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The interaction between a forward-facing step (FFS) and single-frequency Tollmien–
Schlichting (TS) waves is investigated with experiments and two-dimensional (2-D)
direct numerical simulations (DNS). Dedicated hot-wire anemometry and particle
image velocimetry measurements in the vicinity of the FFS provide characterisation of
the perturbation field, as well as validation of the DNS results. Comparison between
experiments, 2-D DNS, and linear parabolised stability equations confirm the 2-D nature
of the flow and the linearity of the instability mechanisms around the FFS. Upstream of
the step, TS waves are gradually amplified by the increasing adverse pressure gradient.
In the step vicinity, both mean flow and perturbation field exhibit abrupt distortion, with
decoupling of the base flow-oriented growth rate components indicating significant non-
modal evolution. Downstream of the step, the mean flow recovers to baseline conditions,
but the perturbation field remains highly distorted. Linear stability theory results suggest
the presence of superimposed modes on the original TS mode in this region. Despite their
decay in the streamwise direction, their presence imprints modifications in the TS wave
growth and shape, manifested as the tilting of the perturbation structure in and against the
mean flow shear direction. This initiates a reversed Orr mechanism, characterised by a
region of stabilisation followed by destabilisation further downstream. Eventually, the TS
waves realign to their asymptotic (modal) behaviour. Overall, the FFS destabilises the TS
wave far downstream. However, the streamwise extent and magnitude of the stabilisation
downstream of the FFS remain significant.
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1. Introduction
Laminar flow control (LFC) emerges as a promising technology to reduce skin-friction
drag in modern high subsonic aircraft. Delaying laminar-to-turbulent transition to 40 %
of the wing chord can reduce total drag by up to 11 % (Schrauf 2005). However, several
studies (e.g. Schrauf 2005; Hansen 2010) have demonstrated that LFC efficiency is highly
dependent on the wing surface finish. Of particular importance are spanwise-distributed
roughness like steps and gaps, which drastically modify the boundary-layer stability,
causing premature laminar-to-turbulent transition (Crouch, Kosorygin & Ng 2006).

The primary aerodynamic surfaces of passenger aircraft, namely the wing and
tail, typically feature moderate sweep angles. Consequently, the study of swept-wing
aerodynamics is crucial for enhancing overall aircraft efficiency. Two main instabilities
lead to laminar-to-turbulent transition on swept wings: Tollmien–Schlichting (TS) waves
and crossflow instability (CFI). For low to moderate sweep angles (0◦−25◦, see Joslin
1998), TS waves govern the laminar flow breakdown, while CFI governs transition at
higher sweep angles (Joslin 1998). Thus, laminar-to-turbulent transition over the wings
of commercial transport aircraft – featuring sweep angles below 35◦ – results from the
combination of both TS and CFI growth (Mack 1984). This study will focus on the effect of
a two-dimensional (2-D) forward-facing step (FFS) on the laminar-to-turbulent transition
dominated by TS waves.

1.1. Effect of a FFS on transition location
Steps and gaps often form at the intersection of wing panels, posing a significant challenge
to the practical application of LFC techniques, especially near the leading edge (LE)
at the wing-box junction (Schrauf 2005). Driven by the engineering needs of aircraft
manufacturers, initial research on FFS-induced transition aimed to determine a critical
Reynolds height parameter (Reh,crit = hcritU/ν) to identify the maximum permissible step
height between panel discontinuities that would avoid laminar-to-turbulent transition at the
step location. In what follows, the Reynolds height (Reh) is defined using the free-stream
velocity (U ) and kinematic viscosity (ν) at the step location (xs), with h denoting the
step height. Early experiments by Nenni & Gluyas (1966) established a critical FFS height
parameter of Reh,crit = 1800. Later, a series of experiments performed by the Northrop
Grumman Corporation (Drake et al. 2008, 2010) on an unswept wing with gap and step
geometries revealed that, in the case of FFS, larger step heights (Reh,crit � 1800) did not
significantly advance transition. A similar conclusion was drawn from the results of the
European collaborative F100 and ATTAS flight tests, which led to an increase in the
permissible critical Reynolds number with FFS to Reh,crit = 3600 (Schrauf 2018).

The variation in Reh,crit between the aforementioned studies indicates the lack of
universality of this criterion in predicting a critical FFS height. In view of this, several
researchers adopted a more comprehensive approach to estimate the change of transition
location with different FFS heights. This approach is based on the eN method, whereby
knowing the increase in N factor in the presence of a step (�N = Nstep − N0), the
movement of the transition front can be estimated with respect to the no-step (baseline)
case. Following this idea, Perraud & Seraudie (2000), Wang & Gaster (2005) and Crouch
et al. (2006) proposed different semi-empirical models to isolate the effect of the relative
step height (h/δ∗) on the transition location using a single parameter, namely �N .
In literature, the relative step height or h/δ∗ is defined as the ratio between the step
height (h) and the displacement thickness (δ∗) measured at the step location (xs) in no-
step (baseline) conditions. The experiments of Wang & Gaster (2005) on a flat plate in
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subsonic conditions presented a good correlation between the relative step height (h/δ∗)
and �N for FFS. In addition, Crouch et al. (2006) proposed a linear correlation of �N =
1.6h/δ∗, accounting for both adverse and favourable pressure gradients effects. In a recent
experimental work, Methel et al. (2022) compared the correlation of Crouch et al. (2006)
with�N measurements downstream of various surface defects (including FFS) subject to
different levels of distributed wall suction. In agreement with Crouch et al. (2006), their
�N results confirmed a linear increase with h/δ∗ (see figure 13 in Methel et al. 2022).

Following the need to understand the effect of Mach number, pressure gradient and
wall temperature on TS–FFS laminar-to-turbulent transition, Costantini, Risius & Klein
(2022) conducted an extensive experimental study featuring a wide range of different step
heights and free-stream conditions on an unswept flat-plate model. When comparing the
best �N = f (h/δ∗) fit to their experimental data with the models proposed by Wang &
Gaster (2005) and Crouch et al. (2006), Costantini et al. (2022) observed discrepancies.
In Costantini (2016), the author attributes the disagreement to possible differences in step
geometries, step locations, transition detection techniques or the nature of the baseline
laminar-to-turbulent transition.

The observed disagreement between the different �N models puts into question
whether the transition location resulting from the interaction between TS waves and FFS
can be fully encapsulated within two parameters, namely �N and h/δ∗. The persistent
inability of single or double parameter correlations to universally capture transition
location under these conditions points to a more complex problem of flow interaction.
Further elucidation of the flow mechanisms at play in the step vicinity can help determine
the governing parameters of the TS–FFS interaction and whether they are bounded by
functional relations. While establishing specific functional relationships between step
parameters and transition location (i.e.�N models) is not in the scope of the present study,
the analysis and clarification of the perturbation behaviour around the step presented here
represents an initial step towards that goal.

1.2. Effect of a FFS on the development and growth of TS waves
The work of Wörner et al. (2003) constitutes one of the first detailed numerical studies
reporting the growth and evolution of a TS wave in the neighbourhood of a FFS. The
authors used direct numerical simulations (DNS) to investigate the interaction of a TS
wave with reduced frequency F = (2π f ν/U 2) · 106 = 49.34 in the presence of a small
FFS, namely h/δ∗ = 0.235. In Wörner et al. (2003), assuming viscosity in air at sea level
conditions (ν = 1.46 × 10−5 m2 s−1), the TS wave dimensional frequency is f = 2 Hz,
with U = 1.93 m s−1. Interestingly, the results of Wörner et al. (2003) show TS wave
stabilisation downstream of the step. The authors ascribed this behaviour to the origin of
a thinner and more stable boundary layer downstream of the step edge and to the absence
of free-stream disturbances.

Recently, Dong & Zhang (2018) revisited the TS–FFS case of Wörner et al. (2003) using
a local scattering approach, which relies on asymptotic triple-deck theory to simulate the
effect of a disturbance encountering a local scatterer, i.e. surface discontinuity. Dong &
Zhang (2018) found that, in line with previous numerical (Rizzetta & Visbal 2014)
and experimental (Wang & Gaster 2005; Costantini et al. 2022) works, both FFS and
backward-facing steps destabilise the incoming TS waves. Similar to the results of Wörner
et al. (2003), Dong & Zhang (2018) also report a local attenuation of TS waves below
baseline values downstream of the step. However, contrary to Wörner et al. (2003), the
TS wave was found to amplify again further downstream, eventually exceeding baseline
amplitude levels.
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Similar to Wörner et al. (2003), recent works (Xu, Lombard & Sherwin 2017; Teng
2023) have also reported stabilisation of TS waves in the presence of small steps, often
referred to as subcritical. Introducing Gaussian white noise, Xu et al. (2017) resolved
both K- and H-type transition scenarios in the presence of a so-called smooth step. The
smooth step described in Xu et al. (2017) features a geometry similar to a smooth ramp
or an elongated step, with a width comparable to one TS wavelength. The authors report
attenuation and transition delay with smooth step heights of h/δ∗ = 0.164 and h/δ∗ =
0.384, subject to a TS wave with a reduced frequency of F = 150. Compared with the
destabilisation reported with sharp FFS (Edelmann 2014), the stabilisation observed with
smooth steps was attributed to the absence of recirculating flow (i.e. laminar separation
bubbles) in the vicinity of the steps (Xu et al. 2017). Similarly, other researchers have also
reported significant differences in the stability of TS waves between sharp steps and steps
featuring a rounded edge, with the latter showing a reduced impact on laminar-to-turbulent
transition (Holmes et al. 1985; Franco, Hein & Valero 2020).

Recently, Teng (2023) reported significant transition delay with a sharp FFS. The
author used DNS to simulate the development of K-type transition under two different
FFS heights (large, h/δ∗ = 1, and medium, h/δ∗ = 0.5), subject to a single-frequency TS
forcing at F = 100. Similar to previous numerical results (Edelmann 2014; Dong & Zhang
2018), Teng (2023) also reports local attenuation of the TS wave shortly downstream of
the step. However, different from the step cases studied in Dong & Zhang (2018), Teng
(2023) finds a step case for which transition is delayed. In particular, the results of Teng
(2023) show that, after the local attenuation, TS waves resume growth for the highest step
(h/δ∗ = 1), while for the smallest step (h/δ∗ = 0.5), TS waves continue decaying below
baseline values.

Edelmann (2014) conducted an extensive DNS study investigating the interaction
between TS waves and FFS in both subsonic and supersonic flow regimes. The author
compared the growth predicted by linear stability theory (LST) with results from DNS
in the presence of a FFS. The goal was to evaluate the accuracy of using �N models
to predict transition location based on LST. In the subsonic regime, Edelmann (2014)
observed significant disagreement between LST and DNS shortly downstream of the step,
in the region where TS waves experience local attenuation. Inspection of the fundamental
TS mode shape at this location revealed a strong deformation, which deviates significantly
from the expected canonical modal TS mode shape (Edelmann 2014). Interestingly, the
author points to the existence of strong non-modal growth in this region to explain the
observed TS mode shape distortion in the DNS.

1.3. Parallelisms between TS waves and stationary crossflow instabilities interacting
with FFS

Recent DNS and experiments in swept-wing boundary layers, where transition is governed
by stationary crossflow instabilities (S-CFI), have also identified transition delay in
the presence of a FFS, opening the door to a new passive flow control strategy for
swept-wing laminar-to-turbulent transition. Rius-Vidales & Kotsonis (2021) performed
experiments on a 45◦ swept wing and found that a relatively small FFS (h/δ∗ = 0.83)
leads to a strong stabilisation effect on the primary S-CFI mode, resulting in an overall
transition delay. Numerically, the DNS results from Casacuberta et al. (2022) confirmed
a strong stabilisation of the primary CFI mode downstream of a FFS. Prior to these
studies, the available literature pointed to an overall destabilising effect of FFS for
S-CFI-dominated transition (Tufts et al. 2017; Eppink 2020; Rius-Vidales & Kotsonis
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2020), alike observations with TS waves (Crouch et al. 2006; Drake et al. 2008; Perraud,
Arnal & Kuehn 2014; Drake et al. 2010).

Similar to the findings reported for the TS–FFS interaction, a local region of CFI
attenuation has also been observed shortly downstream of a FFS both in experiments
(Rius-Vidales & Kotsonis 2021) and DNS (Casacuberta et al. 2022). The DNS results
and analysis presented in Casacuberta et al. (2022) confirm that the observed stabilisation
is primarily driven by linear mechanisms, inasmuch as it is completely described by
the production term in the Reynolds–Orr equation. Additionally, shortly downstream of
the step, results in Casacuberta et al. (2022) show that the primary crossflow wavefront
appears strongly deformed and misaligned with the base flow streamlines. The authors
relate the observed misalignment to regions where the perturbation might be subject to
non-modal growth mechanisms, in line with the conclusions derived in Edelmann (2014)
for TS waves.

