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A virtual flight through a realistic atmosphere is of vital interest not only for aircraft design
but also for airports and airlines regarding runway capacity and safety. In the future virtual
flight shall allow a simulation of a flight through a realistic atmosphere including the reaction
of the aircraft to aerodynamic forces and the resulting trailing vortices from their generation
until final decay. For realization, a bidirectional coupling between the atmospheric domain
and a moving aircraft-centered domain is required. In this paper, we present a dynamic high-
order overset grids method including hole-cutting, implemented in a discontinuous Galerkin
solver for the compressible Navier-Stokes equations. Using discontinuous Galerkin for spatial
discretization removes the requirement for halo elements at the artificial boundaries and
simplifies the construction of the interface. The number of solution interpolation points at
the interface is lower than in conventional Finite-Volume schemes using volume interpolation,
resulting in less computational effort. The method can handle any kind of movement on a
trajectory altered during run-time. Special emphasis is put on the ability of the interface to
transfer turbulent structures without significant disturbance. The presented test cases include
a 3D convergence test and the Taylor-Green vortex, both with a grid moving along a non-trivial
trajectory.

I. Nomenclature

𝜒 = Cells in receiver mesh
𝑒 = Energy density
𝐹𝐹𝐹𝐶 = Convective flux
𝐹𝐹𝐹𝐷 = Diffusive flux
𝛿𝑖 𝑗 = Kronecker delta
ξξξ = Coordinate in reference space
𝐸𝑘 = Kinetic energy
E = Enstrophy
𝜖 = Dissipation rate
𝐽 = Jacobian of the mapping
𝑘 = Heat conductivity
𝜅 = Ratio of specific heats
𝑙 = Lagrangian basis functions
𝐿 = Distance
𝑀𝑎 = Mach number
𝜇 = Dynamic viscosity
𝑁 = Polynomial degree
𝑛𝑛𝑛 = Face normal vector
Ω = Cells in donor mesh
𝑝 = Static pressure
𝜓 = Test functions
𝑞𝑞𝑞 = Heat flux vector
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𝑅𝑒 = Reynolds number
𝜌 = Density
𝑅 = Specific gas constant
𝑅̃ = Reference element
𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏 = Stress tensor
𝑇 = Static temperature
𝑈𝑈𝑈 = Vector of conserved variables
𝑣𝑣𝑣 = Vector of velocity components
𝑉 = Volume
VF = Virtual Flight
𝑥𝑥𝑥 = Coordinate in physical space
𝜁 = Surface

II. Introduction

The realization of a virtual flight (VF) is a vital step towards a virtual product, designating a digital representation
of the physical aircraft using computer-aided design and computational fluid dynamics (CFD). Integrated simulation

environments already cover important areas of aircraft development, including aerodynamic properties. However, a true
virtual product is only achieved when an aircraft is also integrated into the simulation of a realistic atmosphere. This
important component is located at the interface between atmospheric physics and vehicle design and can only be served
holistically.

The successful implementation of a virtual flight simulation environment will answer many scientific questions
referring to the interaction of the aircraft with complex atmospheric structures. First, structured and coherent disturbances
in the form of gusts, gravity waves and aircraft wake vortices[1], a special case of which presents the aerodynamics
of formation flight [2]. Second, unstructured disturbances like different types of turbulence, including convective
turbulence, breaking gravity waves, thunderstorm-induced turbulence, boundary layer and wake turbulence. Furthermore,
the virtual flight will enable the virtual design of the aircraft with regard to extreme events and fatigue strength, as well
as predictive maintenance by replicating realistic load cases, without the imminent need for flight experiments. This
could not only enhance the knowledge of flight characteristics including the properties of the generated wake vortices
but also increase efficiency by vastly accelerating the optimization process and supporting the specific development of
control mechanisms and on-board sensors. At last, VF potentially will be a valuable tool to simplify the certification
process, through computational validation.

A key aspect of VF is the coupling of an atmospheric with an aerodynamic simulation on moving grids. The use of
two grids allows the specific use of different numerical models for aircraft and atmosphere, which significantly increases
the efficiency of the simulation [3]. The atmospheric component is governed by atmospheric turbulence, and it may also
include the wake induced by some vortex generator. On the other hand, the aerodynamic part is characterized by the
boundary layer of a moving geometry and its disturbance through the atmosphere. Interaction between the two regimes
may lead to a change of flight trajectories driven by aerodynamic forces and moments, which are to be captured by an
appropriate scheme.

The realistic simulation of VF poses a challenging task in the field of computational fluid dynamics, given the
multiscale nature of the problem in time and space. The relevant time scales range from fast vortex generation and
roll up, through a comparatively long phase of persistence, and finally, the decay of the vortex by disturbances such as
the Crow instability [4]. For the investigation of the interaction of an aircraft with the wake generated by a leading
aircraft, a vortex of a certain age is needed. An aircraft centered reference frame would need an excessively large
computational domain to generate such a vortex. This is deemed all the more unfeasible regarding computational
cost for a simulation covering the whole vortex evolution from vortex generation until final decay. However, a setup
comprising a ground-fixed domain with one or more aircraft flying through is a viable solution using the computational
resources available today [5, 6].

Moving geometries can be found in many engineering problems e.g. helicopters, gas, and wind turbines. One way
to realize these movements in computational fluid dynamics is the Arbitrary Lagrangian-Eulerian technique [7]. It is
applicable for rather small displacements only, since the connectivity between grid cells is not to be changed or dynamic
re-meshing is necessary. For larger shifts two approaches, sliding mesh or overset grids (chimera) methods, are suitable.
For the sliding mesh method the domain is subdivided into non-overlapping subdomains [8–10]. Movement is only
possible along the common interfaces of these partitions. Since aircraft affected by wake vortices experience large
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translatory movements as well as rolling moments, the sliding mesh technique is regarded as insufficient to capture this
complex behavior. Overset grids connect an arbitrary number of computational grids by a set of overlapping mesh
elements. Coupling is achieved by interpolation of the conserved variables in overlapping areas [11–13]. The movement
of the different grids is completely independent of each other and without any restrictions regarding direction and type
of motion. Therefore, an overset grids method was selected to further investigate the interaction between external
disturbances like turbulence or wake vortices and aircraft.

