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Abstract
We describe the implementation of a 3d Lagrangian particle tracking (LPT) system based on event-based vision (EBV) 
and demonstrate its application for the near-wall characterization of a turbulent boundary layer (TBL) in air. The viscous 
sublayer of the TBL is illuminated by a thin light sheet that grazes the surface of a thin glass window inserted into the wind 
tunnel wall. The data simultaneously captured by three synchronized event cameras are used to reconstruct the 3d particle 
tracks within 400 μm of the wall on a field of view of 12.0mm × 7.5mm . The velocity and position of particles within the 
viscous sublayer permit the estimation of the local vector of the unsteady wall shear stress (WSS) under the assumption of 
linearity between particle velocity and WSS. Thereby, time-evolving maps of the unsteady WSS and higher-order statistics 
are obtained that are in agreement with DNS data at matching Reynolds number. Near-wall particle acceleration provides the 
rate of change of the WSS which exhibits fully symmetric log-normal superstatistics. Two-point correlations of the randomly 
spaced WSS data are obtained by a bin-averaging approach and reveal information on the spacing of near-wall streaks. The 
employed compact EBV hardware coupled with suited LPT tracking algorithms provides data quality on par with currently 
used, considerably more expensive, high-speed framing cameras.

1  Introduction

Event-based vision (EBV), also termed dynamic vision 
sensing (DVS), is a new upcoming field within the field 
of computer vision and is inspired by the spiking mode 
of operation of the eye’s retina. Contrary to conventional 
frame-based imaging, EBV only records changes of image 
intensity (i.e., contrast changes) on the pixel level, triggering 
a positive event ( +1 ) for increasing intensity and a negative 
event ( −1 ) for a decreasing intensity change. The typical 
threshold of the intensity change trigger is on the order of 
10–20% but can be fine-tuned. As the pixels on the detector 
respond individually, the events appear asynchronously 
throughout the detector area resulting in a continuous 
stream of data, with each event datum Ei = Ei(x, t, p) 
consisting of pixel coordinates �� = (xi, yi) , a time stamp 
ti , and a polarity pi ∈ {+1,−1} indicating the direction 

of the intensity change. Unlike to conventional imaging, 
intensity is not directly available and the random nature of 
the asynchronous stream of events necessitates completely 
different data processing algorithms that are subject of 
current research. For a recent review of the technology and 
underlying concepts, the reader is referred to the topical 
review by Gallego et al. (2022).

After original prototype and conceptual development 
of the technology in 1990s, affordable and ready-to-use 
hardware based on EBV only recently has become available 
with current sensor resolutions of 1 MPixel. This has 
broadened the range of applications as testified in a steadily 
increasing number of publications (see, e.g., Robotics and 
Perception Group 2023; Gehrig and Scaramuzza 2024).

The application of EBV for the visualization and 
measurement of fluid flows is by no means new. Initial 
work was performed by Drazen et al. (2011) on particle 
tracking velocimetry (PTV) of dense particles in a 
solid–liquid two-phase pipe flow using an EBV sensor of 
256 × 256 pixels and continuous laser (5W) illumination. 
Ni et al. (2012) used an EBV array of 128×128 elements 
to demonstrate microparticle tracking ( μPTV) with 12 μm 
microspheres and were able to detect Brownian motion. 
Using a stereoscopic EBV system, Wang et al. (2020b) 
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implemented a 3d PTV system allowing them to reconstruct 
three-dimensional tracks combining 2d tracking results 
from two cameras. Their flow experiment consisted of 
a small hexagonal cell with a stirrer inducing a swirling 
flow containing O(100 μm ) polystyrene spheres. First PTV 
measurements in an air flow were performed by Borer 
et al. (2017) using three synchronized EBV cameras (128×
128 pixels) to track helium-filled soap bubbles (HFSB) 
in volumes up to about 1 m side length using white light 
LED arrays for illumination. The flow was only sparsely 
seeded allowing individual particles to be tracked with final 
data sets containing up to O(1 000–10 000) tracks. More 
recently, Rusch and Rösgen (2023) re-implemented this 
concept as a real-time 3d PTV system enabling live flow 
field reconstruction.

The work presented herein extends upon the recently 
introduced event-based imaging velocimetry (EBIV) con-
cepts (Willert 2023; Willert and Klinner 2022) and intro-
duces a 3d-3c Lagrangian particle tracking (LPT) system in 
a macroscopic imaging configuration with a magnification 
of O(10 μm∕pixel ), thereby capable of resolving the flow 
at the viscous scale. In comparison with previous event-
imaging implementations, much higher seeding densities are 
achieved. However, due to the high data load, the captured 
sequences of event data currently cannot be processed in real 
time and have to be analyzed in an offline fashion, that is, 
after completion of the measurement.

To demonstrate the viability of the proposed technique, 
the setup is used to acquire the near-wall trajectories of trac-
ers within the viscous sublayer of a TBL, specifically to 
estimate the unsteady WSS. In this sense, the work addresses 
the current shortcoming of measurement techniques capable 
of providing reliable data of the unsteady WSS vector. The 
acquired data can be directly compared to readily available 
direct numerical simulations (DNS) at matching Reynolds 
numbers for this canonical TBL flow.

As pointed out in the review by Örlü and Vinuesa (2020), 
the measurement of the unsteady WSS remains a challenge 
with very few approaches capable of measuring the unsteady 
WSS directly, with the exception of a few micro-mechanical 
implementations such as the shear stress imaging device 
by Kimura et al. (1999) which relies on the measurement 
of the actual shear force acting on an array of transducers. 
The majority of WSS measurement devices rely on an indi-
rect measurement, typically of the near-wall velocity in the 
region dominated by viscous forces, namely the viscous 
layer at the wall, which extends out to about 5 viscous units 
l∗ = � ∕u� . Here, � is the kinematic viscosity of the fluid and 
u� the friction velocity which itself is related to the WSS �w 
and the fluid’s density � by u� =

√
�w∕�.

Aside from hotwire anenometry (HWA) and the micro-pil-
lar method (Brücker et al. 2007; Große and Schröder 2008), 
most indirect WSS measurement techniques are particle-based 

methods, that is, variants of laser Doppler anemometry (LDA) 
or particle imaging. Among these, the following offer the 
desired combination of unsteady measurement of the WSS 
vector on a reasonable field of view (FOV), that is, they are 
not limited to point-wise measurements:

•	 Gnanamanickam et al. (2013), Liu et al. (2019) and Brücker 
(2015) used micro-pillars to get maps of the unsteady WSS. 
Some of the measurements were biased because the length 
of the pillars extended beyond the viscous layer.

•	 Using digital microscopic holography ( μDH) (Sheng 
et  al. 2008) or digital Fresnel reflection holography 
(DFRH) (Kumar et al. 2021), the TBL was imaged at a 
high magnification to retrieve unsteady 3d-3c flow data. 
Both techniques were applied in turbulent channel flow 
(TCF) in water.

•	 Near-wall particle image velocimetry (PIV) at high mag-
nification generally provides data on the streamwise WSS 
component �w,x (de Silva et al. 2014; Willert et al. 2018; 
Wang et al. 2020a).

•	 Volumetric, near-wall PTV was used by Bross et al. 
(2019) to recover WSS information linking it to the 
three-dimensional dynamics of rare localized separation 
events within the viscous sublayer.