1.4. Scope and outline of the present work
Overall, the mechanisms driving the development and stability of TS waves in the presence
of a FFS remain unclear. Recent DNS findings (Teng 2023) showing stabilisation of TS
waves and transition delay further emphasise the complexity of the TS–FFS interaction.
This study aims to closely examine the perturbation dynamics at the step and identify the
key mechanisms influencing the growth and evolution of TS waves.

This work constitutes an experimental and numerical investigation jointly conducted
by the Delft University of Technology (TU Delft) and the German Aerospace Center
(DLR) on TS waves interaction with a FFS (h/δ∗0 = 0.76). Experiments are conducted
at the TU Delft low-turbulence anechoic wind tunnel (A-tunnel) on an unswept flat-plate
model, where single-frequency TS modes are excited using acoustic forcing. The temporal
response of the flow in the vicinity of the step is captured using hot-wire anemometry
(HWA), and their spatial topology is retrieved with particle image velocimetry (PIV).
Additionally, 2-D DNS conducted at DLR provide detailed flow information at the
step vicinity. In this work, experimental and DNS results are complementary, with the
experimental data providing empirical observations and the DNS offering detailed analysis
of the flow dynamics near the step. Together, they contribute to a more comprehensive
understanding of the flow behaviour.

This study is organised as follows. Section 2 describes the flow configuration,
experimental set-up, wind tunnel model, perturbation forcing and measurement
techniques. Additionally, the numerical set-up of DNS and boundary-layer stability tools
is introduced. Section 3 presents experimental and numerical results on mean flow
modifications induced by the step. Section 4 examines perturbation field distortions near
the FFS, comparing DNS and experimental data. Section 5 investigates the stability
characteristics and underlying mechanisms governing the perturbation dynamics observed
in § 4. Finally, § 6 summarises the main findings of this study.

2. Methodology

2.1. Selection of FFS heights and flow conditions
The goal of this study is to describe the behaviour of TS waves as they interact with the
step and understand pertinent modifications on their growth and spatio-temporal evolution.
To do so, the FFS geometry and size are chosen as such to significantly destabilise the
incoming perturbations but not trip the flow to turbulence immediately downstream.

The choice of geometrical step parameters is made based on the FFS configurations
studied in previous works (e.g. Wang & Gaster 2005; and Edelmann 2014). Figure 1(a)
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Figure 1. (a) The FFS configurations investigated in works studying the TS–FFS interaction. Greyed regions
delimit the boundaries of Reh and h/δ∗ for which BL tripping at the step is reported from past experiments.
Experimental works: Wang & Gaster (2005) ( ), Perraud & Seraudie (2000) ( ) and this work ( ). Numerical
works: Edelmann (2014) ( ), Teng (2023) ( ) and Wörner et al. (2003) ( ). Green symbols (e.g. ) represent
step configurations for which transition delay or stabilisation have been identified under specific TS wave
conditions. (b) Stability diagram in baseline conditions from LST, where x∗ = (x − xs)/δ

∗
0 . Contours indicate

the growth rate (αi ) while dashed lines indicate the N factor. The horizontal grey line at F = 90 indicates the
studied reduced frequency.

Case ID h (µm) h/δ∗0 Reh U0 c Re = U0c/ν0 f F A A/U0

Baseline −8 −0.009 −11 22.5 m s−1 0.95 m 1.32 × 106 450 Hz 90 0.04 m s−1 0.17 %FFS 732 0.787 1017

Table 1. Reference flow conditions, TS forcing parameters and FFS geometrical parameters. The amplitude and
frequency of the forced TS wave are measured at x∗ = −43 in baseline conditions. The reduced frequency is
expressed as F = (2π f ν0/U 2

0 )× 106. The step is located at xs = 0.38 m (Res = U0xs/ν0 = 5.3 × 105). The
spanwise-averaged step height is denoted as h, while the uniformity of the step height across the span is
quantified by its standard deviation, measured as σh = 7 µm. The reference displacement thickness is measured
at the step location in baseline conditions, namely δ∗0 = 0.93 mm.

shows the relative step height (h/δ∗) and Reynolds number (Reh = Uh/ν) from various
experimental and numerical investigations covering the TS–FFS interaction and conducted
at flow conditions similar to this work, i.e. at low Mach number (M <0.3) and nearly zero
external pressure gradient. Note that δ∗ is used to define the relative step height only
when referring to other studies. When referring to the FFS studied in this work, the step
height is explicitly normalised using δ∗0 = 0.93 mm. The FFS configuration investigated
herein is indicated in figure 1(a) and presented in table 1. In line with previous works,
the displacement thickness at the step location under baseline conditions (δ∗0) is used
as the reference length scale to define the non-dimensional step height (h/δ∗0). In this
case, δ∗0 = 0.93 mm, resulting in a relative step height of h/δ∗0 = 0.787 (table 1). This
constitutes a FFS that is expected to not trip the boundary-layer transition (note grey region
in figure 1a) but neither delay it (note green symbols in figure 1a). Notably, the chosen
FFS configuration is close to the smallest step investigated in Wang & Gaster (2005) (see
+ symbol in figure 1a), for which the authors reported a small transition advancement of
�Rextr ≈ 3.3 %.

1023 A38-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
76

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10768


Journal of Fluid Mechanics

In order to deterministically investigate the pertinent interactions at the step and ensure
consistency between experimental and numerical approaches, a single frequency (i.e.
monochromatic) TS mode is desired. This is achieved via external forcing, described in
more detail in § 2.2.2.

The TS wave frequency is chosen based on the stability characteristics of the baseline
case. For this, the base flow is obtained by solving the steady and incompressible
boundary-layer equations, using the external velocity distribution (Ue(x)) retrieved from
experiments as input. Thereafter, the stability of the base flow is computed by solving the
Orr–Sommerfeld (OS) equation. Figure 1(b) shows the stability diagram in baseline flow
conditions, indicated in table 1. The TS frequency studied in this work (table 1) constitutes
a TS mode that achieves maximum amplitude (N = 3, dashed lines in figure 1b) at the step
location. Under baseline conditions, this mode decays downstream of the step.

The influence of the TS mode frequency on the TS–FFS interaction was investigated
by Rouviere (2023) using harmonic linearised Navier–Stokes equations. Their results
(Rouviere 2023, figure 5.14) show that, under equivalent step height conditions, different
TS modes – provided they are unstable at the step location under baseline conditions –
exhibit similar growth behaviour downstream of the FFS. Based on these observations, and
given that the main focus of this study is to identify the dominant flow mechanisms driving
the TS–FFS interaction under linear conditions, the present analysis is restricted to a single
representative mode (i.e. F = 90), which features the highest integral amplification at
the step location based on the conditions of this study. Nevertheless, it is important to
emphasise that, when aiming to capture the global effect of a FFS under natural transition,
it is essential to consider a broader range of TS frequencies to effectively build the N-factor
envelope.

2.2. Experimental set-up and flow measurement techniques
The experiments are conducted in the A-tunnel, an open-jet, closed-circuit, subsonic,
vertical wind tunnel. The facility has undergone recent renovations to improve its acoustic
and flow quality. This allowed for a suitable environment to force and study TS waves,
given their high sensitivity to acoustic emissions and free-stream turbulence intensity. The
modifications and results of the tunnel’s aeroacoustic characterisation are described in
detail by Merino-Martínez et al. (2020).

The free-stream velocity is fixed at U∞ = 20.5 m s−1 to obtain an external velocity over
the measurement side of U0 = 22.5 m s−1. This enabled the chord-based Reynolds number
to be kept at Re = U0c/ν0 = 1.32 × 106 (variations due to room temperature changes
remain within ±1 % of Re) throughout the experiment to achieve similarity between
the DNS and experimental conditions; see table 1. Under these free-stream conditions,
the measured turbulence intensity was Tu =√

u2
rms + v2

rms/(
√

2U∞)� 0.1 % (band-pass
filtered between 2 � fbp � 2 × 103 Hz).

The model geometry consists of an unswept flat plate featuring 0.95 m chord and 20 mm
thickness, and spanning the rectangular test section with a cross-sectional area of 500 ×
500 mm2 (see figure 2). The flat plate is enclosed by four walls to minimise environmental
disturbances and ensure the two-dimensionality of the flow in the measurement region.
Additionally, to achieve nearly zero pressure gradient (ZPG) conditions over the region
of interest, the top wall is slightly diverged from the bottom wall to account for
boundary-layer growth at the wind tunnel walls. The maximum acceleration parameter
K = (ν/U 2

e )(dUe/dx) (Schultz & Flack 2007) remains below K � 1.56 × 10−9 along
the domain of interest (i.e. DNS domain), confirming that the external flow conditions
approximate ZPG. In the previous definition, the external velocity (Ue) is retrieved
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Figure 2. Diagram of the experimental set-up showing the unswept flat plate, the FFS insert, the acoustic
forcing system and the arrangement of the different flow measurement techniques used.

from the static pressure tap measurements (custom-made pressure scanner equipped with
Honeywell HSC series differential pressure transducers), assuming that ∂p/∂y = 0. The
pressure taps’ approximate location is sketched in figure 2. Pressure measurements close
to the LE monitor the stagnation point location, while the spanwise and streamwise
distributed pressure readings allow for verification of the 2-D flow assumption (see
pressure tap measurements at z = ±120 mm from the midspan in figure 5a). Finally, the
reference velocity (U0, see table 1) is determined from the static pressure averaged across
two rows of pressure taps at z = ±120 mm (see grey solid line in figure 5a), measured at
x∗ = (x − xs)/δ

∗
0 = −193 (see black marker in figure 5a).

The machined aluminium plate features an average surface roughness lower than Ra ≈
0.3 µm (with Rq � 0.4 µm and Rz � 4 µm) and a modified super ellipse (MSE) geometry
at the LE with an aspect ratio of 6. This design moves the suction peak towards the LE
and reduces the adverse pressure gradient around the LE region (Lin, Reed & Saric 1992),
ensuring a rapid development towards a nominal Blasius boundary layer. The stagnation
point and the LE pressure distribution are further adjusted with a 50 mm trailing-edge
flap deflected approximately 33◦ upwards. The latter ensures that the stagnation point is
located on the upper side of the plate, avoiding unsteady separation effects. The flow on
the bottom side (non-measuring side) is forced to turbulence with zig–zag tape to avoid
flow separation at the trailing edge. The zig–zag tape was placed 50 mm downstream of
the LE (i.e. x∗ ≈ −355).

2.2.1. Modelling and characterisation of the step geometry
The flat-plate model used in this experiment features a rectangular cavity that spans
380 mm � x � 808 mm in the streamwise direction and −104 mm � z � 104 mm in the
spanwise direction (see geometry in figure 2 and dimensions in table 2). In this work,
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c b H t H1 ci bi xs δ f

0.95 m 0.5 m 0.5 m 20 mm 0.35 m 0.428 m 0.208 m 0.38 m 33 deg

Table 2. Geometric parameters of the unswept flat-plate model. Parameters are indicated in the schematic in
figure 2.

an insert is placed inside the cavity to simulate steps. A precision linear translation
mechanism on the rear side of the model insert enables creating both backward- and
forward-facing steps. The step height at the model-insert intersection (xs = 0.38 or x∗

s = 0)
can be adjusted.

Finally, step heights are characterised using a Micro-Epsilon 3010–25BL laser scanner
(resolution of 1.5 µm) that is traversed along the span (−80 mm � z � 80 mm) at the step
location. The average step height along the span (h) and the step spanwise uniformity
(standard deviation of h, σh) are specified in table 1. While utmost care was taken in
the fabrication and assembly of the step insert, the laser scan characterisation revealed a
narrow and deep (w/d � 1) gap of width w= 320 µm (w/δ∗0 = 0.34) at the intersection
between the flat plate and the step insert. Due to the inherent pressure difference between
the two sides of the flat plate, a weak suction flow forms at this gap. This residual suction at
x∗ ≈ 0 had a weak stabilising effect on the TS waves. Thus, to ensure consistency between
experimental and DNS results, this localised suction region in front of the step is also
reproduced in the DNS, as later detailed in § 2.3.1.