High-order methods bring along superior accuracy and efficiency compared to conventional methods for computa-
tional fluid dynamics and high-performance computing [14]. Many of these approaches like WENO schemes employ
rather large stencils for solution reconstruction to obtain a high-order [15]. However, a small spatial stencil is desired for
overset grids methods in order to simplify the construction of the chimera interface [16]. The discontinuous Galerkin
(DG) method approximates the solution in space by cell-local polynomials. Coupling between the cells is realized by a
numerical flux obtained by approximate Riemann solvers [17, 18]. To obtain the flux, only information from direct
neighbors is needed. Hence, for the extension to overset grids the flux computation procedure can be used without
modification. The only adaption is the interpolation of the adjacent solution at a chimera boundary from other grids.
Naturally, we choose DG for spatial discretization, as it simplifies the design of the chimera interface. In addition, this
scheme features desirable properties like low numerical dissipation and a compact spatial stencil [19]. With the outlined
tool, a high fidelity simulation of an aircraft interacting with atmospheric disturbances is deemed to be reachable in
order to enable the investigation of the highly nonlinear and unsteady flow physics.

In this work we use FLEXI, a high-order solver for the compressible Navier-Stokes equations applying the
discontinuous Galerkin spectral element method on unstructured grids. FLEXI provides excellent parallel scaling
properties as well as a robust spatial discretization even when running severely under-resolved computations [20].
Especially parallel efficiency is an important property for virtual flight given the large scale of such a simulation. FLEXI
is developed at the Numerics Research Group at the University of Stuttgart and available on GitHub∗. The purpose
of this paper is to test the application of the DG overset grids method with regard to VF. Our key advancement is the
implementation of the dynamic DG chimera approaches of Crabill et al. [13] and Noack et al. [21] in FLEXI.

The outline of this paper will be as follows: In Section III, we introduce the governing equations, while in Section
IV.A, we give a short introduction to the used spatial discretization scheme. The coupling interface will be shown in
Section IV.B, with its spatial location and movement of the interface explained in Section IV.C. Section V validates the
error convergence of the method, investigates the conservation error and shows the ability of the coupling interface
to accurately transfer turbulence between the grids. In Section VI, the paper concludes with a proposal of possible
improvements and future extensions.

III. Governing Equations
If not mentioned otherwise we consider the three-dimensional, compressible Navier-Stokes equations

𝑈𝑈𝑈𝑡 + ∇𝑥 · 𝐹𝐹𝐹𝐶 (𝑈𝑈𝑈) − ∇𝑥 · 𝐹𝐹𝐹𝐷 (𝑈𝑈𝑈,∇𝑥𝑈𝑈𝑈) = 000, (1)

where𝑈𝑈𝑈 = [𝜌, 𝜌𝑣1, 𝜌𝑣2, 𝜌𝑣3, 𝜌𝑒]𝑇 denotes the vector of conserved variables. The convective fluxes 𝐹𝐹𝐹𝐶 and the
diffusive fluxes 𝐹𝐹𝐹𝐷 are given in terms of density 𝜌, velocity vector 𝑣𝑣𝑣 = (𝑣1, 𝑣2, 𝑣3)𝑇 and energy density 𝑒 for three
spatial directions 𝑖 = 1, 2, 3

𝐹𝐹𝐹𝐶
𝑖 =
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. (2)

With 𝜏𝑖 𝑗 being the stress tensor

𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑣𝑖

𝜕𝑥 𝑗

+
𝜕𝑣 𝑗

𝜕𝑥𝑖

)
+ 𝜆𝛿𝑖 𝑗

𝜕𝑣𝑘

𝜕𝑥𝑘
(3)

∗https://github.com/flexi-framework/flexi

3



and 𝑞𝑖 the heat flux

𝑞𝑖 = −𝑘 𝜕𝑇

𝜕𝑥𝑖
. (4)

In the equations above 𝑘 denotes the heat conductivity, 𝜇 the dynamic viscosity and 𝑇 the static temperature.
Assuming a Newtonian fluid and Stokes hypothesis yields 𝜆 = − 2

3 𝜇.
Closure of the equation system is achieved by the equation of state for a perfect gas

𝑝 = 𝜌𝑅𝑇 = 𝜌(𝜅 − 1)
(
𝑒 − 1

2
(𝑣2

1 + 𝑣2
2 + 𝑣2

3)
)

(5)

with 𝜅 the ratio of specific heats and 𝑅 the specific gas constant.
For a moving reference, there is an additional flux term over cell boundaries to be considered originating in said

movement. Using the Arbitrary Lagrangian-Eulerian (ALE) formulation [22], a second convective flux term 𝐹𝐺
𝑖

is
needed incorporating the velocity 𝑤𝑤𝑤 of the computational grid and leading to

𝐹𝐹𝐹𝐺
𝑖 = 𝑤𝑖

©­­­­­­­«

𝜌

𝜌𝑣1

𝜌𝑣2

𝜌𝑣3

𝜌𝑒

ª®®®®®®®¬
. (6)

With this new flux term Eq. (1) becomes

𝑈𝑈𝑈𝑡 + ∇𝑥 ·
(
𝐹𝐹𝐹𝐶 (𝑈𝑈𝑈) − 𝐹𝐹𝐹𝐺 (𝑈𝑈𝑈)

)
− ∇𝑥 · 𝐹𝐹𝐹𝐷 (𝑈𝑈𝑈,∇𝑥𝑈𝑈𝑈) = 000. (7)

IV. Numerical Methods

A. Discontinuous Galerkin Spectral Element Method
For the discontinuous Galerkin (DG) discretization every subdomain is divided into non overlapping elements Ω𝑛.

