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Abstract—The growing number of satellites in low Earth orbit
(LEO) has increased concerns about the risk of collisions and
the resulting space debris. To mitigate this risk, accurate collision
risk analysis is essential. However, this requires access to sensitive
orbital data, which satellite operators are often unwilling to share
due to privacy concerns. This contribution proposes a Fully
Homomorphic Encryption-based solution to enable secure and
private collision risk analysis. In contrast to existing methods, this
framework ensures that collision risk analysis can be performed
on sensitive orbital data without revealing it to external parties.
In our talk, we provide an in-depth description of the proposed
application, derive theoretical requirements and compare them
to existing schemes.

Index Terms—Fully homomorphic encryption, satellite colli-
sion, multiparty computation

I. INTRODUCTION

The substantial growth in the importance of satellites and
their services is evident across various sectors, including gov-
ernments, military but also private companies, as demonstrated
by Starlink, which launched over 6.000 low Earth orbit (LEO)
satellites within the past six years [1]. Such large-scale satellite
projects have significant implications for the space environ-
ment and highly increase the probability of satellite collisions.
The European space agency (ESA) underlines the increasing
collision risk in their 2024 space environment report [2] as
Figure 1 indicates.

Given the high costs associated with satellite production
and the need for careful planning of launches, the loss of
a satellite due to a collision is detrimental to the operator.
Moreover, collisions often generate a large amount of space
debris, which causes further collisions and hence poses a
threat to other satellites and space missions.
To calculate the collision risk, it is essential to have access
to precise orbital data. However, due to privacy concerns,
operators are often reluctant to share detailed data, which
necessitates the use of less accurate observational data
instead. In our talk, we present a solution for this specific
application based on Fully Homomorphic Encryption (FHE).
This approach enables the computation on encrypted data
without revealing any underlying information, a concept
originating from Rivest, Adleman and Dertouzos’ work
in 1978 [3]. The issue remained an open challenge until

Fig. 1. Cumulative number of catastrophic collisions in the simulated
scenarios of long-term evolution of the LEO environment [2].

the groundbreaking work of Gentry in 2009 [4]. Recent
advancements have rendered these schemes increasingly
efficient, thus bringing real-world applications within reach.
In our proposed scenario, operators share their encrypted
orbital data, allowing for the collision calculation to be
performed without disclosing sensitive information. This
approach enables operators to maintain the confidentiality of
their data while still benefiting from accurate collision risk
assessments.

A variety of application ideas for FHE, such as processing
healthcare data, biometrics, or financial data, can be found in
the literature (see e.g. [5] or [6]). Despite their potential, these
applications are frequently considered under hypothetical con-
ditions that do not accurately reflect real-world complexities,
or are described in a manner that is too abstract to be directly
applicable. Our proposed scenario is analyzed in detail, with
the calculation broken down into individual operations for
a suitable FHE scheme. In addition to specifying the type
and number of operations, the application also defines the
maximum duration of a collision risk analysis, taking into
account both the increasing inaccuracy of operator orbit data
as one looks further into the future and the need for operators
to have a sufficient amount of time to take necessary actions



before a potential collision occurs. After identifying all the
necessary requirements, the proposed theory is compared to
existing schemes to evaluate their effectiveness and efficiency
in addressing this specific application.

II. BACKGROUND

We will first describe the principles of collision probability
calculation based on [7], [8] and [9]. Consider two satellites,
denoted by s1 and s2. Each satellite is modeled as a three-
dimensional spherical object, with radii r1 and r2 for s1 and
s2, respectively. The two satellites collide whenever the two
spheres overlap. For a fixed time t > 0, let µ1, µ2 ∈ R3 denote
the estimated position of the satellites s1 and s2 respectively.
Due to external forces such as atmospheric influence, even the
satellite operators can only estimate the position at a given
time t in the future with respect to a certain error. Since
the exact structure of the error is unknown, we model the
distribution of the real physical location of each satellite by
a normal distribution pi ∼ N(µi, Ci) for a given covariance
matrix Ci ∈ R3×3 such that the probability density function
is given by