2.2.2. Acoustic forcing of TS waves
Similar to the experiments of Saric, Wei & Rasmussen (1995), this work leverages the
receptivity of LE roughness to acoustic pressure fluctuations to force single-frequency TS
waves at f = 450 Hz (F = 90). A 120 W benchmark speaker located 2.15 m downstream
of the LE (see figure 2) generates a deterministic plane acoustic wave at the desired forcing
frequency. The acoustic wave amplitude and frequency are monitored using a GRAS 46BE
analogue free-field microphone flush mounted on the top wall of the test section; see
figure 2. In addition, Kevlar type 120 fabric covers the side of the microphone facing
the flow to reduce the permeability to hydrodynamic fluctuations with respect to sound
waves. The sound pressure level recorded under acoustic forcing was kept below 80 dB
(band-pass filtered between 20 Hz � fbp � 20 kHz) to prevent nonlinear receptivity (Saric
et al. 1995; Placidi, Gaster & Atkin 2020).

The model’s MSE LE design eliminates the curvature discontinuity between the flat
plate and LE juncture, ensuring receptivity only at the nose of the LE (Lin et al. 1992). To
verify the efficacy of the acoustic forcing towards generating monochromatic TS waves,
the coherence between the pressure and velocity signals measured by the microphone and
hot wire, respectively, was assessed. The results revealed strong coherence between both
signals at the acoustic forcing frequency, i.e. fac � fTS.

The driving voltage of the speaker is adjusted according to the desired TS wave
amplitude, which is recorded at x∗ = −43 (P1 in figure 3) in baseline conditions with
a hot wire. The choice for TS wave amplitude during the experiments is made on the
basis of the expected interaction dynamics at the vicinity of the step. More specifically,
the acoustic forcing amplitude is chosen such that there is a linear development of the
perturbation in both baseline and step conditions, as well as a high hot-wire signal-to-
noise ratio for the forced TS mode compared with natural TS waves. Herein, natural
TS waves denote disturbances triggered by the background noise of the wind tunnel,
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PIV FOV

DNS domain

FFS�
y/
δ∗ 0

 =
 1

0
5

�x/δ∗0 = 580

HWA profiles
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δ∗ 0

 ≈
 5

.3

HWA measurement region

�x/δ∗0 ≈ −43 �x/δ∗0 ≈ 43

�x/δ∗0 ≈ 26�x/δ∗0 ≈ −16

P8 
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δ∗ 0

 ≈
 1

0
.5

Wall

Figure 3. Location and dimension of PIV field of view (FOV, orange), HWA measurement region (green) and
DNS domain (blue) within the flat-plate set-up. The dimensions of the measurement regions are drawn to scale
with the flat-plate cross-section dimensions. The DNS domain starts at x∗ = −247.

i.e. without acoustic forcing. The final TS amplitude under continuous acoustic forcing
at F = 90 was A/U0 ≈ 0.17 % (corresponding to Arms/U0 ≈ 0.12 %); see table 1. This is
obtained from the amplitude of the fast Fourier transform (FFT) of the hot-wire signal at
F = 90, evaluated at the y coordinate where A is maximum. Additionally, the spanwise
uniformity of the forced TS wave is assessed by comparing the TS amplitude and shape at
two additional spanwise stations, specifically at z/δ∗0 = −11 and z/δ∗0 = 11, using PIV. The
relatively small differences in amplitude (�A/A � 3.2 %) confirm the two-dimensionality
of the forced TS wave.

An immediate consequence of an acoustic wave travelling across a boundary layer is
the formation of a Stokes layer (SL, Placidi et al. 2020), as described in Stokes’ second
problem (Batchelor 2000). Since the TS wave and the SL share the same frequency, it is
challenging to experimentally separate one from the other, as observed in the experiments
of Saric et al. (1995). To address this challenge, White, Saric & Radeztsky (2000) proposed
a technique that leverages the differences in phase speeds between the TS wave and SL.
This technique involved the use of a sinusoidal pulse with frequency f pulse, rather than
a continuous acoustic signal in time. Since TS waves travel at a much lower phase speed
than the SL, their signal on the hot wire appeared delayed compared with the SL.

The approach of White et al. (2000) was implemented in these experiments using PIV
to evaluate the influence of the SL on the measurements performed with a continuous
acoustic signal. The TS wave amplitude measured at the start of the PIV domain (see
figure 3) under both pulsed and continuous forcing revealed no significant difference, with
a maximum deviation of�A/A � 2 %. The influence of the SL on the TS wave amplitude
measurements can be significant in receptivity studies, where the amplitude of the TS wave
is of a similar magnitude to that of the SL (Chauvat 2020). However, in the context of
the present experiments, where the measurement region is located within the exponential
growth regime of TS waves, the amplitude of the SL was considerably smaller than that
of the forced TS wave. Considering this, a continuous acoustic forcing is used to excite TS
waves during the experiments presented in this work. The effect of the SL is hereinafter
considered negligible.

It is important to note that under these conditions, local receptivity to acoustic forcing
at the sharp FFS edge can be plausibly expected to play a role in the dynamics of the
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developing flow. Nevertheless, as later shown in this work, the good agreement between the
DNS (which did not employ acoustic forcing) and the experiments (with acoustic forcing),
both in terms of perturbation growth and shape, indicates that any acoustic receptivity
at the FFS edge, if present, does not significantly influence the downstream perturbation
dynamics.

2.2.3. Hot-wire anemometry
Hot-wire anemometry measurements are conducted to examine the temporal dynamics
of the perturbation field in proximity to the FFS. The HWA set-up consists of a single-
wire boundary-layer probe (Dantec Dynamics 55P15) operated by a TSI IFA-300 constant
temperature bridge. The HWA voltage signal is converted into velocity using an in-situ
calibration with corrections for changes in ambient temperature, following the procedure
described in Hultmark & Smits (2010). In addition, an automated three degrees-of-
freedom traverse system is employed to position the HWA probe, with a step resolution of
2.5 µm and a positional accuracy of 10 µm in all directions.

Fifteen boundary-layer profiles are measured at the model’s midspan, within a
streamwise region covering 40 mm upstream and 40 mm downstream of the step location
(i.e. −43 � x∗ � 43); see figure 3. The streamwise spacing between successive boundary-
layer profiles is reduced from 10 to 1.25 mm immediately downstream of the FFS
to capture the complex flow dynamics reported in this region (Edelmann 2014). Each
boundary-layer profile consists of 60 measurement points logarithmically distributed in
the wall-normal direction to increase the spatial resolution near the wall (�ymin/δ

∗
0 = 0.01

and �ymax/δ
∗
0 = 0.33). The logarithmic spacing conveniently yields a higher resolution

around the TS maxima and around regions of high shear downstream of the FFS edge. The
HWA sampling frequency is set to fs = 51.2 kHz, with the acquisition system featuring
an anti-aliasing filter at 0.45 fs . The total measuring time per point is set to 3 s to ensure
statistical convergence of first- and second-order statistics. The dynamic response of the
HWA system was evaluated a posteriori using a square-wave test, yielding a frequency
response of 17 kHz.

The boundary-layer profiles are acquired by placing the probe in the free stream
and approaching it to the wall until the measured velocity is 10 % of the external
velocity, Ue. In addition, the wall distance of the last measurement point near the wall
is monitored using a Taylor–Hobson micro-alignment telescope (resolution of 20 µm). A
final adjustment of the wall distance is done by matching the experimental profiles to the
corresponding numerical profiles extracted from DNS.

The perturbation field is obtained by subtracting the time-averaged velocity (U (x, y))
from the instantaneous velocity (U (x, y, t)) signal at each point as

u(x, y, t)= U (x, y, t)− U (x, y). (2.1)

The hot wire is most sensitive to the velocity components perpendicular to the sensor.
In these experiments, the wire is placed parallel to the flat-plate LE, rendering the
probe sensitive to streamwise and wall-normal velocity components, namely Q + q =
[U + u, V + v]. However, since V is usually small compared with U (V = O(1/Re)), the
resultant velocity can be approximated by the streamwise-velocity component, i.e. Q ≈ U .
Similarly, since u is superposed on U , the fluctuating part measured by the hot wire can
be approximated as q ≈ u (Saric et al. 2007). Note that this assumption becomes less
sound for HWA profiles close to the step region, where the flow is deflected in the wall-
normal direction, with V being of the order or larger than U close to the FFS edge (see
results in § 3). However, given the good agreement between HWA and DNS U -velocity
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profiles (see § 3), and for consistency with previous studies using HWA for TS wave
boundary-layer measurements (e.g. Downs & Fransson 2014), Q + q ≈ U + u is assumed
for subsequent comparison of HWA with DNS in regions sufficiently far from the step.

2.2.4. Planar PIV
Planar PIV (two-component two-dimensional PIV) measurements are conducted to
characterise the mean flow distortion and perturbation field topology across the FFS. The
field of view (FOV) around the step spans −16 � x∗ � 26 at the model’s midspan (z = 0).
Figure 3 presents the PIV FOV dimensions compared with the HWA measurement region.

A Quantel Evergreen dual-pulse Nd:YAG laser (200 mJ per pulse) is used to illuminate
micron-sized tracer particles during a very short pulse duration (�tpulse � 10 ns) with
a monochromatic light beam, λ = 532 nm (green light). Water-glycol tracer particles
(average diameter of 1µm) are injected in the wind tunnel stream.

Images of the illuminated seeded airflow are captured by a LaVision Imager sCMOS
camera (2560 × 2160 pixels, 16 bit and 6.5 × 6.5 µm2 pixel size) positioned outside the
test section and orthogonal to the laser light sheet. To characterise in detail the boundary-
layer flow, the camera is fitted with a f = 200 mm lens operated at an optical aperture
of f# = 11, leading to a high magnification factor of M = 0.4 and a spatial resolution of
15.6 µm px−1. Image pairs are recorded at an inter-frame time of�t = 19 µs such that the
maximum particle displacement in the free-stream region is roughly 25 pixels. Accounting
for a typical uncertainty on the particle image displacement of 0.1 pixels (Sciacchitano,
Scarano & Wieneke 2012), the minimum velocity that can be measured is min(|U |) ≈
0.08 m s−1, yielding a dynamic velocity range of 200.

The laser and camera are synchronised using a LaVision Davis Programmable Unit
PTU X. Additionally, PIV acquisition and acoustic forcing are synchronised to realise
phase locking of the PIV measurements in reference to the forced TS wave. Image
pairs are captured at a frequency rate of 15 Hz. In this work, high-resolution phase
locking is achieved by setting a small phase increment between successive image pairs
(�φ = 5π/180 rad), acquiring 72 phases within the TS cycle. The resulting dataset
consists of 1944 images, which are used to compute statistical quantities of the flow and
perform a temporal FFT analysis (see, e.g. TS amplitude and phase from PIV results in
figures 7 and 8). Although each phase is represented by a relatively low number of images
(27 frames per phase), this number is deemed sufficient for the qualitative comparisons
made between DNS and PIV data presented in § 4.1. Later post-processing of the images
is performed using LaVision Davis 10.2 software, where the final interrogation windows
are set to 12 × 12 px with 75 % overlap after applying a multi-stage cross-correlation. The
highest uncertainty in the time-averaged velocity field is found downstream of the FFS
edge, in a region where the DNS results exhibit strong velocity gradients. In this region,
the maximum uncertainty on U remains below εU/U0 � 0.3 %.

2.3. Numerical set-up

2.3.1. Direct numerical simulations
Direct numerical simulations are performed at DLR using the Nek5000 code (Fischer,
Lottes & Kerkemeier 2008), which solves the incompressible Navier–Stokes equations.
The Nek5000 code employs the spectral element method (SEM), where the physical
domain is decomposed into spectral elements. Within each element, the flow field solution
is represented as a sum of Lagrange interpolants, defined on an orthogonal basis of
Legendre polynomials up to degree p. The simulations presented in this study are
conducted with a polynomial order of p = 9, and grid convergence is verified using p = 11.

1023 A38-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
76

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10768


Journal of Fluid Mechanics

As the focus of this work is on 2-D TS waves, the DNS simulations are restricted to 2-D
domains (see figure 3).