In a next step a polynomial mapping from physical space 𝑥𝑥𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 to the logical space ξξξ = (ξ1, ξ2, ξ3)𝑇 is
introduced, to transform the physical elements to a reference element 𝑅̃ = [−1, 1]3. Using the Jacobian of the mapping
𝐽 = det

( 𝜕𝑥𝑖
𝜕ξ 𝑗

)
Eq. (7) becomes

𝐽 (ξξξ)𝑈𝑈𝑈𝑡 + ∇ξ · FFF (𝑈𝑈𝑈,∇ξ𝑈𝑈𝑈) = 000. (8)

with FFF being the contra-variant fluxes on which a detailed explanation can be found in [23]. Projection onto the
space of test functions 𝜓 ∈ P and integration by parts over the logical element 𝑅̃ leads to the weak formulation of the
equation ∫

𝑅̃

𝐽 (ξξξ)𝑈𝑈𝑈𝑡𝜓(ξξξ)𝑑𝑅̃ +
∫
𝜕𝑅̃

(
FFF · 𝑛𝑛𝑛

)
𝜓(ξξξ)𝑑𝑆 −

∫
𝑅̃

FFF
(
𝑈𝑈𝑈) ·

(
∇ξ𝜓(ξξξ)

)
𝑑𝑅̃ = 000, (9)

where 𝑛𝑛𝑛 is the surface normal vector of an element boundary. The fluxes across the element faces are approximated
by Roe’s Riemann solver [24] employing an entropy fix of Harten and Hyman [25]. Approximation of the conserved
and the covariant fluxes is attained by a piecewise polynomial ansatz

𝑈𝑈𝑈 (ξξξ, 𝑡) ≈
𝑁∑︁

𝑖, 𝑗 ,𝑘=0
𝑈̂𝑈𝑈𝑖 𝑗𝑘 𝑙𝑖 (ξ1)𝑙 𝑗 (ξ2)𝑙𝑘 (ξ3), (10)

FFF (ξξξ, 𝑡) ≈
𝑁∑︁

𝑖, 𝑗 ,𝑘=0
F̂FF 𝑖 𝑗𝑘 𝑙𝑖 (ξ1)𝑙 𝑗 (ξ2)𝑙𝑘 (ξ3), (11)

using a tensor basis of one-dimensional Lagrange polynomials 𝑙 which entail the cardinal property on a certain
set of interpolation points ξ𝑛

𝑖
. Since we employ a Galerkin method, the test functions 𝜓 are chosen identically to the

polynomial ansatz functions. Integrals in Eq. (9) are approximated using numerical quadrature. The efficiency of the
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DGSEM scheme is based on collocation of integration and interpolation on the same point set which results in a reduced
number of operations per degree of freedom (DOF). For the treatment of diffusive fluxes the solution gradients are
provided by the "first" method of Bassi and Rebay [26]. Temporal evolution is achieved by explicit time integration using
a low-storage Runge-Kutta scheme [27]. If not mentioned otherwise we use the Legendre-Gauß-Lobatto interpolation
points with the Split-DG scheme of Pirozolli [28]. A general overview of the framework as well as validation and
performance analysis of the baseline code is given in [20].

B. Overset Grids Coupling
A central matter when dealing with simulations on multiple moving grids is the coupling between these. The

proposed overset grids scheme follows the AB-Method of Galbraith et al. [29], where the computational grids are only
coupled by the numerical fluxes between the cells at the artificial boundary. For a mesh internal element the conserved
variables and their gradients left/right of a cell boundary are used to evaluate the numerical flux FFF (𝑈𝑈𝑈− ,∇𝑈𝑈𝑈− ,𝑈𝑈𝑈+,∇𝑈𝑈𝑈+)
over the considered edge. This procedure is kept at artificial boundaries, however, an adjacent solution from a neighbor
cell is not readily available. Instead, the solution needs to be supplied by another computational grid overlapping in this
area, see Fig. 1.

𝛀1

𝛀2

𝛀3

𝝌1

𝑼(ξ1
𝑖
, 1)

𝑼(1, ξ2
𝑗
)

𝑼(ξ1
𝑖
, ξ2

𝑗
)

𝑥1

𝑥2

Fig. 1 Left: Two overlapping grids showing one artificial boundary with degree 𝑁 = 2 and 𝑁𝐴𝐵 = 4 in physical
space. Volume solution points are denoted by dots, flux evaluation points by squares and artificial boundary
points by triangles. Right: An internal cell without artificial boundaries is shown for comparison.

The interface itself is loaded with 𝑁𝐴𝐵 + 1 flux evaluation points according to the chosen solution point distribution.
Their physical coordinates 𝑥𝑥𝑥𝐴𝐵 = (𝑥1, 𝑥2, 𝑥3) are sent to the other computational grids. For parallel calculations, it is
desirable to limit the communication to a reasonable sized region around the subdomain of one specific processor
containing artificial boundaries. This is done by underlying a cartesian processor background mesh (BGM). Every
process determines the bounding box of its subdomain using it to calculate an extent inside the BGM in terms of an
index range per spatial direction. This information is then communicated globally, so every processor is aware of its
neighbors in a certain area.

Even with the communication limited by the BGM, possible donor partitions might still receive a considerable
amount of points to be evaluated. To speed up this procedure. we first check the bounding box of an element versus the
coordinate 𝑥𝑥𝑥𝐴𝐵. If this test is successful Newtons Method is used to invert the cell local mapping and determine the
logical coordinates ξξξ(𝑥𝑥𝑥𝐴𝐵). Since ξ ∈ [−1, 1]3 holds, this enables the final determination if a point resides inside the
element. Using the polynomial ansatz the conserved variables and their gradients can be interpolated for the determined
donor. These values are sent back to the receiving mesh, where the solution is projected from the artificial boundary
polynomial degree 𝑁𝐴𝐵 to the actual degree of the scheme 𝑁 as depicted in Fig. 2. Then the numerical flux at the
artificial boundaries can be obtained following the procedure for the internal cell edges.

