7.5 mm, with periodic boundary conditions applied along the spanwise axis. This approach effectively simulates
the influence of DREs.

To study transition to turbulence in DNS, as described in § 5, unsteady perturbations are artificially introduced
into the boundary layer just downstream of the inflow boundary. This is achieved by applying a randomly pulsed
volume force, a technique similar to the ’trip forcing’ method described by Hosseini et al.28 and employed in Tocci
et al.21 The forcing mechanism is implemented within the momentum equation as a wall-normal force component,
selectively introducing perturbations across a defined spectrum of spanwise wavenumbers (β = mβ0, m = 1,2,...,16,
β0 = 2π/λ) and frequencies ranging from 1.1 to 10 kHz. The amplitude of the forcing is adjusted to closely recover the
experimentally observed transition location for the reference A1 case, and the same amplitude is used for all simulations.
During the post-processing, the velocity field undergoes a Fourier transformation in time, allowing the extraction of
individual modes for direct comparison with instability analysis results. More details about the setup of the DNS are
provided in Moniripiri et al.24

2.4 Instability analysis

To study the evolution of the secondary and hump-induced instabilities, the LST-2D and PSE-3D methodologies formu-
lated in a non-orthogonal coordinate system are employed.25 These are linear theories, which rely on the decomposition
of the primitive flow quantities q = [p, u, v,w]T into a steady state q̄ = [ p̄, ū, v̄, w̄]T , also referred to as base flow, and a
small unsteady perturbation q̃ = [p̃, ũ, ṽ, w̃]T :

q(ξ, η, ζ, t) = q̄(ξ, η, ζ) + ϵq̃(ξ, η, ζ, t), (2)

where ϵ ≪ 1. Introducing the flow decomposition (2) into the Navier-Stokes equation, and subtracting the terms for
the steady flow, which is assumed to satisfy the full Navier-Stokes equations, one obtains the linearized Navier-Stokes
equations (LNSE) once the product of the perturbation quantities is neglected.

2.4.1 Two-dimensional Local Stability Theory

The LST-2D theory is based on the assumption of parallel flow, which implies that two spatially inhomogeneous
directions have to be solved within a plane, while maintaining spatial homogeneity in the streamwise direction. This
assumption is expressed as q̄ = q̄(η, ζ). The corresponding formulation for modal perturbations is given by:

q̃(ξ, η, ζ, t) = q̂(η, ζ)exp[i(αξ − ωt)] + c.c., (3)

where q̂ = [û, v̂, ŵ, p̂]T is the vector which contains the two-dimensional complex amplitude functions in the plane ηζ,
α is the wavenumber in the streamwise direction, ω is the circular frequency and c.c. represents the complex conjugate.
A spatial framework is here employed, which means that ω is the real-valued angular frequency of the eigenfunction,
whereas α is complex. The real part of α, αr, represents the wavenumber of q̂ along the streamwise direction ξ with
wavelength λξ = 2π/αr. The imaginary part, αi, is related to the growth rate by σ = −αi. Note that αi < 0 indicates a
perturbation that grows exponentially in the streamwise direction.
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2.4.2 Three-dimensional Parabolized Stability Equations

To study the weakly non-parallel effects in convectively unstable flows, such as for the instabilities studied in this work,
the parallel flow assumption of the LST-2D can be relaxed, allowing a slow streamwise variation of the base flow and
of the perturbation quantities. The disturbance ansatz has the following shape:

q̃(ξ, η, ζ, t) = q̂(ξ, η, ζ)exp
[
i
( ∫
ξ

α(ξ)dξ − ωt
)]
+ c.c.. (4)

Substituting the three-dimensional Parabolized Stability Equations (PSE-3D) ansatz into the LNSE and introducing a
scale separation between the weak variation in the streamwise direction and the strong variation in the wall-normal
direction, and neglecting terms of order (O(1/Re2)), leads to the non-local linear stability PSE-3D.25 In this case,
the growth rate is not only the imaginary part of α, but is given by two contributions. The first term accounts for
the exponential part of the perturbation, whereas the second term takes into account the growth associated with the
streamwise variation of the amplitude function. It reads as