Initially, a DNS of the laminar 2-D base flow is performed. For this purpose,
inflow velocity profiles (i.e. UBL and VBL ) are prescribed at x∗ = −247, obtained as
a solution of the boundary-layer equations, using the measured external velocity Ue(x)
as the boundary condition. The outflow boundary condition is specified as ∂V/∂x =
0 and Re−1(∂U/∂x)− p = −pa , where pa = −Re−1(∂UBL/∂x) represents an ambient
pressure. On the free-stream boundary, a modified stress-free condition is applied:
U = Ue(x) and Re−1(∂V/∂y)− p = −pb, where pb = p̂ − Re−1(∂VBL/∂y). Here, p̂ is
obtained by substituting the velocity profiles derived from the boundary-layer solution
into the Bernoulli equation. At the wall, the standard no-slip condition is modified
to account for the narrow and deep gap at the intersection of the flat plate and the
step insert, as described in § 2.2.1. This gap, characterised by a width of w= 320 µm
(w/δ∗0 = 0.34), induces a localised suction effect with a measured wall-normal velocity
component of approximately Vs/U0 ≈ −0.01, as confirmed by PIV measurements under
baseline conditions. To replicate the influence of this suction effect on the incoming
disturbances, the gap itself is not explicitly meshed in the DNS. This decision is supported
by the experimental findings of Crouch et al. (2022), who demonstrated that the effect of
deep surface gaps on TS-dominated laminar-to-turbulent transition can be approximated
by �N ≈ 0.1w/δ∗. For the present conditions, this yields a negligible transition shift of
�N = 0.034. Instead, the induced localised suction effect is modelled by imposing a non-
zero wall-normal velocity component. The suction profile is defined using a hyperbolic
tangent function, which avoids strong gradients at the boundaries of the gap (−0.34 �
x∗ � 0) and remains nearly constant in the middle region of the gap. The imposed
maximum suction velocity (Vs/U0 ≈ −0.01) aligns with the experimental measurement.
By incorporating this localised suction effect into the simulation, the DNS set-up
aims to closely reconstruct the experimental baseline conditions, facilitating meaningful
comparisons between the numerical and experimental results, as further detailed in § 4.

The steady solution obtained after the initial transient has subsided represents the 2-D
base flow. Subsequently, a simulation is conducted in which unsteady disturbances are
superimposed on the base flow. To introduce periodic TS waves, a time-harmonic blowing
and suction strip, centred at x∗ = −193, is applied at the wall. The normal velocity
is prescribed across the strip as V (x, t)= A2D f (x) sin(ωt), where ω is the circular
frequency of the fundamental TS mode and f (x) is a shape function designed to ensure
zero net volume flow through the strip and to provide smooth derivatives near its start
and end points. The amplitude A2D is chosen such that the developing TS wave matches
the amplitude measured with HWA at x∗ = −43. To prevent numerical instabilities at the
outflow boundary, a sponge region is implemented to smoothly damp perturbations. After
the initial transient caused by the introduction of disturbances has vanished, the DNS
solution is Fourier analysed in time to extract the fundamental TS mode.

2.3.2. Boundary-layer stability
A comparison between the DNS solution and predictions from LST provides valuable
insights into the perturbation characteristics under FFS conditions, as demonstrated in
§ 5.1. In this study, two distinct linear stability formulations, namely the OS equations (Orr
1907; Sommerfeld 1909) and the linear parabolised stability equations (LPSE) (Herbert
1997) are employed, using the DNS base flow as input.

The OS and LPSE stability analyses are conducted on a Cartesian grid featuring a
uniform spacing (�x∗ = 19.4 × 10−2) in the x direction and pseudo-spectral discretisation
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Figure 4. Contours of the mean flow velocity components (U and V ) from DNS (a,c) and PIV (b,d), where
x∗ = (x − xs)/δ

∗
0 . Inflection points of U and V , ∂2U/∂y2 = 0 (a,b) and ∂2V/∂y2 = 0 (c,d), are indicated in

black dashed lines ( ). Vertical dash-dotted black lines indicate the streamwise locations of HWA profiles
P5, P7 and P10.

in the wall-normal direction by means of ny = 80 Chebyshev polynomials. The derivatives
in the wall-normal direction are approximated using pseudo-spectral Chebyshev
differentiation matrices. In the particular case of LPSE, the derivatives in the streamwise
direction are approximated using a first-order backward Euler (explicit) scheme. Further
details on the LPSE and OS solver’s numerical implementation can be found in
Westerbeek (2020).

3. Effect on mean flow
This section evaluates the mean flow modification caused by the presence of a FFS under
the flow conditions presented in table 1. Figure 4 shows the contours of the streamwise
and wall-normal velocity components, as obtained from PIV and DNS results. To facilitate
a direct comparison between DNS and PIV mean flow results, the DNS mean flow is
defined as

Qmean flow = Qbase flow + q(0,0), (3.1)

where q(0,0) denotes the mean flow deformation resulting from the (weak) nonlinear
interaction of the primary TS wave and its harmonics. The comparison of DNS and PIV
mean flow fields in figure 4 shows overall good agreement. Notably, PIV also captures the
abrupt increase in V near the step edge.

The pressure coefficient over the flat plate is shown in figure 5(a), with a zoomed
view around the step shown in figure 5(b). The pressure imposed in the DNS at the top
boundary condition is set to match the pressure measured at the wall during experiments
in baseline conditions (i.e. grey solid line in figure 5a). Given that the pressure exhibits a
weak variation in the wall-normal direction (∂p/∂y ≈ 0), differences between pressure tap
readings (symbols in figure 5a–b) and DNS wall pressure (orange solid line in figure 5b)
are negligible. Note that the small jump in pressure observed in figure 5(b) is due to the
simulated suction slot upstream of the FFS. The pressure coefficient at the wall in step
conditions could not be measured during the experiments since the available pressure taps
were located outside of the step insert (see figure 2).

The boundary layer is subject to a progressively growing adverse pressure gradient
as it approaches the step (figure 5b). Regions of low-momentum fluid near the wall are
subject to large curvature (∂2U/∂y2) changes due to the pressure gradient (Stratford
1959). This creates an inflection point that moves away from the wall with an increasing
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Figure 5. (a) Pressure coefficient (−C p) from tap readings at two different spanwise locations, left (z = −120
mm, ) and right (z = 120 mm, ) of the midspan (see figure 2). The average between left and right pressure
taps is represented by a solid grey line ( ). The blue area represents the spanwise extent of the DNS
domain, whereas vertical dashed lines delimit the HWA domain. The streamwise location used for measuring
the reference velocity is indicated by a black marker (•). (b) Pressure coefficient, −C p , from pressure tap
measurements (symbols) and from DNS results at the wall in both baseline ( ) and FFS conditions
( ). (c) Displacement thickness, δ∗, and (d–i) boundary-layer velocity profiles (U (y), ) and mean
shear profiles (∂U/∂y, ) in FFS (black) and baseline (orange) conditions. In figures (c–i), symbols (◦)
denote experimental HWA data and solid lines ( ) DNS. Streamwise location of profiles shown in (d–i)
are indicated by vertical dash-dotted grey lines ( ) in (b) and (c). The HWA velocity profiles from (d,e)
are located upstream of the FFS, while profiles from (f–i) are located downstream. Refer to table 3 for the
corresponding streamwise location (x∗) of each profile.

adverse pressure gradient, as shown by the dashed black lines in figure 4(a,b). The loss of
streamwise momentum close to the wall leads to an expansion of the boundary layer in the
wall-normal direction (see figure 5e), increasing its displacement thickness, as shown in
figure 5(c). Similar observations are reported in the DNS base flow results of Edelmann
(2014) upstream of the smallest FFS simulated, i.e. h/δ∗ = 1 and Reh = 1000 in figure 1(a).

The weak local suction in front of the step interrupts the otherwise present recirculating
region developing upstream of the FFS, which becomes hardly noticeable either from PIV
or DNS mean flow fields presented in figure 4. Downstream of the FFS, no secondary
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

−42.10 −31.37 −20.64 −15.28 −9.91 −6.69 0.82 2.16 3.50 6.18 11.54 16.91 22.27 33.00 43.73

Table 3. Streamwise location (x∗ = (x − xs)/δ
∗
0 ) of HWA profiles indicated in figure 3.

recirculating region is observed from DNS results. This observation is independent of the
presence of the upstream weak local suction and is in line with previous numerical works
performed under similar free-stream conditions and using similar FFS configurations (e.g.
works by Edelmann 2014 and Teng 2023, indicated in figure 1a).

Figure 5(b) shows a sharp increase in pressure at the FFS edge, followed by a more
gradual pressure decrease until baseline values are reached. In line with the observations
of Eppink (2020) for three-dimensional boundary-layer transition, governed by S-CFI,
figure 4(a,b) shows a kink in U , concurrent with the rapid growth in V at the FFS. Eppink
(2020) attributes this behaviour to the strong displacement of wall-normal momentum
away from the wall (see figure 4c,d) which needs to be compensated by an also high
streamwise momentum injected close to the wall to satisfy mass conservation.

The displacement thickness suddenly decreases due to the strong favourable pressure
gradient, but smoothly recovers to baseline values downstream, as shown in figure 5(c).
The HWA velocity profiles downstream of the FFS edge (figure 5f –i) provide further
insight into boundary-layer modifications due to the abrupt pressure changes at the FFS
edge. Downstream of the FFS, the boundary layer attains a dual structure characterised
by two different maxima in ∂U/∂y, which can also be observed from the contour lines
in figure 4(a,b). This modular composition of the boundary layer is the result of the
curvature change undergone due to the presence of two quasi-simultaneous opposite
pressure gradients. It would appear that the effect of such a strong and delimited favourable
pressure gradient persists downstream of the FFS (figure 5g), imprinted in the boundary-
layer curvature. Further downstream (x∗ � 22), this effect is suppressed and the adverse
pressure gradient prevails. This modification is evident from the merging of the two ∂U/∂y
peaks in figure 5(h,i) and the dashed black lines in the contours of figure 4(a,b), which
indicate the boundary-layer inflection points.

4. Effect on TS wave development
The results presented in the previous section reveal abrupt and spatially confined
distortions of the mean flow in close proximity to the step. While the distortion
experienced by the mean flow upstream of the step can be widely encountered in a number
of well-documented stability problems, e.g. upstream of laminar separation bubbles
(Marxen, Lang & Rist 2012) or in front of smooth roughness elements (Park & Park 2013),
and it is well known to effectively destabilise TS waves. However, compared with the
upstream mean flow distortion, the type of mean flow distortion observed downstream of
the step has not been widely studied in the literature. It is therefore necessary to evaluate
the effect of such modulation on the overall boundary-layer stability.

This section will study the effect of the step on the growth of the fundamental TS wave
mode at F = 90 (table 1). Both experimental and DNS data will be used to this goal.

4.1. Fundamental mode amplitude and phase
The development of the fundamental mode’s streamwise-velocity perturbation amplitude
(Aũ) in step and baseline conditions is shown in figure 6(a), as obtained from HWA
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Figure 6. (a) The amplitude of the fundamental TS mode and zoomed view close to the step vicinity from
HWA measurements (◦) and DNS ( ). Grey solid lines in the zoomed figure correspond to the amplitude
of the near-wall peak emerging in the perturbation profile close to the step. (b–g) The TS wave perturbation
profile upstream (b,c) and downstream (d–g) of the FFS. Refer to table 3 for the corresponding streamwise
location (x∗) of each profile. Results in FFS conditions are indicated in black ( ) and in baseline conditions
in orange ( ). Streamwise location of profiles shown in (b–g) are indicated by vertical grey dash-dotted lines
( ) in (a).

measurements and DNS. Similarly, the u-perturbation profiles measured at six streamwise
stations in the vicinity of the step are presented in figure 6(b–g). In figure 6(a), Aũ

is retrieved at the wall-normal location where |ũ| (shown in figure 6b–g) becomes
maximum. Excellent agreement is observed between DNS and HWA results in terms
of TS amplification and u-perturbation shape. Despite HWA measurements not being
able to capture the secondary near-wall lobe emerging downstream of the step (see DNS
solution in figure 6d), they accurately capture the highly distorted TS perturbation profile
at P15 (see figure 6g). The excellent agreement between experiments and DNS is further
confirmed when comparing the spatial distribution of streamwise-velocity perturbation
amplitude (|ũ|, figure 7a–c) and phase (ϕũ , figure 8b,c,e) obtained from DNS and PIV
measurements, e.g. compare figures 7(a,b) and 8(b,c).