Besides the notable computational effort needed to find the right element for a desired donor point, the presented
approach offers some unique advantages. First is the absence of halo elements needed for solution reconstruction in
Finite-Volume schemes. The number of flux evaluation points is by a factor of 𝑁 + 1 smaller compared to the number of
degrees of freedom needed when evaluating the complete volume solution. In addition, the spatial stencil size of the FV
operator increases with the order of the scheme which in turn demands more halo cells at the overset grids boundary. A
DG overset grids scheme with the presented AB method retains an arbitrary order using only the given flux evaluation
points.

Handling the artificial boundaries simply as a kind of special boundary condition greatly simplifies the implementation
of the method in an already parallelized code using the Message Passing Interface (MPI). The handling is similar to
already present MPI boundaries between processor domains. Another notable property is the absence of a requirement
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𝑼−
𝑁𝐴𝐵

𝛀1

𝛀2

𝛀3

𝑼−
𝑁

𝑼−
𝑁𝐴𝐵

↦→ 𝑼−
𝑁

𝑼+
𝑁

Fig. 2 Artificial boundary flux calculation for two overlapping grids with degree 𝑁 = 2 and 𝑁𝐴𝐵 = 4 in physical
space. Volume solution points are denoted by dots, flux evaluation points by squares and artificial boundary
points by triangles.

for large overset areas between the two grids needed in conventional chimera schemes like the one found in [3], in the
limiting case they can even abut. Therefore, a larger amount of cells can be cut from the underlying grid which results in
fewer degrees of freedom to be computed.

When simply evaluating the solution in a pointwise manner on an artificial boundary over multiple donor cells one
introduces an error. This is due to the possible discontinuous nature of the solution between the cells and the fact that
numerical quadrature is only valid for continuous functions. To remedy this problem Farell et al. [30] and Crabill et al.
[31] propose the use of local Galerkin projection. The basic idea is instead of a pointwise projection, a local so-called
"super mesh" is introduced with one supercell only covering the intersection between a donor and a receiver cell. The
solution is then integrated in each super mesh element separately. While this approach reduces the conservation error
introduced by the chimera interface, the implementation is not trivial. Also, even more extra operations for the elements
at the artificial interface are introduced. A general problem of the chimera method is an imbalance in computational load
per element introduced by the local operations for the overset coupling. When using an even distribution of elements per
CPU, this leads to a bad parallel scaling behavior and therefore the waste of resources.

Yet another source of conservation error is the absence of a unique flux between the grids. For the internal cell
boundaries, the numerical flux is calculated only once and used to update the solution in both cells ensuring conservation.
When using the outlined approach, two different fluxes are employed at the artificial boundaries, which results in
conservation errors. Flux reconstruction was presented by Crabill et al. [31] as a possible solution. The basic idea is to
interpolate a corrected flux to the artificial boundary instead of a discontinuous solution. However, this procedure is
accompanied by a more strict requirement of the extent of the grid overlap and possible stability issues that need to be
addressed. Galbraith et al. [29] showed that the mentioned errors decrease with the theoretical order of convergence for
the scheme. In this work, we will use this comparatively simple approach and show that these errors are acceptable for
the investigated test cases.

C. Hole-Cutting

1. Static Hole-Cutting
In the previous section, the chimera interface was introduced as a kind of special boundary condition. A vital part of

the overset grids scheme is to determine which sides should be flagged to be chimera boundaries. When dealing with
only two grids, the procedure is simple: blank every element of the underlay mesh which is completely overcast by
the overlay mesh and exclude them from the computation. All sides between a hole (blanked elements) and a field
(non-blanked elements) cell are artificial boundaries required to execute the AB coupling introduced in the previous
section. A simple example of such a cut is shown in Fig. 3.

In the following, the term overlay denotes the subdomain containing a geometry cutting the static underlay grid
without solid boundaries. However, the suggested approach is not limited in the number of grids used or if a geometry
is present. Only the designation of which grid is employed for cutting in a certain area needs to be determined. One
possible principle is to choose the grid with the highest resolution to be kept.

According to Noack et al. [21] there are three basic types of hole cutting. First are search-based techniques where
for every grid point in the underlay mesh a possible donor element is searched for. In regions with multiple meshes
present this will be successful, classifying the corresponding cells as hole. Some kind of geometry approximation is
needed as some points may reside inside a geometry and will therefore find no donor although being inside an overlay

6



(a) (b)

Fig. 3 Basic overset grids setup in 2D, showing a meshed NACA profile and a cartesian background grid in (a).
The resulting cut and artificial boundaries in yellow are shown in b).

mesh. For this method to work properly a minimal extent of overlap is needed, otherwise the process might fail.
The query-cut approach builds upon an approximation of the cutting surface. This can be done by using an analytical

sphere or cartesian approximations for example. Care has to be taken to describe the interface with sufficient accuracy
to accurately cut the underlying mesh. At the same time, it is desired not to add too much complexity through the
approximation to keep the evaluation and therefore the hole cutting computationally fast.

When employing a direct-cut type method, all elements intersected by the cutting interface are determined. The
remaining cells inside the overlay are then cut and removed from the computation. To achieve this some kind of paint-fill
algorithm is needed to identify all overcast cells. This is the most accurate method since no approximation of the
chimera interface is needed.

The approach used in this work is of the direct-cut type and follows Crabill et al. [13], who builds upon ideas
from Galbraith et al. [32] and Noack et al. [21] but with the restriction to linear cells. Elements with curved surfaces
are needed to approximate geometries with reasonable accuracy. For the application of virtual flight, non-trivial wall
boundaries will only be present in the overlay mesh. While it is desirable to reduce the amount of elements around
the moving geometry some grid layers are still needed. As outlined in [20] a common approach is to curve 2-4 layers
adjacent to the geometry, while keeping the remaining layers linear. This results in a linear artificial boundary for the
overlay mesh, significantly reducing the effort needed for a direct cut.