•	 Depth-from-defocus techniques, such as astigmatic μPTV 
(Fuchs et al. 2023) or multi-aperture micro-PTV (MAμ
PTV) (Klinner and Willert 2024), image the particle field 
with the optical axis aligned to the wall-normal direction 
y.

•	 The “Shake the Box” (STB) technique (Schanz et al. 
2016) provides time-resolved 3d-3c LPT data (Schröder 
et al. 2015, 2024) and, in terms of data provided, is most 
closely related to the approach presented herein.

The following article introduces a measurement configura-
tion that can capture fields of the unsteady WSS vectors 
by tracking the motion of particles within the viscous sub-
layer using the novel event-imaging approach. The paper is 
organized as follows: the specifics of the event camera-based 
3d-3c system are followed by a description of the data pro-
cessing including the employed particle tracking algorithm 
and an error assessment. The results section concentrates 
on the variety of data that can be derived from the particle 
tracking data including near-wall flow statistics and derived 
WSS. The discussion positions the herein introduced event-
based 3d PTV among existing approaches and addresses 
shortcomings of particle imaging-based WSS estimation.
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2 � 3d‑3c event‑based tracking system

The 3d-3c particle tracking system comprises a triplet of 
event cameras (Prophesee EVK4, Sony IMX636 sensor, 
1280 × 720 pixels, 4.86 μm pixel size) in a photogrammetric 
configuration, that is, arranged in a manner to capture a 
common, relatively thin volume of interest. Scheimpflug 
mounts on the two off-normal cameras allow a common 
plane of focus for all three cameras (Fig. 1a). The three 
cameras are synchronized with an external 1 MHz source to 
ensure a common time base. In addition, reference pulses at 
100 Hz allow precise alignment of the separately recorded 
event sequences with a resolution of 1 μs with respect to one 
another (cf. Figure 2). This is necessary since the cameras 
operate in a continuous mode and cannot be started from 
a common well-defined trigger and consequently require a 
posteriori re-alignment of the streamed data.

In the present application, the tracking system is mounted 
below the wind tunnel section and observes the bottom layer 
of the TBL through a 1-mm thin glass window with anti-
reflective coating. This domain is illuminated with a ≈ 0.5

-mm thin light sheet introduced from the side of the wind 
tunnel with a slight inclination ( ≈ 0.5◦ , cf. Figure 1b). The 
light sheet is oriented such that all cameras receive the light 
scattered by the tracers at a common scattering angle of 90◦ . 
This results in similar illumination intensities on all three 
detectors and avoids angle-dependent Mie scattering differ-
ences between the cameras.

At a working distance of about 200 mm, a common 
FOV of about 12.0 × 7.5mm2 is captured (magnification 
m = 0.48 with 10 μm/pixel ). The pulsed laser (Innolas/Ira-
dion, Nanio-Air 532-10-V-SP) is operated at a pulsing fre-
quency of 5 kHz with an integral power of about 1–2 W and 
is synchronized to the camera time base (see Fig. 2). The 
macro-objective lenses (Nikon Micro-Nikkor 55 mm / 2.8) 
are stepped down to f# = 8.

Water-based tracer particles of about 1–2μm and a lifetime 
of about 10 min are provided by a fog generator (HazeBase 

Classic, base*M fluid). As detailed in Appendix 1, the 
temporal response of these tracers is estimated to be in the 
range of 3 μs < tp < 12 μs with Stokes numbers well below 
unity, guaranteeing good flow following properties.

For the measurements, event recordings of up to 
60  s duration are acquired at wind tunnel speeds of 
U∞ = 5.2, 7.5 and 10m∕s . Table  1 summarizes specific 
aspects of the acquired raw data such as event data rate and 
the amount of actual data streamed to the host computer. 
Table 1 also provides the TBL’s characteristic parameters 
which were obtained by high-speed profile PIV (Klinner and 
Willert 2024).

Keeping the laser energy and light sheet position 
constant, the seeding density is varied by more than one 
order of magnitude resulting in a corresponding variation 
in the event data rates. The EBV camera settings—so-called 
biases—are adjusted for minimal pixel refractory time 
(“dead time” after event detection) and to favor positive ( +1 
events) as these were found to be more responsive than the 
bright-to-dark contrast changes ( −1 events). The imbalance 
between positive and negative contrast change detection is 
a detector-specific behavior, a further investigation thereof 
being beyond the scope of this article. Figure 3 intends to 

Fig. 1   Triple event camera setup 
placed below the 1-m wind 
tunnel of DLR in Göttingen for 
particle tracking in the viscous 
sublayer of a TBL (a), laser 
light sheet grazing the window 
at the observation area at an 
estimated angle of ≈ 0.5 ◦ to the 
surface (b)

Fig. 2   Synchronization unit provides a common time base for all 
event cameras as well as a laser trigger
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provide an impression of the event data acquired by one of 
the cameras at two different seeding concentrations.

3 � Camera calibration

Elemental for reliable 3d-PTV is an accurate camera map-
ping which allows a transformation from image space into 
object space and back. This is generally achieved using 
established camera calibration procedures.

Calibration data in the form of image–object 
correspondence points is collected from recordings of 
a calibration target. Here, a checker-board target with 
1mm × 1mm squares printed on glass is mounted parallel 
to the observation window and traversed in wall-normal 
(y) direction at increments of Δy = 250 μm (Fig. 4a). Due 
to insensitivity of the EBV to static imagery, the glass 
target is back-illuminated by a pulsed LED at 100Hz . 
Summing events over a period of 0.5 s provides high-
contrast calibration images suitable for grid marker 

Table 1   Overview of 
acquired event data including 
characteristics of the studied 
TBL as determined with HS 
profile PIV

acombined for all three event cameras,
btracks of length Ntrack ≥ 7 after validation at a wall distance [0.5 < y+1.5]

U∞ [m∕s] 5.2 7.5 10.0
Re� 563 754 935
u� [m∕s] 0.223 0.304 0.390
l∗ = � ∕u� [μm] 68.8 50.5 39.4
�99 [mm] 38.7 38.1 36.8
 Data set 5-3 5-1 5-4 5-2 7-1 7-3 7-2 10-1
Duration [s] 60 60 60 60 10 10 10 10
Event rate [106 Ev/s] 1.5 8.2 14.1 23.2 8.1 16.6 16.9 13.4
Pos. Events 97 % 85 % 77 % 75 % 89 % 80 % 80 % 81 %
Data ratea [MB/s] 21 92 148 216 92 167 169 141
Track yieldb 60 % 54 % 39 % 4.8 % 40 % 30 % 24 % 41 %

Fig. 3   Sample pseudo-images from 10ms of the event stream 
recorded by the central camera at 1.5Mev∕s (a) and 23Mev∕s (b). 
The lower rows (c) and (d) show zoomed portions of the above. With 

a laser pulse rate of 5 kHz , the pseudo-images contain 50 laser pulses. 
Only positive (dark-to-bright) contrast changes are shown
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detection (Fig.  4b). The common FOV shared by the 
cameras, as depicted in Fig. 5, extends about 12mm by 
7.5mm in streamwise and spanwise direction, respectively.

