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Master Arbeit/Thesis

Anwendung datengesteuerter Ansätze zur Vorhersage des
Lastprofils an einer Ladestation für Elektrofahrzeuge.

Abbildung 1: Charging stations locati-
ons

Hintergrund Diese Masterarbeit untersucht die Vor-
hersage des Energieverbrauchs an Ladestationen durch
datengestützte Methoden. Diese Forschung zielt darauf
ab die Nutzung von Ladestationen und georäumlichen
Daten, um den Energiebedarf vorherzusagen. Die Studie
umfasst die Sammlung und Vorverarbeitung von Daten
über das Ladeverhalten von Elektrofahrzeugen und an-
dere Einflussfaktoren, gefolgt von Feature-Engineering
und Datenanalyse, um die wichtigsten Determinanten
der lastprofile Profile.

Aufgaben Entwurf und Implementierung eines Mo-
dells der künstlichen Intelligenz zur Vorhersage des Last-
profils an einer Ladestation für Elektrofahrzeuge, basie-
rend auf den folgenden Anforderungen:

• Berücksichtigung sowohl zeitlicher als auch räum-
licher Abhängigkeiten..

• Robustheit gegenüber fehlenden oder verrauschten
Daten.

• Vergleich der Ergebnisse mit den Echtzeitdaten
der Ladestationen.

A data-driven approach to predict load profile at a electric
vehicle charging station

Background This master’s thesis explores prediction of load profile at charging stations,through
data-driven methodologies. This research aims to use charging station usage and geo-spatial data,
to predict load profile. The study involves collecting and preprocessing data on EV charging pat-
terns and other influencing factors, followed by feature engineering and data analysis to identify
key determinants of load profiles.

Tasks Design and implementation of an artificial intelligence model to predict the load profile
at an electric vehicle charging station based on the following requirements:

• Handle both Temporal and Spatial Dependencies.

• Robustness to Missing or Noisy Data.

• Compare the results with the real time data of charging stations.
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Abstract

The rapid adoption of electric vehicles (EV’s) presents growing challenges for
EV charging station operators, particularly in managing operational costs
and optimizing energy pricing. This master thesis address how to predict
power consumption at EV charging stations using data driven approaches.

Using data from charging stations in Italy, this study evaluates predictive
models, such as Long short term memory (LSTM), Graph convolution Long
short term memory (GCLSTM), Simple Recurrent network (RNN), and a
persistence model as a benchmark. These models leverage historical power
usage and geo spatial data to predict power consumption patterns. Model
performances are evaluated on the dataset, highlighting the model best suited
for the predictions.

Results indicate that LSTM model, using the original dataset, achieves an
average MAE of 0.3456 over six weeks of test dataset, effectively capturing
temporal dependencies in the data. In comparison, the GCLSTM model
achieves an MAE of 0.4593 trying to capture inter station relations. Over-
all LSTM best capturing if temporal dependencies are predominant and
GCLSTM helps to achieve inter station relations.
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Chapter 1

Introduction

1.1 Introduction to Electric Vehicles and Charg-
ing Infrastructure

The global transportation sector is undergoing a significant transformation
as electric vehicles (EVs) emerge as a sustainable alternative to traditional
internal combustion engine vehicles. This transition, largely driven by en-
vironmental concerns and the push for cleaner energy sources, is supported
by governments worldwide through subsidies, tax incentives, and strict emis-
sions standards. As a result, EV adoption is rising rapidly, with over 10
million EVs on the road as of 2020 and expected to continue growing [27].

While the expansion of EVs contributes to lowering the transportation sec-
tor’s carbon footprint, it also brings new challenges for EV charging opera-
tors, particularly around managing operating costs and energy prices. With
higher demand, especially during peak charging periods, operators face in-
creased costs for energy procurement and the risk of grid strain [1iteLund2015,
which could impact their profitability.

This is where load profile prediction becomes crucial. By predicting demand
patterns, operators can optimize energy purchasing strategies, avoiding costly
last-minute procurement during peak periods and taking advantage of lower
rates during off-peak hours. Effective prediction also enables better peak load
profile management, helping operators balance supply and demand to pre-
vent system overloads, stabilize operational costs, and offer more competitive
pricing to customers. In this way, load profile prediction not only supports
efficient energy distribution but also helps operators maintain cost-effective
operations in a rapidly evolving energy landscape.
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Chapter 1. Introduction

1.2 Goals & Research question
The goal of this thesis is to develop data-driven models capable of forecast-
ing the short-term EV charging load . The models aim to predict the power
consumption of hourly resolution data, ensuring a reliable understanding of
charging patterns.

This task will be performed using the charging session data from stations
operated by emotions in Italian cities, which account for approximately 133
charging stations.

This thesis will therefore address the following research questions:

• What parameters do the forecasted consumption of EV charging station
networks depends on this dataset?

• Which forecasting model provides better day-ahead predictions of con-
sumption?

1.3 Structure of the thesis
Chapter 1 talks about the Introduction of this thesis In Chapter 2, the dif-
ferent types of mathematical notations are explained, along with the mathe-
matical and theoretical parts of all the methods and algorithms used in this
thesis. In Chapter 3, the dataset and the different transformations and pre-
processing steps that are used on the charging session data before modeling
are described. you’ll find information on how to use the different prediction
models, as well as instructions for training and testing. Testing results and
comparing the models based on how well they did on the testing set and
the mistakes that were left over after the tests. In Chapter 5, we talk about
the results of these analyses, along with the flaws in the prediction models.
Finally, Chapter 6 wraps up this thesis and suggests a few ways to finish this
job.
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Chapter 2

Theory

This chapter lays the theoretical foundation for the methodologies employed
in this thesis, which focuses on predicting load profiles at electric vehicle
(EV) charging stations. Understanding the dynamic nature of load profiles
consumption requires a detailed exploration of time series data characteris-
tics, data preprocessing techniques, and advanced data driven models. The
discussion begins with fundamental concepts of time series data and its pat-
terns, which are essential for modeling temporal dependencies. Subsequently,
baseline models such as the persistence model are introduced, followed by an
in-depth examination of recurrent neural networks (RNNs) and their variants,
including Long Short-Term Memory (LSTM) networks. Furthermore, the in-
tegration of spatial dependencies through Graph Neural Networks (GNNs) is
explored, culminating in the Graph Convolutional Long Short-Term Memory
(GCLSTM) model. These theoretical insights provide the necessary context
for understanding the model selection, implementation, and evaluation pro-
cesses detailed in later chapters.

2.1 Time Series data fundamentals
Time series data consists of sequential observations collected over time, where
the temporal order of the data points is significant. Unlike conventional
datasets, time series data exhibits distinct characteristics such as trends,
seasonality, and irregular variations, which make it critical for capturing dy-
namic patterns in sequential processes. In the context of electric vehicle (EV)
charging stations, time series data is indispensable for understanding and pre-
dicting load patterns influenced by factors like time of day, day of the week,
and seasonal changes. Trends represent the long-term shifts in load, often
linked to growing EV adoption, while seasonality captures recurring patterns,

3



Chapter 2. Theory

such as daily or weekly fluctuations in charging behavior. Irregular compo-
nents, or residuals, encompass unexpected variations or anomalies in load
consumption. Recognizing these elements is crucial for developing accurate
predictive models that can inform resource allocation and load management
strategies at EV charging stations. This understanding forms the foundation
for preprocessing techniques and the design of advanced data driven models
discussed in subsequent sections.

2.2 Scaling and Data Preprocessing
Scaling and preprocessing are critical steps in preparing time series data for
effective analysis and modeling. Scaling involves transforming the range of
input features to standardize the data, which ensures that all variables are
comparable and helps improve the performance of data driven models, par-
ticularly those sensitive to the magnitude of values. Common scaling tech-
niques, such as Min-Max Scaling or Standard Scaling, normalize the data to
a specific range or distribution, enabling models to converge more efficiently
during training.