σ = −αi +
∂

∂ξ
ln(
√

E), (5)

where E is the total kinetic energy, defined as

E =
∫
η

∫
ζ

(|û|2 + |v̂|2 + |ŵ|2)dζdη. (6)

In § 4, the instability results are presented in terms of the integrated growth rate (N-factor), which is defined as
N =
∫ ξ
ξ0
σdξ′, where σ represents the growth rate in the non-orthogonal coordinate system, ξ0 indicates the position

where a disturbance starts to grow at a certain frequency, and ξ′ represents a dummy integration variable for the out-of-
plane ξ-direction. The PSE-3D equations form an initial boundary value problem that can be solved by a streamwise
marching procedure. The computation is initialised using the eigenvalue solution obtained from LST-2D. In both
LST-2D and PSE-3D methodologies, the no-slip condition is imposed at the wall, homogeneous Dirichlet boundary
conditions are applied at the upper boundary, while periodic boundary conditions are imposed on the lateral boundaries.
The wall-normal and spanwise directions are discretized using the high-order finite-difference scheme FD-q proposed
by Hermanns et al.,29 with q = 8 (eight-order) applied in both directions. In the PSE-3D computations, the streamwise
derivative is discretized using an implicit first-order backward Euler scheme.

3. Three-dimensional base flows

This section provides a brief overview of the base flows used in the stability analysis and highlights the influence of
the hump on the base flows. The hump affects the pressure distribution over the wing only in its immediate vicinity,
as shown in figures 2(a, b). The flow initially accelerates over the hump (∂Cp/∂x < 0), followed by a short region
of adverse pressure gradient (APG) downstream of the apex of the hump, before recovering the nominal favourable
pressure gradient (FPG) of the wing. Note that the flow, in the streamwise direction, remains fully attached to the
wall downstream of the hump in both A1 and A2 cases. Due to successive pressure gradient changes downstream of
the hump, the near-wall crossflow velocity component reverses direction within a finite region, 0.156 < x/cx < 0.177,
located downstream of the hump apex.24 The extent of this region over the wing is marked by the vertical dashed lines
in figures 2(a, b) and is bounded by the wall and the white dashed isolines in figures 2(d, f ). The FPG over the wing
promotes the development of crossflow instabilities (CFIs). As CFIs grow and stationary CF vortices form, they distort
the boundary layer (BL), as seen in figures 2(c– f ). This distortion is more pronounced in the high-amplitude A2 cases
due to the larger amplitude of the stationary vortices.

To investigate the amplification of stationary primary crossflow disturbances within the boundary layer, the
steady perturbation velocity field (u′c, v

′
c,w

′
c) is extracted from the DNS solution. This is done by subtracting the

unperturbed base flow, defined as the spanwise-invariant solution obtained by means of a 2.5D simulation, from the
three-dimensional base flow. The spanwise root-mean-square of CF perturbations, i.e., ⟨u′c⟩z, ⟨v

′
c⟩z, and ⟨w′c⟩z, serves

as a measure of their amplitude.30 Figure 3 shows the chordwise evolution of the wall-normal maximum of ⟨u′c⟩z for
the cases analysed in this study. In the hump A1 case (red solid line), the chordwise growth rate of stationary CF
perturbations decreases compared to the reference A1 case for x/cx > 0.2. This reduction leads to weaker CF vortices
downstream of the hump and results in a significant transition delay in the presence of unsteady disturbances in the BL,
as observed in experiments23 and numerical simulations.24 However, downstream of the hump in high-amplitude A2
case (red dashed line), the amplitude of stationary CF perturbations increases significantly compared to the amplitude
of perturbations in the reference A2 case. This is attributed to the formation of a pair of counter-rotating stationary
vortices downstream of the hump in A2 case.24