The accuracy of particle reconstruction in relation to the 
glass surface requires the knowledge of the plane spanned 
by the target in relation to the plane of glass surface. This 
is achieved by triangulation of stationary particles and dust 
attached to the surface of the window, which are readily 
detected in the raw event data as continuous triggered pixel 
clusters. A 2d plane fit provides the reference plane to which 
the reconstructed track data will be aligned (Fig. 5b). The 
slope amounts to about 50 μm across the 10mm FOV (incli-
nation ≈ 0.3 ◦).

A dual plane method is used to map between object and 
image space and to compute epipolar lines to match the 
particle images between the views. A particle-based residual 
alignment such as typically performed in 3d STB LPT is 
currently not applied.

4 � Event data processing

Prior to particle tracking, the acquired event recordings 
are temporally aligned using the external 100-Hz reference 
markers and then converted to pseudo-image sequences by 
re-sampling the event data at a frequency corresponding to 
the laser pulsing rate. During a sample interval, e.g., 200 μs 
at 5 kHz laser pulsing, any given pixel is only allowed to 
produce at most one event. Hence, the resulting pseudo-
image is binary in nature. The automated event sampling 
is performed on the basis of searching for the minimum in 
the ensemble averaged event histogram, a representative 
example of which is given in Fig. 6 for a laser pulsing 
frequency of 5 kHz . In this case, the sampling period, as 
indicated by the red dashed lines, would begin with an 
offset of ≈ 175 μs and end 200 μs later. As described in more 
detail in Willert (2023), the use of pulsed light intends 
to mitigate issues related to the delayed response, e.g., 
latency, of the event detector. This latency is apparent in 
Fig. 6b with events being registered by the detector up to 

Fig. 4   Camera calibration setup using a back-illuminated checker-
board target mounted on a micro-translation stage (a), simultaneous 
camera views of the target (b)

Fig. 5   Camera field of view at y = 0 and y = 500 μm (a). 
Reconstructed plane of the glass insert based on 3d reconstruction of 
stationary particles stuck to the surface (b)

Fig. 6   Histograms of positive ( +1 ) contrast change event data 
recorded by one of the three cameras with the laser pulsing at 5 kHz ; 
green line indicates a periodic reference marker at 100Hz used for 

registration of event streams to one another; (a) raw stream binned at 
10 μs intervals, (b) mean event distribution during one pulsing period 
( 200 μs)
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100 μs after being exposed to the short pulse of light (about 
20 ns ). Another advantage of the pulsed light approach is the 
capture of stationary particles which would be “invisible" 
when illuminated by a continuous light source. Finally, the 
use of continuous illumination was found to “favor" slower 
particles since they have a higher likelihood of triggering 
events while crossing a given pixel. This would bias the 
measurement toward lower velocities already at the raw data 
stage (Willert 2023).

Particle tracking is performed for each camera view 
individually by first extracting contiguous binary pixel 
blobs from the pseudo-images and computing their cen-
troids (center of mass). A k-d tree-based nearest neighbor 
search scheme then detects tracklets across three adjacent 
pseudo-images and extends these via a predictor scheme to 
the following image frames. The tracker accepts gaps of up 
to one pseudo-frame to prevent a premature truncation of 
tracks. Given the high variability of particle velocity and 
paths within a very thin volume, a multiple pass scheme is 
implemented: first, slow moving particles are tracked and 
removed from the pool of particle positions. By gradually 
increasing the initial search radius, the next tracking passes 
draw candidates from a gradually reduced pool of particle 
positions. This process is repeated 3 to 4 times.

Using the 2d tracks for the three cameras views, recon-
struction of the 3d tracks is performed using the epipolar 
lines of a given particle on the other two views. Using a 
cubic B-spline fit on the raw 3d position data yields a set of 
spline coefficients and provides a continuous description of 
the particle’s position, velocity, and acceleration along the 
track, that is, in time and space. The spline fit is weighted 
proportionally to the inverse of the residuals of the 3d par-
ticle position. Track validation is based on the residuals of 
the cubic spline fit ( rf it ≤ 10 μm ), a minimal track length 
( Ntrack ≥ 7) , and maximum allowed wall-normal fluctuation 
( vrms < 0.02U∞ for y+ < 2).

The wall shear stress vector 𝜏w = [𝜏w,x, 𝜏w,z] for each vali-
dated particle position is then obtained be dividing its esti-
mated wall parallel velocity u = [u, 0,w] by its distance from 
the wall Δy as an approximation to the definition of WSS

with � representing the dynamic viscosity and the range of 
Δy limited the viscous layer ( y+ < 5 ). Here it is crucial that 
the wall distance Δy is corrected for any offset and tilt of the 
wall surface as described in Sect. 3.

4.1 � Error estimation

The estimation of the wall shear stress �w based on the dis-
crete approximation given in Eq. 1 is affected by two primary 

(1)𝜏w = 𝜇
𝜕u

𝜕y

||||y=0 = 𝜇 lim
y→0

u(y)

y
≈ 𝜇

u(Δy)

Δy

sources of error: (1) the uncertainty of the distance of the parti-
cle from the wall �y and (2) the measurement uncertainty in the 
particle’s velocity �u . In combination, the two errors will result 
in a rapid increase in the measurement uncertainty toward the 
wall. Classical methods of error propagation provide the rela-
tive error of the estimated WSS for the approximation given 
in Eq. 1:

Reasonable constraints for �y and �u(y) can be derived from 
the residuals of the three-component reconstruction or the 
track fitting scheme, here, a cubic B-spline. After valida-
tion, the latter are in the order of rf it = 5 μm in the sampling 
domain [0.5 < y+ < 1.5] (see Fig. 11d). As depicted in Fig 7, 
the error on a single WSS estimate can be in excess of 10% 
in the domain of interest. These estimates are based on the 
mean residual of the B-spline curve fit, rf it , obtained by sub-
tracting the 3d track particle positions from their fitted posi-
tions. Very close to the wall ( y+ < 2 ), the particle motion 
has a negligible wall-normal component v such that the error 
can be constrained in the validation step by limiting the vari-
ance of v (dash–dot and dotted curves in Fig 7). However, 
this has only a minor influence on the WSS error ��w.

Using the single sample uncertainty ��w = ��w�w , the uncer-
tainty on the mean and higher-order statistics of a quantity 
x can be expressed in terms of the 95% confidence interval 
(Benedict and Gould 1996):

(2)��w(y) =
��w

�w
=
[
�u

2 + �y
2
]0.5

(3)=

[(
�u(y)

u(y)

)2

+

(
�y

y

)2
]0.5

Fig. 7   Estimated error of the WSS for different mean values of the 
residuals of the 3d cubic B-spline track fitting
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where Ns,eff < Ns is the estimated number of uncorrelated 
samples within the set Ns and can be obtained by account-
ing for the integral time scale Tu for the near-wall flow. 
Using DNS, Quadrio and Luchini (2003) estimated the 
integral time sale Tu in the viscous layer at about 20 vis-
cous time scales, t∗ = � u−2

�
≈ �� (see Eq. 15), such that 

Tu ≈ 20 t∗ ≈ 6ms at U∞ = 5.2m∕s . This time span covers 
30 laser pulses (at fs = 5 kHz ) such that the effective number 
of samples becomes:

For U∞ = 7.5m∕s and U∞ = 10m∕s , the factor Tufs , 
respectively, reduces to 16.4 and 10.0. Combining Eqs. 4 
and 5 with Eq. 6 yields the uncertainty estimates for the 
given quantities. Even with a single sample uncertainty 
of �x = 20% , the large sample sizes of O(1 × 107 ) reduce 
the relative uncertainty to levels of O(1 × 10−3 ) for the 

(4)�⟨x⟩ =
1.96

⟨x⟩

�
�2
x

Ns,eff

(5)�xrms
=

1.96

⟨xx⟩0.5
�

�2
x

2Ns,eff

(6)Ns,eff =
1

Tufs
Ns =

1

30
Ns.

root mean square (rms) values. Here it should be noted 
that this uncertainty does not include more influential bias 
errors that are, e.g., introduced by possible misalignment 
of the estimated wall plane as well as vibrations and other 
calibration related errors.