In the context of this study, preprocessing also includes handling missing val-
ues, standardizing timestamps, and aggregating load consumption data to a
uniform resolution. Missing data, a common issue in real-world datasets, is
addressed by either imputation or removing incomplete records, depending on
the extent of the missing values. Time-based operations, such as resampling
and alignment to a consistent hourly interval, are applied to ensure tempo-
ral consistency. Additionally, spatial attributes like station coordinates and
proximity to the city center are incorporated to capture location-based vari-
ations in demand. These preprocessing steps are essential for maintaining
the integrity of the dataset and preparing it for subsequent feature engineer-
ing and model training, as discussed in later sections. By standardizing and
enriching the data, this process enhances the model’s ability to capture both
temporal and spatial dependencies in EV charging demand.

2.3 persistence model
The persistence model, also known as a naive prediction model, is a simple
yet often effective approach to time series prediction. It assumes that future
values of a time series will match the most recent observed value, operating
on the principle that what happened in the past is the best indicator of the

4



Chapter 2. Theory

immediate future. Mathematically, this model can be expressed as ŷt+1 = yt,
where ŷt+1 is the predicted value for the next time step and yt is the actual
value at the current time step.

In the context of EV charging stations, the persistence model provides a
straightforward approach to predict short-term load demand. By assuming
that the power consumption in the next hour will be same as the current
hour, it captures the immediate patterns in usage. While it does not ac-
count for longer-term trends, seasonality, or external influences, the model
serves as an essential benchmark for evaluating the performance of more ad-
vanced techniques. Comparing the results of complex models to this baseline
highlights their added value and ensures that their predictions offer a signif-
icant improvement over simple, intuitive methods. As such, the persistence
model establishes a foundation for understanding the necessity and efficacy
of employing advanced prediction models in this thesis.

2.4 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a class of neural network architec-
tures designed to process sequential data by leveraging their ability to retain
information from previous time steps. Unlike traditional feedforward neural
networks, RNNs incorporate a feedback loop within their structure, allowing
the network to maintain a "memory" of prior inputs. This characteristic
makes RNNs particularly well-suited for time series prediction tasks, where
capturing temporal dependencies is critical.

The fundamental idea behind RNNs is the hidden state, which acts as a
dynamic memory that gets updated at each time step based on the current
input and the previous hidden state. Mathematically, the hidden state ht at
time t is computed as:

ht = f(Whxt + Uhht−1 + bh)

where xt is the input, ht−1 is the previous hidden state, Wh and Uh are weight
matrices, bh is the bias vector, and f is the activation function, often tanh.
The output yt is then derived from the hidden state using a transformation.

In the context of EV charging load prediction, RNNs are capable of mod-
eling the temporal patterns in power consumption, such as daily peaks and
troughs. However, standard RNNs often struggle with long-term dependen-
cies due to issues like vanishing gradients during training. This limitation
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Chapter 2. Theory

motivates the use of advanced variants, such as Long Short-Term Memory
(LSTM) networks, which address these challenges effectively. By building
upon the foundational principles of RNNs, these enhancements enable more
accurate and robust prediction, as discussed in subsequent sections.

2.5 Long Short-Term Memory (LSTM) Networks

Figure 2.1: An illustration of a Long-Short Term Memory (LSTM).

Long Short-Term Memory (LSTM) networks are an advanced type of Recur-
rent Neural Network (RNN) specifically designed to overcome the vanishing
gradient problem that limits the ability of standard RNNs to learn long-term
dependencies. By introducing a memory cell and a system of gates, LSTMs
can selectively retain or discard information over extended sequences, mak-
ing them highly effective for time series prediction tasks, such as predicting
power consumption patterns at EV charging stations. The architecture of an
LSTM cell consists of three primary gates—forget, input, and output—along
with a cell state that acts as the memory of the network.

The forget gate determines which parts of the previous cell state should
be retained or forgotten. This is calculated as:

ft = σ(Wfxt + Ufht−1 + bf )
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Chapter 2. Theory

where ft is the forget gate vector, xt is the current input, ht−1 is the
hidden state from the previous time step, Wf and Uf are weight matrices, bf
is the bias, and σ is the sigmoid activation function. The input gate decides
which new information to store in the cell state. It is computed using:

it = σ(Wixt + Uiht−1 + bi)

and the candidate cell state, which proposes new information to add, is
calculated as:

c̃t = tanh(Wcxt + Ucht−1 + bc)

The updated cell state is a combination of the retained information from
the forget gate and the new candidate values modulated by the input gate.
This is expressed as:

ct = ft ⊙ ct−1 + it ⊙ c̃t

where ct represents the updated cell state and ⊙ denotes element-wise
multiplication. Finally, the output gate determines the part of the cell state
to pass to the hidden state, which is used as the output of the current time
step. This is computed as:

ot = σ(Woxt + Uoht−1 + bo)

and the hidden state is given by:

ht = ot ⊙ tanh(ct)

These mechanisms allow LSTMs to effectively capture both short-term
and long-term dependencies in sequential data, which is critical for model-
ing the temporal dynamics of EV charging patterns. By leveraging these
capabilities, LSTMs can predict power consumption more accurately than
traditional methods, particularly in scenarios where temporal patterns are
complex and non-linear.

2.6 Chebyshev Graph Convolutional Networks
(Chebyshev GCN)

Chebyshev Graph Convolutional Networks (Chebyshev GCNs) are a spectral
variant of Graph Convolutional Networks (GCNs) that leverage Chebyshev
polynomials to approximate graph convolution operations. They address
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Chapter 2. Theory

the computational inefficiencies of traditional spectral methods, such as the
direct computation of eigenvalues and eigenvectors of the graph Laplacian,
which is computationally prohibitive for large graphs. Chebyshev GCNs
provide a scalable and efficient approach to learning from graph-structured
data by approximating spectral filters in the graph domain.

Spectral Graph Convolutions Spectral graph convolution operates in
the frequency domain and is defined using the graph Laplacian L, which
encodes the structure of the graph. The Laplacian is expressed as:

L = D − A

where A is the adjacency matrix and D is the degree matrix. Alterna-
tively, the normalized Laplacian is used:

L̃ = I −D−1/2AD−1/2

The spectral convolution of a graph signal x with a filter gθ is defined as:

gθ ∗ x = Ugθ(Λ)U
Tx

where U and Λ are the eigenvectors and eigenvalues of L̃, respectively.
However, computing the eigendecomposition of L̃ is computationally expen-
sive, especially for large graphs.

Chebyshev Polynomial Approximation To overcome the computational
challenges, Chebyshev GCNs approximate the spectral filter gθ(Λ) using
Chebyshev polynomials. Chebyshev polynomials Tk(x) are recursively de-
fined as:

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x)

The filter gθ is approximated as a K-order polynomial of the Laplacian:

gθ(L) ≈
K∑
k=0

θkTk(L̃)

where θk are the learnable parameters of the model and Tk(L̃) represents
the k-th order Chebyshev polynomial of the normalized Laplacian L̃.

8



Chapter 2. Theory

Graph Convolution Operation The convolution operation for a node
feature x using the Chebyshev approximation is given by:

gθ ∗ x ≈
K∑
k=0

θkTk(L̃)x

This formulation enables efficient computation by propagating informa-
tion up to K-hop neighborhoods around each node without requiring explicit
eigendecomposition. The value of K controls the extent of the neighborhood
considered in the aggregation process, with higher values capturing more
global information.

Applications in EV Charging Prediction In the context of EV charg-
ing networks, Chebyshev GCNs can effectively model spatial dependencies by
aggregating features from nearby charging stations based on their geograph-
ical or operational relationships. By leveraging the Chebyshev polynomial
approximation, the model achieves a balance between computational effi-
ciency and the ability to capture localized patterns, making it well-suited
for large-scale graph-based data such as power consumption in EV charging
networks.

