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Abstract

In energy system optimisation, there is a tendency towards working with models
that feature perfect foresight [1, 2]. On the other hand, devices in today’s
energy systems have been operational for a long time, e.g. one third of home
heaters in Germany are older than 20 years [3], some German coal power plants
from the 1950s are still in operation [4], and – more anecdotally – according
to the company that built and installed it in the Zurich town hall, the world’s
oldest water-water heat pump from 1936 is still operational. Thus, it is rather
optimistic that a prognosis over the complete operational period can be made
with good accuracy. In fact, in research it is often correctly stated that scenarios
are created rather than prognoses are made. However, if decisions are to be
taken, a prognosis is needed, and the further that prognosis looks into the
future, the more uncertainty it has.

The issue can be addressed by considering multiple scenarios for the future,
instead of just a single one. Options include a sensitivity analysis to test the
dependency of the result on the input parameters [5, 6, 7], sometimes in the
flavour of Monte-Carlo simulation [8]. Stochastic programming [9] and robust
optimisation [10] are two commonly used ways [11, 12] to do so already in the
optimisation process.

This contribution gives examples on how to implement these types of multi-
scenario approaches into energy system optimisation that is based on linear
programming. It also comments on the generation and selection of scenarios,
that can than be used for these methods. Besides manually picking optimistic
and pessimistic extremes, we discuss the generation of self-consistent time-series
using Markov chains [13]. While the methods can be applied in multiple fields,
we use charging of battery electric vehicles (EV) as an example.

1 Scenario-aware optimisation (EV charging)

Scenario-aware methods can be used to plan energy systems in a manner which
accounts for uncertainties within considered scenarios. These methods aim to
identify different scenarios that may be encountered in the future, and max-
imises the system performance individually for each of these scenarios [14]. Our
example shows a way, how to include stochastic programming [15] into a linear

https://orcid.org/0000-0002-4311-2753
https://orcid.org/0009-0007-8874-7748
https://orcid.org/0000-0001-9903-7628


Grid
Scenario
Converter

Scenario 1
Grid

Balance
Battery Demand

Scenario 2 BatteryGrid
Balance

Demand

Figure 1: Energy flow diagram with two scenarios for the trips. Grid source is
connected to both scenarios via scenario converter. Both scenarios include grid
balance, battery and demand.

optimisation framework that does not provide explicit support for stochastic
programming.

The energy system model that we used includes the electricity grid for energy
supply, EV batteries, and charging stations. To account for the uncertainty, we
created two different scenarios to be optimised: one base case scenario (Scenario
1) and an alternative scenario, where the driver sets off two hours earlier (Sce-
nario 2). The electricity price is changing throughout the day, but there is just
one common price curve. In particular, to enforce differences in this didactic
example, we set very low prices for the periods of time when the car is on the
road in the morning in either of the scenarios.

The energy system model optimises the charging of the EV batteries while
managing the energy from the electricity grid. In each scenario, energy flows are
managed independently using separate batteries, minimising total costs while
meeting the demands. In the scenario integrated optimisation model, separate
energy flows are provided for both scenarios.

We simulated energy flows over one day in 10-minute time slots using the
oemof.solph [16] library in the modelling process. It tries to find one strategy
to purchase electricity from the grid that is optimal considering multiple possible
scenarios. Thus, the grid source is the same across scenarios. For our present
example, we created separate energy flows for two scenarios, which are connected
using a Converter, that makes sure purchased energy is identical in all scenarios.
However, as a battery cannot be charged if the vehicle is not present, there is a
(virtual) Sink called ‘Grid Balance’. Pushing energy to this outlet means that
purchased energy cannot be used. We added a small penalty to make sure not
even free electricity will flow from the grid if there is no way to consume it in
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Figure 2: Battery SOC for a day with two scenarios for the trips. An increasing
SOC means charging, a slowly decreasing SOC is due to self-discharging. When
the vehicle is driving, the SOC decreases. It can be seen that the SOC is different
due to the different points in time the vehicle is moving.

any of the scenarios. The energy system graph shown in Fig. 1 visualises the
energy flows of the two journey scenarios.

The optimisation results show the most cost efficient energy flows and storage
operations under the specified scenarios. This is displayed in Fig. 2, which
graphs the energy state of an EV battery for the two scenarios. The method
makes sure that the vehicle can only be charged if it is present, preferably
scheduling the charging if it is there in all scenarios. However, high fluctuations
in the price can justify buying energy even if is not used in all of the scenarios. In
the present example, this can be seen in the morning hours: In the first scenario,
the battery of the electric vehicle is charged before travelling, while it is on the
road at this time in scenario 2. Vice versa, the battery in scenario 2 is charged
while the car is still moving in scenario 1. Except for differences due to the
different driving times, a common State of Charge (SOC) is observed between
the scenarios. Note that for a different example, even mostly parallel charging
might not always result in the same SOC in multiple scenarios: In particular,
a longer time span would allow for almost parallel movement, if there is a later
opportunity to realign.