5

DOI: 10.13009/EUCASS2025-426



INFLUENCE OF SURFACE HUMP ON SECONDARY CROSSFLOW INSTABILITIES

0

10

20

0.1 0.15 0.2 0.25 0.3
0

10

20

0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

-10

-5

0

5

-0.2

0

0.2

Figure 2: (a) Pressure coefficient, −Cp = −(p − p∞)/(0.5ρ∞U2
∞), and (b) wall pressure gradient ∂Cp/∂x for reference

(black) and hump (red) cases. ∂Cp/∂x = 0 is marked by horizontal black dashed line in panel (b). Contours of
chordwise velocity uc at z = −λ/2 for (c) reference A1, (d) hump A1, (e) reference A2, and ( f ) hump A2. The CF
reversal region is bounded by the wall and the white dashed isolines in panels (d, f ). Qref = 23.496 m/s is the boundary
layer edge velocity at the 3D DNS inlet. Contours are shown in the x/cx–y∗ plane, where y∗ = (yg − ywall

g,clean)/δ0.
δ0 = 2.687 × 10−4 m is the displacement thickness at inlet of the domain, and ywall

g,clean is the yg-coordinate of the wall in
the reference clean case. The red solid vertical line marks the hump apex and the shaded region its width.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0
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Figure 3: Amplitude of the chordwise component (uc) of the stationary CF perturbation for the clean (black) and hump
(red) cases. Solid lines represent the low-amplitude perturbation cases (A1), while dashed lines represent the high-
amplitude perturbation cases (A2). The red solid vertical line marks the hump apex and the shaded region its width.

4. Stability analysis results

This section investigates the secondary crossflow instabilities of the base flows presented in § 3 using LST-2D and
PSE-3D approaches.

4.1 Influence of the hump on the standard secondary instabilities

This section investigates how the hump affects the evolution of type I and type II secondary instabilities. These are
high-frequency modes driven by spanwise and wall-normal shear, respectively. Ambrosino et al.25 demonstrated that
a PSE-3D formulation in a curvilinear non-orthogonal coordinate system accurately captures their behaviour over a
swept wing, reproducing mode shapes, locations, and growth rates in agreement with DNS data. This methodology is
used here to assess the hump’s influence, focusing on the type I mode, which is identified as the driving mechanism
responsible for triggering the transition in the reference A1 and A2 cases.24 LST-2D computations indicate that, for the
reference A1 case, the type I instability exhibits its maximum integrated growth (N-factor) at a frequency of approxi-
mately f ≈ 5000 Hz. Figure 4(a) displays the resolved eigenvalue spectra at f = 5000 Hz for both the reference clean
and hump A1 cases, evaluated at the station x/cx = 0.4. It can be noted that the two cases feature different families
of unstable high-frequency secondary instabilities. At this frequency, different families of type II instabilities and one
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Figure 4: (a) Resolved spatial eigenvalue spectra for the reference (clean) A1 and hump A1 cases at the station x/cx =

0.4 at the frequency f = 5000 Hz. The eigenvalues enclosed in the dashed rectangle belong to type II modes. Regions
with continuous branches of the spectrum are represented by a purple shaded region. (b) Normalized magnitude of
the streamwise perturbation velocity component for the type I (blue scale) and most unstable type II (red scale) of the
clean A1 case. The black lines stand for ten equally spaced isolines of the normalized base flow streamwise velocity
component, ūc/ūc,max, in the interval [0, 0.95].

type I mode are identified in the spectra. Figure 4(b) shows the normalized magnitude of the streamwise perturbation
velocity component for the type I and the most unstable type II modes for reference A1 case, at the same location and
frequency as the spectra in figure 4(a). The corresponding modes for the hump A1 case are similar in shape and are
therefore not shown here. As can be seen, the secondary instabilities shared between the two cases are weaker for the
hump A1 case, and the type I perturbation becomes stable at this location and frequency. In particular, the type I mode
is only slightly amplified in the hump A1 case, with very low growth rates and is unstable only for a short streamwise
extent resulting in negligible N-factors. These results are in line with the DNS results for the hump A1 case.24