The general idea for the hole cutting is to start with several simple and fast comparisons, determining the status of
the majority of elements. Subsequent filters reduce the number of remaining elements while moving to computationally
more expensive operations until the final blanking status for the whole domain is determined. The purpose of the
multistage filtering is the reduction of overall computation time needed for the hole cutting.

As a prepossessing step the bounding box (BB) along the axes of the global coordinate system of all elements
contained in the subdomain of one process 𝐵𝐵𝐵𝑃 and for the whole overlay mesh 𝐵𝐵𝐵𝑂𝐿 are computed. If these do not
intersect, all elements in the underlay subdomain can be marked as field cells. The remaining partitions test for overlap
with neighbor overlay subdomains, which are determined using the BGM mentioned in the preceding section. Further
on, the center of all sides considered to be artificial boundaries and the corresponding normal vectors are sent to the
remaining partitions near the interface which might need cutting data.

So far the status of elements far away from the artificial boundaries has been determined. For the cells closer, we
employ a hole map which is a Cartesian approximation of the interface. Being Cartesian with a constant step size and
dimensions simplifies the determination of the status of a point inside this map. The first parameter to be determined is
the resolution of the map, which is a compromise between accuracy and computational overhead. It is desirable to have
some kind of relation between the dimensions of the artificial surfaces 𝜁 and the hole map, to automate its generation
for a given overlay mesh. The greatest distance 𝐿𝜁 from the center of a side 𝑥𝑥𝑥𝜁

𝑂
to the corners 𝑥𝑥𝑥𝜁

𝐶
is taken. From all

surfaces in question the smallest distance of all distances 𝐿𝐿𝐿 is chosen to be the step size 𝑑𝑠 for all spatial dimensions.

𝐿𝜁 = 𝑚𝑎𝑥

( 


𝑥𝑥𝑥𝜁
𝑂
− 𝑥𝑥𝑥

𝜁

𝐶




 ) , 𝑑𝑠 = 𝑚𝑖𝑛(𝐿𝐿𝐿) (12)

The number of elements per spatial direction 𝑛𝑛𝑛 = [𝑛1, 𝑛2, 𝑛3] is chosen by a relation using the extent of the overlay
bounding box 𝐵𝐵𝐵𝑂𝐿 and adding four elements of padding

𝑛𝑛𝑛 =
⌊ (𝐵𝐵𝐵+

𝑂𝐿
− 𝐵𝐵𝐵−

𝑂𝐿
)

𝑑𝑠

⌋
+ 4 (13)
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(a) (b)

(c)

Fig. 4 Example of hole map construction. Elements intersecting with the boundary and their direct neighbors
are colored blue. Using a paint-fill process all elements outside the blue area are marked as field and indicated by
green. All remaining elements in yellow are considered to have hole status.

With the hole map in place, the status of its elements can be determined. Since the map is Cartesian, this is done by
calculating an index for a point using the extent and spatial step of the map, which is a fast and computationally cheap
operation. For the artificial interface, we use again the coordinates of the corners and the center of the surfaces, called
cutting points, for index calculation. All hole map elements intersecting the interface are tagged with the color blue as
shown in Fig. 4. To increase the robustness of the scheme we add one element of padding in every spatial direction.
This procedure results in a closed Cartesian approximation of the chimera interface. Starting at the corners of the hole
map and therefore ensuring to be outside the interface area, a paint-fill procedure is applied to label all elements with
the color green until reaching interface elements with the tag blue. This process will give erroneous results if there are
holes in the interface approximation. Therefore, the choice of 𝑑𝑠 in combination with the number of cutting points per
surface, outlined in the paragraph before, is essential for ensuring a proper hole map. All remaining cells reside inside
the overset boundary and are therefore considered possessing hole status and tagged yellow.

When the construction of the hole map is finished, the remaining partitions calculate indices for the element corners
concerning the coordinate system of the map. If all corners are labeled yellow or green, the status of the cell is considered
to be safely determined by the hole map. Also, if at least one corner is tagged green, the element is a field element,
regardless of the other corners. Any combination of pure blue tags or blue/yellow leaves the element status to be
determined by the last cutting step.

All remaining cells without a clear hole status are located near the artificial boundary. To decide their final blanking
state a simple inside-out test via dot product is used. Previous to the hole map evaluation all partitions near cutting
surfaces already received the corresponding face center coordinates and normals. For every corner of a filtered underlay
element, the vector from the cutting surface center to the corner is computed. The evaluation of the corner status is done
by a dot product with the normal vector. If one corner resides outside the cutting surface, the elements’ status is saved
and the next cell is evaluated. It might be desirable to further reduce the number of required dot products since the loop
over all cutting sides from a nearby partition can be quite extensive. This could be achieved by utilizing the already
present hole map and only considering surfaces in surrounding elements. However, the approach seems to be working
quite fast for the tests performed. No dramatic increase in computational time is observed when comparing moving
overset grids setup with a static one requiring hole cutting only once.

2. Dynamic Hole-Cutting
When one or multiple of the used grids are moving some modifications to the overall process are necessary. As the

overlay mesh moves through the domain, elements with field status at the beginning of the simulation will be overcast at
some point. The blanking of these cells is rather simply achieved by setting the corresponding solution to zero and
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(a) (b)

Fig. 5 Example of a moving overlay grid. In a) the grid at 𝑡𝑛 is shown with the hole cells tagged yellow. The new
status at 𝑡𝑛+1 is given in b), the old position shown using dashed lines with elements to unblank (violet) before the
execution of the time step and elements to blank (green) after this time step.

excluding the element from further computation. When a grid cell reappears from below the overlay it needs to be
unblanked and filled with a valid solution. For this purpose the artificial boundary method from Section IV.B is applied
to the volume Gauss points and the values for the conserved variables donated by the overlaying grid. An example of
elements which need to perform the blanking/unblanking process between two time steps is given in Fig. 5.

