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Abstract

Anthropogenic methane (CHy) sources have had a considerable impact on the Earth’s changing radiation budget since pre-industrial
times. Localized sources such as those resulting from the fossil fuel industry and waste treatment have been shown to make up
a substantial fraction of the emission total, and CHy plumes from such sources are detectable through airborne and space-based
hyperspectral imaging techniques. Here, we further develop a machine learning technique to estimate CH4 emission rates from
such plume images without the need for auxiliary data such as local wind speed information. We directly build upon the idea
of previous research which used a convolutional neural network (CNN) called MethaNet and a library of large-eddy-simulations
(LES) of turbulent CH,4 plumes as our synthetic data environment. Here we suggest appropriate error metrics and changes to the
training procedure that reduce systematic biases present in previous studies. Our improved setup has a mean absolute percentage
error (MAPE) of 10% for sources with flux rates above 40 kgCH,4/h, a Pearson correlation coefficient of 98% and is capable of
providing meaningful error estimates for its predictions. This is a significant improvement to MethaNet and other studies and can
be used as an efficient method for point source quantification in the future.
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1. Introduction

Methane (CHy) is the second-most important
anthropogenically-influenced greenhouse gas next to carbon
dioxide (CO,) (?), and increased atmospheric concentrations
are responsible for around 30% of the global warming since
pre-industrial times (??). Because of its short atmospheric
lifetime compared to CO,, CHy is the focus of near-term
global emission reduction measures (?). A large fraction of the
anthropogenic CHy is emitted by industrial point sources (??).

While global mapping satellites such as the TROPOspheric
Monitoring Instrument (TROPOMI) (?) are capable of iden-
tifying regions with high emissions and provide a top-down
constraint on CHy, they are not capable of resolving smaller
underlying point sources that drive the increased enhancement.
Inventory-based approaches on the other hand, usually under-
estimate those emissions (??), which suggests that a large part
of those emissions are of unknown origin and could be caused
by e.g. equipment malfunctions (??). Therefore, the identifi-
cation and quantification of point sources is crucial to mitigate
emissions and provides a cost effective, fast-activating way of
reducing climate impacts (2?).

This requires high spatial resolutions, which can be provided
by spaceborne or airborne imaging absorption spectroscopy.
Currently, multispectral area mappers with high spatial reso-
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lution such as Sentinel-2 are only capable of measuring super-
emitters emitting a few tons of CHy per hour (?) and hyperspec-
tral satellites such as the PRecursore IperSpettrale della Mis-
sione Applicativa (PRISMA) (?) or the Environmental Map-
ping and Analysis Program (EnMAP) (?) are able of detecting
large emissions with high spatial resolution but less spatial cov-
erage.

Thus, the spatial and temporal coverage of the current gen-
eration of spaceborne instruments alone is not sufficient to pro-
vide the necessary observational coverage. Upcoming missions
such as CO2Image ? or Carbon Mapper (?) will improve
the coverage. In addition, airborne instruments such as the
next-generation Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS-NG) (??) are able to supplement these data by
inspecting crucial areas and providing images of CH4 column
enhancements with a spatial resolution of around 1 m to 5 m.

For the estimation of flux rates from image data, multiple
methods have been proposed, such as the source pixel method
(?), the Gaussian plume inversion (??), the integrated mass en-
hancement (IME) (??) or the cross-section flux method (??2?7?).
These methods require the external input of effective local wind
speed information. While 3D wind fields are readily available
from various meteorological models, they are not always accu-
rate, and the effective wind speed the plume has experienced
is not uniquely defined. This makes uncertainties in the wind
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speed a leading source of errors for these methods, and system-
atic under- or overestimation of the real wind conditions would
translate into biased results.

The study of ? provided evidence that the 2-D plume mor-
phology contains useful information about the local wind speed
conditions. This led to the idea of approaching the regression
task of flux rate estimation using pattern recognition methods.
While deep learning methods such as convolutional neural net-
works (CNNs) were used before in remote sensing application

rate estimation of methane.

It showed the potential of CNNs for flux rate estimation with-
out the need for external wind speed information, using syn-
thetic remote sensing image data for the AVIRIS-NG instru-
ment. The use of realistic synthetic data is crucial for the train-
ing processes of the CNNS, as it requires knowledge of the true
emission rate.