Another source of uncertainty is routed in the linearity 
assumption of the fluid velocity within the viscous sub-
layer. As illustrated in Fig. 8c for direct numerical simu-
lation (DNS) TBL, the profile of mean streamwise veloc-
ity already deviates by nearly 4% from linearity at a wall 
distance of y+ = 5 . Therefore, a reliable estimation relies 
on particle velocity data provided for y+ ≤ 4 . At the same 
time, the relative uncertainty of yp rapidly increases as 
the particle distance Δy approaches the wall as described 
before.

The availability of DNS also provides justification for 
track validation based on the variances of the individual 
velocity components along the track. In particular, Fig. 8e 
shows that at a wall distance of y+ < 2 , the wall-normal 
fluctuations vrms are an order of magnitude smaller than 
streamwise or spanwise fluctuations. More importantly, 
the velocity fluctuations, shown in Fig.  8f, converge 
differently toward their limiting values at the wall, which 
has a notable influence on the estimation of the WSS 
fluctuations as described later.

Fig. 8   Profiles of mean streamwise U+ (top row) and root mean 
square (rms) of all three velocity components (bottom row) from 
DNS of TBLs by Sillero et  al. (2013) in log-scaling (a,d), linear 

scaling near the wall (b,d). (c): deviation of U+ from linearity; (f): 
velocity root mean square (rms) normalized with U+ . Gray shaded 
areas in (a,d) represent domains in (b,c,e,f) for y+ ≤ 8
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5 � Results

Figure 9 shows two realizations of recovered near-wall 
tracks at U∞ = 5.2m∕s ( Re� = 563 ). The particle positions 
are color coded with the local wall stress magnitude ∣ 𝜏w ∣ . 
While the tracks in Fig. 9a indicate a low-shear condi-
tion and even some flow reversal, the flow topology is 
completely different only 8 ms later (Fig. 9b) when it is 
dominated by a high shear rate aligned with the mean flow 
direction. The shear rate partially exceeds the mean value 
by a factor of two. Animations of the near-wall particle 
motion at different playback speeds are provided as part 
of the supplementary material, see section Appendix 2.

A short record of 0.2 s duration shows the evolution 
of WSS estimates within a small ( 1 × 1mm2 ) area in 
Fig. 10. The streamwise component �x reaches negative 
values (reverse flow, marked red in plot) at t ≈ 13.93 s and 
t ≈ 13.98 s , whereas the spanwise component �z exhibits 
several extreme events in excess of 3-4 times the rms. Of 
importance is the fact that the randomness of the LPT 

data does not provide continuous time records for a given 
point. This prevents the ad hoc calculation of space–time 
characteristics such as frequency spectra or temporal 
correlations. To allow this, the random data would first 
need to be subjected to data assimilation or interpolation 
schemes.

5.1 � Mean velocity profile and statistics

Profiles of mean particle velocity and associated higher 
moments are compiled by bin-averaging across the FOV 
at different discrete wall distances yi of sample height Δy . 
Figure 11 presents profiles obtained with a bin height of 
Δy = 1 μm . The mean streamwise profile (Fig. 11a) is in 
good agreement with the DNS up to a wall distance of 
y ≈ 200 μm beyond which it begins to deviate. The deviation 
is believed to be sourced in the under-representation of faster 
particle tracks in the statistics: at a velocity of U = 1m∕s the 
particles move 20 pixel between laser shots, such that faster 
moving particles are less likely to be tracked reliably. This 
could be improved by increasing the laser pulsing frequency, 

Fig. 9   Processed particle tracks 
color coded with wall shear 
stress magnitude at Re� = 563 
( U∞ = 5.2m∕s) . Each frame 
represents 5 ms of event data 
(25 light pulses). The mean flow 
direction is from left to right. 
The time separation between 
frame (a) and frame (b) is 8 ms

Fig. 10   0.2 s sample of 
WSS data at Re� = 563 
( U∞ = 5.2m∕s ) sampled in an 
area of 1 × 1mm2 , streamwise 
(top), spanwise (middle) and 
magnitude (bottom). Dashed 
lines indicate mean of quantity, 
dotted lines ±1 standard 
deviation (rms)
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but must be balanced against a reduced number of tracks 
in order not to exceed the limited event detection rate of 
the EBV sensor. In addition, a latency of ≈ 100 μs of the 
used EBV cameras restricts pulsing rates to below ≈ 10 kHz 
to prevent cross-talk between adjacent light pulses. For the 
present data set, useful velocities are available up to a wall 
distance of y+ ≈ 4 ( 300 μm ). For the estimation of WSS, the 
sampling volume is restricted to one viscous unit with the 
range [0.5 < y+ < 1.5].

The slope of the mean prof ile in a range 
[20 μm ≤ y ≤ 150 μm] is used for the estimation of the mean 
velocity gradient at the wall, �u∕�y|y=0 , which in turn is 
required in (Eq. 1) to estimate the mean WSS, ⟨�w⟩ , along-
side with the estimation of the viscous scaling l∗ = �∕u�.

The rms of all three components of the particle velocity 
is plotted in Fig. 11b and is in reasonable agreement with 
DNS following the trend but slightly underestimates the 
DNS reference. The rms of the wall-normal component vrms 
is at a nearly constant level throughout, indicating noise. 

With the near-wall flow essentially restricted to be only wall 
parallel, track validation can rely on limiting the variance 
and magnitude of the wall-normal component (see also 
Fig. 8f).

Finally, Fig.  11c provides the third and fourth order 
moments, that is, skewness S(u) and flatness F(u) of the 
streamwise velocity. While also underestimating the DNS 
predictions, the  profiles begin to strongly deviate with 
increased proximity to the wall, indicating an increased 
amount of erroneous data near the wall, the net effect 
of which is averaged out in both the mean and the rms 
fluctuations.

In addition to the profiles of mean and higher-order 
moments, Fig. 11d provides the relative sample count for 
each of the 1 μm bins (black line). This value modulates at a 
spatial frequency of Λ = 24.0 ± 0.5 μm and can be explained 
by an intensity modulation within the laser light sheet that 
is reflected by the glass surface while grazing it at a shallow 
angle. Within the darker regions, the probability of event 

Fig. 11   Bin-averaging results using bins of Δy = 1 μm : (a) near-
wall velocity profile (+) and DNS prediction (red line), gray area 
indicates sampling domain for WSS estimation; (b) rms of velocity 
components for streamwise (blue), spanwise (green) and wall-normal 
(gray) components; (c) skewness S(u) and flatness F(u) estimates of 

streamwise velocity in comparison to values predicted by DNS (solid 
lines, from Schlatter and Örlü 2010); (d) relative sample count Nbin 
within the bins (red line) and averaged track length normalized by 
maximum possible ( Nmax = 30)
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generation is reduced which results in a local reduction in 
track data rate. The spacing of the interference fringes, Λ , is 
related to the incidence angle � by

where � is the wavelength of the laser light (i.e., 532 nm ). 
The estimated angle of � = 0.635 ◦ matches the 5mm entry 
height of the laser beam 500mm away at the side of the 
tunnel.