2.7 Graph Convolutional Long Short-Term Mem-
ory (GCLSTM) Networks

The Graph Convolutional Long Short-Term Memory (GCLSTM) network is
a hybrid model that combines the strengths of Graph Convolutional Networks
(GCNs) and Long Short-Term Memory (LSTM) networks. It is specifically
designed to handle spatio-temporal data, where both spatial and temporal
dependencies are critical. GCLSTMs integrate graph convolution operations
into LSTM-like structures, enabling the model to capture spatial correlations
from graph-structured data while simultaneously learning temporal patterns
from sequential data.

The core idea behind GCLSTMs is to replace the traditional fully connected
layers in the gates of LSTMs with graph convolution operations. This allows
the model to aggregate information from neighboring nodes within the graph
at each time step, enriching the temporal modeling with spatial context. For
a node i at time t, the forget gate determines the extent to which the previous
cell state should be retained or forgotten, and is defined as:

9



Chapter 2. Theory

f
(i)
t = σ (GCN(Xt, A)Wf + UfHt−1 + bf )

where GCN(Xt, A) represents the graph convolution operation applied to
the input Xt with adjacency matrix A, Ht−1 is the hidden state from the
previous time step, Wf and Uf are weight matrices, and bf is the bias vector.
Similarly, the input gate determines the information to be added to the cell
state, and is computed as:

i
(i)
t = σ (GCN(Xt, A)Wi + UiHt−1 + bi)

The candidate cell state, which represents potential updates to the memory,
is given by:

C̃
(i)
t = tanh (GCN(Xt, A)Wc + UcHt−1 + bc)

The updated cell state combines the retained information from the forget
gate and the new candidate values modulated by the input gate, expressed
as:

C
(i)
t = f

(i)
t ⊙ C

(i)
t−1 + i

(i)
t ⊙ C̃

(i)
t

where ⊙ denotes element-wise multiplication. The output gate determines
the portion of the updated cell state to pass to the hidden state, which is
computed as:

o
(i)
t = σ (GCN(Xt, A)Wo + UoHt−1 + bo)

Finally, the hidden state, which is propagated to the next time step, is cal-
culated as:

H
(i)
t = o

(i)
t ⊙ tanh(C

(i)
t )

In these equations, W , U , and b are learnable weights and biases, and σ is the
sigmoid activation function. By incorporating graph convolution operations
into the LSTM framework, GCLSTMs effectively capture both spatial and
temporal dependencies in the data.

In the context of EV charging networks, GCLSTMs are particularly used for
predicting power consumption. By modeling the spatial dependencies be-
tween charging stations through graph convolutions and capturing temporal
dependencies using LSTM mechanisms, GCLSTMs might predict load pro-
files with greater accuracy. The adjacency matrix A, derived from spatial

10



Chapter 2. Theory

distances and correlations, encodes the relationships between charging sta-
tions, allowing the model to incorporate geographical and operational con-
text into its predictions. This capability makes GCLSTMs a powerful tool
for spatio-temporal prediction tasks in dynamic and interconnected systems
like EV charging networks.

2.8 Evaluation Metrics
Evaluation metrics are crucial for assessing the performance of prediction
models, providing quantitative measures of their accuracy and reliability. In
this thesis, several standard metrics are employed to evaluate the predic-
tive accuracy of models, including Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and R2-
score. These metrics enable a comprehensive comparison of models and their
ability to capture patterns in power consumption at EV charging stations.

The Mean Absolute Error (MAE) quantifies the average magnitude of
errors in predictions, irrespective of their direction. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|

where yi represents the actual value, ŷi is the predicted value, and n is the
total number of observations. MAE provides an intuitive interpretation of
prediction accuracy in the same units as the target variable.

The Root Mean Squared Error (RMSE) penalizes larger errors more
significantly by squaring the residuals, making it sensitive to outliers. It is
expressed as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2

While RMSE shares the same units as the target variable, its sensitivity to
larger deviations makes it a valuable metric for applications where large er-
rors are undesirable.

The Mean Absolute Percentage Error (MAPE) is a scale-independent
metric that expresses the prediction error as a percentage of the actual value.
It is defined as:

11



Chapter 2. Theory

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100

MAPE is particularly useful for comparing model performance across datasets
with varying scales, but it can be sensitive to very small actual values, which
may lead to large percentage errors.

The R2-score, or coefficient of determination, measures the proportion of
variance in the target variable that is predictable from the input features. It
is given by:

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2

where ȳ is the mean of the actual values. The R2-score ranges from 0 to 1,
with higher values indicating better model performance.

These metrics collectively provide insights into the accuracy, robustness, and
reliability of the prediction models. While MAE and RMSE focus on the
magnitude of errors, MAPE offers a percentage-based evaluation, making it
easier to interpret relative errors. The R2-score highlights the model’s ability
to explain variance in the data. Together, these metrics form a comprehensive
framework for evaluating the suitability of models for power consumption
prediction tasks.
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Chapter 3

Methodology

The below flowchart presents a step-by-step methodology for predicting load
profiles at electric vehicle (EV) charging stations. It begins with Data Clean-
ing, which involves removing missing values, handling inconsistencies, and
preparing the data for further analysis. Following this, Timestamp Resam-
pling is performed, aligning data to a consistent time interval (e.g., 1-hour
intervals) to maintain uniformity in temporal resolution. The next step, Fea-
ture Engineering, involves creating additional informative features such as
time series decomposition elements (trend, seasonality, and residuals), and
spatial features (e.g., distance to the city center). After engineering features,
Data Splitting divides the dataset into training, validation, and testing sub-
sets to facilitate robust model evaluation.
The methodology then progresses to Model Setup, where various predictive
models ( Persistence, Simple RNN, LSTM, GCLSTM) are chosen based on
the problem’s requirements. Model setup involves setting parameters, model
training and validation follows, where the models learn patterns from the
training data while being fine-tuned based on validation performance. The
final step, Model Testing, assesses the model’s performance on the test set,
evaluating metrics like MAE, RMSE, mape, and score. This structured ap-
proach ensures a comprehensive analysis, from data preparation to model
validation, for effective load profile prediction at EV stations.

13



Chapter 3. Methodology

Figure 3.1: Methodology Flow Chart for Predicting EV Load Profiles

3.1 Description of the dataset
The dataset for this thesis is provided by Emotions SRL a start-up company
based in Tuscany, Italy, which is part of an EU project Drive2X (https://drive2x.eu/)
developing tools and technology related to mass EV adoption in the fu-
ture. Electromobility Prediction Interactive Open-Source Tool (EPIOT) is a
tool under development by the DLR Institute of Networked energy Systems,
where my thesis is related to researching different methods to predict load
profiles at charging stations using the datasets of the partners in the project
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with a goal to predict the next 24 hours ahead with historical 24 hours of data.

Out of all the 133 EV station datasets provided by Emotions SRL from Ital-
ian cities, the City of Galantina is selected due to the availability of more
charging events at charging stations compared to other cities. As the raw
dataset is basically an event-based dataset rather than a continuous time
series, the no of charging events in Galantina compared to other cities has a
large difference. Because of this reason, the city of Galantina is selected.

This study is based on real charging data of 63840 slow charging events with
a maximum capacity of 22 kW, measured at 9 different charging stations in
Galantina City, each specified by distinct latitude and longitude coordinates.
These stations cover a diverse range of areas, providing a comprehensive view
of spatial distribution and power usage patterns. The data spans a significant
time period, from July 26, 2023, to April 17, 2024„ offering nearly a year of
hourly records. This extensive temporal coverage allows for the analysis
of variations and evolving trends in electric vehicle (EV) charging demand.
The combination of geographical and temporal data provides a foundation
for modeling load profiles, understanding fluctuations in power consumption,
and drawing insights critical for optimizing the management and scaling of
the EV charging network.
Figure 3.2 shows the locations of each station with their respective numbers.
As shown on the map, stations 98 and 98 are present in the middle of the
city, which will offer access to city residents. Station 175 will have different
patterns because it is available near highway SP33, which will help travelers.
Stations 213 to 217 are airport charging stations, which will have high usage
during weekends. The city center stations 98 and 98 will have high usage
on weekdays. Station 175 will have scheduled fleet activities as it is near
the highway. On the right side of the map, the charging station 98 snapshot
is added, as is the type of charging. Same as station 98, all the charging
stations are of the same power rating, which is slow charging type.
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Figure 3.2: charging station locations

3.2 Data cleaning
Before utilizing the dataset for prediction and analysis, several data cleaning
and filtering operations were performed to ensure the quality and integrity of
the information. These steps are critical to eliminate inconsistencies, handle
missing data, and prepare the dataset for accurate modeling. Below is the
table explaining all attributes in the raw dataset.