The study sparked applications to other instrument including
satellites such as PRISMA (?), Sentinel-2 (?) or the GHGSat-
C1 (?) to estimate methane emissions or to the upcoming
CO2M mission (?) to estimate the CO, emission rates of power
plants. In ? the short-wavelength infrared (SWIR) spectral ra-
diances from the PRISMA satellite and the Red-Green-Blue
(RGB) bands were used to predict the plume mask, the con-
centration map, detect a plume and then perform the regression
task of emission rate estimation. ? uses column-averaged mole
fractions of CO, (XCO,) and wind speed fields as a base input
to estimate the emission rates of power plants and tests how the
addition of estimated plume masks or NO, concentration fields
to the base input affect the results. The study of ? is closest to ?,
as it also only uses column-integrated CH4 images as an input.
However, it compares the performance of six established CNN
architectures to find the best-performing architecture for this re-
gression task. Their findings support the use of an EfficientNet-
V2L (?). In ? column-integrated CH4 images are used to pre-
dict the plume mask and use the concentration map, the binary
mask and the 10—m wind speed as an input to calculate the flux
rate either by using a CNN or the IME method.

In this study we present changes to the training process that
lead to an increased performance and resolve bias patterns
present in previous studies. We illustrate these improvements
in direct comparison to ? as we use the same data for training
and testing the model. In addition, we suggest an optimiza-
tion metric that leads to meaningful error estimates for the pre-
dicted flux rates. Finally, we suggest an analysis that reveals
limitations of the current applicability of the methodology and
provides insights into this method that help further improve the
emission rate estimation.

The improvements we suggest are very general and should
be applicable to the studies mentioned above, as well as future
studies to enhance model performance.

Section 2 provides technical details of the data used and
showcases the process used to generate the realistic plume im-
ages. The neural network architecture and the details of our
training process are described in Section 3. In Section 4 we
present our results and an analysis of the model performance.
In the final section we summarize and discuss the finding of our

study.

2. Data

This section describes the data that were used for training,
validating and testing the deep learning model. We use the sim-
ulation data previously described in ? with the same split into
disjoint training (80%), validation (15%) and testing data (5%).
Therefore, we will only provide a brief motivation and sum-
mary, and highlight relevant aspects. The data aim to provide
realistic images of column-integrated CH4 plumes over urban,
desert or agricultural areas, as they would be measured by the
AVIRIS-NG instrument.

Large eddy simulations (LES) were used to generate time-
resolved three-dimensional CHy distributions resulting from
point source emissions under different geostrophic wind speed
conditions. The complete LES model setup description can be
found in ? and the parameterization and initial parameters in
?. Based on the findings of studies like ? and ?, the wind
speed is assumed to be the most influential parameter regard-
ing the spatial patterns of total-column CHy. Together with the
total column enhancement across the scene, these two quanti-
ties provide a strong foundation for the flux inversion of the
scene. Assuming that the self-buoyancy of methane is negligi-
ble after it is mixed, we can scale the simulated plumes during
the post-processing to obtain plumes simulating different flux
rates. This makes it possible to mainly vary the geostrophic
wind speed conditions in the LES and still obtain a dataset that
offers a good representation of observable emission scenarios.
The parameters selected for the range of the desired emission
rates (Okgh™' to 2000 kgh™"), the geostrophic wind speed con-
ditions (I ms™' to 10ms™!), and the surface sensible and latent
heat fluxes (400 W m~2 and 40 W m~2) are based on typical field
conditions that were found during the Four-Corners campaign
.

The final plume library consist of 7000 3-D fields, which are
equally distributed among the different geostrophic wind speed
conditions. Every used scene has a size of 300300 pixels with
a total size of 1.5 1.5km?, which results in a spatial resolution
of 5 x 5m?. For the application to airborne point source esti-
mation, these fields are integrated vertically, weighted with the
column averaging kernel of the AVIRIS-NG retrieval. To cre-
ate a realistic plume image from these synthetic noise-free 2-D
snapshots of column-integrated CH, plumes, a realistic noise
estimate for such measurements is required. For this we use
the same 3000 retrieved scenes from AVIRIS-NG flight lines
over desert, urban or agricultural areas with the same split into
training, validation and test data as in ?. These scenes do not
contain any plumes, but do contain random and correlated noise
features that correspond to surface structures typical of the cor-
responding area. This adds the challenge of distinguishing be-
tween surface and plume features and thus provides realistic
backgrounds representing typical observable scenes.