gµi,Ci(x) =
1√

(2π)3 det(Ci)
· exp

(
− 1

2 (x− µi)
TC−1

i (x− µi)
)

for x ∈ R3 and i ∈ {1, 2}.
To simplify the calculation, it is common to attribute

all mass towards one of the objects, whereas the second
object is considered a point particle with combined positional
uncertainty. Although both space objects are interchangeable,
we go along with the usual convention and consider satellite
s1 as an object with radius r = r1 + r2, but no positional
uncertainty. Consequently, satellite s2, which we place in the
origin, is considered as a point particle and its position is
distributed as p̃2 ∼ N(0, C1 + C2). Note that for simplicity,
we have assumed that the positional errors are uncorrelated.
However, we acknowledge that certain factors, such as drags,
indeed induce correlations between positional errors but as
discussed in [10, Section 2.6], these have a negligible impact
on the overall analysis.

As the first object is moving through the combined co-
variance ellipsoid, a collision occurs at time t with a certain
probability calculated by

Pcollision(t) =

∫
Sr

g0,C1+C2(x) dx, (1)

where Sr is the sphere of radius r spanned by the satellite s1
around its relative position at time t. Note that not only Sr

but also C1 + C2 depend on t but we omit this dependency
for readability. The probability that the two satellites collide
within a given time period [t1, t2] is finally given by∫ t2

t1

Pcollision(t) dt. (2)

Solving this integral using Monte-Carlo simulations requires
a large number of samples, resulting in a computationally
expensive process (compare [11] or [12]). Although there

exist other analytical and numerical approaches to deal
with the integral (2) (see [13] for an overview), none of
these simultaneously meet the requirements of precision and
computational speed in a broad range of scenarios. Hence,
in recent research, collision risk analysts often differentiate
between two types of scenarios: the short-term encounter
scenario, which refers to a situation where the two objects
have a high relative velocity and a brief approach (often
lasting only a few seconds), and the long-encounter scenario,
in which the relative velocity is lower and the encounter
duration exceeds a few seconds. Both scenarios exhibit
noticeable differences in their behaviour [10] and are thus the
focus of separate research efforts.

In what follows, we will focus on the short-term encounter
scenario, which is frequently applied to LEO encounters due
to the high velocities of the objects involved. In this particular
scenario, the encounter time is small such that, within this
period, the normally curved motion of the objects can be
approximated with a linear motion with a relatively small
error margin. Furthermore, we can assume that the collision
probability Pcollision is constant over the short encounter
period which simplifies (2) to the three-dimensional case in
(1). To preclude underestimation of the collision probability,
the parameters are fixed at the time of closest approach (TCA).

To further simplify the calculation, we define a coordinate
system with respect to the encounter plane. Therefore, let the
y′-axis be along the relative velocity vector v = v1 − v2
and choose the (x′, z′)-plane – the so-called encounter plane
– normal to v. By doing so, the distance between the two
satellites is purely based on their distance in the (x′, z′)-plane
such that the collision probability can similarly be described
via the projections of the objects onto the encounter plane
(compare Figure 2). As a result,

Pcollision ≈
∫
Br

1

2πσx′σz′
e
− 1

2

[(
x′
σ
x′

)2
+
(

z′
σ
z′

)2
]
dx′ dz′

=:

∫
Br

p(x′, z′) dx′ dz′, (3)

where for simplicity we assume that the x′- and z′-axes
are chosen such that the covariance matrix is diagonal with
elements σ2

x′ and σ2
z′ and Br denotes the cross section

of the two-dimensional projection in the encounter plane.
In 1992, Foster and Estes expressed this integral in polar
coordinates and utilized it to approximate satellite collision
risks [14]. Since this model is still in use by the NASA
[15] as well as by the German Aerospace Center [8], our
model will be primarily based on this calculation although
other approximations exist and may stimulate further research.