Table 3.1: Description of raw Dataset Attributes for EV Charging Stations

Attribute Description
timestamp The exact date and time when the record

was logged. Used for time series analysis and
modeling.

tower_latitude Geographic latitude of the charging station,
used for spatial analysis.

tower_longitude Geographic longitude of the charging station,
used for spatial analysis.
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Attribute Description
tower_id Unique identifier for the charging station,

used to distinguish between different towers.
kWh Amount of energy consumed during the

charging session.

To prepare the dataset for analysis, several cleaning and filtering steps were
conducted to ensure reliability and consistency. First, missing values were
addressed: essential columns, such as timestamp, kWh, and tower_id, were
checked for null entries. columns with a high percentage of missing data
were removed. so, focusing only on attributes like tower_id, W, timestamp,
and geographical coordinates. Next, timestamp formatting was standard-
ized. The timestamp column was converted to a proper date-time format,
enabling time-based operations such as resampling, aggregation, and filter-
ing. Data consistency was also verified by removing duplicate records to
eliminate redundant data points that could distort the analysis. Addition-
ally, geographical coordinates (latitude and longitude) for each station were
validated to check for any inaccuracies or mismatched locations. These clean-
ing and formatting steps transformed the raw charging records into a reliable,
consistent dataset, establishing a solid foundation for load predictions.

3.3 Generation of continuous load profiles
The data contains both the plug-in- timestamps and the original amount
of energy, energyor ,charged for each charging event.Consequently, initially,
the original charging time, tor , is derived by measuring the deviation be-
tween both timestamps. Furthermore, the charging load in Kilowatt , of
each charging process is calculated according to below formulae:

load =
energyor

tor

The dataset underwent aggregation and feature engineering to create a reli-
able, continuous load profile suitable for prediction models. The raw dataset
consists of random time stamps, which vary from 1-minute to 5-minute in-
tervals with a range of time stamps available One-hour resolution is the best
resolution suitable for a number of charging events available. So, the Ag-
gregation of charging records to hourly intervals helped smooth out anoma-
lies, emphasizing general demand trends and enhancing model performance.
power consumption (kW) values were summed for each hour across active
charging sessions, creating a uniform time series of load profile data. Han-
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dling inactive periods by assigning zero kW during non-charging hours en-
sured continuity. Data resampling standardized timestamps to an hourly
frequency, ensuring every hour in the study period was represented, while
time zone consistency (UTC) prevented discrepancies from time zone dif-
ferences. Feature engineering generated additional input variables to boost
model accuracy. This included time decomposition and Spatial attributes
such as station coordinates, distance to the city center, and inter-station dis-
tances captured location-specific demand trends. time decomposition into
trend, seasonality, and residuals provided insight into regular patterns and
periodic behaviors. So, Predictions were made on residuals, later combined
with trend and seasonal components to produce final power consumption pre-
dictions. These transformations structured the raw data into a continuous,
comprehensive load profile, meeting statistical requirements for time series
modeling and enabling robust demand predictions.

3.4 Power usage trends based on distance to
city center

Figure 3.3: Average weekly power Consumption Patterns based on city center

The plot shows how the proximity of charging stations to the city center influ-
ences weekly power consumption patterns. Stations closer to the city center
show higher power usage during weekdays, aligning with commuting patterns
and regular daily activity, while usage tends to drop on weekends. In contrast,
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stations farther from the city center exhibit a reverse trend, with increased
power consumption during weekends, likely driven by travel and leisure ac-
tivities. These patterns suggest that charging station utilization is closely
tied to their location, with weekday peaks reflecting work-related travel and
weekend peaks corresponding to long-distance or recreational trips. Under-
standing these trends is crucial for optimizing station operations, scheduling
maintenance, and implementing dynamic pricing strategies to meet varying
demands efficiently.

3.5 Analysis of temporal patterns in dataset
In this section, we analyze power consumption patterns using STL decompo-
sition (Seasonal-Trend Decomposition using Loess), which breaks the time
series into three components: trend (T (t)), seasonality (S(t)), and residuals
(R(t)). The decomposition for additive models is mathematically expressed
as:

L(t) = T (t) + S(t) +R(t)

For this dataset with consideration of multiple seasonalities, the seasonal
component is divided into daily (Sdaily(t)) and weekly (Sweekly(t)) compo-
nents, resulting in:

L(t) = T (t) + Sdaily(t) + Sweekly(t) +R(t)

The trend (T (t)) is estimated using Loess smoothing on the detrended series,
computed as L(t) − S(t). The seasonal component (S(t)) is determined by
grouping the detrended series (L(t) − T (t)) by periodicity (e.g., daily or
weekly) and applying smoothing. For datasets with multiple seasonalities,
the total seasonality is given by:

S(t) = Sdaily(t) + Sweekly(t)

Finally, the residuals (R(t)) are calculated as the difference between the
original series and the sum of the trend and seasonality:

R(t) = L(t)− [T (t) + S(t)]

STL iteratively refines these components, making it effective for handling
noisy, non-stationary data. For datasets with a weekly cycle, STL captures
weekly seasonality independently of the trend. This decomposition reveals
long-term trends, periodic behaviors, and random fluctuations in power con-
sumption, offering valuable insights into usage patterns [1iteFonteijn2019.
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3.5.1 Time decomposition analysis

For analysis, station 98 is considered to understand the temporal patterns as
an example.
The time decomposition of the time series data is presented as actual, trend,
daily, weekly, and residual. Each of these components provides insights into
different aspects of the data (Figure 3.1):

Figure 3.4: Time decomposition of station 98 in the dataset

(Figure 3.4) The decomposition highlights clear daily and weekly cycles in
power usage, which can be leveraged for effective scheduling and demand
prediction. The increasing trend during certain periods suggests growing
station utilization or seasonal influence. Residuals indicate that while sea-
sonality and trend capture much of the variability, occasional unpredictable
spikes remain, underscoring the need for robust forecasting methods to ad-
dress irregular usage patterns.

20



Chapter 3. Methodology

Figure 3.5: Average power consumption patterns on different hours of the
day

Figure 3.5 shows how the daily cycle patterns, tell peak and off-peak hours.
The daily seasonality in power consumption at station 98 follows a clear cyclic
pattern influenced by human activity and transportation needs. power usage
starts to increase in the early morning hours, reflecting charging demand as
individuals prepare for their day. This trend peaks between late morning and
midday, likely due to commuters and fleet vehicles utilizing the station. In
the early afternoon, a decline in power consumption is observed, potentially
as vehicles remain idle during work hours or after the morning rush. A
secondary peak occurs in the late afternoon and early evening as individuals
return home or prepare for evening travel. Finally, power usage significantly
drops during the night, indicating minimal activity as most EVs are idle or
fully charged. This pattern highlights the strong correlation between power
consumption at EV stations and daily behavioral trends.
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Figure 3.6: Average power consumption patterns on different days

Figure 3.6 shows the hourly average power consumption (kW) for each day
of the week for station 98 in the dataset, revealing how power usage varies
by both the hour and the day. Each line represents a different day of the
week, highlighting distinct daily patterns in power demand at the EV charg-
ing stations. For example, weekdays such as Monday through Friday exhibit
consistent power consumption patterns, with noticeable peaks during typical
commuting hours, such as early morning and late afternoon, likely reflect-
ing the behavior of EV users charging before and after work. In contrast,
the weekends—Saturday and Sunday—show different profiles, with poten-
tially later peaks and more gradual fluctuations, which could be attributed
to more flexible travel and charging habits. Overall, the plot provides valu-
able insights into the temporal patterns of power usage, which can help op-
timize charging station operations and load profile management by aligning
resources with expected demand throughout the week.