The synthetic plume image is then scaled by a random factor
to generate different emission scenarios, is rotated by a ran-
dom angle between —170° to 170° to generate different wind



directions, and is translated randomly by up to 30 pixels to sim-
ulate different emission locations. The augmented plume now
gets added to a randomly selected and rotated realistic back-
ground noise scene and, as a final step, a masking threshold
of 500 ppm-m is applied. The masking threshold applied in
the last step of the augmentation is crucial, as it removes addi-
tional information that is contained in the simulation, but can-
not realistically be obtained in a real measurement. Therefore,
the threshold for the masking is ideally on par with the real-
world performance of the instrument, or even slightly higher,
to reduce the quality of a real observation to the quality that
the machine learning model was trained on. The final result of
this augmentation scheme for three different geostrophic wind
speed conditions and three different realistic noise scenes can
be seen in Fig. 1.

The distribution of the random flux rates is uniform, with
all fluxes below 3kgh™! set to 0 to generate more cases with-
out a plume present. From every turbulent realization in our
LES plume bank we generate 50 scenes for the test data and 20
scenes for the validation data using the described augmentation
scheme. This increases the amount of available data, especially
for the test data, which provides us with better statistics when
it comes to evaluating the model performance. For the training
data we did new augmentations for every training epoch and
used each turbulent realization five times per epoch.

3. Method

This section provides an overview of the methods that we
employ and the changes we made to prior approaches. Section
3.1 describes our network architecture and the loss function we
used for optimization. In Section 3.2 we describe our training
process where we introduce changes that lead to an improved
performance.

3.1. Deep learning setup

Over the years, numerous state-of-the-art machine learning,
especially deep learning, algorithms for pattern recognition
tasks have been developed (2, ?, 2, 2, 2, 2, ?). Most of the-
ses algorithms make use of different convolutional neural net-
work (CNN) architectures and were used for classification tasks
on ImageNet data (?). For the application to a regression task,
such as the emission rate estimation of point sources, these es-
tablished architectures either have to be modified (?) or one has
to create a different architecture (?, ?). In the instances where
different architectures were created, this has resulted in more
simplistic networks.

Since we follow up on the work of ?, we compared the cus-
tom architecture used there with an established one. We found
that the established architecture, in our case a ResNet-50 (?),
outperformed the simpler architecture of MethaNet. A ResNet
architecture uses shortcut connections to pass the identity from
one convolutional layer to the next. This allows very deep and
easy-to-optimize neural networks to be built. An illustration of
the network architecture can be seen in Fig. 2. We modified the

last layer of the ResNet architecture by adding two fully con-
nected layers and used a linear activation function at the end of
the last layer.

During our training, the model performed better without a
dropout layer, which was used in ?. However, this could be
due to changes in the training process, which we will discuss
in Section 3.2. The last layer of our model requires two output
parameters: one for the estimated flux and one for a variance
estimate, which is required by our choice of loss function.

As a loss function we propose the use of the Gaussian nega-
tive log likelihood (GNLL)

(J(x,0) - jtruth)2

2(x.0) + const, (1)

{(x,0) = % log(c(x, 0)) +

with j denoting the flux, x the input image and 6 the neural
network parameters. This choice of loss function is reasonable
due to the observed heteroscedasticity of the flux estimates that
is visible in this and previous works. In addition, this allows
us to use the estimated variance of the model as an uncertainty
for the predicted emission rates. The estimate of the variance
is the second output of the last layer of our neural network.
The variance weights the deviation of the prediction from the
ground truth, and in addition it adds an offset in the form of
the normalization factor of the normal distribution. The neural
network learns to balance these two aspects while minimizing
the loss.

3.2. Training process

The training process is a crucial part that is relevant for the
performance of a deep learning model. Here we want to address
the changes we made and point out differences compared to
previously published approaches. As mentioned in the last sec-
tion we use a GNLL. However, all the changes we discuss here
were initially implemented using a mean square error (MSE)
loss function and would also improve results for this loss func-
tion.

The major improvement that we would like to suggest is re-
lated to the squared nature of the MSE or GNLL. In previous
publications (e.g. 2, ?, ?, ?) a similar bias pattern can be ob-
served. The model tended to underestimate large fluxes and
overestimate smaller fluxes.