The interference pattern introduces modulation in 
the velocity profiles and associated higher moments that 
become more pronounced with closer proximity to the 
wall. The influence of the light intensity modulation on 
event generation and resulting biased 3d particle positions 
is not yet fully understood. A possible explanation could 
be a proportionally higher number of single-pixel-sized 
particle images in the intensity minima which have a higher 
reconstruction 3d uncertainty compared to larger particle 
images observed in the brighter regions. The smaller particle 

(7)Λ =
�

2 sin(�)

images have a higher 3d reconstruction uncertainty and are 
likely to be position biased in a manner similar to the pixel-
locking effect in PIV. Ideally, this interference borne data 
modulation should have been prevented altogether, such 
as by placing a non-reflective coating just outside of the 
immediate field of view. In light of this, the fluctuations ui,rms 
have their highest deviations from the predicted profiles at 
the minimum sample count which suggests that the most 
reliable values are located at the maxima of the sample 
counts. It should be noted that these modulations would not 
have been detected without an accurate plane adjustment as 
part of the camera calibration (cf. Figure 5b).

5.2 � Wall shear stress distribution and statistics

Following Eq.  1, the unsteady wall shear stress (WSS) 
estimates are directly calculated using the particle’s current 
velocity ui and distance from the wall Δyi . Probability 
distributions of both components of the WSS vector 
are given in Fig.  12 for U∞ = 5.2 m∕s and Fig.  13 for 
U∞ = 7.5 m∕s . The distributions closely match those found 

Table 2   Statistics of the WSS 
for different data sets sampled at 
a wall distance [0.5 < y+ < 1.5] . 
Estimated values for �+

i,rms
 

according to Eq. 8

U∞ [m∕s] 5.2 7.5 10.0
Re� 563 754 935
Data set 5-3 5-1 5-4 7-1 7-2 7-3 10-1
�+
x,rms

 (est.) 0.412 0.417 0.421
�+
x,rms

0.413 0.416 0.415 0.417 0.427 0.428 0.439
diff +0.2% +1.2% +0.7% ±0% +2.3% +2.6% +4.3%

�+
z,rms

 (est.) 0.278 0.283 0.287
�+
z,rms

0.243 0.244 0.240 0.235 0.237 0.237 0.229
diff −12.6% −12.2% −13.7% −17.0% −16.2% −16.2% −20.2%

S(�x) 0.978 1.012 1.027 0.989 0.997 0.992 0.942
S(�z) 0.028 0.010 − 0.023 0.007 − 0.005 0.040 − 0.001
F(�x) 4.41 4.56 4.66 4.45 4.60 4.56 4.45
F(�z) 6.76 7.39 7.77 7.43 7.83 8.19 7.20
Ns 11 × 106 32 × 106 26 × 106 3.7 × 106 3.7 × 106 4.2 × 106 3.8 × 106

Ns,eff 0.3 × 106 1 × 106 0.9 × 106 0.2 × 106 0.2 × 106 0.3 × 106 0.4 × 106

Fig. 12   PDFs of streamwise 
(a) and spanwise (b) wall 
shear stress components 
normalized by the rms of the 
respective values compiled 
from Ns = 30 × 106 correlated 
samples obtained from an 
event record of 60 s duration 
at U∞ = 5.2 m∕s ( Re� = 563 ). 
Velocity data are sampled in 
the range [0.5 < y+ < 1.5] using 
particle tracks with a minimal 
length of 7
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in literature for DNS data (e.g., Figure 5 in Diaz-Daniel 
et al. 2017) and experiments (e.g., Figure 7 in Liu et al. 
2019). At U∞ = 5.2 m∕s , the data set is based on a 60 s 
record and sampled in a wall distance of [0.5 < y+ < 1.5] 
( y = 35 ∼ 105 μm ) for the estimation of the WSS according 
to Eq. 1. For 60 s of processed event data, the statistics 
represent a total of 8000 boundary layer turnover times of 
�99∕Ue = 5.2ms ( Re� = 563 , �99 = 39mm).

The skewness S�x and flatness F�x
 of the WSS components, 

summarized in Table 2, are in good agreement with data 
obtained at similar Reynolds numbers from DNS and experi-
ments alike (see, e.g., Table I in Diaz-Daniel et al. 2017).

The correlations for the rms of the WSS, �+
xi,rms

 , proposed 
by Örlü and Schlatter (2011) have a Reynolds number 
dependency:

with C0,x = 0.298 and C0,z = 0.164 . At Re� = 563 , this, 
respectively, predicts �+

x,rms
= 0.412 and �+

z,rms
= 0.278.

The WSS fluctuation estimates presented in Fig. 14 
are compiled from a variety of recordings at different 
seeding concentrations and different sampling intervals. 
Whereas the streamwise WSS fluctuations �+

x,rms
 are slightly 

overestimated, but within error bounds, the spanwise 
fluctuations �+

z,rms
 are underestimated by more than 10% 

which has also been observed in comparable measurements 
using MAμPTV (Klinner and Willert 2024). A plausible 
explanation for this underestimation is the different 
convergence of the velocity fluctuations toward their limiting 
values at the wall as mentioned in Sect. 4.1 (see Fig. 8f).

Joint probability distributions of the WSS are plotted in 
Fig. 15 for two Reynolds numbers using a sample size of up 
to Ns = 30 × 106 (at Re� = 563 ). These distributions agree 
very well with the results obtained with MAμPTV at the 
same Reynolds numbers (see Klinner and Willert 2024). 
Similar data have also been acquired by Sheng et al. (2008) 

(8)�+
xi,rms

=
�xi,rms

�w
= C0,i + 0.018 lnRe�

for turbulent channel water flow at a friction Reynolds 
number of Re� = 1400 ( u� = 0.056m∕s ) and by Bross et al. 
(2019) for a TBL in air at Re� = 2500 ( u� = 0.191m∕s).

The contours in Fig.  15b show a small bulge near 
�w = 0 which is believed to be caused by artifacts arising 
by the colinear arrangement of the three cameras along 
the streamwise direction. Due to this linear camera 
arrangement, the epipolars between all three cameras 
are parallel. Therefore, multiple particles moving 
in streamwise direction have a higher likelihood 
of overlapping along the field of view and result in 
mismatching (ghost particles). This effect increases 
as the seeding density is increased. More sophisticated 
LPT schemes, such as a modified 3d STB (Schanz et al. 
2016), should be able to handle this deficiency and could 

Fig. 13   Same as Fig. 12 
obtained at U∞ = 7.5 m∕s 

( Re� = 754 ) using 10 s of data 
with Ns = 4.2 × 106

Fig. 14   rms fluctuations of WSS of streamwise (�) and spanwise (�)  
components of the WSS, determined from particle tracks in the vis-
cous sub-layer for [0.5 < y+ < 1.5] . Round markers ( ∙, ◦ ) represent 
data obtained with MA-μPTV (Klinner and Willert 2024); TBL-DNS 
( + , × ) by Sillero et al. (2013). Dashed lines correspond to Eq. 8 with 
different offsets Ci
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potentially recover more tracks from the raw event data. 
Adding a fourth camera would also reduce the likelihood 
of particle mismatch.