Figure 6 shows exponential growth of the fundamental mode’s amplitude upstream of
the FFS, following the progressive pressure increase (note C p curve in figure 5b). In
this region upstream of the step (−15 � x∗ � 0), the TS shape exhibits an increase in
perturbation amplitude at a higher wall-normal location (note thickening of the TS wave
shape in figure 7c around y/δ∗0 ≈ 1), which coincides with a region where the mean shear
is maximum (note the mean shear profiles in figure 5d,e around y/δ∗0 ≈ 1 and black dashed
line in figure 7, indicating the inflection points). This is a well-known behaviour observed
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|ṽ| - DNS

0

2

4
(a)

y/
δ∗ 0

(b) (c)

(d )

y/
δ∗ 0

−10 0 10 20 30 40 50

x∗

−10 −5 0 10 155 20

x∗

−1 0 2 31
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Figure 7. Contours of the perturbation velocity (ũ and ṽ) from DNS (a,c,d) and PIV (b) in FFS conditions.
Subfigures (c,d) constitute contours of streamwise (c) and wall-normal (d) perturbation velocity in a zoomed
region delimited by a yellow box in (a) around the step corner. Solid lines denote the maxima ( ) and minima
( ) in the TS shape profile for |ũ| (a–c) and |ṽ| (d). Dashed lines ( ) indicate the inflection points in U
(a–c) and V (d).

in TS waves when entering regions of strong adverse pressure gradients, like a laminar
separation bubble (see, e.g. figure 17 in Dovgal, Kozlov & Michalke 1994) or upstream of
a 2-D hump (see, e.g. figure 10 in Park & Park 2013).

Immediately upstream of the step (−1 � x∗ � 0), the distortion induced by the FFS on
the TS instability results in a substantial transfer of streamwise perturbation momentum in
the wall-normal direction. This can be clearly distinguished by comparing the amplitude
fields of |ũ| (figure 7c) and |ṽ| (figure 7d), where |ũ| decays upstream of the step, while
|ṽ| is strongly amplified. This is also well observed from the growth rate results of ũ and
ṽ presented in figure 12(b) in § 5.2.

Immediately downstream of the FFS edge (0 � x∗ � 2), a secondary peak develops in
both |ũ| and |ṽ| at the near-wall region (see black lines in figure 7c,d and near-wall region
of the TS profile in figure 6d, i.e. y/δ∗0 ≈ 0.2). Similar observations are reported from the
DNS results of Edelmann (2014) (see, e.g. figure 4.29 in Edelmann 2014). Interestingly,
this feature occurs at a wall-normal location that coincides with a peak in the mean shear
profile. This can be observed from the u-perturbation amplitude contours (|ũ|) close to
the FFS in figure 7(c) (note dashed lines and full lines overlapping at 0.5 � x∗ � 2 and
y/δ∗0 ≈ 1) and the near-wall peak emerging in the TS profiles, which also appears in
the mean shear profile at the same streamwise station (see near-wall peaks in figures 5f
and 6d). This peak in the mean shear was related in the previous section to the abrupt
changeover from an adverse to favourable pressure gradient at the step. The amplitude of
the near-wall |ũ| peak decays in the streamwise direction (see grey lines in the inset of
figure 6a), indicating that the feature giving rise to this peak disappears or merges with
the original TS wave from x∗ � 2. The perturbation phase (ϕ) contours of ũ and ṽ in
figures 8(d) and 8(e) reveal that this near-wall feature exhibits a phase shift with respect to
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ϕṽ - DNS

Figure 8. Contours of the streamwise (ϕũ in b,c,e) and wall-normal (ϕṽ in a and d) perturbation phase from
DNS (a,b,d,e) and PIV (c) in FFS conditions. Subfigures (d,e) constitute contours of the streamwise (e) and
wall-normal (d) perturbation phase in a zoomed region delimited by a yellow box in (a) and (b) around the
step corner. Solid lines denote the maxima ( ) and minima ( ) in the TS shape profile for |ũ| (b,c,e) and
|ṽ| (a,d).

the phase contours of the TS structure above. In the next section it will be shown that this
phase shift between the incoming TS structure and the near-wall feature is related to their
opposite signs in the perturbation streamfunction (Re(ψ), (4.1)).

Further downstream of the step (x∗ � 5), the TS wave experiences a gradual stabilisation
up to x∗ ≈ 40 (see figure 6a), followed by an inflection in growth and a prolonged
destabilisation downstream up to x∗ ≈ 100, where it decays again, returning to the
decaying trend observed in baseline conditions. The latter can be observed by comparing
baseline and FFS case growth rates in figure 12, presented later in § 5.1. The decay-growth-
decay-growth behaviour shown in figure 6(a) resembles the TS amplitude evolution
reported in previous works downstream of isolated roughness or geometrical elements
(e.g. Wu & Dong 2016 and Michelis et al. 2023a).

Interestingly, figure 6(g) shows an unconventional TS shape profile at P15 in FFS
conditions. Both HWA and DNS capture a similarly distorted shape function. Further
evidence of the substantial distortion undergone by the TS wave in this region (20 �
x∗ � 60) is found from the u-perturbation phase contours (ϕũ) from DNS in figure 8(b).
Unfortunately, the PIV domain does not extend sufficiently downstream to encompass the
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region where the pronounced TS distortion occurs. Nevertheless, the agreement between
the fundamental mode amplitude and phase contours from PIV and DNS elsewhere,
coupled with the fact that the TS distortion is captured by HWA, points to the occurrence
of this behaviour in the experiments. The topology of the TS wave in this region and the
origin of this distortion are investigated in the following sections.

4.2. Topology of the perturbation field
The results presented in the previous subsection revealed two spatial regions where TS
waves experience a strong distortion due to the presence of the step. First, a region in the
vicinity of the FFS is found (0 � x∗ � 2), where a near-wall velocity perturbation appears
immediately downstream of the FFS edge. Second, a region further downstream of the
FFS (20 � x∗ � 60), where TS waves undergo a strong distortion in shape and phase,
coinciding with local amplitude decay.

Figure 9 shows the perturbation structure around the FFS at three distinct phases within
a TS period. In this study, the perturbation structure is visualised using isolines of the real
part of the perturbation’s streamfunction, ψ , which is defined as

u = ∂ψ

∂y
and v = −∂ψ

∂x
, (4.1)

where u and v denote the perturbation velocity components in the streamwise and wall-
normal directions, respectively. These components are expressed as[

u
v

]
=
[

ũ
ṽ

]
e−iω0t + c.c., (4.2)

ũ = |ũ|eiϕũ
, (4.3)

ṽ = |ṽ|eiϕṽ , (4.4)

where c.c. denotes complex conjugate. The streamfunction ψ (4.1) is computed by
integrating the perturbation field across the DNS domain using the trapezoidal rule.

In the vicinity of the FFS apex (see figure 9b,d,f ), the perturbation exhibits a secondary
structure featuring opposite sign in Re(ψ) with respect to the incoming TS wave (note the
solid grey contour lines in figure 9b,d,f ). According to the results presented in the previous
section, this secondary feature manifests in the TS shape function as a near-wall peak (see
figure 6d). The spatial region in which this near-wall structure is evident spans 0 � x∗ � 2,
corresponding to about 11 % of the local TS wave streamwise wavelength (λTS/δ

∗
0 ≈ 18).

The small dimension of this near-wall feature and its eventual decay (inset of figure 6a) in
the streamwise direction (vanishing downstream, as observed in figure 9b,d,f ) leads to a
negligible effect on the incoming TS wave stability.

The flow features observed at the FFS edge for an incoming TS wave are notably similar
to those in flows governed by a S-CFI. Casacuberta et al. (2022), studying the interaction
between a FFS and S-CFI, report the presence of spanwise-distributed near-wall streaks
emerging immediately downstream of the step edge and counter-rotating with respect to
the incoming primary crossflow mode. The near-wall structures observed in Casacuberta
et al. (2022) also arise at the FFS apex, at a near-wall region where the mean flow exhibits
high wall-normal shears.

Casacuberta et al. (2025) attribute the onset of near-wall streaks to the lift-up effect,
caused by the redistribution of streamwise momentum by the cross-stream perturbation
components of the crossflow mode in regions of high wall-normal shear (∂U/∂y). The
flow mechanism outlined in Casacuberta et al. (2025) can also explain the onset of the
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Figure 9. Real part of the streamwise-velocity perturbation component (contours) and isolines of the real
part of the perturbation streamfunction (contour lines of Re(ψ), −5.5 × 10−6 � Re(ψ)/(U0δ

∗
0 )� 5.5 × 10−6)

across different TS phases: φ = π/3 rad (a,b), φ = 2π/3 rad (c,d) and φ = π rad (e, f ). Zoomed-out FOV
(a,c,e) and zoomed-in region at the step edge (b,d, f ), bounded by a yellow box in the zoomed-out fields.
Negative values of Re(ψ) are indicated with solid lines ( ), whereas positive values of Re(ψ) are indicated
with dashed lines ( ). Grey solid contour lines in the zoomed-in region (b,d, f ) constitute isolines of the
perturbation streamfunction’s real part (Re(ψ)), evaluated within the range −2 × 10−7 � Re(ψ)/(U0δ

∗
0 )� 0,

and delineating the topology of the near-wall structure. Additionally, the spatial organisation of the perturbation
velocity field is indicated by black quivers in (b,d, f ). A video showing the evolution of the TS structure over
the FFS for multiple phases (similar to a,c and e) is included as supplementary movie 1.

near-wall structure emerging at the FFS edge within a 2-D, time-periodic instability like
the one concerned herein. At the FFS apex, the strong wall-normal perturbation velocity
component (ṽ, note length of velocity vectors in figure 9d), resulting from the incoming
Re(ψ) > 0 TS structure, displaces low-momentum fluid upwards in a region of high
wall-normal shear (∂U/∂y), creating an instantaneous defect of streamwise perturbation
velocity (ũ) near the wall (note blue contour in figure 9d, overlapping with ψ isolines of
the near-wall structure). This u-defect region, elongated in the streamwise direction due to
flow convection, eventually vanishes (see figure 9b,d,f ) downstream as the peak in wall-
normal shear weakens (see peak in ∂U/∂y profiles in figure 5h,i). When the incoming TS
structure features negative Re(ψ) values, the opposite occurs, reversing the Re(ψ) sign
of the near-wall structure. Interestingly, the mechanisms generating the near-wall feature
in both TS–FFS interactions and in stationary CFI-FFS interactions involve the effective
displacement of streamwise momentum by the cross-stream perturbation component (i.e.
only v for the TS–FFS interaction) in a region of strong mean flow shear. For TS waves,
this displacement is time dependent and shifts sign within the TS cycle, whereas for S-CFI,
it is stationary and shifts sign along the spanwise direction, synchronous with the S-CFI
wavelength, as reported by Casacuberta et al. (2025)

Downstream of the FFS edge (20 � x∗ < 60), figure 9(a,c,e) shows a second region
where the TS perturbation structure exhibits notable topological changes. In particular,
the TS structure appears tilted in the mean shear (∂U/∂y) direction (x∗ ≈ 30), gradually
changing orientation towards a tilt against the mean shear (x∗ ≈ 50), and recovering
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further downstream to an upright orientation (x∗ � 60), characteristic of the TS wave’s
asymptotic development. Notably, this region of topological changes in the perturbation
structure coincides with a region where TS waves also exhibit an inversion in their
growth trend (see figure 6a). The following section explores in more detail the instability
mechanisms driving the observed tilting of the perturbation structure and consequent
modifications in growth.

5. Mechanisms of flow instability near the step
The results presented in the previous sections reveal an excellent agreement between
experimental and DNS results, leveraging confidence on the use of DNS results as a
means to clarify the flow mechanisms driving TS–FFS interaction. Upstream of the step,
TS waves follow exponential growth due to the FFS-induced adverse pressure gradient.
In the FFS vicinity, both the mean flow and perturbation field undergo a spatially abrupt
distortion, manifested by the emergence of a near-wall flow structure, locked at opposite
phase and opposite perturbation streamfunction (Re(ψ)) sign with respect to the incoming
TS wave. Downstream of the step edge, the mean flow reverts to its canonical behaviour,
while the perturbation field continues to display significant distortion, manifested by the
tilting of the TS structure and a non-monotonic growth pattern (i.e. growth-decay-growth).

The nature of the perturbation behaviour observed downstream of the step remains
unclear. This section aims to elucidate the stability characteristics (e.g. linear, nonlinear,
parallel, local, etc.) of the perturbation field across the step to identify the stability
mechanisms responsible for the observed TS modification.

5.1. Linear, parallel and non-parallel stability characteristics
The experiments and DNS performed in this work appear to capture the complete
dynamics of the TS wave as it interacts with the step. However, towards elucidating
the underlying mechanisms, it becomes instructive to leverage specific assumptions of
flow linearity, parallelism and non-parallelism to isolate pertinent effects and reveal the
relative influence on the complete perturbation behaviour. These assumptions are key
for simplifications of the complete Navier–Stokes equations towards classical stability
analysis methods such as LST and LPSE. Details on the numerical set-up employed to
compute LPSE and LST are provided in § 2.3.2.