We found the cause of this problem to be a combination of
upper and/or lower limits to the flux rates and the properties
of the loss function. Due to the quadratic nature of the loss
function, outliers are weighted heavily. This provides a strong
incentive to reduce the spread as much as possible and, more
importantly, it favours reduction of the spread of the predictions
over the correct estimation of the mean value. The presence of
an upper or lower bound allows for a solution with less outliers,
which is a favourable outcome in terms of the computed loss
but induces a bias.

For the case of an upper limit, this causes the model to re-
duce the spread of the data towards the upper bound, which
leads to the observed underestimation of the mean value. Sim-
ilar effects would also be observed when using non-quadratic
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Figure 1: Examples for augmented realistic plume scenes consisting of a simulated plume at different geostrophic wind speeds (left) and a realistic background
noise scene from agricultural, desert, or urban areas (center). The plumes are randomly rotated, shifted and scaled, and added to the randomly rotated background
noise. The sum is masked with a threshold of 500 ppm m to get the scenes for analysis (right).
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Figure 2: Illustration of the slightly modified ResNet architecture that we used
during this study.

optimizer such as the mean absolute deviation (MAD), how-
ever these solutions would be less rewarding in terms of the
computed loss.

This is undesirable as, in addition to the bias, it also makes
the predictions for fluxes near the boundaries meaningless, as
they are heavily influenced by systematic restrictions of the
training and are thus not comparable to the rest of the predic-
tions.

To solve this problem, we suggest to simply extend the flux
domain of the desired range in the training data. If the upper
and lower bounds are sufficiently far away from the domain of
interest, the effect induced by its presence gets negligibly small.
In our case, a maximum flux of 3500 kgh~! for a validation and
test range up to 2000kg h~! was sufficient.

For the lower flux rates the problem is more complex, as
there is the emerging difficulty of noise dominating the mea-
surements, which makes it impossible to predict the flux rates
beyond a certain point. However, the impact of low flux plumes
on the loss is also smaller, which makes the model less sensitive
towards such a bias. In our case we selected a lower bound of
Okgh™!, since we wanted to include scenes without a plume for
the training to make it a possible scenario. During our analy-

sis of the model performance in Section 4.2 we can see that the
model stabilizes quite quickly and the lower bound is less of a
problem than the upper bound.

In addition to extending the training domain we used the
mean percentage error (MPE) to prevent our model from over-
fitting, and in order to select a model that shows little bias. We
used the MPE in addition to the GNLL in the form of a thresh-
old to select our best model from the training process. By using
the MPE as a threshold we mitigate the effects of underestima-
tion caused by relative measures. For our specific application,
we selected the model with the best GNLL loss that showed a
MPE lower than 1% for fluxes larger than 100kgh!.

We consider only estimates for sources with over 100kgh™!
to exclude the impact of scenes where the model might not be
able to perform proper estimates due to the large noise contri-
bution. This allows us to prevent the model from overfitting
and, in addition, it filters out poorly performing models, as the
bias of the model is not represented well by the optimization
metric. This is of particular importance for this application, as
the predictions should be reliable and unbiased when averaged
over many measurements.

4. Results

In this section, we present the results of our model on re-
alistic noise scenes using the test dataset described in Section
2, following the training process described in Section 3.2. The
model performance is shown in Section 4.1 and in Section 4.2
we analyse the performance and stability of the model.

4.1. Application to realistic noise scenes

The application of the deep learning model to the test data
leads to the results shown in Fig. 3. The scattered data as well
as the data clustered into flux rate ensembles show a nice linear
behaviour and the means of the respective groups seem to be
almost unbiased.

Fig. 4 shows the relative deviations of the flux groups to get
a closer look at the deviations from the 1:1 line. This reveals
some slight biases of up to 1.8% for scenes around 500kgh™!
and a large deviation for the smallest flux group. This instabil-
ity for low fluxes is expected for a relative deviation since at a
certain point the plumes will no longer be recognizable and in
addition the lower bound on the flux range causes a bias, which
results in huge relative errors and thus is no reason for concern.
Therefore, the model overall stays very stable and shows little
to no bias over the whole desired range of fluxes.

For the different ensembles, around 85% of the estimates are
within a distance of one standard deviation of their respective
flux group and around 80% for the whole dataset. This indicates
that neither the distribution of the estimated fluxes within an
ensemble nor over the whole dataset is normally distributed and
the ensemble standard deviations are not an accessible metric to
quantify the uncertainty of the model.