The observed weakening of type I instabilities is related to the variation of the spanwise gradient due to the
presence of the hump. This originates from the tilting of stationary CF perturbations downstream of the hump and
within the CF reversal region (i.e., the region where the CF velocity component changes sign near the wall), which
leads to the stabilisation of stationary CF vortices as shown by Rius-Vidales et al.23 and Moniripiri et al.24 Figure 5
portrays the maximum and minimum spanwise gradients versus the chordwise coordinate for all the cases. The vertical
solid red line indicates the position of the hump and its effect can be seen on the spanwise gradient. The derivatives are
normalized as ∂u/∂z|∗ = (∂u/∂z)(δ0/Qre f ). In particular, immediately downstream of the hump, an increase (in absolute
value) of both the maximum and minimum spanwise gradients can be observed. A much stronger amplification is
observed in the hump A2 case. Further downstream, their values are much lower compared with the reference case,
indicating a weakening of the stationary crossflow vortex and, as a consequence, of the secondary instabilities. This
holds for both the low-amplitude A1 and high-amplitude A2 cases, with a much stronger reduction in the hump A2
case compared with the reference A2 case. Note that, since transition to turbulence in the hump A2 case has been
observed at x/cx ≈ 0.25 in the experiment23 and DNS,24 the simulation domain for this case is shorter than other cases
to reduce the computational costs. The locations at which the type I mode becomes unstable are displayed by dashed
vertical lines. As expected, in the reference A2 case, the type I mode is amplified much more upstream, with respect
to the reference A1 case, due to a larger amplitude of the crossflow vortex. Interestingly, the values of the normalized
spanwise gradients ∂u/∂z|∗min at which the type I secondary instability becomes unstable are very close to each other
among the different cases (marked by the purple shaded region in figure 5). This indicates that, most likely, there is a
threshold above which the mode becomes unstable. Furthermore, for the hump A2 case, no unstable high-frequency
mode was observed within the typical frequency range associated with the type I mode. This suggests that transition in
the hump A2 case is likely driven by other types of secondary instabilities, which may not be present in the reference
cases.

4.2 Secondary instabilities induced by the hump

Spatial LST-2D computations were conducted downstream of the hump to determine whether modifications to the base
flow caused by the hump give rise to new instability mechanisms. The presence of the hump induces successive APG
and FPG regions, which leads to a reversal of the CF velocity component downstream of the hump.24 This leads to
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Figure 5: Maximum and minimum spanwise gradient versus the chordwise direction for the reference (clean) and
hump cases for both low- and high-amplitude cases. The red solid vertical line marks the hump apex and the shaded
region its width. The dashed vertical lines indicate the location of the neutral point for the type I secondary instabilities,
color-coded accordingly to the case. The purple shaded area represents the range of ∂u/∂z|∗min at the first location where
the type I is amplified.

Figure 6: Resolved spatial eigenvalue spectra for the reference clean and hump A1 and A2 cases. The eigenvalue spectra
are computed at the station x/cx = 0.176 at (a) f = 500 Hz and (b) f = 1200 Hz. Regions with continuous branches of
the spectra are represented by a purple solid shaded region.