5.3 � WSS rate of change

Visualizations of the particle motion within the viscous sub-
layer exhibit strong spanwise activity that give an impression 
that the spanwise unsteadiness is more pronounced and of 
higher amplitude than the streamwise fluctuations (see, e.g., 
video supplement, Sec. B). To address this, we extracted 
the rate of change of the WSS from the particle tracking 
data as part of the B-spline track fitting step. Following the 
procedure of determining the unsteady WSS vector from the 
near-wall velocity data as per Eq. 1, the particle acceleration 
vector �� = [ap,x, ap,y, ap,z] can be retrieved from the tracking 
data and is related to the rate of change of the WSS vector:

In the following, the symbol â refers to this quantity and 
in effect is the particle acceleration ap,i divided by the wall 
distance:

Similar to the wall-normal velocity component v, the wall-
normal acceleration ay also vanishes due to the no-slip 
boundary condition at the wall.

Figure 16 presents probability density functions (PDFs) 
of the rate of change of the WSS, â , for both streamwise 
and spanwise directions with a joint PDF of the data shown 
in Fig. 17. Noteworthy is the near perfect symmetry of the 

(9)
𝜕

𝜕t

(
𝜏w
)
=

𝜕

𝜕t

(
𝜇
𝜕u

𝜕y

||||y=0
)

= 𝜇
𝜕a

𝜕y

||||y=0 ≈ 𝜇
��(Δy)

Δy
.

(10)âi =
𝜕𝜏i

𝜕t
= lim

y→0

ap,i

y

distributions with a slight shift of the streamwise component 
toward negative values (deceleration). This may be explained 
by the deceleration of the fluid within the boundary layer in 
the presence of a slightly positive pressure gradient. The rms 
of the WSS rate of change â is also essentially equivalent for 
both components, deviating by less than 5% (cf. Table 3).

Distributions of the near-wall particle acceleration and 
its relation to the WSS rate of change are rarely reported in 
the literature and mostly discussed in the context of inertial 
particle transport using DNS. The PDFs shown in Fig. 16 are 
strongly non-Gaussian and exhibit strongly pronounced tails 
with a high flatness F(â) = 30 ∼ 50 , which is indicative of 
high intermittency. This was already observed by, e.g., Yeo 
et al. (2010) for TCFs with Re� = 180 ∼ 600 . The distribu-
tions in Fig. 16 have a strong resemblance to acceleration 
data obtained from both DNS and experiments (by LPT) for 
inertial particles in homogeneous and isotropic turbulence 
(HIT) (Voth et al. 2002; Mordant et al. 2004; Schröder et al. 
2022). In this context, a stretched exponential function, also 
known as log-normal superstatistics (Beck 2004), is gener-
ally used to describe the shape of the probability distribu-
tion with Stelzenmuller et al. (2017) proposing the following 
expression:

According to (Stelzenmuller et al. 2017), the parametric 
variable si defines the shape of the distribution, whereas 
mi is related to the variance of ai . For the present WSS 
rate of change data, nonlinear least squares fitting yields 
s = 0.785 ± 0.014 and m = 0.941 ± 0.026 and an estimated 
flatness in the range of 30 ∼ 40 (c.f. Table 3). Although the 

(11)p(âi) =
es

2
i
∕2

4mi

⎡⎢⎢⎣
1 − erf

⎛⎜⎜⎝

ln
∣âi∣

mi

+ s2
i√

2 si

⎞⎟⎟⎠

⎤⎥⎥⎦
.

Fig. 15   Joint PDFs of the wall shear stress vector normalized by the rms of the respective components obtained at U∞ = 5.2 m/s ( Re� = 563 , 
(a)) and U∞ = 7.5 m∕s , ( Re� = 754 , (b)). Contour levels represent probabilities of 0.1%, 0.2%, 0.5%, 1% (red), 2%, 5%, 10%, 20% (red)
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investigated near-wall flow is very anisotropic by nature, 
the striking similarity of the PDFs P(â) to those of HIT 
could indicate a certain universality as already pointed out 
by (Stelzenmuller et al. 2017). Whereas previous studies 
have noted increased asymmetric PDFs of the acceleration 
components with increased proximity to the wall (e.g., 
Stelzenmuller et al. 2017, Zamansky et al. 2011, Yeo et al. 
2010), there is little information on the limiting case of 
particle acceleration very close to the wall ( y+ < 2 in present 
experiments), in particular the rate of change of the WSS, â , 
determined from the particle acceleration (see Eq. 9). Our 
findings suggest a fully symmetric (isotropic) behavior of 
the wall shear stress rate of change.

5.4 � Two‑point correlations of WSS

Two-point correlations provide a measure of similarity 
between the data u1 at a given point x0 in space x (or time t) 
with respect to the data point u2 in its neighborhood. Here 
it is calculated for the two wall shear stress components 
�i = �i (x, y, z, t) using the discrete version of the cross-
correlation coefficient:

(12)

R�i�j
(x, x0) =

∫ ��
i
(x, t) ��

j
(x0, t) dt√

∫ ��
i
(x, t) ��

i
(x, t) dt ⋅

√
∫ u�

j
(x0, t) �

�
j
(x0, t) dt

Table 3   Statistics of the WSS 
rate of change âi = 𝜕𝜏i ∕ 𝜕t for 
different data sets sampled at a 
wall distance [0.5 < y+ < 1.5] . 
Values for “LN-fit" are obtained 
from nonlinear least squares fit 
of Eq. 11

U∞ , [m∕s] 5.2 7.5 10.0
Re� 563 754S 935
Data set 5-3 5-1 5-4 7-1 7-2 7-3 10.1
⟨âx⟩ , [Pa/s] − 0.849 − 0.866 − 0.900 − 3.055 − 2.901 − 2.979 − 6.227
⟨âz⟩ , [Pa/s] − 0.018 − 0.006 − 0.005 0.001 − 0.032 0.023 − 0.006
âx,rms , [Pa/s] 11.42 10.92 11.32 34.47 33.82 34.02 75.44
âx,rms , [Pa/s] 11.17 10.83 10.96 34.18 34.15 34.47 72.93
âz,rms

âx,rms

0.978 0.976 0.968 0.991 0.976 1.01 0.967

S(âx) − 0.628 − 0.883 − 0.862 0.600 − 0.110 − 0.275 − 0.184
S(âz) − 0.024 0.009 − 0.056 0.060 0.275 − 0.000 0.219
F(âx) 49.4 58.5 58.2 65.3 28.3 47.7 27.5
F(âz) 32.8 29.9 51.5 35.5 75.1 31.8 74.1
F(âx) (LN-fit) 32.7 33.5 33.9 34.9 34.6 34.7 35.4
F(âz) (LN-fit) 34.7 35.9 37.1 41.9 41.4 42.1 46.8
sx (LN-fit) 0.770 0.772 0.782 0.807 0.802 0.802 0.829
sz (LN-fit) 0.782 0.791 0.811 0.848 0.849 0.853 0.921
mx (LN-fit) 0.977 0.959 0.956 0.954 0.959 0.959 0.964
mz (LN-fit) 0.936 0.913 0.904 0.848 0.848 0.836 0.819