3.6 Model selection
In my thesis, model selection was driven by the objective of predicting the
load profile at electric vehicle (EV) charging stations while accommodating
the unique challenges of time series data. I opted for a combination of baseline
and advanced models: persistence, Simple RNN, LSTM, and GCLSTM. The
persistence model served as a straightforward benchmark, capturing recent
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trends for comparison. The Simple RNN model was chosen to explore re-
current neural network capabilities in handling temporal dependencies, while
the LSTM model, known for its effectiveness with sequential data, aimed to
capture longer-term dependencies and variations in EV charging demand.
The GCLSTM model was selected to incorporate both temporal and spatial
dependencies, which are crucial for this application due to the geographic
spread of charging stations. This diverse set of models allowed for a com-
prehensive evaluation of different approaches, providing insights into their
respective strengths and potential for improving load profile prediction in
the EV sector.
Neural networks were selected over other model architectures due to the in-
herent complexities of EV charging demand data, which include non-linear
patterns, temporal dependencies, and spatial variations across different sta-
tions. Traditional statistical models, like ARIMA or SARIMA, often excel
at linear or seasonally structured time series but struggle to capture the
non-linear interactions and dependencies within high-frequency data from
multiple locations. In contrast, neural network architectures—particularly
recurrent models like LSTM and GCLSTM—are adept at learning from se-
quential data, making them well-suited to recognize long-term dependencies
and fluctuating patterns in EV charging profiles.
Moreover, neural networks offer flexibility in handling diverse input features,
such as time series decomposition features and spatial coordinates, allowing a
multi-dimensional approach to prediction that static models typically cannot
achieve. This adaptability and capacity to learn complex relationships make
neural networks a superior choice, particularly for data-driven applications
with intricate and dynamic behavior like EV charging demand prediction.

3.7 Input features for the Models
After data preparation, the number of charging events occurring across the
whole dataset is around 30% to 40% across all stations, and the rest of the
values of the station’s power consumption are zero. As there will be sharp
peaks after zero consumption, it will be difficult for the models to have good
accuracy to predict. So, instead of directly predicting power consumption as
mentioned in the time decomposition analysis in section 3.5.1. we split the
power consumption into a trend, daily seasonality, weekly seasonality, and
residuals. Residual power consumption is used for the models and predicted,
and later it is summed with the rest of the decomposed components. This
approach is referred to in Fonteijn, R. and Castelijns [16]
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P (t) = T (t) + Sd(t) + Sw(t) +R(t)

P (t) : Total power consumption at time t, T (t): trend component, Sd(t):
Daily seasonality, Sw(t): Weekly seasonality, R(t): Residual component.

R̂(t) → Predictive Model

The residual R(t) is used as the input to the predictive model to generate
the predicted residual R̂(t).

P̂ (t) = T (t) + Sd(t) + Sw(t) + R̂(t)

P̂ (t) : predicted total power consumption, R̂(t): Predicted residual.

The input features for the predictive models were carefully structured to cap-
ture relevant temporal and spatial dependencies. For the Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) models, the input
features included residual power consumption and distance to the city center,
represented as:

XRNN/LSTM(t) = [R(t), D]

where R(t) denotes the residual power consumption at time t and D repre-
sents the distance to the city center.
For the Graph Convolutional Long Short-Term Memory (GCLSTM) model,
additional spatial features, such as geographical coordinates, were incorpo-
rated to capture spatial dependencies across charging stations. The input
feature structure for the GCLSTM model is given by:

XGCLSTM(t) = [R(t), D,G]

where G denotes the geographical coordinates of the stations.
The predictive models focused on forecasting the residual power consump-
tion, represented as:

R̂(t) → Predictive Model

where R̂(t) is the predicted residual at time t. The total power consumption
was then reconstructed by summing the predicted residual with the trend
(T (t)) and seasonal components (Sd(t) for daily seasonality and Sw(t) for
weekly seasonality), as follows:

P̂ (t) = T (t) + Sd(t) + Sw(t) + R̂(t)
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Figure 3.7: Illustration of the structure of input features, Model structures,
and output features

3.8 Sequence creation
Sequence creation is essential for models like RNN, LSTM, and GCLSTM
because these architectures are designed to learn temporal dependencies in
sequential data. By feeding the model time-ordered sequences, it retains
context from previous time steps, enabling it to capture short-term patterns
(e.g., daily trends) and long-term dependencies (e.g., weekly seasonality).
The recurrent structure of these models relies on historical input to influence
predictions, making sequence creation vital for preserving the temporal pat-
terns in data. Additionally, techniques like sliding window ensure the model
receives continuous and overlapping sequences, enhancing its ability to learn
fine-grained patterns. In GCLSTMs, sequence creation also integrates spa-
tial information, allowing the model to analyze how temporal patterns evolve
across interconnected nodes. Without sequences, these models cannot fully
leverage their memory and state management mechanisms to predict time-
dependent behaviors effectively.
The sequence creation step transforms continuous time-series data of EV
station power consumption into structured input-target pairs, enabling the
models to learn temporal patterns effectively. Using a sliding window ap-
proach, sequences are created by defining a sequence length (number of past
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time steps), prediction length (number of future steps to forecast). For each
station, a sequence of historical values forms the input, while the following
data points (based on prediction length) serve as the target. This process it-
erates across the entire dataset, producing multiple overlapping input-target
pairs. These sequences, organized as [sequence length, number of features]
for inputs and [prediction length, number of features] for targets, allow the
model to analyze patterns in past data to predict future consumption, thereby
preparing the data for effective training and prediction.

Figure 3.8: Example of how sequences are created for the dataset

For RNN and LSTM, the input pairs are created as [sequence length, num-
ber of features (Residual power (R(t)) & distance to city center] and target
pairs are [prediction length, number of features (Residual power (R(t))]. For
GCLSTM the input pairs are created as [sequence length, number of sta-
tions, number of features (Residual power (R(t)) & distance to city center]
and target pairs are [prediction length, number of stations, number of fea-
tures (Residual power (R(t))] for GCLSTM we need to predict all stations at
once because we need to apply graph convolution parallel to capture temporal
patterns.

3.9 Training, validation, and testing
The dataset is divided into three subsets: the training set spans from July
26, 2023, to January 9, 2024, the validation set from January 9, 2024, to
February 27, and the test set from February 27 to April 17, 2024. Each
subset consists of sequences, where each sequence is a 24-hour input window
of prediction features paired with a 24-hour target consumption value. The
sequences are created from the original time series data and assigned to the
respective subsets based on their starting timestamps, ensuring no overlap
between subsets and preserving temporal independence. Time-series cross-
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validation is applied to the training sequences to iteratively split them into
smaller training and validation sets, improving the model’s robustness and
generalization. The datasets are structured as PyTorch time series tensors
with dimensions as mentioned in Section 3.7 and enriched with spatial and
temporal decomposition features to enable the model to capture complex
patterns in EV charging demand effectively.

During the training and validation stage, time series cross-validation (TSCV)
is applied to ensure robust performance while maintaining temporal integrity.
During the training stage, TSCV splits data into sequential training and
validation sets through a forward chaining approach. The model is trained
on past data and validated on future data on each fold, mimicking real-
world scenarios. This method ensures the model learns patterns according to
real-world scenarios. During hyperparameter optimization, TSCV evaluates
various configurations, such as learning rate or LSTM units, across multiple
folds. This enables the selection of hyperparameters that generalize well,
avoiding overfitting to specific time periods.