the appearance of additional inflection points in the CF velocity component profile. Consequently, the flow becomes
susceptible to several additional instabilities that do not occur in the reference cases. Figure 6 provides the spatial
eigenvalue spectra for the reference and hump cases at the low- and high-amplitude of the crossflow instability. The
spectra are computed at the chordwise location of x/cx = 0.176 for the frequencies f = 500 Hz (figure 6(a)) and f =
1200 Hz (figure 6(b)). The hump cases are characterised by several families of unstable modes and several continuous
branches, which lie in the stable portion of the spectra and represent modes living in the free stream. The reference
cases only feature one mode at the lower frequency ( f = 500 Hz), whereas they do not display any unstable mode
at the larger frequency ( f = 1200 Hz). The unstable mode at f = 500 Hz in the reference (clean) cases corresponds
to the primary travelling crossflow instability, modulated by the interaction with the stationary crossflow vortex. As
expected, the growth rate of the mode in the reference A2 case is larger because of the larger amplitude of the stationary
crossflow vortex (cf. figure 3). The normalized magnitude of the streamwise velocity component amplitude functions
of these modes, based on a LST-2D computation, for the reference and hump A1 and A2 cases are shown in figure 7.
As one can see, in the reference low-amplitude case, the crossflow vortex is less strong and the mode is just a mild
modulation of a travelling crossflow instability. In the high-amplitude A2 case, the stationary crossflow vortex is more
developed and a clear type III secondary instability is recognizable in the region close to the wall. Notably, in the hump
cases at f = 500 Hz, there are several additional instabilities which are excited. An inspection of the amplitude shape
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Figure 7: Normalized magnitude of the streamwise perturbation velocity component at the frequency f = 500 Hz and
at the station x/c = 0.176 for (a) reference A1, (b) reference A2, (c) hump A1, and (d) hump A2. The modes in the
hump cases correspond to the second most unstable modes in figure 6(a). The black lines stand for ten equally spaced
isolines of the normalized base flow streamwise velocity component ū/ūmax, in the interval [0, 0.95].

of those instabilities reveals that all these modes have similar spatial distributions and resemble a modulated travelling
crossflow instability/type III whose shape is affected by the presence of the hump. The eigenfunctions corresponding
to the second most unstable eigenvalues in figure 6(a) for hump A1 and A2 cases are shown in figures 7(c, d).

To relate the velocity perturbation of the amplified modes to the distortion of the flow field, the base flow velocity
gradients at the station x/cx = 0.176 are shown in figure 8 for the cases under study. In particular, the wall-normal
shear is portrayed in figures 8(a, c, e, g), while the spanwise gradients are shown in figures 8(b, d, f , h). Note that the
gradients have been normalized with the maximum values of the hump A2 case for a direct comparison. As can be
seen, the velocity gradients of the hump A1 case are just a mild modification of the ones in the reference A1 case. In
particular, the region where the spanwise shear attains its maximum value is slightly deformed (cf. figure 8( f )). On
the other hand, the effect of the hump in the high-amplitude A2 case is more pronounced and strongly impacts the
instability characteristics of the boundary layer downstream of the hump. In particular, on the upwash and downwash
sides of the crossflow vortex, there is an area of increased wall-normal shear, and the spanwise shear displays a strong
distortion. The area of negative spanwise velocity gradient is split into two, and a region of positive values appears in
between, indicating the presence of an additional vortex. This additional vortex is visible in figure 9(b) and is referred
to as hump-induced vortex (hump-IV).

Figure 9 portrays the leading instabilities for the frequency f = 1200 Hz at x/cx = 0.176 (cf. figure 6(b)),
denoted as mode A, for the hump A1 and hump A2 cases. Note that this mode is only unstable in the hump cases. As
shown in the figure, the dominant modes in the two hump cases feature a region of large amplitude in the region under
the crossflow vortex, close to the wall. The presence of the additional hump-induced vortex strongly influences the
structure of the dominant mode A at this station and more downstream (see § 4.3). The mode A in the hump A2 case
features a region of large amplitude and an additional zone with local maxima on its side on top of the hump-IV. On the
other hand, the largest amplitude is mainly concentrated in the region between the CF vortex (CFV) and the hump-IV.
According to figures 8(g, h), these locations are associated with large wall-normal and spanwise gradients, induced by
the hump, which deforms the CFV and promotes additional shear stresses.