Given that the movement of the geometry is a reaction to aerodynamic forces, the cells to cut cannot be determined
through preprocessing. Therefore, the steps outlined for static hole cutting need to be performed every time step. The
focus of this work lies on explicit time stepping using multi-stage Runge-Kutta methods. The calculation of the solution
at the new time 𝑡𝑛+1 is done by evaluation of the spatial operator at a number of intermediate sub-time steps. During
these substages, the blanking status must be held constant. This assumption only holds if the overlay grid is not moving
over the whole length of any cell in the underlay mesh during one time step. Since the time step is strictly limited by the
information propagation speed using the CFL- condition, this conjecture is justified. As a result, the unblanking process
is executed rather infrequently. Even though the number of points per element to which a solution needs to be supplied
is by a factor 𝑁 + 1 higher than for a surface solution in the AB context, the overall cost is regarded as low since the
number of elements is also low.

The overall procedure is as follows: At time 𝑡𝑛 the overlay grid is moved to its new position, hole cutting is performed
as described in the preceding section. If the status of an element is switching hole to field, this cell is tagged to be
unblanked before execution of the next time step. When an element is completely overcast at 𝑡𝑛+1, the unblanking is
performed after the temporal evolution of the solution, since the element is needed for artificial boundary operations in
the substages of the RK scheme. When the unblanking is finished, the grid is moved back and the actual time integration
is started. The overlay is moved in every RK substage according to the sub time step, the reason being the artificial
boundaries need the actual coordinates at this time to obtain a time accurate solution.

When performing a dynamic hole cutting some operations, which can be considered preprocessing in the static case,
need to be executed every time step. Given that the grids are not deforming, the BB of the subdomains, grids and the
hole map can be simply moved according to the displacement of the overlay. This approach saves some operations
needed for recomputing, which is especially important for the hole map.

V. Results
This section presents validation test cases for the outlined DG overset grids method. The first experiment shows that

the method retains high-order accuracy on moving meshes. Convergence of the conservation error is also presented. We
then investigate the method’s ability to transfer turbulent structures across the artificial boundary with the Taylor-Green
Vortex. Finally, the ability to move a geometry through space and its interaction with the surrounding fluid will be
shown.

If not mentioned otherwise time integration is performed using a fourth order, low storage Runge-Kutta scheme by
Carpenter et al. [33]. We use the Legendre-Gauß-Lobatto interpolation points with the Split-DG scheme of Pirozolli
[28] and Roe’s approximate Riemann solver employing an entropy fix by Harten and Hyman [25].
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Fig. 6 𝐿2 error of the density for different polynomial degrees 𝑁 at 𝑡 = 1 𝑠 for the manufactured solution over
spatial stepsize ℎ. The theoretical EOC is denoted using black lines.

A. Convergence Test
To verify the high-order character of the DG chimera scheme, we will use the method of manufactured solutions

(MFS) to compute the experimental order of convergence (EOC), following Gassner et al. [33]. The general idea of this
method is to modify the equation system by a source term to force a prescribed, non-trivial solution. Since the exact
solution of the modified equation system is known, it can readily be used to compute the EOC. We choose an oblique
sine wave as the solution for all variables, advected in 3D with a constant velocity v𝑎𝑑𝑣 = [1, 1, 1] ms-1, an amplitude
𝛼 = 0.1 ·𝑈𝑈𝑈0 regarding the initial mean value of the solution𝑈𝑈𝑈 and a frequency 𝜔 = 1. The specific gas constant, rate of
specific heats and dynamic viscosity are given by 𝑅 = 287.058 Jkg-1K-1, 𝜅 = 1.4 and 𝜇 = 0.001 kg m-1s-1.

The underlay domain is laid out as a cube with dimensions x𝑈𝐿 = [−1, 1]3 m employing periodic boundary
conditions in all spatial directions and a cartesian, uniform grid. A second cube which extents x𝑈𝐿 = [−0.4, 0.4]3 m
serving as overlay domain is placed at x𝑡0 = [−0.5,−0.5,−0.5] m at the beginning of the simulation. The domain
moves with a constant velocity v𝑡𝑟𝑎𝑛𝑠 = [1, 1, 1] ms-1 to the opposite corner of the underlay domain until 𝑡 = 1 s. We
start with a resolution of five elements per spatial direction and double the resolution with every refinement step. The
polynomial degree at the artificial interface is chosen to be 𝑁𝐴𝐵 = 2𝑁 to reduce conservation errors introduced by
artificial boundaries.

The time step was scaled down to limit the temporal error to a magnitude where the spatial error will dominate the
overall error. In Fig. 6 the 𝐿2 error at 𝑡 = 1 s is shown, confirming the scheme is maintaining the EOC when using the
overset grids method on moving meshes with unblanking.

As mentioned in IV.B the scheme is by design non-conservative. However, according to Galbraith et al. [29] the
conservation error should decrease with the EOC of the numerical scheme. To validate this we choose again the method
of MFS. In this case the sinus prescribed by the MFS is only avdvected in 𝑥2 direction with v𝑎𝑑𝑣 = [0, 1, 0] ms-1. The
overlay mesh is placed at x𝑡0 = [−0.5, 0, 0] m, all remaining discretization parameters and resolutions stay the same.
The movement of the overlay mesh in 𝑥2, 𝑥3 direction is given by a sine

𝑥1 = 𝑥1 + 𝑢0 · 𝑡, (14)
𝑥2 = 𝑥2 + 0.4𝐿 · 𝑠𝑖𝑛(2𝜋 · 𝑡), (15)
𝑥3 = 𝑥3 + 0.4𝐿 · 𝑠𝑖𝑛(2𝜋 · 𝑡). (16)

with 𝑢0 = 1 ms-1 and 𝐿 = 1 m. The conservation error is caused by the numerical integration of a discontinuous
solution on the artificial boundary as well as the non-unique flux between the grids, see Section IV.B for a more detailed
explanation. The conservation error depends therefore on the position of the volume and surface solution points in
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Fig. 7 Conservation error of for different polynomial degrees 𝑁 with 𝑁𝐴𝐵 = 2𝑁 at 𝑡 = 1 𝑠 for the manufactured
solution over spatial stepsize ℎ. The theoretical EOC is denoted using black lines.

relation to the corresponding donor elements and the smoothness of the solution between them. We chose this movement
to have a more general trajectory than the rather simple movement along a line from before.