In practice, LPSE is typically used to avoid computationally expensive DNS
simulations. However, since LPSE cannot march over the step (Tocci et al. 2021), where
the highly non-parallel base flow invalidates PSE assumptions, an inflow condition is
required downstream of the step. In the absence of more accurate solutions, this inflow
is often set as a solution to the LST equations. Consequently, one possible scenario for
the LPSE solutions downstream of the FFS would involve using a perturbation shape
from LST as an inflow condition. This section compares two scenarios: LPSE results
downstream of the step after initialisation with the perturbation profile from (i) DNS and
(ii) the LST solution. Comparing these results, where DNS captures non-parallel effects
that are not accounted for by LST, elucidates the importance of the upstream perturbation
history in describing the TS wave distortion observed further downstream of the step.
Table 4 summarises the different stability solutions studied.

To establish the DNS solution as the inflow for the LPSE when marching downstream of
the step, it is necessary to compute the amplitude function and streamwise wavenumber of
the fundamental mode from the DNS data. The streamwise wavenumber (α) is determined
from the DNS solution by tracking the amplitude and the phase of the streamwise-velocity
perturbation component (u) of the fundamental mode at the wall-normal location where
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Identifier Upstream solution
(x∗ < 0)

Inflow solution
(x∗ = 6.4)

Downstream solution
(x∗ > 6.4)

DNS DNS DNS DNS
LST LST LST LST
DNS-initialised LPSE LPSE DNS LPSE
LST-initialised LPSE LPSE LST LPSE

Table 4. Stability solutions studied in § 5.1.
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Figure 10. Growth rate (a) and N factor (b) as computed with DNS ( ), DNS-initialised LPSE ( ),
LST ( ) and LST-initialised LPSE ( ) in FFS conditions. For the DNS solution, the growth rate and
amplification of both |ũ| ( ) and |ṽ| ( ) perturbation components are presented. The DNS solution in
baseline conditions ( ) is also indicated. The grey-shaded region spanning 0 � x∗ � 6.4 represents the range
where LPSE and LST results are unavailable.

its amplitude (|ũ|) is maximum, following:

α = αr + iαi with αr = −
∂
(
ϕAũ

)
∂x

δ0 and αi = −∂
(
ln Aũ

)
∂x

δ0. (5.1)

In (5.1), ϕAũ
denotes the phase of the streamwise perturbation component where |ũ| is

maximum, i.e. ϕAũ = ϕũ(y = maxy(|ũ|)).
Figure 10 shows the growth rate (αi ) and amplitude evolution predicted by the different

stability solutions investigated. Upstream of the step, both LPSE and LST accurately
capture the perturbation growth rate up to x∗ ≈ −20 (see figure 10a). However, as non-
parallel effects intensify near the step, the TS growth predicted by LST deviates from
the DNS solution earlier than LPSE due to the local formulation of LST. At the step edge
(−20 � x∗ � 0 in figure 10a), both LST and LPSE fail to capture the strong destabilisation
predicted by DNS due to the large base flow streamwise gradients, which invalidate both
the LST parallel-flow assumption and the LPSE slowly varying base flow assumption.

Downstream of the step, LPSE and LST are initialised at x∗ = 6.4. This represents
the first streamwise location where the LPSE converges to a physically meaningful
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Figure 11. Real part of the streamwise perturbation component (contours) and isolines of the real part of the
perturbation streamfunction (contour lines of Re(ψ), −5.5 × 10−6 � Re(ψ)/(U0δ
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0 )� 5.5 × 10−6) at one TS

phase, φ = π rad. Results obtained from (a) DNS, (b) DNS-initialised LPSE and (c) LST. Negative values
of Re(ψ) are indicated with grey solid lines ( ), whereas positive values of Re(ψ) are indicated with
grey dashed lines ( ). Green dash-dotted ( ) vertical lines indicate the streamwise locations where
the perturbation profiles in (d–g) are extracted. The TS shape function at (d) x∗ = −40.8, (e) x∗ = −7.1, (f )
x∗ = 6.4 and (g) x∗ = 40.8 as obtained from DNS ( ), DNS-initialised LPSE ( ) and LST ( ).

solution when the DNS and LST solutions are used as inflow conditions. The inflow
perturbation profiles used are shown in figure 11(f ). Both LST-initialised LPSE and DNS-
initialised LPSE results are presented in figure 10. Unlike the aforementioned upstream
behaviour, where both LST and LPSE captured similar growth rate trends, DNS-initialised
LPSE clearly outperforms LST downstream of the step. Comparison of DNS-initialised
LPSE and LST-initialised LPSE with DNS results shows that initialising LPSE with
a low-fidelity solution significantly degrades the agreement between DNS and LPSE
downstream of the step (compare dashed magenta and dash-dotted blue lines to black lines
in figure 10). The DNS-initialised LPSE solution effectively captures the non-monotonic
growth-decay-growth pattern downstream. In contrast, both LST and LST-initialised
LPSE predict an exponential decay in the growth rate, following the adverse pressure
gradient increase downstream (see figure 5b), failing to accurately capture the amplitude
evolution downstream of the FFS (figure 10b). The remarkable agreement between the
DNS-initialised LPSE and DNS results highlights the following two key points.

(i) The perturbation behaviour remains linear at the investigated TS wave amplitude.
(ii) Accurately capturing the distortion experienced by the perturbation at the step is

essential for describing the downstream evolution of the TS wave.

Figure 11(a–c) shows the streamwise perturbation field for the fundamental TS mode as
reconstructed from DNS, DNS-initialised LPSE and LST. Additionally, the TS wave shape
function obtained from the three different stability solutions is presented in figure 11(d–g)
for selected streamwise stations (indicated by green vertical lines in figure 11a–c).
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Results in figure 11(a–c) show that the perturbation field from both LPSE and
LST present good agreement with the DNS upstream (x∗ � 0, see also TS profiles
in figure 11d–e) and sufficiently downstream of the step (x∗ > 60). However, in the
immediate vicinity downstream of the step (0 � x∗ � 60), while LPSE can capture the
tilting of the TS wave structure in the mean shear (∂U/∂y) direction, LST fails to do so
(see figure 11a–c). It is important to note that when LPSE is initialised using LST, the
resulting perturbation field is similar to LST (not shown here). Thus, the performance of
LPSE is largely subject to the shape of the inflow perturbation profile, as already concluded
from the growth and amplitude results in figure 10.

The relative fidelity of these methods in capturing the TS wave growth and shape
provides further insight into the stability mechanisms dominant in the near region
downstream of the step. Specifically, as outlined in the seminal work of Herbert (1997), the
LPSE formulation is able to capture pertinent effects of non-parallelism on the evolution
of boundary-layer instabilities. In purely parallel mean flows, LPSE results are expected
to largely overlap with the local modal solutions of LST. However, when perturbation
fields are distorted, the parabolic character of LPSE allows for the upstream history of the
flow to travel downstream. This is evident in the close agreement between DNS-initialised
LPSE and DNS results, and vice versa, in the disagreement between the results of LST
and LST-initialised LPSE with DNS, as shown in figure 10. This effectively points to a
spatial conditioning of the TS wave at the step towards a new distorted shape that is not an
eigensolution of the local flow stability, yet behaves and develops similar to classical TS
waves.

5.2. Non-modal growth
Results in the previous section reveal that, in order to resolve the perturbation growth
downstream of the step using LPSE, it was necessary to initialise the simulation with the
DNS perturbation solution. In contrast, initialisation with an eigenvalue solution failed to
reproduce the correct perturbation dynamics. This suggests that classical modal eigenvalue
approaches are inadequate in the region downstream of the FFS. Therefore, this section
investigates potential non-modal growth near the step, following the methodology outlined
in Marxen et al. (2009).

As evident in figure 10(a) in the previous section, the growth of the wall-normal (αṽi )
and streamwise (αũ

i ) perturbation maxima diverge in the step vicinity. This divergence
is evident upstream of the FFS edge (−20 � x∗ � 0) and further downstream, up to
x∗ ≈ 60. The decoupling between u- and v-perturbation growth rates is often linked in
previous works to the presence of non-modal growth (e.g. Marxen et al. 2009; Casacuberta
et al. 2022, and Michelis et al. 2023b). Nevertheless, in regions where the base flow
streamlines experience significant deflection in wall-normal direction, employing a wall-
oriented reference system to distinguish between wall-normal and streamwise perturbation
components is no longer deterministic towards identifying regions of non-modal behaviour
(Marxen et al. 2009). To circumvent this, Marxen et al. (2009) decompose the perturbation
field using a base flow-oriented coordinate system, as originally proposed by Albensoeder,
Kuhlmann & Rath (2001). This approach yields perturbation components that are
tangential (υ̃t ) and normal (υ̃n) to the local base flow streamlines. The methodology is
outlined in the works of Albensoeder et al. (2001), Marxen et al. (2009), Lanzerstorfer &
Kuhlmann (2012) and Casacuberta et al. (2022), among others.

Figure 12 illustrates the growth rates of the tangential (υ̃t ) and normal (υ̃n) to the
base flow perturbation components in baseline and FFS conditions. The corresponding
maximum of the two perturbation components is tracked in the streamwise direction to
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Figure 12. Growth rates of the tangential- (αυ̃t
i , ) and normal- (αυ̃n

i , ) to-the-base-flow perturbation
maxima in baseline (a) and FFS (b) conditions. For the tangential perturbation component (αυ̃t

i ), solid lines
track the TS lower lobe (αυ̃t , l

i , ), whereas dashed lines track the TS upper lobe (αυ̃t , u
i , ). Red and grey

areas indicate the streamwise regions with total (red) and partial (grey) decoupling between αυ̃t
i and αυ̃n

i . Note
that the values of αi for −1 � x∗ � 1 are excluded from (b) for clarity, as significant jumps occur due to the
FFS discontinuity.

calculate the corresponding growth rates:

α
υ̃n
i = − 1

Aυ̃n

dAυ̃n

dx
, (5.2)

α
υ̃t
i = − 1

Aυ̃t

dAυ̃t

dx
. (5.3)

Owing to the dual peak shape of the streamwise (υ̃t ) perturbation component in TS
waves, two distinct local maxima are distinguished, namely the lower (y/δ∗0 ≈ 0.5) and
upper (y/δ∗0 ≈ 3) lobe of the TS wave shape function (see, e.g. the different TS maxima
in figure 11d). This distinction between upper lobe and lower lobe growth rates will be
denoted as αυ̃t , u

i and αυ̃t , l
i , respectively.

In baseline conditions, both perturbation components exhibit equal growth rates across
the entire domain (figure 12a), except for a localised region near x∗ ≈ 0, where mild
suction is applied in DNS to replicate experimental conditions (see details in § 2.3.1).
Conversely, in step conditions, tangential and normal perturbation growth rates present
significant deviations.

The decoupling between αυ̃n
i and αυ̃t

i observed around −20 � x∗ � 60 from figure 12(b)
suggests the presence of non-modal growth. In particular, two regions can be identified
based on the decoupling behaviour:

(i) In the step vicinity (−20 � x∗ � 20, note red area in figure 12b), both upper (αυ̃t , u
i )

and lower (αυ̃t , l
i ) lobe growth rates deviate from the normal perturbation growth rate

(αυ̃n
i ). Hereafter this will be denoted as total decoupling.

(ii) Further downstream (20 � x∗ � 60, note grey area in figure 12b), the lower
lobe growth rate (αυ̃t , l

i ) and the normal perturbation growth rate (αυ̃n
i ) deviate.
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However, the upper lobe growth rate (αυ̃t , u
i ) converges to α

υ̃n
i . Hereafter this

behaviour will be denoted as partial decoupling.

In the step vicinity (−20 � x∗ � 20), the total decoupling between αυ̃n
i and αυ̃t

i occurs
in a region with significant non-parallel effects (e.g. note the abrupt modifications in
base flow integral parameters along x∗ close to the step in figure 5c). Due to the smaller
streamwise extent of the FFS-induced base flow distortion compared with the incoming TS
wavelength, the latter is scattered (or distorted) by the geometrical discontinuity (Goldstein
1985; Wu & Hogg 2006). The near-wall structure observed after the FFS edge (discussed
in § 4.2) reflects the strong distortion experienced by the TS wave. Consistent with these
findings, recent studies also report significant non-modal perturbation growth in regions
of wave scattering (Michelis et al. 2023a; Casacuberta et al. 2022).

Downstream of the step (20 � x∗ � 60), the partial decoupling observed between αυ̃n
i

and α
υ̃t
i indicates that the TS structure exhibits a stratified growth behaviour in the

y direction. The upper part of the TS structure follows a modal evolution, while the
lower part is influenced by non-modal growth. This dual behaviour is similar to findings
by Marxen et al. (2009), where the authors observe non-modal evolution of near-wall
streamwise streaks – generated by the lift-up effect – coexisting with a modal (Görtler)
instability above. In contrast to Marxen et al. (2009), a secondary structure cannot be
distinguished herein from the modal TS structure in the lower lobe region (see, e.g. the TS
shape in figure 11g).