However, given our selected GNLL loss metric, the model
provides an uncertainty estimate in the form of a variance,
which we can use to compute the standard deviation for ev-
ery predicted emission rate. The predicted standard deviations



2000 A

—_

ot

o

)
1

1000 A

Predicted Flux [kg/h]

500 1

0 500 1000 1500 2000

True Flux Groups [kg/h]

Figure 3: Scatter plot of the predicted fluxes against their ground truth. The
data have been separated into groups containing scenes in a range of 100 kgh™!
to provide their means and standard deviations for a more quantitative estimate
of their distribution.

colored according to their respective wind speed conditions are
depicted in Fig. 5. The data show a tendency towards clustering
in wind speed groups, especially for low wind speed situations.
Fig. 6 shows the distribution of the difference of the ground
truth from the estimated flux divided by the error estimate of
our model for the respective emission prediction. The depicted
bell curve is slightly skewed, which is to be expected due to the
slight tendency towards underestimation of the model for which
we did not apply any corrections.

However, when looking at the absolute deviations over the
whole dataset of the predicted values, we can see the properties
one would expect from a Gaussian distribution. This indicates
that the variances estimated by the model of the whole dataset
are meaningful, especially in direct comparison to the ensemble
estimates.

4.2. Model analysis

In this section we take a closer look at the performance of our
model and try to assess its stability. From the results presented
in the previous section we can see that the predictions in an
ensemble are not normally distributed, and thus the variance
does not provide an accessible summary statistic.

Therefore, we decide to use the mean absolute percentage
error (MAPE) to characterise the spread of the predictions and,
in addition, the mean percentage error (MPE) to characterize
the bias that our model has. To better compare to other work
and to measure the linear correlation between the ground truths
and our predictions, we also use the Pearson correlation coefi-
cient (r). All these metrics for our model for fluxes larger than
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Figure 4: Plot of the relative deviations of the predicted fluxes, separated into
groups spanning a range of 100 kgh™!, against their ground truth.
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Figure 5: Plot showing the estimated standard deviations for all scenes against
their respective true flux rate with a color grading representing their respective
wind speed situations.
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Figure 6: Plot showing the deviations of the predicted from the true flux rates with respect to the estimated standard deviation for the respective scene. The ideal

distribution is depicted in black and the best fit to the data in red.

0,40 or 100kgh~! can be found in Table 1, and a graphical pre-
sentation of the MPE and MAPE for different lower emission
thresholds is given in Fig. 7.

It can be seen that the model performance starts to become
stable for fluxes larger than around 40 kg h~!. In addition to the
grouping of data into flux groups, we also introduce a split into
different wind speeds. The relative deviations in the different
wind speed ensembles are depicted in Fig. 8 and Fig. 9. This
analysis is motivated by a wind-speed-dependant bias that was
visible in Fig. 6 in ?, and also during our development process,
that showed under-/overestimated flux rates for high/low wind
speed situations.

The model seems to consistently underestimate the fluxes at
very high wind speeds, mainly at 9ms~' and 10ms~', over the
whole flux range domain. The estimates at 6m s~ also show a
bias. However, compared to the biases at high wind speeds, it
varies with the data selection. That is to say, it is not present in
other data splits or in the validation data (see Fig. A.12), while
the biases at high wind speeds seem to be systematic.

In addition to the consistent wind-speed-dependent bias at
the highest wind speeds, there is also a wind-speed-dependent
bias that only affects low flux rates, as shown in Fig. 8 and Fig.
9. This instability is also reflected in the increase in the spread
of the model.

A plausible explanation for the behavior at low flux rates is
related to the masking threshold that is applied, and the increas-
ing influence of the noise, which together make the regression
task and the extraction of wind speed information increasingly
difficult.

While the high/low bias for low/high wind speeds is visible
in the test data, it is more pronounced in the validation data, as
shown in Fig. A.12 and Fig. A.13. For the validation data, the
point at which the clustering of wind speed situations in Fig.
5 seems to stop and the point at which the bias pattern starts
to become apparent are very close to each other. This pattern
fits a behaviour that one would expect if the wind speed can

no longer be determined and is guessed instead, which would
lead to the estimation of some sort of an average wind speed
estimate.