4.3 Streamwise evolution of modeA

In this section, the streamwise evolution of the growth rates and N-factors of the mode A in the hump A2 case are
investigated to clarify the role of this perturbation and its impact on the instability properties of the boundary layer
downstream of the hump. Figure 10(a) displays the evolution of the dimensional spatial growth rate of the mode A
computed via LST-2D for four different frequencies. The curves associated with modes with different frequencies ex-
hibit similar behaviour. Mode amplification begins slightly downstream of the hump apex, coinciding with the reversal
of the CF velocity component near the wall. The mode then undergoes rapid amplification, reaching growth rates on the
order of 250 1/m, followed by a sudden drop, a "plateau" region, and eventual stabilization. It is observed that with in-
creasing frequency, the peak growth rate becomes higher, followed by a more rapid decay. Lower-frequency modes are
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Figure 8: Base flow gradients at the station x/cx = 0.176 for the (a, b, c, d) reference and (e, f , g, h) hump cases. Low-
amplitude A1 cases represented in (a, b, e, f ) and high-amplitude A2 cases in (c, d, g, h). Normalized gradients of the
base flow streamwise velocity component with respect to the wall-normal direction (a, c, e, g) and the spanwise direc-
tion (b, d, f , h). Contour levels below ∂ū/∂η/(∂ū/∂η)max < 0.2 are blanked out in (a, c, e, g) and normalized gradients
between 15% of the maximum and minimum shear are blanked out in (b, d, f , h). The black lines stand for ten equally
spaced isolines of the normalized base flow streamwise velocity component ū/ūmax, in the interval [0, 0.95].

Figure 9: Normalized magnitude of the streamwise velocity component amplitude function of the leading instabilities
at the frequency f = 1200 Hz and at the station x/cx = 0.176 for the (a) hump A1 and (b) hump A2 cases. The black
solid lines represent the cross-sectional streamlines represented by the in-plane velocity components (v−w). CFV and
IV stand for crossflow and hump-induced vortex, respectively.

associated with smaller peak growth rates; however, the mode remains unstable over a longer chordwise extent, result-
ing in larger integrated growth. This is illustrated in figure 10(b), which shows the N-factor envelope (black thick line).
As one can see, the N-factor envelope exhibits two local maxima: the first occurs around x/cx ≈ 0.19, corresponding to
the modes with higher-frequencies, while the second, more pronounced maximum appears near x/cx ≈ 0.21, associated
with the lower-frequency curves of modeA. The N-factor envelope for modeA in the hump A1 case is represented by
the thick grey line in figure 10(b). In this configuration, the mode exhibits only weak growth starting at the onset of the
CF reversal region and decays rapidly downstream. Notably, the counter-rotating vortex pair observed in the hump A2
case does not develop downstream of the hump in the A1 configuration. Figure 11 provides the streamwise evolution
of the shape of the modeA at several stations downstream of the hump (A2 case). At the first station, a hump-induced
vortex emerges near the wall, exerting a strong influence on the developing perturbation. As shown in figure 11(b),

10

DOI: 10.13009/EUCASS2025-426



INFLUENCE OF SURFACE HUMP ON SECONDARY CROSSFLOW INSTABILITIES

Figure 10: (a) Streamwise evolution of σ at four different frequencies of the mode A and (b) the corresponding N-
factors and envelope (black thick line) downstream of the hump A2. The grey lines in (b) indicate the N-factor curves
and envelope for the mode A in the hump A1. The solid vertical red line marks the hump apex and the shaded region
its width. The shaded regions enclosed by the vertical dashed lines indicate the extent of the CF reversal region.
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Figure 11: Mode A downstream of the hump (A2 case) at the stations (a) x/cx = 0.167, (b) x/cx = 0.182, (c) x/cx =

0.1919 and (d) x/cx = 0.207, at the frequency f = 1200 Hz. The black lines represent the vortex system by the in-plane
velocity components (v − w).

the mode is ’split’ with two distinct regions of large amplitude. Moving downstream, the perturbation on the left side
becomes stronger than the one on the right side. As the hump-IV vanishes, these two local amplitude maxima merge
into a single structure localised on the upwash side of the crossflow vortex, resembling a type I secondary instability.
However, the frequency of this mode ( f = 1200 Hz) is lower than the typical frequency associated with the type I mode
( f = 5000 Hz) in the reference A1 and A2 cases. Finally, figure 12 portrays a three-dimensional view of the mode A
at the frequency f = 1200 Hz in the non-orthogonal coordinate system, based on a PSE-3D computation. Alternating
strips of positive and negative values of the real part of the streamwise velocity component aligned with the direction
of the crossflow vortex are observed close to the hump location. Further downstream of the hump, these strips become
increasingly inclined, reflecting the rotation direction of the crossflow vortex.