Figure 3.9: Example of how Time series cross-validation works

3.10 Hyper parameter optimization
Hyperparameter optimization is a crucial step in model development because
the performance of a model heavily depends on chosen hyperparameters.
These parameters, such as learning rates and number of hidden layers, are not
learned during training but must be set before training begins. Incorrectly
chosen hyperparameters can lead to overfitting or underfitting.Automating
the optimization process ensures a systematic and efficient search for the best
combination of parameters, which are important.
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The Optuna Python library is used for hyperparameter optimization. Op-
tuna employs Bayesian optimization through techniques like tree-structured
parzen estimators, which enable it to balance exploration (trying uncertain
values) and exploitation (refining promising areas of the search space). This
approach is more efficient than grid or random search. as it dynamic prun-
ing of underperforming trails significantly reduces computational overhead.
making it ideal for resource-intensive tasks.

3.11 Model setup

3.11.1 Persistence Model

The rolling persistence model is a straightforward approach to time series
prediction, operating similarly to the naive persistence model but with a
slight variation. Instead of predicting the next value solely based on the
last observation, it uses the average of the most recent observations within a
specified time window, typically 24 hours, to account for minor fluctuations
in the data. This model leverages the strong autocorrelation often present in
time series data, making it a simple baseline for short-term load profile pre-
diction. Despite its simplicity, the rolling persistence model serves as a useful
benchmark to assess the performance of more advanced prediction models.
However, the naive persistence model’s limitations include the inability to
account for long-term trends, seasonality, or external factors that may affect
power consumption patterns.

3.11.2 Simple recurrent neural network

Simple recurrent neural network models (RNN) process sequential data through
layered architecture for each station separately, beginning with an input layer
that receives sequences of 24-time steps, and the output is also a sequence of
24-time steps. The input layer takes data in the shape (nbatch, 24, nfeatures),
with each sequence representing 24-time steps of features such as historical
power residuals and distance to the city center. The recurrent layer processes
the input, maintaining a hidden state across the time steps. using activation
functions like tanh which is internally available inside the model. To pre-
vent overfitting, dropout is applied during training, randomly deactivating
neurons, while L2 regularization penalizes large weights to improve general-
ization. Adam optimizer is used during the training. The hidden states at
each time step are passed to a fully connected neural network layer, which
then maps the processed data into a sequence of 24-hour predictions. The
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hyperparameters such as hidden size and learning rate are finalized after
hyperparameter optimization using Optuna.

3.11.3 Long short-term memory

The LSTM model is a pytorch-based neural network designed for sequence
modeling and time series forecasting. It consists of LSTM layers to capture
temporal dependencies in the input data, followed by a fully connected layer
to map the hidden state outputs to desired predictions. This model is ap-
plied to each station separately. The model takes input sequences of shape
(nbatch, 24, nfeatures) and uses LSTM layers, initialized with zero hidden and
cell states, to process the sequences. The output from the final time step of
the LSTM is passed through the fully connected layer to generate predictions
of shape (nbatch, 24. The same as in the above section to prevent overfitting
L2 regularization and dropout are applied.

3.11.4 Graph convolution long short term memory

The GCLSTM is a hybrid graph convolution long short-term memory model
that integrates LSTM sequence modeling capabilities with graph convolu-
tion layers to capture spatial dependencies in graph-structured data. It pro-
cesses input sequences with dimensions (nbatch, 24, nfeatures, nstations) and uses
Chebyshev graph convolutions for the input, forget, cell and output gates to
incorporate spatial relationships alongside temporal dynamics. The model
initializes hidden and cell states and iteratively updates these states over the
prediction length using LSTM equations enhanced by graph convolutions.
The outputs include hidden states for each predicted timestep and the final
cell state, enabling the model to handle spatiotemporal prediction tasks.
The GCLSTM processes input sequences through Chebyshev graph convolu-
tions, which efficiently aggregate information from neighboring nodes in the
graph while preserving the temporal sequence of data. Features are normal-
ized using MinMax scaling to facilitate effective training, and hyperparame-
ters such as filter size and learning rate are fine-tuned to optimize predictive
accuracy. As mentioned in the above section, model performances are eval-
uated to provide a comprehensive assessment of its prediction capability.
Visualizations comparing predicted and actual power demand further illus-
trate the model’s effectiveness. This approach captures spatial and temporal
trends in EV charging demand. This Model architecture is referred from
the work done by R. Chen K. Eksombatchai P. Hamilton W. L. Leskovec, J.
Ying, for dynamic link prediction[9]
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Results and Analysis

This section aims to provide an analysis of model performance, with a par-
ticular focus on assessing each model’s capability to capture temporal depen-
dencies and spatial features relevant to power consumption. Additionally, I
employed Optuna (Hyperparameter Optimization), an automated hyperpa-
rameter optimization framework, to fine-tune model parameters, enhancing
the performance of advanced models like Long Short-Term Memory (LSTM)
and Graph Convolutional LSTM (GCLSTM). This optimization process en-
sures that the models achieve a generalization. The outputs from the models
are residual power values which are summed with the trend, daily seasonal,
and and weekly seasonal to generate predicted power consumption

Different metrics used for evaluating model performances are RMSE, MAE,
and R2score. Given its scale independence, the popular mean absolute per-
centage error (MAPE) would provide an easily interpretative error metric.
However, the charging load profile time series exhibits a charging load of
zero at numerous points in time. For this reason, MAPE cannot be used for
overall comparison, as the calculation is based on the division of the error by
the true load value at each timestep.

The neural networks are implemented using PyTorch (version 2.5.0). Plots
are generated using Matplotlib (version 3.9.2) Datasets are handled using
pandas (version 2.2.3) in a Python environment

4.1 Simple recurrent neural network
The Simple RNN model achieved an average MAE of 0.5494, with values of
0.5983 on Friday (2024-04-15), 0.4504 on Monday(2024-03-25), and 0.6531
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on Saturday(2024-03-30). While the model maintains relatively low abso-
lute errors. to decrease errors. Additionally, considering advanced models
like LSTMs, which are better suited for capturing long-term dependencies,
could reduce both MAE, leading to more accurate and reliable predictions.
To improve performance more, further hyperparameter tuning, including ad-
justments to layers, units, and dropout, could help. Aiming for an MAE
under 0.5 kW is a reasonable improvement goal with these adjustments.
Now, for the upcoming neural network models, this model MAE is set as
a a benchmark.

4.2 Long short-term Memory (LSTM)
The implemented LSTM model is designed to predict residual power val-
ues for EV stations, leveraging a simple yet effective architecture to capture
temporal dependencies in the data. The model consists of an input layer,
an LSTM layer with hidden units, and a fully connected layer that out-
puts predictions for stations. The LSTM processes the input sequences as
mentioned in Section 3.11.3. After training and validating the model us-
ing cross-validation and hyperparameter techniques as mentioned in 3.9 and
3.10, below are the model parameters

Parameters Training RMSE Training MAE Validation RMSE Validation MAE
hidden_size: 112,
num_layers: 2,
lr: 0.000946,
dropout rate = 0.3,
L2_regularization = 0.2

0.05830952 0.0545 0.06557439 0.0698

Table 4.1: Hyperparameter Configurations and Their Metrics (computed on
the scaled data)
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Figure 4.1: Training curves of LSTM model (blue line correspond to the
training loss, orange line to the validation loss)

The "Train vs. Validation Loss" plot illustrates the training progression of a
model over 60 epochs, comparing the root mean squared error (RMSE) loss
for both the training and validation datasets. The training loss, represented
by the blue line, steadily decreases throughout the epochs, indicating that
the model is effectively learning and minimizing the error on the training set.
This consistent downward trend demonstrates that the model parameters are
being optimized with each iteration. On the other hand, the validation loss,
shown as the orange line, decreases, reflecting an improvement in the model’s
ability to generalize to unseen data. However, it soon reaches a plateau and
begins to exhibit minor fluctuations, suggesting that the model’s generaliza-
tion performance stabilizes after a certain point. The gap is observed between
training and validation curves, which indicates that the networks have some
difficulties generalizing the patterns that they observe on the training set.
But as the error between the train and loss curves is not big, the model is
working well with the unseen data.