The partial decoupling described in the region 20 � x∗ � 60 suggests the presence of
non-modal behaviour (Marxen et al. 2009). At first glance, this appears to contradict the
previously observed agreement (§ 5.1) between DNS and LPSE, given that classical LPSE
has been historically associated with the modelling of modal perturbations. However,
the LPSE formalism does not solve an eigenvalue problem, but instead propagates
a prescribed initial perturbation downstream under the assumption that the dominant
streamwise oscillation and growth at each frequency can be represented by a single
complex wavenumber (Herbert 1997). As such, LPSE does not necessarily evolve a
single mode. It can track a superposition of modes, but only those whose streamwise
wavenumbers lie sufficiently close to one another. This interpretation is supported by
previous studies in which the LPSE method has also been employed to analyse flows
susceptible to non-modal growth, which inherently involve a superposition of modes
(Tempelmann, Hanifi & Henningson 2010; Lucas 2014). The observed indications of non-
modal behaviour may arise from the streamwise propagation, via the LPSE marching
scheme, of a DNS-derived perturbation field composed of a superposition of modes,
originating from the strongly non-modal region near the step. The following section
investigates further the role of superimposed modes in the DNS solution.

5.3. Origin of TS wave distortions downstream of the FFS
This section aims to elucidate the existence and nature of superimposed modes, encoded
in the perturbation evolution downstream of the step. To do so, the different eigensolutions
from LST applied on the DNS flow in the vicinity of the step are analysed. Figure 13(a)
shows the real (Re(αn)) and imaginary (Im(αn)) part of the two least stable eigenvalues
predicted by LST for F = 90 in the region downstream of the FFS (x∗ � 6.4). The arrows
in figure 13(a) indicate the direction of variation along the streamwise axis. A second
mode (red symbols in figure 13a) appears less stable than the classical TS mode (blue
circles) closely downstream of the step (see markers of the first streamwise stations in
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|ũ| j/max(|ũ| j)
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|ũ| j/max(|ũ| j)
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Figure 13. (a) Eigenvalues from LST downstream of the step (6 � x∗ � 80). (b) Weights assigned to the TS
mode (blue, w1) and second mode (red, w2) by the non-negative least squares fit. (c,d) Shape functions of

the fundamental mode from DNS ( , |ũ|), weighted TS mode ( , Ĉ
1
w1), weighted second mode ( ,

Ĉ
2
w2) and linear superposition of LST modes ( ,

∑2
j Ĉ

j
w j ) at the streamwise locations indicated by black

vertical dashed lines in figure 14, namely x∗ = 6.4 (c) and x∗ = 30.5 (d).

figure 13a). Nevertheless, it is important to note that this second mode remains stable at
all the streamwise stations studied. The TS mode growth rate (αi ) becomes less stable
than the second mode’s αi from x∗ > 11.7 onwards. This second mode, coexisting with
the original TS mode, travels in the streamwise direction at a higher phase speed than the
original TS wave, owing to its lower Re(α).

To elucidate whether the superposition of this second mode with the TS mode improves
the description of the fundamental mode evolution as predicted by DNS, a methodology
inspired by the work of Edelmann (2014) is applied. This involves performing a non-
negative least squares fit, where the absolute values of the normalised eigenfunctions of
the two modes, shown in figure 13(c,d), are weighted to minimise the following function:

min
w j

‖Ĉ
j
w j − d̂‖2

2, subject to w j � 0, j ∈ {1, 2}, (5.4)

with Ĉ
j = 1

max(|ũ j
i |)

⎡
⎢⎢⎢⎣

|ũ0| j

|ũ1| j

...

|ũny | j

⎤
⎥⎥⎥⎦
∣∣∣∣
LST

and d̂ = 1
max(|ũi |)

⎡
⎢⎢⎣

|ũ0|
|ũ1|
...

|ũny |

⎤
⎥⎥⎦
∣∣∣∣
DNS

. (5.5)

Here the subscript ‖ · ‖2 denotes the Euclidean norm. The term Ĉ
j

represents a column
vector containing the normalised eigenfunction of the j th LST mode at a specific x∗
station, while w j is the corresponding weight for the j th mode. Similarly, d̂ is a column
vector containing the normalised shape function obtained from DNS. Equation (5.4) is
minimised independently at each streamwise station x∗, yielding a one-dimensional vector
of weights, ŵ

j = [w j
0 , w

j
1 , . . . , w

j
nx ].

The resulting weights from the optimisation problem are shown in figure 13(b). The
contribution of the second mode in describing the DNS solution is limited to the region
downstream of the step, i.e. 0 � x∗ � 35. Similar observations are reported in Edelmann
(2014), where the author identified three additional modes that, when superimposed onto
the original TS mode, largely contribute to describing the fundamental mode at the region
directly downstream of the step. The weighted eigenfunctions, together with the final

profile from linear superposition of LST modes (Ĉ
1
w1 + Ĉ

2
w2) are compared with the

DNS perturbation profile in figure 13(c–d) at different x∗ stations.
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Figure 14. Real part of the streamwise perturbation component (contours) and isolines of the real part of the
perturbation streamfunction (contour lines of Re(ψ), −5.5 × 10−6 � Re(ψ)/(U0δ

∗
0 )� 5.5 × 10−6) at one TS

phase, φ = π rad. Results for the real part of (a) the LST second mode, u2; (b) the LST TS mode, u1; (c)
the linear superposition of LST modes, u1 + u2; and (d) the DNS solution. Negative values of Re(ψ) are
indicated with grey solid lines ( ), whereas positive values of Re(ψ) are indicated with grey dashed lines
( ). Black dashed vertical lines indicate streamwise locations for the normalised shape functions shown in
figure 13(c–d).

The streamwise perturbation field and streamlines for the two LST modes, the
reconstructed mode (linear superposition) and the DNS solution are presented in figure 14,
where the perturbation velocity for the two LST modes is obtained as

q j =w j

(
Aq̃

x∗
0
|DNS

|q̃| j

max(|q̃| j )
e
− ∫ x∗

x∗
0
α

j
i dx∗

e
i(ϕq̃ j +∫ x∗

x∗
0
α

j
r dx∗−φ)

)
, (5.6)

and evaluated at different streamwise stations. In (5.6), Aq̃
x∗

0
denotes the perturbation

amplitude from DNS at the LST inflow, i.e. x∗
0 = 6.4.

In figure 14(a) the second mode predicted by LST exhibits a pronounced tilting in the
mean shear direction (∂U/∂y) close to the wall. Interestingly, the topology of this mode
resembles the downstream tilted (∂y/∂x |Re(ψ) > 0 – refer to (5.20) presented later in § 5.4)
structures identified in Åkervik et al. (2008) as optimal forcing structures initiating TS
waves in a 2-D flat-plate boundary layer. Åkervik et al. (2008) refer to this structure as the
Orr mode, named after the Orr mechanism, which drives the growth of the perturbation
field in this context until it converges to the classic modal growth with the emergence of
TS waves (see figure 3(c) in Åkervik et al. 2008).

The downstream tilting of the second mode helps to describe the topological features
observed in DNS immediately downstream of the step (e.g. compare figures 14c and 14d
at 6 � x∗ � 30). However, the reconstructed LST field fails to capture the perturbation
evolution in the region of highly parallel flow (x∗ � 35), particularly the transition from
downstream (∂y/∂x |Re(ψ) > 0) to upstream (∂y/∂x |Re(ψ) < 0) tilting around 30 � x∗ �
50. This discrepancy may be attributed to the inherently local nature of LST, which cannot
account for the streamwise history of the perturbation. Furthermore, the omission of phase
information in the optimisation procedure, as outlined in (5.4), could also contribute to the
discrepancy between reconstructed LST and DNS perturbation fields.
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Up to this point, the above analysis provides the following insights.

(i) In the region immediately downstream of the step, LST predicts the emergence of a
second eigenmode that appears less stable than the original TS mode under the same
conditions (figure 13a).

(ii) The topological form of the second eigenmode is notably tilted in the mean shear
direction (figure 14a).

(iii) When reconstructing the DNS perturbation field, the superposition of the spatial
structure of the second eigenmode and the original TS wave appear to be encoding
the tilted perturbation topology observed in the DNS, which cannot be captured by
the original TS mode alone (figures 13c and 14c).

These findings, together with the outcomes of § 5.1 and § 5.2, indicate that the
perturbation distortion observed farther downstream of the FFS (x∗ � 10) is likely a
manifestation of the spatial non-modal growth. More specifically, this region can be
interpreted as a zone of modes’ dominance changeover. Within, the perturbation field
is converging towards its modal (asymptotic) state while coexisting with other local
eigenmodes generated upstream, near the step (x∗ � 7). As the base flow gradually returns
to the baseline configuration, these additional modes strongly decay in the streamwise
direction (figure 13a). However, their influence is encoded in the perturbation field and
manifested as the tilting of the perturbation structure. The following section explores how
the tilting of the perturbation structure drives the evolution of the perturbation kinetic
energy.

5.4. The role of the Orr mechanism
The observations presented in the previous sections suggest a region of modes’ dominance
changeover downstream of the step (30 � x∗ � 50), where the base flow is largely parallel.
Notably, in this region the perturbation structure exhibits topological deformations (e.g.
figure 9e), accompanied by significant changes in growth, in comparison to the baseline
case (figure 6a). To further clarify whether the perturbation tilting holds connection with
the observed inflections in growth (e.g. the region of decay-growth-decay in figure 10b),
the present section will analyse the evolution of the perturbation kinetic energy around the
FFS.

Tollmien–Schlichting waves extract energy from the base flow through a positive
Reynolds stress, expressed as

τ = −〈uv〉, (5.7)

which is generated by viscosity in the near-wall region (Prandtl 1921). A simplified
conceptualisation of the instability mechanics can be found in § 5.2 of Mack (1984),
following the original derivation of Prandtl (1921). To better illustrate how the instability
exchanges energy with the base flow, it is indicative to examine the production term in the
Reynolds–Orr equation (see (1.11) in Schmid & Henningson 2001), which for 2-D flow is
given by

P = −
∫

S
ui uj

∂Ui

∂xj
dS. (5.8)

Since this study focuses exclusively on the stability of the fundamental TS mode, the
subscript (1,0) has been omitted for simplicity. Substituting the perturbation velocity
definition from (4.2) into (5.8) and integrating over one TS wave period, T = 2π/ω0,
yields the time-averaged production term:
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Figure 15. (a) Streamwise evolution of the production terms in (5.11)–(5.14) integrated in the y direction. (b)
Perturbation kinetic energy integrated in the y direction in step ( ) and baseline ( ) conditions. Here Pm
denotes the value of

∫
y

∑
n Π

ω0
n at x∗ = −5, the location where | ∫y

∑
n Π

ω0
n | becomes maximum upstream of

the step.

Pω0 = −2π
ω0

∫
S
(ũi + c.c.)(ũj + c.c.)

∂Ui

∂xj
dxdy. (5.9)

Expanding the velocity component multiplication results in

Pω0 = 2π
ω0

∫
S

4∑
n=1

Πω0
n dxdy, (5.10)

where the individual production terms Πω0
n are given by

Π
ω0
1 = −(ũũ† + c.c.)

∂U

∂x
, (5.11)

Π
ω0
2 = −(ũṽ† + c.c.)

∂U

∂y
, (5.12)

Π
ω0
3 = −(ṽũ† + c.c.)

∂V

∂x
, (5.13)

Π
ω0
4 = −(ṽṽ† + c.c.)

∂V

∂y
. (5.14)

Figure 15(a) shows the different Πω0
n terms in (5.11)–(5.14) integrated in the wall-

normal direction. It is apparent from this figure that the term Π
ω0
2 (red line in figure 15a)

constitutes the main contribution to the total production (black line) across the entire
domain. This term represents the extraction of energy from the base flow by the
disturbance via the build-up of a positive Reynolds stress (τ ) averaged over one TS period.