Because the plume mass is transported faster by high wind
speeds, the overall column-integrated CH4 enhancement above
the threshold in the scene is reduced. Therefore, the point at
which scenes are dominated by noise effects is reached earlier
than for lower wind speeds. This makes them more difficult to
deal with, resulting in a mean estimate that is shifted towards
high-wind-speed situations and a more severe impact at higher
wind speeds, which matches the observed pattern.

For very low flux scenarios, the presence of a lower bound
also leads to an overestimation, as discussed in Section 3.2.
This wind-speed-dependent bias also has an impact on the
slight skewness of the bell curve in Fig. 6, as it is caused by
the emission rate estimates at the highest wind speeds. Fig. 10a
shows the distribution of the deviations of the estimates with
respect to their corresponding uncertainties, excluding the data
from wind speeds above 8 ms~!, which shows a clear improve-
ment. In Fig. 10c and Fig. 10b the distributions for wind speeds
of 9ms~! and 7ms~! as an example for a biased and a unbiased
wind speed group are displayed. The overall distribution for
the different wind speed ensembles are thus, with the exception
of the 9ms~! and 10ms~! ensembles, approximately normally
distributed. Even for very high wind speeds, the absolute de-
viation from the truth still is close to the properties a normal
distribution.

Fig. 11 shows some example scenes for which not only the
emission estimate was poor, but also the estimated error was
underestimated, resulting in a prediction that is more than four
standard deviations away from the true emission rate. There-
fore, these scenes represent scenarios where the model not only
predicts the emissions poorly, but also is overly confident in its
performance. The scenes which fall into this category are usu-
ally at higher wind speeds and show signs of instability with
respect to the direction of the wind (see Fig. 1lc, Fig. 1la



threshold MPE MAPE r

kgh™! % % %

0 324 1386 97.98
40 ~047 1029 97.88
100 ~072 948  97.67

Table 1: Summary statistics to describe the model performance over all scenes
of the test set with a flux larger or equal to the given threshold.
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Figure 7: Plot of the MPE and the MAPE over the dataset, excluding all scenes
with a flux rate smaller than the given threshold.

and Fig. 11b), or there is barely a plume visible in the scene
(Fig. 11d). The same turbulent realisations with different back-
ground noise and at different flux rates tend to be poorly es-
timated, which indicates that the model is simply not capable
of providing reasonable estimates for certain turbulent patterns.
This is most likely linked to their scarcity in the training data.
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Figure 9: The figures show the relative deviations of flux rate ensembles (spanning a range of 100kgh™") of the predicted flux rates from the true flux rates for
different wind speed conditions.
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Figure 10: Plots showing the deviations of the predicted from the true flux rates with respect to the estimated standard deviation for the respective scene for different

wind speed ensembles. The ideal distributions are depicted in black and the best fits to the data in red.
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Figure 11: Examples of scenes with deviations from the true flux rate that are larger than 4 o, measured by their respective error estimate.
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5. Summary and conclusion

In this study, we applied a modified ResNet-50 to simulated
high-resolution airborne imagery. We used images that cor-
respond to 2-D column-integrated methane enhancements of
different emission scenarios under different geostrophic wind
speed conditions. The synthetic data were created by adding
augmented LES plumes and realistic background noise scenes
that were obtained from AVIRIS-NG flights. The emissions
range from Okgh™! to 2000kgh~! and the geostrophic wind
speeds from 1 ms~! to 10ms~'.

We trained the neural network to solve the regression task
of flux estimation from 2-D plume images without further in-
put in the form of wind speed information. During this study,
we developed improvements to the training process that result
in better-performing and more reliable predictions compared to
prior works. We argue for an extended training flux realm and
the use of additional evaluation metrics for hyperparameter tun-
ing on the validation data. In addition, we propose the use of
the negative Gaussian loss likelihood as an optimization met-
ric as it better fits the problem and allows for the prediction of
estimation uncertainties for each prediction.

For our evaluation using the test dataset we use the mean
percentage error (MPE) as a measure for the bias and the mean
absolute percentage error as a measure for the spread of our
predictions. Our results show a MPE of 3.24% and a MAPE
of 13.86% over the whole dataset and a MPE of —0.47% or
—0.72% and a MAPE of 10.29% or 9.48% for scenes with a
flux higher than 40kgh~! or 100kgh™'. Further, the model
achieves a Pearson correlation coefficient (r) of 98%.