The optimisation method we presented individually optimises the energy
flows for multiple different EV and grid scenarios, and couples these to a scenario-
independent operational strategy for the grid connection point. These scenarios
can be real world scenarios based off gathered trip data, but can also be ap-
plied to theoretical datasets to account for the numerous uncertainties in data
collection. This optimisation code was demonstrated on a two scenario dataset,
with the optimisations showing notable differences. In the first scenario, energy
management and cost-effectiveness are optimised as the battery of the electric
vehicle can be charged by receiving energy from the grid at a time when the
early departure scenario cannot.



2 Scenario generation (price development)

Considering multiple scenarios instead of just a few calls for a method to auto-
matically generate realistic scenarios. To do so, we blend a diffusion model with
a-priori expectations for the state. Diffusion models are often used to model
market prices [17], but they can be applied for many cases. While they are sim-
ple to apply, they typically assume a constant volatility or diffusion rate [13].
This might be a valid assumption for very short periods of time but it is not
expected over several decades, especially, during the transition from fossil fuels
to renewable energies. And it is also not modelling periodical changes as they
are implied, for example by daily variations in the energy demand. Secondly,
diffusion models are typically unbound. In the energy market, however, prices
depend on the availability of supply options, that each have a more or less
constant price. This is why we add an a-priori probability for the state.

Figure 3: Cumulated distribution function of the electricity spot market price
over the course of a random day between December 2023 and November 2024
(data from [18]). Estimating probabilities from a low number of events marks
a challenge by itself. Thus, the probability of extreme prices has a significant
uncertainty. The black lines show random price development scenarios generated
using the presented method.

Applied to the problem of electricity price variations during the day, the
state is the current electricity price ct, and the diffusion is the price change δt.
To model the fact that price variations happen in a certain band, we introduce
an a-priori probability density function (pdf) p(c, t) as shown in Fig. 3. It can
be seen, that it is uncertain what the price will be, but certain changes are
expected, e.g. prices tend to be higher in the morning and in the evening. As
in a discrete time grid with time resolution ∆t

ct = ct−∆t + δt, (1)

the probability density for the price change p(δ, t) does not guarantee that ct
stays inside the allowed range. For example, if the price is at the lowest possible
value for ct and p(ct, t+∆t) = 0, the price change δt+∆t needs to be sufficiently
high in that time interval. To solve this, a-priory probability p(c, t) might



be convolved with a probability resulting from the last state and the change
probability p(δ, t)

p′(c, t+∆t) = p(c, t+∆t) ∗ (ct + p(δ, t)) , (2)

where ‘∗’ marks the convolution of the two functions. However, this approach
does not guarantee that the scenarios resemble the a-priori probability. Thus,
we rather want to find a pdf p′(δ, t) that is compatible with the pdf p(c, t), in
particular it should not introduce a bias.

As a solution, we model the change as a Gaussian walk in quantile space.
This is equivalent to Brownian motion in [0:1] for a continuous time scale. The
result is a time series 0 ≤ P (t) ≤ 1. The values of this time series are than
mapped to the costs P (t) → c(t) using the cdf P (c, t) of the a-priori values

P (c, t) =

∫ c

−∞
p(c′, t) dc′. (3)

This way, the resulting total distances are automatically self-consistent with the
chosen a-priori pdf p(c, t).

Figure 4: Cumulated distribution functions of the change in percentile of the
spot price for example hours of a random day between December 2023 and
November 2024. Actual quantiles are shown in solid lines, dashed lines show
the approximation using normal distributions.

For the step in quantile space, we use a time-dependent normal distribution.
The fact that the distribution is symmetric is important, so that the step does
not introduce a bias relative to the a-priori pdf. Figure 4 displays that the
approximation of the step using a normal distribution is plausible. Random
price scenarios generated the presented method have already been displayed in
Fig. 3. Scenarios like this can now be used for stochastic analysis as discussed
in Sec. 1.

3 Scenarios as constraints (flexibility market)

Sometimes, it is not possible to explicitly optimise for scenarios. The decision
if and when to place electric vehicles in a market for flexible load is an example



for this. Modelling these cases is particularly difficult as perfect foresight and
flexibility are contradictory when using standard optimisation techniques. An
optimisation model that “knows in advance” if the flexibility is actually used,
contradicts the nature of a flexibility. We solve this issue by forcing the optimiser
to find a solution that works in both extreme cases: If vehicle is used as flexible
load the full time and if is not used at all. This view implements a minimalistic
version of robust stochastic optimisation [19] for a dispatch problem.