In Fig. 7 the conservation error over different resolutions and polynomial degrees is shown. The error is defined in
Eq. (17) with 𝑀𝑒 being the exact mass contained in the mesh at 𝑡 = 0 s and 𝑀ℎ the mass contained in both meshs at
final time 𝑡 = 1 s. In general, the mass error decreases with the expected EOC, with exception to the first two data points.
This is most likely due to insufficient spatial resolution. Also notable is the greater than expected EOC for 𝑁 = 4 which
might be caused by the of 𝑁𝐴𝐵 = 2𝑁 . Overall we would like to emphasize that the conservation error decreases with
increasing mesh resolution even for a non-trivial trajectory and the non-conservative AB method.

𝑀𝑒𝑟𝑟 =
𝑀𝑒 − 𝑀ℎ

𝑀𝑒

(17)

B. Taylor-Green Vortex
The Taylor-Green Vortex (TGV) is a common testcase for the 3D Navier-Stokes equations at moderate Reynolds

numbers. From a simple sinus distribution of the velocity components, the flow transitions through a short laminar
phase to full turbulence. The TGV is one of the problems used for the evaluation of CFD codes at the International
Workshops on High-Order CFD Methods [34, 35]. It is chosen because of its simple setup, all periodic boundary
conditions and readily available DNS results from [36]. An important property of the outlined overset grids scheme is
the correct transfer of turbulent structures crossing artificial boundaries. The TGV is, therefore, particularly attractive to
test the influence of the moving reference frame on the turbulent spectrum. For comparison, the testcase can also easily
be computed employing only a single grid. Another interesting aspect is the influence of the non-conservative scheme
on the turbulence parameters.

Initial conditions are prescribed using primitive variables

𝑣1 = 𝑢0 𝑠𝑖𝑛
( 𝑥1

𝐿

)
𝑐𝑜𝑠

( 𝑥2

𝐿

)
𝑐𝑜𝑠

( 𝑥3

𝐿

)
, (18)

𝑣2 = −𝑢0 𝑠𝑖𝑛
( 𝑥1

𝐿

)
𝑐𝑜𝑠

( 𝑥2

𝐿

)
𝑐𝑜𝑠

( 𝑥3

𝐿

)
, (19)

𝑣3 = 0, (20)

𝑝 = 𝑝0 +
𝜌0𝑢0

2

16

[
𝑐𝑜𝑠

(2𝑥1

𝐿

)
+𝑐𝑜𝑠

(2𝑥2

𝐿

)] [
𝑐𝑜𝑠

(2𝑥3

𝐿

)
+ 2

]
(21)
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and the perfect gas law 𝜌 =
𝑝

𝑅𝑇0
with specific gas constant 𝑅 = 17.857 Jkg-1K-1 and ratio of specific heats 𝜅 = 1.4.

The physical conditions 𝑇0, 𝑝0, 𝜌0𝑢0 are chosen to achieve a Mach number of 𝑀𝑎 = 0.1 corresponding to 𝑢0. The
Reynolds number governing the flow is 𝑅𝑒 = 1600 in regard to 𝑢0 and 𝐿 is set by 𝜇 = 6.25 · 10−4 𝑘𝑔

𝑚𝑠
.

The underlay domain is an all periodic cube with dimensions x𝑈𝐿 = [−𝐿𝜋, 𝐿𝜋]3 using a total of 32, 64 and 96
elements per spatial direction. When employing a polynomial degree of 𝑁 = 3 and 𝑁𝐴𝐵 = 6 this corresponds to 1283,
2563 and 3843 degrees of freedom. For the underlay, we choose a box with magnitude x𝑂𝐿 = [−0.4 𝐿𝜋, 0.4 𝐿𝜋]3 and
place it at the origin for 𝑡 = 0 𝑠. The number of cells is selected, ensuring a uniform resolution across the domain.
During the computation, the overlay grid translates in a figure 8 pattern in the 𝑥1, 𝑥2 plane while traveling up and down
along the 𝑥3 axis. The setup is similar to Crabill et al. [13] with parametrization of the movement being

𝑥1 = 𝑥1 +
5 𝜋 𝐿

10
𝑠𝑖𝑛

(20𝜋2

169
𝑡

)
, (22)

𝑥2 = 𝑥2 +
3 𝜋 𝐿

10
𝑠𝑖𝑛

(40𝜋2

169
𝑡

)
, (23)

𝑥3 = 𝑥3 +
5 𝜋 𝐿

10
𝑠𝑖𝑛

(10𝜋2

169
𝑡

)
. (24)

All computations were performed until the time 𝑡 = 20 𝑠 was reached.
Various quantities can be analyzed to quantify the performance of the scheme. First, the enstrophy, averaged by the

volume 𝑉
E =

1
𝜌0𝑉

∫
𝑣

𝜌
𝜔 · 𝜔

2
𝑑𝑉. (25)

Assuming incompressible flow, which is a valid assumption at 𝑀𝑎 = 0.1 the dissipation rate of the kinetic energy
can be computed using the enstrophy with the relation

𝜖 = −𝑑𝐸𝑘

𝑑𝑡
= 2

𝜇

𝜌0
E . (26)

In Fig. 8 the temporal evolution of the energy dissipation rate is visualized using the overset grids setup. For
comparison, the results for a single grid using the same resolution and a DNS result are also given. When the spatial
resolution is increased, 𝜖 approaches the DNS solution which is the expected behavior, also visible in a detail view
in Fig. 9. Notable is the good agreement of single and overset grid results, even though the overset simulation is not
conservative. Some minor deviations can be observed which indicate that the AB method is only slightly dissipative.
These results demonstrate that the artificial interface can transfer turbulent structures across the mesh boundaries without
signification disturbances. The scheme should therefore also be able to couple the turbulent flow around a wing with the
surrounding atmosphere.