4.3 Graph convolution long short-term mem-
ory (GCLSTM)

The implementation of the Graph Convolutional Long Short-Term Memory
(GCLSTM) model is a comprehensive integration of graph convolution op-
erations and LSTM-based temporal modeling. The model architecture is
defined using several key parameters and components that ensure efficient
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learning from both spatial and temporal data. In this model, all stations
power consumption is predicted at once instead of separately

The GCLSTM model is constructed with multiple layers that handle the in-
put, forget, cell state, and output gates, each employing Chebyshev graph
convolution (ChebConv) layers. These layers perform graph convolutions
using Chebyshev polynomials, which efficiently capture the local structure
of the graph and propagate information across nodes. The model includes
a filter size parameter, K, which controls the size of the Chebyshev filters
and affects the extent of neighborhood aggregation within the graph. In
this implementation, K indicates neighborhood influence, while the number
of output channels, out_channels represents the model’s capacity to learn
complex patterns across stations.

The model uses parameters like the in_channels, which represents the num-
ber of features for each node, and the out_channels, which defines hidden
size. Additionally, the model includes learnable weights and biases for each
gate, initialized using the Glorot and zero initializations for improved con-
vergence.

The preprocessing stage includes constructing an adjacency matrix that cap-
tures the spatial relationships between EV stations. The adjacency matrix
is then converted into a sparse edge index format suitable for PyTorch ge-
ometric operations. Furthermore, residual power consumption values are
normalized using MinMax scaling to ensure that the model handles input
data within a uniform range, enhancing the stability of the learning process.

Overall, this implementation highlights a data-driven approach that leverages
graph-based learning and temporal sequence modeling, making it well-suited
for the dynamic and spatially correlated nature of power consumption at EV
charging stations.

Parameters Training RMSE Training MAE Validation RMSE Validation MAE
{out_channels: 128,
K: 3, lr: 0.0095,
dropout rate = 0.3,
L2_regularization = 0.2 }

0.01299926 0.04593 0.02085906 0.05178

Table 4.2: Hyperparameter Configurations and Their Metrics (computed on
the scaled data)

The GCLSTM model demonstrates strong performance with low training and
validation RMSE (0.01299 and 0.02086) and MAE (0.04593 and 0.05178), in-
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dicating effective capture of spatiotemporal patterns. The small gap between
training and validation metrics suggests good generalization with minimal
overfitting, supported by well-tuned parameters like a learning rate of 0.001,
dropout rate of 0.3, and graph filter size k = 3. Overall, the model is robust
and well-suited for capturing complex charging patterns. The out channels
are more than the LSTM because here we need more neurons due to the
complexity of input structure as it is predicting all stations at once. filter
size k = 3 indicates 3-hop neighbors is enough to generalize because, as men-
tioned in the geographical location in the map, out of 9 stations, the nearest
neighborhood stations range from 1 to 5 But it also says that a maximum of
3 neighborhood stations have strong co-relationships and generalizations.

Figure 4.2: Training curves of LSTM model (blue line correspond to the
training loss, orange line to the validation loss)

This plot shows the training and validation RMSE trends for the GCLSTM
model over 90 epochs. Unlike the earlier case, the validation RMSE is consis-
tently higher than the training RMSE, indicating a small generalization gap.
Both metrics decrease steadily throughout the training process, demonstrat-
ing effective learning and convergence of the model. The parallel decline of
both curves reflects that the model’s capacity is well-suited to the problem,
with no indications of overfitting. The smooth reduction of RMSE across
epochs indicates that the model continues to refine its predictions effectively
for both the training and validation sets.
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4.4 Models performances
In this section, model performances are discussed for different days in the
test dataset. For better evaluation, consider one weekday (2024-03-25, Mon-
day), a weekend (2024-03-30, Saturday), and a day with high variability in
the data across towers (2024-03-15, Friday). Before doing so, in order to
evaluate the performance of the predictions made by LSTM and GCLSTM
models, two metrics are used Mean absolute error (MAE). These are given
by the formulas, which are explained in Section 2.7.

Initially, let’s discuss model performances on average on testing samples. Ta-
ble 4.3 displays the various metrics for different models, such as R2̂ score and
MAE.

The Long Short-Term Memory (LSTM) model outperforms all other models
in this analysis, demonstrating its robustness in predicting power consump-
tion data at EV charging stations. With an MAE of 0.3456, its R² value
of 0.8461 shows that the model explains 84.61% of the variance in the data,
reflecting its ability to effectively learn and capture the underlying patterns
and long-term dependencies in sequential power data. This performance is
largely due to the LSTM’s unique architecture, which incorporates memory
cells and gating mechanisms to manage the flow of information, ensuring that
long-term dependencies are retained while irrelevant information is forgotten.

Model R2 MAE

LSTM 0.8461 0.3456

GCLSTM 0.7361 0.4593

RNN 0.4560 0.5494

Table 4.3: Model Performance Metrics Averaged on Testing Samples

The Graph Convolutional LSTM (GCLSTM) model, while not as effective
as the LSTM, still performs quite well. It has an MAE of 0.4593 with an R²
value of 0.7361, meaning it explains 73.61% of the variance. The GCLSTM
is specifically designed to handle spatiotemporal data, making it useful when
spatial relationships between data points—such as distances between EV sta-
tions—are important. The model leverages Graph Convolutional Networks
(GCNs) to understand spatial dependencies, combined with LSTM’s tem-
poral learning capabilities, which gives it an edge in scenarios where both
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spatial and temporal features play a significant role.

In contrast, the basic recurrent neural network (RNN) performs well with re-
spect to data complexity. Its high error value MAE: 0.5494 and a low R² of
0.2753 indicate that it fails to capture high variance in data. This is primar-
ily because traditional RNNs struggle with learning long-term dependencies
due to the vanishing gradient problem, where important information from
earlier time steps is lost as it propagates through the network. It will serve
as a neural network model benchmark for the more advanced models

4.5 Numerical results
The performance comparison of RNN, LSTM, and GCLSTM models across
stations and dates—2024-03-25 (Monday), 2024-03-15 (Friday), and 2024-03-
30 (Saturday)—highlights the strengths and limitations of each approach in
predicting EV station power consumption. LSTM consistently outperforms
the other models, achieving lower errors across most stations and dates by
effectively capturing temporal dependencies. GCLSTM performs competi-
tively, excelling in stations with correlated power consumption patterns by
leveraging spatial relationships, but it struggles slightly with isolated anoma-
lies, such as sharp peaks in consumption, due to predicting all stations at
once. Across models, higher mean absolute errors (MAE) are observed in
stations with higher peak usage, reflecting better in capturing larger trends.
Temporal variability further reveals that LSTM maintains stable performance
across weekdays and weekends, whereas GCLSTM is sensitive to noise in spa-
tial dependencies during busy periods. These results emphasize the impor-
tance of tailoring models to the temporal and spatial characteristics of EV
station data, with LSTM providing robust generalizability and GCLSTM
might help in scenarios requiring spatially-aware predictions. But with an
extra dataset and with huge co-relation with adjacent stations, GCLSTM
might outperform LSTM.
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Station RNN LSTM GCLSTM
98 0.512 0.297 0.441
137 0.301 0.263 0.247
175 0.291 0.282 0.277
213 0.287 0.193 0.256
214 0.268 0.2747 0.256
215 0.289 0.169 0.259
216 0.246 0.250 0.208
217 1.414 0.892 1.878
218 0.446 0.407 0.829

Table 4.4: Performance comparison of RNN, LSTM, and GCLSTM models
across different stations on 2024-03-25(Monday).

Station RNN LSTM GCLSTM
98 1.199 0.389 0.563
137 1.461 0.652 0.935
175 0.372 0.216 0.331
213 0.282 0.219 0.230
214 0.288 0.265 0.260
215 0.312 0.249 0.260
216 0.218 0.274 0.247
217 0.289 0.332 0.489
218 0.964 0.688 0.721

Table 4.5: Performance comparison of RNN, LSTM, and GCLSTM models
across different stations on 2024-03-15(Friday).
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Station RNN LSTM GCLSTM
98 0.528 0.306 0.378
137 0.517 0.312 0.303
175 0.218 0.228 0.251
213 0.243 0.254 0.258
214 0.434 0.348 0.237
215 0.867 0.419 0.601
216 0.309 0.222 0.340
217 0.315 0.264 0.349
218 2.447 0.630 0.681

Table 4.6: Performance comparison of RNN, LSTM, and GCLSTM models
across different stations on 2024-03-30(Saturday).