Therefore, the model provides accurate estimates and a
spread that is a significant improvement in direct comparison
to 2. When comparing to other studies, where the dataset is dif-
ferent and the spatial resolution, noise properties and the flux
ranges show different properties, a direct comparison of the
summary statistics provides only limited information, but some
improvements can be seen. By visual comparison we can see
that our model shows less bias over the different flux ranges
than comparable studies such as e.g. ? Fig. 6, ? Fig. 6 or ?
Fig. 9. This is, however, most likely a consequence of the dif-
ferent training process, and not due to the use of a ResNet-50,
which performed worse than the EfficientNet-V2L in the study
of ?. In addition, we provide error estimations for every pre-
dicted flux rate, and these errors follow a normal distribution
over the whole test dataset. Thus, unlike error estimates that
are calculated from ensemble statistics, these seem to provide
a meaningful measure of uncertainty for individual flux predic-
tions. Given the high stability of the performance of our model
over different flux ranges, the quality of the predictions, as well
as the error estimates, we expect that it should generalize well
on different, arbitrary observed flux distributions.

Our analysis of the model performance includes a separation
of the data into their different geostrophic wind speed condi-
tions. This revealed a wind-speed-dependent bias for scenes at
9 and 10ms~! that seems to be systematic and applies over all
flux rates.

In addition, we can observe a systematic bias for scenes with
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low emission rates, which shows underestimations for high and
overestimation for low wind speed conditions. Therefore, this
bias follows the pattern that one would expect to observe when
the wind speed can no longer be properly estimated but instead
is guessed, to provide results that fit on average. This bias
agrees with and adds to the results of ?, which, in a plume de-
tection task, found that plumes become undetectable at around
50kgh~!. Our analysis adds to this by pointing out that plumes
might be detectable at lower flux rates, but that there is not suf-
ficient information left to extract wind speed information reli-
ably, which causes instabilities in the emission estimation.

This along with the apparent clustering visible in the esti-
mated variances (Fig. 5) indicates that there is actual wind
speed information that is being extracted from the plume im-
age.

The wind-speed-dependent biases result in a negative impact
on the error estimation of the network, especially when it comes
to high wind speeds. The average model performance remains
unaffected by these biases, with the deterioration for low fluxes
only causing an increased spread. However, this makes the
model not entirely independent of the distribution of the data
with respect to the wind speed conditions.

Therefore, the model performance would degrade for specific
conditions: on average very high wind speeds, or for low flux
rates and on average either very low or very high wind speed
conditions. This could be addressed through the training of spe-
cialized models for extreme wind speed conditions, especially
when targeting low flux rates.

It should be noted that, as in ?, the LES plumes were sim-
ulated with flat topography and with the emissions released at
ground level. Inspection of scenes where the model performs
poorly and shows a large deviation from the truth with respect
to the estimated uncertainty, as seen in Fig. 11, reveals that
the model has problems with unstable turbulent realizations at
high wind speeds. While many CH4 emission sources are in
flat areas, this suggests that for more complicated topographies,
where transport is more complicated and such scenarios may be
more frequent, carefully selected LES training data would be
required.

We have shown in direct comparison that the changes we in-
troduced to the training process and the hyperparameter tun-
ing increase the model performance of deep learning methods
when it comes to flux estimation. The methods described here
should be transferable to other applications of this methodology
for other measurement instruments. Furthermore, we present
a thorough analysis pipeline for deep-learning-based models
when it comes to flux estimation, which allows for the model
performance to be characterized and highlights its limitations.
The limitations observed during this analysis reveal weaknesses
that can be addressed in future studies to further increase the
performance of the methodology. Along with the addition of
uncertainty estimates on the predictions, the characterization of
the limitations of the method are crucial when it comes to the
use of this method for real data. Our model is able to provide
reliable estimates for a large range of wind speed conditions
and emission rates, and should be applicable to past and future
AVIRIS-NG flight campaigns. This however is out of the scope



of this study and will be part of future studies.
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Figure A.12: The figures show the relative deviations of flux rate ensembles (spanning a range of 100kgh™") of the predicted flux rates from the true flux rates for
different wind speed conditions for the validation data.
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Figure A.13: The figures show the relative deviations of flux rate ensembles (spanning a range of 100kgh™") of the predicted flux rates from the true flux rates for
different wind speed conditions for the validation data.
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