C. Cylinder
The last test case to be investigated is a cylinder moving through a fluid. It shows the method’s ability to transfer the

wake generated by a geometry into the underlying domain. While this set up is pseudo-3D with only one layer of cells in
the 𝑥3 direction it is a first step in the direction of wake vortex generation of virtual flight.

The relevant part of the underlay domain, the area where the overlay is moving, is shown in Fig. 10. It extends to
𝑥1 = [−4𝐿, 4𝐿] with 𝑛𝑥1 = 160 elements and 𝑥2 = [−2.5𝐿, 2.5𝐿] with 𝑛𝑥2 = 100 elements, where 𝐿 corresponds to
the diameter of the cylinder. Outside this region, the resolution is drastically decreased to dampen acoustics originating
from the start-up process. On the right-hand side boundary, a constant inflow with zero flow angle and 𝑀𝑎 = 0.1 is
prescribed, by setting total temperature and pressure according to their initial, static counterparts inside the domain
resulting in an inflow velocity 𝑢0. The remaining boundaries in 𝑥1, 𝑥2 direction specify a constant back pressure 𝑝, in 𝑥3
direction periodic boundaries are used.

The dimension of the overlay extends between the radii of 𝑟𝑖𝑛𝑛𝑒𝑟 = 0.5𝐿 and 𝑟𝑜𝑢𝑡𝑒𝑟 = 0.9𝐿, while the domain is
subdivided in 𝑛𝑡 = 135 elements in circumferential and 𝑛𝑟 = 20 elements in radial direction. A visualization of the
mesh can be found in Fig. 10. At the inner radius a no-slip wall BC is employed with two layers of curved cells normal
to the wall, at the outer radius artificial boundaries are found while in 𝑥3 direction again periodic BCs are used. The
ratio of specific heats is 𝜅 = 1.4, the specific gas constant 𝑅 = 287.058 Jkg-1K-1, while the Reynolds number regarding
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Fig. 8 Energy dissipation rate for the TGV using two grids coupled by the AB method, with 1283, 2563 and
3843 DOF’s while using 𝑁 = 3. For comparison, the single grid and DNS results are also provided.

Fig. 9 Detailed view of the energy dissipation rate for the TGV using two grids coupled by the AB method, with
2563 and 3843 DOF’s using 𝑁 = 3. For comparison, the single grid and DNS results are also provided.
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(a) (b)

Fig. 10 Section of the unstructured underlay grid a) in which the cylinder is moving. The structured overlay
grid with the corresponding hole cut is shown in b).

the cylinder’s diameter of L and the inflow velocity in addition to the mesh velocity in 𝑥1 direction is 𝑅𝑒 = 50000. We
use a polynomial degree of 𝑁 = 6 in combination with 𝑁𝐴𝐵 = 10. The movement of the cylinder follows a sine curve
described by

𝑥1 = 𝑥1 + 𝑢0 · 𝑡, (27)

𝑥2 = 𝑥2 + 0.75𝐿 · 𝑠𝑖𝑛
(
2𝜋
5𝐿

· 𝑡
)
. (28)

In Fig. 11 the velocity magnitude is shown at different times. While there is no reference to validate these results,
they show that the presented method is indeed able to capture the interaction between a moving geometry and the
surrounding fluid. Eddies detach from the cylinder and are transferred into the underlying domain without visible
artifacts. While not visible in the static plots the transport of turbulent structures from the underlay back into the overlay
is also possible. Additionally, detached eddies crossing the interface from the underlying domain to the moving grid
inside the recirculation region remain stable and do not show a nonphysical deformation.

VI. Conclusion
A high-order discontinuous Galerkin overset grids method intended for the simulation of virtual flight has been

presented. This approach enables the coupling between multiple, unstructured computational grids without any
restriction regarding the type of movement and trajectory. The hole cutting is realized with a focus on simplicity and
speed, by starting with a couple of simple tests to filter elements far away from the cutting surface and only perform
costly checks on elements near the artificial boundary.

The method of manufactured solutions has been used to show, that the method retains its experimental order
of convergence (EOC) on moving grids with blanking and unblanking of elements besides the introduction of a
conservation error by the artificial interface. Convergence was also demonstrated for the conservation error. Simulating
the Taylor-Green Vortex showed turbulent structures can indeed be transferred via this interface with minor interference.
At last the methods ability to transport the turbulent wake generated by a cylinder moving through a fluid into the
underlying grid was presented. The results of these test cases also proof the applicability of the hole cutting procedure
to 3D cases while reducing the user inputs needed for tuning the algorithm.

Next will be the evaluation of the parallel performance and the comparison with single grid performance. Challenging
in this context is the dynamic communication pattern originating in the movement of the grids. While the amount
of communication is already reduced by employing the processor background mesh, some improvements are still
to be made. Especially regarding the number of dot products needed for the direct cut of cells near the artificial
boundary. Another topic to be addressed in a future publication is the load imbalance, designating not evenly distributed
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(a) 𝑡 = 2.5 𝑠 (b) 𝑡 = 6.0 𝑠

(c) 𝑡 = 8.0 𝑠 (d) 𝑡 = 10.0 𝑠

Fig. 11 Cylinder moving along a sine at 𝑅𝑒 = 50000, using 𝑁 = 6 and 𝑁𝐴𝐵 = 10. Shown is the velocity
magnitude.
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workload across processes. This imbalance is introduced by the chimera interface and the interpolation of the solution
in overlapping cells, which is only necessary near the overlay mesh. A possible approach is dynamic load balancing as
outlined in [37]. Since the trajectories of the moving geometry are predictable with sufficient accuracy for a couple of
time steps, the load balancing might be achieved in a priori fashion.

When the issues regarding computational performance are eliminated we plan to use this method on a range of
interesting cases with wake vortex encounters during approach and landing or in formation flight. This will enable the
accurate simulation of the interaction between a wing and atmospheric disturbances, which is so far restricted in our
present two-way coupling approach [3].
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