4.6 Graphical results
For visualization purposes, Figures 4.3, 4.4, and 4.5 illustrate the perfor-
mance of both models (LSTM and GCLSTM) on each EV station on different
days (weekends, weekdays, and random high variability days). Although the
exhibited samples show that the models can track power consumption, they
also display the weakness of the models, which is the inability to predict zero
values exactly (such as in Figure 4.3 for stations 137, 175, 213, 214, 215, 216).

During the weekend (Saturday), stations 213–218, which are near the air-
port, have parallel activity across stations. Still, GCLSTM predicted power
consumption peaks without any large errors, suggesting that GCLSTM helps
in predicting a network of stations using their interstation relations.
For all the three days we can notice the repeated power consumption at
station 98 during midday which is the reason LSTM is able to predict well
because of the repeating patterns.
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Figure 4.3: Comparison Of Model Predictions With Actual Values Over Time
for Monday (2024-03-25)
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Figure 4.4: Comparison Of Model Predictions With Actual Values Over Time
for Saturday (2024-03-30)
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Figure 4.5: Comparison Of Model Predictions With Actual Values Over Time
for Friday (2024-03-15)
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Chapter 5

Discussion

This discussion chapter synthesizes the results of the time series prediction
models evaluated in this study, addressing their comparative effectiveness and
the limitations encountered throughout the research process. It provides a
comprehensive interpretation of findings, the practical implications of model
performance, and outlines constraints that influence the generalizability and
applicability of these methods.

5.1 Time Series Model Comparison
The study employed time series prediction models for the power consump-
tion at electric vehicle (EV) charging stations, including Long Short-Term
Memory (LSTM), Graph Convolutional LSTM (GCLSTM), simple Recur-
rent Neural Network (RNN), and a naive persistence model. The LSTM
model emerged as the most effective, achieving a mean absolute error (MAE)
of 0.3456 while explaining 84.61% of the variance in the data (R2 = 0.8461).
which captures long-term dependencies essential for modeling temporal auto-
correlation in power consumption patterns. The GCLSTM model, designed
to handle both spatial and temporal dependencies, performed well but was
slightly less accurate, with an R2 = 0.7361. This model’s ability to incor-
porate spatial features, such as the geographical distribution of EV stations,
allowed it to capture spatial-temporal correlations, although minor predic-
tion inaccuracies were noted, especially during peak demand times.

The basic RNN model, however, performed with a R2 of only 0.4560. This
performance is likely due to the vanishing gradient problem, which limits
traditional RNNs in learning long-term dependencies, leading to significant
discrepancies during peak periods. Overall, the LSTM model’s performance
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highlights the importance of architectures that manage sequential dependen-
cies in time series data when applied separately, while the GCLSTM model
illustrates the potential of hybrid approaches where spatial factors play a
crucial role in the data.

5.2 Feature importance
When predicting power use at EV charging stations, certain model features
play key roles in capturing the unique patterns of demand. Temporal fea-
tures, like recent power usage, are useful for capturing short-term and repeat-
ing daily or weekly patterns in charging demand. Spatial data, including the
exact locations of stations and how close they are to the city center, helps
capture how demand changes across different locations. Additionally, a spa-
tial relationship feature called the adjacency matrix, is used in some models
to learn from charging behavior at nearby stations, affecting predictions when
stations influence each other. By breaking down time patterns into trends
(long-term changes), seasonality (repeating cycles), and residuals (random
noise), the model can better predict power use by handling stable patterns
separately from unpredictable variations. Together, these features offer a
balanced approach: temporal features are great for short-term predictions,
while spatial data and trend-seasonality breakdowns help with longer-term
and network-wide predictions.

5.3 Limitations
The research encountered several limitations. First, data quality and
availability posed challenges, as incomplete and inconsistent data led to the
need for resampling and cleaning. Missing timestamps and power consump-
tion values introduced assumptions that may not perfectly reflect real-world
behaviors, potentially impacting model accuracy. Temporal and spatial
variability also added complexity, with power consumption patterns differ-
ing significantly across stations. Although features like geographic coordi-
nates were included to address this variability, capturing all external factors
influencing demand remained difficult, impacting model generalizability. Fur-
thermore, computational constraints were a limiting factor; training deep
learning models such as LSTM and GCLSTM required substantial compu-
tational resources and time, with hyperparameter tuning being particularly
resource-intensive. This constraint makes real-time application challenging,
especially in environments with limited resources. Additionally, general-
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izability of the models is uncertain, as the dataset was specific to Italian
cities, and different geographical or socio-economic settings may influence
model performance. Validating these models across diverse contexts would
be necessary to ensure robustness. Finally, model complexity and inter-
pretability posed challenges for models like GCLSTM. Their sophisticated
architecture, while effective, complicates interpretability, which may limit us-
ability in decision-making where transparency is important for stakeholders
in power management.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
This thesis studied the use of advanced models to predict power use at elec-
tric vehicle (EV) charging stations. By testing models like Long Short-Term
Memory (LSTM), Graph Convolutional LSTM (GCLSTM), simple Recur-
rent Neural Networks (RNN), this research highlighted what each model can
and cannot do when predicting loads for EV stations.

The results show that the LSTM model is the most accurate and reliable, as
it effectively captures long-term patterns in power use. The GCLSTM model
also performed well, as it can account for both location and time-based pat-
terns, which is especially useful for networks of charging stations. However,
GCLSTM required more computing power. In contrast, the basic RNN and
persistence models serves as benchmark models, showing that simpler mod-
els struggle with the complexity of EV charging data and its difficulties to
capture peaks in data.

This research highlights the benefits of using deep learning methods, espe-
cially for managing power consumption in urban areas. Still, there are chal-
lenges like data quality, model complexity, and high computing needs that
need to be addressed to make these methods more practical and scalable.
Future research should focus on improving data preparation, making models
more efficient, and testing them in different locations and settings to ensure
they work well in various real-world situations.

Overall if deep learning models need to be deployed for predicting power
consumption. LSTM models should be considered when high accuracy is
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required and temporal patterns play more crucial role than spatial corelation.
But GCLSTM’s are ideal for interconnected network of stations where co
relation between stations is crucial. Results depicts that if only temporal
dependencies are considered the model performs well if spatial relationships
are also considered there should be large number of charging events in the
data which will help to co relate between stations and achieve better accuracy.

6.2 Future Work
There are several directions for future research to build on the findings of
this thesis. Expanding and improving data by including a larger and more
diverse dataset, covering various regions, climates, and socio-economic con-
texts, could make the models more robust and applicable in different real-
world settings. Adding additional features, such as weather conditions, en-
ergy prices, and user behavior, could improve prediction accuracy, with future
studies focusing on selecting the most relevant factors for power consumption
prediction. To make these models more practical for real-time use, future
research should work on reducing computational demands and increasing
speed through methods like model pruning, quantization, and edge comput-
ing. Developing hybrid and ensemble models, which combine the strengths
of different approaches, could lead to improved reliability and performance.
Additionally, enhancing model transparency and interpretability would make
these tools more accessible for energy managers, with techniques like SHAP
and LIME providing insights into model decisions. Finally, integrating these
prediction models with smart grid systems could enable demand-response
strategies that improve grid stability and efficiency. By pursuing these re-
search directions, the field can move closer to creating effective and intelligent
energy management solutions that support the rising demand for EV infras-
tructure and contribute to sustainable urban energy systems.
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Appendix A

AI tools used for thesis report

• Grammarly : proper sentence formation.

• Quillbot : plagarism checking and citations.

• Writefull : for further improving grammar re phrasing the senetences.

• ChatGpt : Used as a tool to understand the basics of the Deep learning
topics.
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