Fig. 16   PDFs of rate of change of the WSS components normalized 
by the rms of the respective values compiled from Ns ≈ 30 × 106 
samples at U∞ = 5.2m∕s ( Re� = 563 ). Data are sampled in the range 
[0.5 < y+ < 1.5] using minimal track length of Ntrack = 7 . Detail 

near peak in linear scaling  (a),  logarithmic scaling  (b), double-log 
scaling (c). Solid lines represent a stretched exponential fit according 
to Eq. 11
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where the two quantities in the denominator are the square 
roots of the sample variances (i.e rms of �k ) while y is held 
constant (i.e. near-wall plane, y+ = 1 ). With the present WSS 
data being ungridded, the calculation of Eq. 13 requires a 
bin-averaging approach. Furthermore, it is assumed that the 
flow statistics are constant across the field of view such that 
each sampled value at position x0 is assumed to be located 
at the origin (x = 0, z = 0) . The distance to other points in 
the sample defines the location of the bin for incremental 
accumulation of the correlation statistics. As a result, the 
effective size of the correlation map is larger than the data 
domain, with decreasing bin entries toward the edges.

For the present data set, a square bin size of 
Δx × Δz = 250 × 250 μm2 ( 3.6 x+ × 3.6 z+ ) was chosen. As 
in the previous data processing, the data are sampled from a 
volume of one viscous height [0.5 < y+ < 1.5] resulting in a 
sample size of Ns ≈ 30 × 106.

The two-point correlation maps provided in Fig. 18a–c 
agree with DNS-based results by Jeon et  al. (1999) for 
Re� = 180 with deviations most likely related to the differ-
ence in Reynolds number (see Figs. 7a,b and 8a in their 
paper). Recent 3d-STB data by Schröder et  al. (2024) 
obtained from the same wind tunnel facility yielded very 
similar two-point correlation maps, albeit the sampling plane 
being located at y+ = 5.

The elongated contours of R�x�x
 are related to the stream-

wise near-wall streaks—wall parallel, counter-rotating vorti-
cal structures aligned in streamwise direction. Along x = 0 , 

(13)=
⟨ ��

i
(x, t) ⋅ ��

j
(x0, t) ⟩

⟨��
i
(x, t)2⟩0.5 ⋅ ⟨��

j
(x0, t)

2⟩0.5
the minima are, respectively, located at ±58 z+ for R�x�x

 and 
±47 z+ for R�z�z

 which corresponds to the mean spanwise 
spacing of about 100 ∼ 120 viscous units reported in the lit-
erature (Smith and Metzler 1983 and others). The correlation 
map for R�x�z

 shows a double-peak feature inclined at ≈ ±5 ◦ 
that relates the streamwise WSS �x to an off-axis maximum 
spanwise �z about 70 ∼ 80 x+ further downstream. This 
topology is likely to be related the ≈ ±6 ◦ features observed 
in space-time correlations by Lagraa et al. (2004), although 
this needs further investigation.

Compared to the correlation maps of WSS, the spatial 
signature of the WSS rate of change, â , shown in Fig. 18d–f, 
is much more compact with lobe-like negative correlation 
features. Very similar topology has been reported by 
Schröder et al. (2024) (see Fig. 11 in their publication). The 
fluid dynamical processes associated with the correlation 
topologies have yet to be investigated in further detail, 
and literature on this particular aspect is not known to the 
authors.

6 � Discussion

In the course of the experiments, event data were collected 
at different seeding densities to assess its influence while 
keeping all other parameters constant. The track detection 
rate given in Table 1 indicates that there is an optimum event 
data rate of about 8–12×106 Ev/s . A further increase in the 
event rate (= higher seeding) actually results in a reduction 
in the track detection rate. With increased particle image 
density, the likelihood of particle ambiguity and false track 
initialization also increases. At the highest seeding level with 

Fig. 17   Joint PDFs of the wall shear stress rate of change normalized 
by the rms of the respective components obtained at U∞ = 5.2m∕s 
( Re� = 563 , (a)) and U∞ = 7.5m∕s ( Re� = 754 , (b)). Contour levels 

represent probabilities of 0.1%, 0.2%, 0.5%, 1% (red), 2%, 5%, 10%, 
20% (red)
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more than 20 × 106 Ev/s (data set 5–2), the valid track vali-
dation rate drops to less than 5% , which is why this data set 
was omitted in the data analysis. Here an approach that first 
reconstructs the 3d particle positions followed by 3d track 
building, rather than tracking in 2d space for each camera 
view, is likely to provide better results.

Along with the increase in event rate, the saturation of the 
sensor readout causes increased latency in the time stamp-
ing such that pulses are no longer clearly separated; derived 
pseudo-frames will contain particle images from more than 
one pulse which cannot be separated in time. This also 
impacts the particle tracking performance.

Even at optimal particle image density and event data 
rate, the WSS determined from the tracking results showed a 
consistent underestimation of the spanwise WSS fluctuation 
�+
z,rms

 . This was also found in related measurements using 
highly accurate microparticle tracking techniques by Kumar 
et al. (2021) and Klinner and Willert (2024). Here DNS 
is particularly helpful in explaining the underestimation: 

Fig. 8d provides profiles of the velocity fluctuations for all 
3 velocity components. Focusing in on the near-wall region 
( y+ < 8 ) in Fig. 8e, they are characterized by different rates 
of change, with u+

rms
 to strongest, followed by spanwise w+

rms
 

( ≈ 40% at y+ = 5 ) and wall-normal v+
rms

 ( ≈ 10% at y+ = 5 ). 
However, when these quantities are normalized with the 
mean streamwise velocity U(y) as shown in Fig. 8f, they 
exhibit a completely different behavior: while the quantity 
urms∕U shows gradual decrease, its spanwise counterpart 
wrms∕U rapidly decreases with increasing wall distances, 
whereas the wall-normal quantity gradually increases from 
zero at the wall. The limiting values of the former two 
quantities, urms∕U and wrms∕U , at the wall ( y = 0 ), in fact, 
coincide with the WSS fluctuations and represent the DNS-
based estimates in Fig. 14. In the context of velocimetry-
based WSS estimation, the velocity must be sampled at a 
finite distance Δy from the wall. Close to the wall, both the 
velocity and wall distance approach zero and relative errors 
rapidly increase as explained in Sect. 4.1. Since the quantity 
urms∕U has a weaker decay compared to wrms∕U , the latter 

Fig. 18   Two-point correlation maps of the WSS (a–c) and its rate of 
change â (d–f) obtained at U∞ = 5.2m∕s ( Re� = 563 ) using tracking 
results from [0.5 < y+ < 1.5] and sample size of Ns ≈ 30 × 106 . 

Contour lines at −0.1 , +0.1 , +0.3 … (left column), ±0.05 (right 
column). Horizontal dashed lines indicate position of minima along 
x = 0
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will always be underestimated to a much higher degree. This 
is illustrated in Fig. 14 by sampling the DNS data at a finite 
wall distance of y+ = 2 as indicated by the gray symbols. 
This sampling domain is comparable to that chosen for the 
WSS estimation in the present work and leads to a com-
parable underestimation of the spanwise WSS fluctuation 
�+
z,rms

 . In principle, the underestimation can be corrected by 
computing the velocity variances at different wall distance 
intervals and extrapolating the trend toward the wall. The 
velocity fluctuations plotted in Fig. 11b closely follow the 
DNS predictions and justify the extrapolation approach.