It is well-known that no closed-form expression exists for
the solution of the integral (3) and hence, it must be solved
using numerical integration. Therefore, a grid {(x′

i, z
′
j) : i =

1, . . . , N1, j = 1, . . . , N2} with N1, N2 ∈ N over the two-
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Fig. 2. Representation of satellite s1 as sphere with combined radius r =
r1 + r2 and satellite s2 as point particle with combined covariance matrix.
Additionally, the encounter plane normal to the relative velocity as well the
projection of s1 and s2 onto the plane are displayed. Inspired by [9].

dimensional cross section Br in (3) is defined and the integral
is approximated by

Pcollision ≈
N1∑
i=1

N2∑
j=1

ωi,jp(x
′
i, z

′
j) (4)

with suitable weights (ωi,j)i=1,...,N1,j=1,...,N2
. From this

formula we explicitly obtain the kind and number of
operations needed for the whole calculation. In our talk
we display the results not only for the high-order Gaussian
quadrature rule used by the NASA [15] but also for other
integration rules.

In certain scenarios, it may be advantageous to assume a
constant probability function p within the region of integra-
tion, thereby simplifying the integral (3) to a straightforward
evaluation of p without the necessity of numerical integration.
However, as Aida et al. [8] have noted, this approximation
introduces a non-negligible error when r is large and the
combined covariance is small.

III. CURRENT STATUS AND CHALLENGES

The collision risk analysis relies on accurate knowledge
of the satellites’ movement, necessitating the forecast of
parameters µi, Ci, and ri for i ∈ {1, 2} across the time
period of interest. While the satellite radius is typically not
a sensitive parameter, due to privacy concerns (especially
in the military setting) operators often hesitate to share
precise trajectory data. In practice, orbit prediction is based
on tracking data provided by organizations such as the 19th
Space Defense Squadron (19th SDS), operated by the United
States Space Force. The SDS collects tracking data for over

40.000 objects with a radius exceeding 10 cm and conducts
an initial collision analysis [16]. Operators receive automatic
collision warnings three times per day. However, as operators
possess additional information about their satellites orbit and
planned maneuvers, they reperform the analysis with more
precise data for their satellites. Note that in practice, the
approach outlined in Section II is not employed in isolation;
rather, multiple methodologies are applied concurrently to
provide a more comprehensive understanding of the data
(compare [17]).
Nevertheless, the calculation of the second object’s trajectory
relies on observational data, which poses an ongoing
challenge. Various approaches have been developed based on
underlying assumptions (e.g., [18] and [19]). Despite progress
in this research area, prediction accuracy is compromised
by approximation errors and, most significantly, the lack
of maneuver knowledge. Access to operator-provided
data for predicting satellite movement would eliminate this
error source, enhancing the accuracy of collision risk analysis.

IV. FHE IN SATELLITE COLLISION ANALYSIS

We now sketch how FHE can be useful in the above
described use case under the assumption that the trajectory
data of the involved satellites is sensitive. For simplicity,
we focus on the case in which two distinct operators use a
common server to compute the probability that two of their
satellites collide. Hence we deal with a multiparty scenario
with two parties in which both parties aim to maintain the
confidentiality of their respective data.

Generally, such a scenario can be managed through either
multikey FHE or threshold FHE. Within the framework of
multikey FHE schemes (e.g. see [20], [21], and [22]), each
party independently generates its own key, which may take the
form of a secret key in symmetric-key settings or a key pair
comprising a public key and a secret key in asymmetric-key
settings. As a result, each operator encrypts its own data using
its unique key and transmits it to a curious-but-honest server.
However, as the server receives data encrypted with different
keys, the computational overhead increases in proportion to
the number of participants [23]. The decryption process is
performed collectively by all participants.
Conversely, in the context of threshold FHE (compare for
example [24], [25]), the parties engage in a collaborative
process to generate a single key pair. While the public key
is shared among all parties, the private key remains secret,
with each party possessing only a share of it. This ensures
that no single party has the capability to decrypt any data
independently. Each party can encrypt its own data using the
shared public key and transmit it to the curious-but-honest
server. As only one single key is utilized for encryption, the
server-side computational cost is comparable to that of a
single-party scenario, thereby mitigating the computational
costs associated with multiparty computation. Decryption,
as before, is a collective process, requiring the participation



of t + 1 ≤ n parties, where the threshold t is a scheme
parameter.
Given the involvement of only two parties, the computational
overhead of multikey schemes remains sufficiently manageable
when compared to threshold FHE with t = 1 = n − 1 (the
so-called full threshold case). This feasibility allows each
approach to present distinct merits, motivating our decision
to examine both methodologies in detail.