5. Comparison between instability analysis and DNS

This section compares DNS and instability results for unsteady perturbations downstream of the hump A2. The per-
turbation is extracted from the DNS by decomposing the velocity field through a Fourier transformation in time and
isolating the frequency of interest. PSE-3D results are transformed back into the orthogonal curvilinear coordinate
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Figure 12: Mode A at f = 1200 Hz downstream of the hump A2 represented by red (positive) and white (negative)
three-dimensional isosurfaces of the normalized real part of the streamwise velocity component amplitude function
(ûr/ûr,max = ±0.01) in the range x/cx ∈ [0.155,0.24]. Isolines of the streamwise velocity component of the distorted
base flow in solid black and normalized magnitude of the streamwise velocity amplitude function represented by a
purple isoline (|û/ûmax| = 0.5).
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Figure 13: Normalized magnitude of the streamwise velocity component amplitude function (|ûc/ûc,max|) for the mode
A of figure 6 at the frequency f = 1200 Hz, shown at the stations (a) x/cx = 0.172, (b) x/cx = 0.184, (c) x/cx = 0.202
and (d) x/cx = 0.22. DNS (filled contour) compared with PSE-3D (purple isolines). The black lines stand for ten
equally spaced isolines of the normalized base flow streamwise velocity component, ūc/ūc,max, in the interval [0, 0.95].

system for a direct comparison. The frequency f = 1200 Hz is considered for the comparison. Both the DNS and
the instability computations feature a dominant perturbation that is located close to the wall, on the upper side of the
additional hump-IV. Figure 13 portrays a comparison between the DNS and PSE-3D results, for |ûc/ûc,max|. Several
stations downstream of the hump and upstream of the transition region are considered. It can be noted that PSE-3D
computations can recover the main features of the unsteady perturbation, accurately reflecting the location and shape
of the mode, with a strong overall correlation observed with the DNS results at all the stations. Figure 14 compares the
integrated growth rate (i.e., the N-factor) obtained from instability computations with the one extracted from the DNS.
The N-factors data (DNS, LST-2D, and PSE-3D) are based on the integral of the disturbance kinetic energy across the
plane ηζ. The DNS-based N-factor curve is normalized at x/cx ≈ 0.17, which is the first station where a perturbation
resembling modeA can be clearly isolated. Upstream of this location, the perturbations extracted from the DNS do not
consist of only a pure hump-induced secondary instability. Instead, they include contributions from other perturbations
at the same frequency. This is a consequence of the random forcing employed in the DNS. This is clarified by the
insets in figure 14, which depict the Fourier-transformed perturbation from the DNS at the frequency f = 1200 Hz
at two different chordwise locations. The stations upstream of x/cx ≈ 0.17 feature a large perturbation on top of the
stationary CFV. Performing the integral of the kinetic energy in the plane ηζ to obtain the N-factor at these locations
results in overestimating values which are not comparable with the results from the instability computation. Indeed,
both LST-2D and PSE-3D solve exclusively for a single, well-defined mode, i.e, modeA. It is here underlined that this
may also contribute to the small differences noted between the PSE-3D and DNS results on the amplitude functions
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Figure 14: N-factor curves versus x/cx for the mode A in figure 6 for the frequency f = 1200 Hz in the hump A2
case: DNS , LST-2D, and PSE-3D. The insets display a zoom of the perturbation distribution (chordwise velocity
component) computed from the DNS at two different chordwise locations. The rectangular grey-shaded area in the
insets of the figure indicates the spatial region where the mode is amplified. The red solid vertical line marks the hump
apex and the shaded region its width. The shaded region enclosed in the dashed lines indicates the area of CF reversal.
The grey-shaded area portrays the region where the flow becomes transitional in the DNS.