Additionally, comparing figure 15(a) with figure 15(b) reveals that the evolution of the
perturbation kinetic energy can be fully described by examining the production term,
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Figure 16. (a) Phase difference between streamwise and wall-normal perturbation components, represented by
cos (ϕũ − ϕṽ). (b) Contours of ξ , defined in (5.20). The black dash-dotted lines ( ) indicate the slope of
Re(ψ), represented as (∂y/∂x)Re(ψ). This slope is measured at a fixed wall-normal position (y/δ∗0 = 2.2) but
at different streamwise locations (x∗ = 35, 44), as marked by the white dots. (c) Contours of production term,
Π
ω0
2 , as defined in (5.12). Superimposed contour lines represent the real part of the perturbation streamfunction

(−5.5 × 10−6 � Re(ψ)/(U0δ
∗
0 )� 5.5 × 10−6) obtained at a specific TS phase, φ = 0. Negative values of

Re(ψ) are indicated with grey solid lines ( ), whereas positive values of Re(ψ) are indicated with grey
dashed lines ( ). All results are in step conditions and obtained from DNS.

i.e. regions of negative production align with regions of perturbation energy decay and
vice versa. This again reaffirms the linear behaviour of the perturbation field under the
conditions concerned herein (i.e. sufficiently low TS wave amplitude).

Equation (5.12) can be alternatively expressed in terms of the perturbation phase and
amplitude:

Π
ω0
2 = −2|ũ||ṽ| cos (ϕũ − ϕṽ)

∂U

∂y
. (5.15)

The previous equation provides insight into the role that the phase shift between ũ and ṽ
plays in regard to the change of sign of the Reynolds stress and thereby in production. The
strong distortion observed from the phase contours of ũ (refer to figure 8b in § 4.1) in FFS
conditions suggests the emergence of regions downstream of the step where ũ and ṽ are
out of quadrature (i.e. ϕũ − ϕṽ 
= ±π/2). Consequently, the term cos (ϕũ − ϕṽ) in (5.15)
approaches values closer to ±1, leading to either an enhancement or suppression of the
Reynolds stresses and, consequently, of the production termΠ

ω0
2 , as shown in figures 16(a)

and 16(c).
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To further expose the relationship between the build-up of Reynolds stresses and the
topology of the TS wave structure, it is instructive to write the production term Π

ω0
2 in

terms of the streamfunction, ψ , previously introduced in (4.1). Following the work of
Butler & Farrell (1992), it can be shown that by introducing (4.1) into (5.12), Πω0

2 can be
re-expressed as

Π
ω0
2 =

⎛
⎝∂ψ̃
∂y

(
∂ψ̃

∂x

)†

+
(
∂ψ̃

∂y

)†
∂ψ̃

∂x

⎞
⎠ ∂U

∂y
, (5.16)

= 2Re

⎡
⎣
(
∂ψ̃

∂y

)†
∂ψ̃

∂x

⎤
⎦ ∂U

∂y
, (5.17)

= 2Re

⎡
⎣(∂ψ̃

∂y

)† (
∂ψ̃

∂y

)(
∂ψ̃/∂x

∂ψ̃/∂y

)⎤⎦ ∂U

∂y
, (5.18)

= −2Re

[
|ũ|2

(
∂y

∂x

)
ψ̃

]
∂U

∂y
. (5.19)

Equation (5.19) indicates that, in a boundary layer where the mean flow shear is
everywhere positive (i.e. ∂U/∂y > 0, like the case concerned herein), the tilting of the
perturbation streamlines ((∂y/∂x)ψ̃ ) uniquely governs the shift of sign of the production
term, and therefore, the growth or decay of the instability.

Figure 16(b) presents the contours of the product between the mean shear ∂U/∂y and
the slope of the real part of the perturbation streamfunction, (∂y/∂x)Re(ψ̃). This product
is denoted as

ξ = ∂U

∂y

(
∂y

∂x

)
Re(ψ̃)

. (5.20)

According to Butler & Farrell (1992), a perturbation structure tilted in the mean flow shear
direction corresponds to ξ > 0, whereas a tilt against the mean shear direction is indicated
by ξ < 0. In this work, upstream and downstream tilting is also employed to refer to regions
where ξ < 0 and ξ > 0, respectively.

To illustrate the relationship between ξ and the topology of the TS wave structure,
the real part of the perturbation streamfunction Re(ψ̃) at a specific TS phase (φ = 0)
is also displayed in figure 16(b). These results highlight how changes in the sign of ξ
correlate with variations in the tilting of the TS structures, represented by isolines of
Re(ψ̃). Similarly, the contours of the production componentΠω0

2 are shown in figure 16(c)
superimposed with Re(ψ̃). In this case, this visualisation helps to establish a link between
the tilting of the TS structures and the shift in the sign of production, indicating either
growth or decay.

Upstream of the step, ξ becomes negative, indicating a tilting of the perturbation
streamlines against the mean shear direction as a result of the strong base flow distortion
exerted by the adverse pressure gradient. This upstream tilting (ξ < 0) creates a positive
production (Πω0

2 > 0, (5.19)) that enhances the growth of the instability, as observed from
figure 15(a). Upon reaching the step corner, the perturbation streamlines are strongly bent
when they encounter the step edge. The distortion imposed by the step on the perturbation
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induces a locally negative production (Πω0
2 < 0) that yields a stabilising effect; see the

contours of Πω0
2 in figure 16(c).

While the increase and decrease of production (i.e. build-up of positive and negative
Reynolds stresses, respectively) in the step neighbourhood can be attributed to the
strong distortion experienced by the perturbation streamlines due to the abrupt base flow
modification, observations downstream of the step do not obey the same reasoning since
the base flow is largely parallel there. Comparison between contours of ξ in figure 16(b)
and contours of Πω0

2 in figure 16(c) in the region between 20 � x∗ � 60 reveal a good
correlation between the shift from negative to positive production values and the shift
from downstream (ξ > 0) to upstream (ξ < 0) tilting. Based on previous works (Orr 1907;
Butler & Farrell 1992), the growth of disturbances as a result of their tilting against the
shear can be associated to the Orr mechanism. This mechanism is known to be most
effective for disturbances featuring finite streamwise wavenumbers, like TS waves (Hwang,
Moin & Hack 2021).

The Orr mechanism consists of the amplification of both streamwise and wall-normal
perturbation components due to an increase in the perturbation’s circulation as it changes
orientation relative to the mean shear (Hwang et al. 2021). However in contrast to
exponential growth, the Orr mechanism amplifies both normal and tangential perturbation
components in an algebraic manner, i.e. in a non-modal fashion (Orr 1907; Butler & Farrell
1992). This is in line with the decoupling observed between the growth rates of tangential-
(αυ̃t

i ) and normal- (αυ̃n
i ) to-the-base-flow perturbation components in figure 12(b). Finally,

a comment can be made on the role of the Orr mechanism in the specific conditions of
FFS flows. Traditionally, the Orr mechanism is usually associated with the destabilisation
of the perturbation field. An example of this is the work of Åkervik et al. (2008), where the
evolution of a wavepacket tilted against the mean shear leads to the linear amplification of
the perturbation via the Orr mechanism, eventually developing into a TS wave. However,
the present results unveil an unconventional role for the Orr mechanism, as it is observed
to be responsible also for the local decay of the perturbation.

6. Conclusions
The impact of a FFS on the stability of TS waves, together with the mechanisms governing
modifications in the perturbation field, has been investigated through experiments
and 2-D DNS. Detailed HWA and PIV measurements of the time-averaged flow and
the perturbation field around the step facilitate a comprehensive comparison between
experiments and DNS. The observed excellent agreement between experiments and
2-D DNS validates the 2-D nature of the interaction and supports the use of 2-D DNS
for in-depth diagnostics at the step to understand the mechanisms in play in the TS–
FFS interaction. Further comparison between 2-D DNS, LST and LPSE is conducted to
elucidate the stability characteristics and mechanisms active at the step. The excellent
agreement between DNS and LPSE results, both upstream and downstream of the step
in regions where the base flow remains parallel, confirms the linear behaviour of the
perturbation field under the TS wave amplitudes studied.

Upstream of the FFS, TS waves undergo exponential amplification due to the adverse
pressure gradient build-up upstream of the FFS. Both tangential- (αυ̃t

i ) and normal- (αυ̃n
i )

to-the-base-flow perturbation components exhibit equivalent growth rates, indicating that
the destabilisation follows a modal behaviour (Marxen et al. 2012). Both LPSE and
LST capture the perturbation growth upstream of x∗ = −20, beyond where the base flow
starts to exhibit significant non-parallel effects. The observed TS destabilisation behaviour
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remains similar to that seen upstream of laminar separation bubbles (Dovgal et al. 1994)
or smooth roughness elements, such as humps (Park & Park 2013).

In the FFS vicinity, both DNS and experiments capture a strong non-parallel behaviour
of the mean flow due to abrupt jumps in the pressure gradient (i.e. adverse-favourable-
adverse). The streamwise extent over which the mean flow is distorted is significantly
smaller than the incoming TS wavelength, leading to scattering (or distortion) of the
instability (Xu et al. 2017). This distortion is evident in PIV and HWA measurements, as
well as in DNS, manifesting as significant modifications in the perturbation amplitude and
phase fields compared with baseline conditions. Furthermore, analysis of the base flow-
oriented perturbation component growth reveals a strong decoupling between αυ̃n

i and αυ̃t
i ,

indicating non-modal perturbation evolution (Marxen et al. 2009; Casacuberta et al. 2022).
In this region, neither LPSE nor LST can resolve the rapid perturbation evolution due to
their intrinsic assumptions. Nevertheless, evaluating LST immediately downstream of the
step reveals a second mode that appears less stable (i.e. α2

i <α
1
i ) than the TS mode close

to the step. In combination, these results suggest that the distortion of the perturbation
field close to the step obeys a non-modal behaviour.

At the step edge, DNS results reveal the emergence of a near-wall structure locked at
opposite phase and opposite streamfunction (Re(ψ)) sign with respect to the incoming
TS wave. The amplitude of this structure decays in the x direction and merges closely
downstream with the TS structure above. The presence of this secondary structure does
not appear to affect the growth of the pre-existent TS wave. Similar to the mechanisms
presented by Casacuberta et al. (2025), which explain the onset of near-wall streaks at the
FFS edge with S-CFI, the origin of the near-wall structure observed here is attributed to
the redistribution of streamwise perturbation momentum by the wall-normal perturbation
component in a region of high mean flow shear.

Downstream of the step, the mean flow resumes its parallel behaviour; however, the
perturbation field remains significantly distorted, evident from the tilting of the TS
structures both in and against the mean flow shear direction. In this region, the decoupling
between the growth of normal (αυ̃n

i ) and tangential (αυ̃t
i ) perturbation components is

confined to the lower lobe of the TS wave, indicating a dual growth behaviour (modal
and non-modal) stratified in the y direction. Interestingly, LPSE accurately captures the
growth evolution downstream of the step, but only when initialised with the DNS distorted
perturbation profile shortly after the FFS edge. Linear stability theory results in this region
indicate that the relevance of any superimposed mode decays in the x direction due to the
recovery of the base flow to parallel conditions. Taken together, these results suggest that
the perturbation field is undergoing a region of slowly varying spatial transient growth, i.e.
a region of modes changeover. The impact (or history) of any superimposed modes arising
at the highly non-parallel step region is propagated downstream and captured by LPSE,
imprinting modifications (in the form of perturbation tilting) in the perturbation field even
far downstream of the step.

The tilting of the perturbation structure downstream of the step is accompanied by
changes in growth, specifically the perturbation undergoes growth-decay-growth. In this
region, the perturbation evolution is governed by the Orr mechanism. In particular, where
the perturbation structure tilts in the mean flow shear direction (ξ > 0), the perturbation
decays, and conversely, it amplifies when it tilts against the mean shear (ξ < 0), eventually
realigning to an asymptotic (modal) TS structure. Similar to Teng’s (2023) findings, this
study also identifies a strong stabilising region downstream of the step, in a region where
the perturbation structure appears tilted in the mean shear direction (ξ > 0). However, in
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contrast to Teng’s (2023) work, no stabilisation below baseline conditions or transition
delay is observed in the DNS results or experiments, respectively.

The outcomes of the present work demonstrate that the presence of superimposed
modes influences locally the perturbation growth and structure in the vicinity of the
step, particularly downstream. However, under the specific FFS conditions examined, the
perturbation field eventually collapses back to the classical TS wave shape far downstream
of the step. This suggests that the eventual laminar breakdown process (not resolved in the
present work) will remain consistent with the classical TS transition pathway (i.e. path A
in Morkovin, Reshotko & Herbert 1994).

Future studies should focus on investigating the underlying physical mechanisms
downstream of the step, especially at higher FFS heights as well as higher initial TS
amplitudes, where both nonlinear and non-modal effects are expected to become more
pronounced. Such studies could reveal TS–FFS interaction scenarios where the transition
pathway deviates from the classical TS route. Furthermore, such investigations could
contribute to identify additional functional parameters that improve the universality of
�N -based transition prediction models.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10768.
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