At the highest bulk velocity of U∞ = 10m∕s , the particle 
track yield was insufficient for reliable WSS estimation, in 
part, due to the nearly doubled mean particle displacement 
(compared to U∞ = 5.2m∕s ), but also because of the pro-
portional reduction in the viscous scale from �∕u� = 69 μm 
to �∕u� = 37 μm . To a certain extent, a proportionally 
higher laser pulsing frequency could improve the measure-
ment. However, the bandwidth limitation of the EBV cam-
era hardware imposes a limit of about 10 kHz , in particular, 
at increased seeding levels. Overall it was found that the 
data quality improves with reduced seeding density which 
is related to the improved particle matching using only three 
cameras. Adding a fourth camera in the setup would provide 
additional redundancy, stabilizing the 3d particle position 
reconstruction.

In terms of FOV and spatial resolution, the herein intro-
duced configuration has advantages over other WSS meas-
urement techniques reported in the literature. Covering 
an area of 12 × 7.5mm2 ( 170x+ × 110z+ ), the FOV of the 
present implementation is considerably larger than that of 
the micro-pillar technique ( 2.1 × 2.1mm2Liu et al. 2019) 
or DFRH ( 1 × 1mm2 , 20x+ × 20z+ , Kumar et al. 2021) and 
μ DH ( 1.5 × 1.5mm2 , 88x+ × 88z+ , Sheng et al. 2008). Simi-
larly, the depth-from-defocus approaches have a small FOV 
on the order of 1 × 1mm2 (Fuchs et al. 2023; Klinner and 
Willert 2024). The MEMS-based WSS “imagers" by Kimura 
et al. (1999) provided a FOV of 22 × 7.5mm2 , however, on a 
relatively coarse grid of sensors consisting of 3 rows spaced 
at Δx = 10mm with 25 sensors each spaced at Δz = 300 μm . 
In this regard, the present work offers both a high spatio-
temporal resolution on a FOV covering in excess of one 
mean wall streak spacing.

7 � Conclusion and outlook

The material presented herein demonstrates the viability of 
event-based imaging velocimetry for accurate measurement 
of TBL properties by means of Lagrangian particle tracking, 
providing near-wall velocity profiles and WSS distributions 
along with derived quantities. The reduced data stream of 

EBV permits continuous recording on the order of minutes 
(or longer) using off-the-shelf computer systems for data 
storage. Uncertainties arising from the limited (1-bit) signal 
depth of the image data are accounted for by making use of 
the available temporal resolution of the raw data which is on 
the order of 5–10 kHz. Track reconstruction can be greatly 
improved using Wiener or Kalman filtering such as imple-
mented by Borer et al. (2017).

Even without processing, the raw event data are well 
suited for the visualization of the near-wall dynamics. 
While this is also possible with high-speed particle imaging 
approaches, the inherent binary nature of the raw imagery 
captured by event cameras immediately provides high-
contrast visualizations without additional effort (see, e.g., 
event data animations provided in the supplementary mate-
rial, Appendix 2). In the present application, rapid spanwise 
modulations imparted by the passage of flow structures in 
the outer layers of the TBL are clearly visualized and suggest 
further spatio-temporal analysis of the dynamics to retrieve, 
for instance, the structure convection velocity.

The time-resolved data presented herein were acquired 
using hardware that is considerably cheaper in comparison 
with conventional high-speed PIV components necessary to 
achieve similar results and but, at this point, are unable to 
stream images for extended periods. Beyond this, the higher 
sensitivity of the EBV detectors reduces the power require-
ments of the laser used to illuminate the tracer particles.

The present measurements were performed at a laser 
pulsing frequency of 5 kHz . Although not discussed here, a 
small portion of data was also acquired at 10 kHz and pro-
vided acceptable results in spite of a partial leakage (over-
flow) of some events into the following laser pulse period. 
Given the same magnification and the frequency limit of 
about 10 kHz for the utilized event camera hardware, the 
proposed technique should be applicable to TBL flows with 
friction velocities approaching u� = 1m∕s.

Appendix 1: Tracer characteristics 
in the viscous layer

As pointed out by Shih and Lumley (1993) the Kolmogorov 
velocity scale u� near the wall is of the same magnitude as 
the friction velocity u� such that the length scale � is given by

Under the same premise, the Kolmogorov time scale 
t� = (�∕�)1∕2 is related to the shear strain rate at the wall

(14)
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With the Kolmogorov microscales directly corresponding to 
the viscous scales the following quantities are obtained for 
the U∞ = 5.2m∕s flow condition: � ≈ 70 μm , t� ≈ 300 μs and 
u� ≈ 0.22m∕s . These quantities are of relevance for char-
acterization of tracer particle performance described next.

A quantity describing a particle’s fidelity of moving with 
the flow, that is, along the streamline, is the Stokes number 
given by the ratio of the particle response time tp and the 
characteristic time scale of the flow tf :

for spherical particles of diameter dp and density �p car-
ried in a fluid with dynamic viscosity �f  . Values signifi-
cantly smaller than Stk = 1 indicate a good flow tracking 
performance.

The water-glycol droplets used in the present 3d LPT 
measurements have a size range of [1 μm < dp < 2 μm] with 
corresponding relaxation times of [3 μs < tp < 12 μs] . In the 
viscous sublayer tf = t� such that the Stokes number becomes 
Stk ≤ 0.04 at U∞ = 5.2m∕s . At U∞ = 7.5m∕s the character-
istic time scale decreases to t� ≈ 165 μs with Stk ≤ 0.07 . At 
the highest velocity of U∞ = 10.0 m∕s and t� ≈ 100 μs the 
Stokes number further increases to Stk ≤ 0.12 for particles 
with dp ≤ 2 μm . Overall this indicates an adequate tracking 
performance, especially at the lower tunnel operating speed.

Appendix 2: Supplementary material

Animated sequences of the acquired event data and recov-
ered near-wall particle tracks are provided as supplementary 
material.

•	 File Suppl1-Events-Vel5mps-ts5ms-0.1x.mp4 - vis-
ualization of events captured by central camera at 
U∞ = 5.2m∕s at 0.1× actual speed; time-slice of 5ms 
per pseudo-image (25 pulses per image), event rate 
7.0 × 106 Events/s , positive events only.

•	 File Suppl2-Events-Vel5mps-ts5ms-0.01x.mp4 - 
visualization of events captured by central camera at 
U∞ = 5.2m∕s at 0.01× actual speed; time-slice of 5ms 
per pseudo-image (25 pulses per image), event rate 
7.0 × 106 Events/s , positive events only.

•	 File Suppl3-WSS-magnitude-200ms.mp4 - visualiza-
tion of near-wall particle tracks color coded with magni-
tude of the wall shear stress (WSS). Only 3 most recent 
time steps of tracks are color coded, then fade from gray 
to black ( U∞ = 5.2m∕s , speed about 0.02× actual speed).

(16)Stk =
tp

tf
with tp =

1
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tary material available at https://​doi.​org/​10.​1007/​s00348-​024-​03946-2.
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