We model that market in a way that is aligned with current evaluations of
the transmission grid operators [20]: It might be possible to get cheap electricity
during a period of time, but as a precondition the charging capacity needs to be
reserved for that specific period of time. Using this market design, re-dispatch
will not cost any money (no compensation is offered for the capacity), but even
a (small) revenue is generated when electricity can be sold instead of curtailed.

planned Battery demand
Pplan Pdemand

flex Battery free
Pflex Pfree

Figure 5: Model for the usage of BEV batteries to provide flexibility. Both
usage models, planned and flexible, share the same battery but can only use it
one at a time.

We implement the energy system graph displayed in Fig. 5, again using
oemof.solph [16]. To make sure, only one of the two options, flexibility or
planned charging, is used at a time, the respective power Px is constrained
using binary status variables Yx with

Px ≤ Yx × Px,cap x ∈ {flex,plan} (4a)

with
Yflex + Yplan ≤ 1. (4b)

To make sure, the battery has sufficient capacity to flexibly take energy if it is
offered, the total capacity of the battery is shared between planned and flexible
use

Eflex + Eplan ≤ Ebattery,cap, (5)

even though Eflex cannot be used to fulfil a demand, so it is effectively forced
empty. This reserved capacity can only be freed if there is demand

Pfree ≤ Pdemand. (6)

If we did not set this limit, it was possible to offer more flexibility than there
is demand.



Figure 6: Battery SOC (flex and planned) of an electric vehicle with two trips a
day. The SOC at midnight is set to 50 %. It an be seen that remaining capacity
is used to offer flexibility.

In the example study, an electric vehicle with a battery size of 50 kWh, a
maximum charging power of Pflex,cap = Pplan,cap = 11 kWh, and 90 % charging
efficiency is used. The vehicle does one trip between 7am and 9am, and another
trip between 5pm and 7pm. Not to distract from the flexiblity market use,
we assume electricity prices to be constant with time. We further assume that
flexible electricity is cheaper than planned electricity. We express that as a
slightly negative cost at Pflex. The results are shown in Fig. 6. It an be seen
that the full capacity is used, the SOC reaches both, 0 % and 100 %. As the
optimiser has perfect foresight, this is expected and acceptable. Remaining
capacity that is not needed for the rides, is used to offer flexibility. However,
in reality, the full capacity of the battery will not be used: In the real world,
Eflex can serve the demand, thus charging the battery using Pflex would replace
charging it using Pplan.

4 Summary and Outlook

In the present work, we discussed methods that allow for considering uncertainty
in linear optimisation models. We did so following examples connected to the
charging of electric vehicles. The concepts, however, can be applied in other
contexts.

Section 1 introduced the alternative use of a Converter in oemof.solph to
do stochastic optimisation. While stochastic optimisation itself is well estab-
lished, the representation of the scenarios as part of the energy system graph is
at least uncommon. We believe that this flexible approach can open the door
to more sophisticated models even in the abundance of frameworks that are
explicitly designed for stochastic optimisation.

To generate scenarios, we presented a method in Sec. 2. It uses a Markov
chain that models a Gaussian walk in quantile space to guarantee plausible
and self-consistent time series. As the method is a based on a Markov chain,
long-ranging interdependencies that go beyond a limited step-size cannot be



modelled. The strength of this method is that it can universally applied and
produces results that resemble the a-priori pdf and feature a realistic change
of the quantity between the time-steps. This way, effects like collective drifts
are considered automatically if they are part of the input distribution. In the
future, we plan to apply the method for the development of long-term future
scenarios, that are based on prognosis. For example, expected long-term trends
for electricity prices due to increased availability of renewable energies could be
combined with price fluctuations on a shorter time scale.

Finally, in Sec. 3, we presented a method using scenarios only in constraints,
not in the optimisation goals. An approach like this can be advised if the
uncertainty of the future itself (not only the choice between multiple scenarios)
is to be modelled. This approach might allow to quantify flexibility in the
operation of an energy system while still following an optimisation approach.

It is noteworthy, that a combination of the methods is perfectly possible:
Randomly created scenarios can be used in stochastic optimisation, and the
highest SOC within these scenarios can be used to calculate the amount of
flexibility that can be offered throughout all scenarios.
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(BMBF) within the project “WärmewendeNordwest” (grant no 03SF0624L).
We thank Jan-Simon Telle for discussions about stochastic programming and
scenario generation, which helped to validate the ideas presented here.

References
[1] F. Plazas-Niño, N. Ortiz-Pimiento, and E. Montes-Páez, “National energy system
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