shown in figure 13. LST-2D results underestimate the N-factor compared to normalized DNS results, consistent with
the observation of Ambrosino et al.25 In contrast, the PSE-3D computation yields larger growth rates compared to
the LST-2D ones and closely matches the amplification observed in the DNS. The significant deviation between the
LST-2D and PSE-3D curves confirms that the streamwise gradients of the base flow and of the amplitude function play
a non-negligible role in predicting the amplification of the disturbance. Both the normalized DNS and linear stability
results exhibit an N-factor of approximately 7 in the region where the DNS indicates transition, suggesting strong
perturbation growth. This large amplification, associated with mode A, implies that a strong convective instability
could be responsible for the transition in the hump A2 case, consistent with the findings of Moniripiri et al.24 While
the reference A2 case undergoes transition due to the growth of the type I secondary instability of the stationary CFV,24

the presence of the hump alters the transition scenario. Specifically, when sufficiently strong crossflow vortices interact
with the hump, the transition front moves upstream. This shift is attributed to the hump-induced secondary instability
developing downstream of the hump. The strong agreement between linear instability predictions and DNS, both in
mode structure and N-factor distribution, reinforces the conclusion that the transition mechanism remains governed by
modal perturbation growth.

6. Conclusions

This study investigates the evolution of unsteady disturbances downstream of a smooth surface hump in a crossflow-
dominated boundary layer over a swept wing by means of instability analysis. The objective is to assess the applicability
of linear stability theory in analysing such configurations. This is examined through a quantitative comparison between
instability predictions and DNS results. The two-dimensional local theory (LST-2D) and linear three-dimensional
plane-marching parabolized stability equation (PSE-3D) methodologies are employed to study the effect of a smooth
surface hump geometry on the swept-wing boundary layer corresponding to the experiments by Rius-Vidales et al.23

They experimentally investigated the interactions between a smooth surface hump and steady crossflow perturbations
with low- and high-amplitudes.

Stability analyses are conducted to examine the evolution of secondary instabilities of stationary crossflow vor-
tices and to identify how these are affected by the hump. Spatial LST-2D have been performed downstream of the
surface hump to identify the most relevant modes and most unstable disturbance frequencies. The spatial eigenvalue
spectra reveal the existence of several instabilities amplified in the downstream of the hump for both low- and high-
amplitude cases. In both cases, a dominant mode, denoted as mode A, is identified. In the hump A1 case the mode
A is amplified in a short streamwise extent and does not reach large N-factor values. Therefore, it is concluded that
this mode does not affect the transition mechanism. As a consequence, by performing PSE-3D computations, the be-
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haviour of the type I perturbations was analysed to identify the frequencies which lead to the largest amplification of
the disturbance. Moreover, in the experiment23 and DNS,24 the hump A1 case exhibits a delayed transition compared to
the clean case. This is confirmed here by the instability computations, which show a weakening of the type I secondary
instability mechanism. In particular, the stability analysis for hump A1 case reveals an amplified type I only for a very
small streamwise extent and very low growth rates, which results in negligible N-factors. These results are consistent
with a downstream movement of the transition front, as observed in experiments23 and DNS.24

On the other hand, the hump A2 case displays a different transition mechanism in the DNS and experiment, with
the transition front moving upstream near the smooth hump. Finally, a comparison between the instability computations
and DNS data demonstrates that the PSE-3D simulations accurately capture the mode’s location and perturbation shape,
showing overall good agreement at various downstream positions relative to the hump. Furthermore, an analysis of the
N-factor curve for a frequency of f = 1200 Hz reveals that LST-2D significantly underestimates mode amplification,
whereas the PSE-3D results closely align with the amplification trends observed in the DNS. Moreover, both the PSE-
3D and normalized DNS results exhibit a maximum N-factor of approximately N ≈ 7 in the region where the DNS
indicates the onset of transition. The significant amplification of mode A by a factor of e7 ≈ 1100 aligns with the
observed transition in the DNS. This finding reinforces the idea that this perturbation is the primary driver of the early
laminar-to-turbulent transition process in the hump A2 case.24 Lastly, the strong quantitative agreement between linear
stability theory and DNS suggests that the transition scenario in the hump A2 case is governed by a modal growth of
perturbations.
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