Note that extending the two-party scenario to the more
general case of n parties would necessitate that all parties,
and not only the two operators of the considered two satellites,
remain reachable throughout the entire duration, given that we
are operating in the full threshold regime. This dependency
introduces a potential vulnerability to the system and poses
undesirable challenges in terms of risk management. Conse-
quently, it is advantageous to adopt a pairwise approach, where
the n-party system is decomposed into multiple pairs of two-
party interactions. It is worth noting that multikey FHE allows
for an easy integration of new parties because it only requires
the new party to generate a key while the rest of the setup
remains unchanged. In contrast, threshold FHE requires the
regeneration of all key shares associated with the new party.

In our concrete scenario, we now assume that the operators
receive a collision warning predicated on observational
data (e.g. by 19th SDS) and want to verify this warning
utilizing both their precise orbital knowledge without
revealing it to each other. It is worth noting that we assume
a preliminary filtering and analysis of publicly available
data has been conducted, thereby obviating the need for
unnecessary and computationally expensive calculations or an
homomorphic filtering. While an intriguing extension of this
work could involve integrating this filtering process within
the homomorphic framework, such an exploration lies beyond
the scope of the present discussion.
Both operators encrypt their respective orbital data, either
utilizing their individual keys in the multikey scenario or
the shared public key in the threshold scenario. The server
then executes the probability calculation on the encrypted
data as outlined in Section II, yielding the encrypted
collision probability. This encrypted result is then collectively
decrypted by both parties, thereby enabling them to access
the actual collision probability and jointly determine the
requisite course of action.
The quantity of data requiring encryption and processing is
highly dependent upon the temporal distance between the
current time and the approximate time of closest approach
(TCA) obtained from the warning. When TCA is imminent,
it can be reasonably assumed that the orbital data up to
a point near the closest approach is relatively accurate,
thereby necessitating only a verification of the data points
surrounding that time. Conversely, if TCA is distant, the
orbital trajectory may undergo significant changes prior to
that point, rendering it essential to recalculate TCA and
necessitating the processing of a substantially larger dataset.

Apart from the mathematical requirements on the FHE
scheme, temporal constraints also apply. Since an operator
requires a certain amount of time to initiate an evasion
maneuver, all calculations must be completed 24 hours before
a possible collision occurs. Furthermore, the operators steadily
reappraise the situation which, due to frequent maneuvers,
changes continuously. This poses an enormous restriction
to the FHE scheme, as speed remains the most challenging
research topic within current FHE schemes.

In our talk, we will undertake a comprehensive examination
of the above scenarios, utilizing concrete numerical values to
illustrate the theoretical requirements that arise from each. A
comparative analysis will be conducted to juxtapose these the-
oretical requirements with the capabilities of existing multikey
and threshold FHE schemes. Our investigation will reveal that
presently, no scheme fully satisfies all of these requirements,
thereby highlighting the disparities between theoretical neces-
sities and practical implementations. These gaps will serve as
a motivation for further research, underscoring the need for
continued exploration and development in this area.

V. SUMMARY

We presented the problem of assessing the collision risk
of LEO satellites when the exact trajectories or planned
maneuvers of the involved objects are not publicly available.
As operators consider these data highly sensitive for certain
missions, current state-of-the-art systems compute collision
probabilities with the exact data of the owned satellite but only
with estimates from ground-based observations of the second
satellite.

We see a considerable potential in using FHE techniques in
this scenario because they allow to use exact trajectory data for
both involved satellites while still ensuring the privacy of the
sensitive information. By enabling secure, encrypted computa-
tions, FHE methods could significantly enhance the precision
and reliability of collision risk assessments. Furthermore, these
techniques could pave the way for greater cooperation among
satellite operators without compromising their competitive or
security interests.

Thus, we hope that the presentation fosters the interest
and discussion of the community, particularly regarding the
practical implementation and optimization of FHE in real-time
orbital analysis.
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