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A B S T R A C T

Studies of hydrothermal alteration involve the effects of circulating hot and aggressive fluids in volcanic
environments, which are crucial for understanding volcanic hazards, slope instability, and steam-driven
explosions. Visible hydrothermal deposits at the surface provide direct evidence of subsurface hydrothermal
systems or volcanic unrest and can be detected by remote sensing tools. Here, we introduce the Hydrothermal
Deposit Index (HDI), a remote sensing-based index derived from the Ultra Blue, Red, SWIR 1, and SWIR 2
bands of multispectral satellite data that allows spatiotemporal analysis of surface hydrothermal deposits.
We apply the HDI approach to Lastarria, a stratovolcano on the border between Chile and Argentina that
shows vigorous fumarole activity. With the support of Google Earth Engine (GEE), we mitigate environmental
interferences like steam plumes and snow, thereby guaranteeing the precision of findings. Our HDI results
identify three main depositional zones on the Lastarria Volcano, covering approximately 600,000 m2, and are
validated against independent field surveys. Time series analysis reveals three distinct patterns of HDI variation
and dynamic shifts in hydrothermal activity within the summit crater and flank regions. Furthermore, we
demonstrate that activity at the summit and flanks occurs in succession and that an increase in HDI concurs
with the appearance of new sulphur flows. This research contributes to the advancement of remote sensing
methodologies for volcano monitoring and emphasizes the importance of spatiotemporal dynamics in hazard
assessment.
1. Introduction

Hydrothermal alteration involves the interaction between
hydrothermal fluids and the ground, leading to a variety of changes
in the host rock, such as oxidation, dissolution, replacement, and
precipitation (Schwartz, 1959; Barrett and MacLean, 1997; Heap et al.,
2021; Schaefer et al., 2023). These processes are fundamental to the
study of volcanoes, enabling the identification of active fumaroles,
potential failure areas and faults, and magmatic cooling (Darmawan
et al., 2022; Kereszturi et al., 2023; Schaefer et al., 2023). For exam-
ple, hydrothermal activity significantly affected the permeability and
strength of the lava dome rocks at Mt. Merapi, leading to a shutdown
of degassing prior to steam-driven explosions (Heap et al., 2019), while
the weakening of rock contributes to the instability of volcanic edifices,
resulting in hazards such as dome and flank collapse (Darmawan
et al., 2022). Furthermore, increased hydrothermal activity has been
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observed preceding major volcanic eruption periods, as demonstrated
by studies on the Usu Volcano (Africano and Bernard, 2000), Rincón
de la Vieja (Montanaro et al., 2022) and Poás Volcano (Rodríguez and
van Bergen, 2017). Investigations of active and hazardous volcanoes
emphasize the importance of monitoring the spatiotemporal variations
in hydrothermal alteration to improve our understanding of associated
volcanism.

Typically, hydrothermal alteration affects volcanoes from the in-
terior outward, making direct observation difficult. However, surface
hydrothermal deposits can provide evidence and valuable insights into
the understanding of these subsurface geological dynamics (John et al.,
2008; Kereszturi et al., 2020; Müller et al., 2021; García-Soto et al.,
2024). In particular, remote sensing techniques have become indis-
pensable in such studies since they offer fast and effective methods for
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geological mapping, including the identification of hydrothermal ma-
erials as well (Kereszturi et al., 2018; Mia et al., 2019). By comparing
he captured spectral signatures of hydrothermally altered materials
ith existing spectral libraries, remote sensing tools can effectively

separate altered rocks from the background (Chabrillat et al., 2019).
For example, the visible and near-infrared bands (VNIR; 400–1000 nm)
ave been used to highlight the presence of iron-bearing minerals
Mia and Fujimitsu, 2012; Izawa et al., 2019); the shortwave infrared

bands (SWIR; 1100–2500 nm) are effective in detecting minerals like
clay, kaolinite, and alunite, as they present higher reflectance between
wavelengths of 1550 nm and 1750 nm, and absorption occurs between
2080 nm and 2350 nm (Di Tommaso and Rubinstein, 2007; Mia and
ujimitsu, 2012; Shebl et al., 2023).

Hydrothermal and epithermal deposits have been extensively stud-
ied in regions such as mineral belts, with the goal of mapping the
current conditions in areas where geological processes are relatively
stable (Pour et al., 2013; Frutuoso et al., 2021). However, active
volcanoes are characterized by frequent hydrothermal activity, which
contributes to the formation of a wide range of deposits, influenced by
luctuations in temperature, pH, and pressure (Jakobsson and Moore,

1986; John et al., 2008; Salaün et al., 2011; Mathieu, 2018). To
understand the development of hydrothermal deposits at active vol-
canoes, repeated and long-term monitoring of fumaroles and their
surroundings is necessary to comprehend the dynamic processes that
shape volcanic environments and the associated mineralization pat-
terns. Previous studies have successfully mapped hydrothermal deposits
in volcanic areas using close-range remote sensing tools (Azzarini et al.,
2001; Müller et al., 2021; Marzban et al., 2023), but they have not
taken into account extended periods ranging from years to decades.

Both spaceborne multispectral and hyperspectral instruments offer
valuable insights into the complex geological and hydrothermal deposit
dynamics of volcanic regions. These technologies enable detailed anal-
sis of mineral composition, surface temperatures, and volcanic gas
missions, improving our understanding of volcanic activity and its
mpact (Plank et al., 2020; Walter et al., 2022; Shevchenko et al., 2024).

However, the practical application of hyperspectral data remains lim-
ted due to issues such as data availability and high band similarity

(Gersman et al., 2008; Kereszturi et al., 2018, 2020). Fortunately,
paceborne multispectral satellite data have provided stable coverage

and the necessary revisit intervals since the mid-eighties of the last
century, making them ideal for long-term monitoring. For example,
the NASA/USGS Landsat program has provided the largest and longest
continuous satellite record of multispectral data. These data have been
extensively utilized in various applications, including time series anal-
ysis for burned area monitoring (Roy et al., 2019), crop type mapping
(Blickensdörfer et al., 2022), and grassland fractional vegetation cover
assessment (Okujeni et al., 2024). Additionally, recent advancements
uch as the ESA Copernicus Sentinel 2 multispectral satellite have

further expanded these data streams, offering promising opportunities
or long-term monitoring of volcanic systems (Massimetti et al., 2020).

The Google Earth Engine (GEE) platform currently provides ac-
ess to both historical and current satellite data and supports high-
erformance computing tasks (Hird et al., 2017). In this study, we
resent a novel approach and application for spatiotemporal analysis of
urface hydrothermal deposits by utilizing multispectral satellite data
ithin the GEE cloud computing environment. Our study focuses on

he Lastarria Volcano, located on the Chile-Argentina border, where
requent degassing always poses significant challenges for conduct-
ng time series analysis. However, studying this complex environment
ould provide valuable insights that increase the applicability of our
ethodology to similar volcanic regions worldwide. The primary ob-

ectives are to determine the extent of surface hydrothermal deposits
nd their spatiotemporal evolution patterns. This will be achieved
y detecting e.g., hydroxyl-bearing minerals, iron oxide, and native
ulphur, which are major components of hydrothermal alteration prod-
cts and significantly influence volcano stability (Heap et al., 2021;
2

Darmawan et al., 2022). In addition, we also discuss the implications
at the Lastarria Volcano, such as the unrest in 2019 including two
newly developed sulphur flows (Inostroza et al., 2023). We critically
discuss the performance of the new Hydrothermal Deposit Index (HDI),
reated based on the Ultra Blue, Red, SWIR 1, and SWIR 2 bands,

and elaborate on its strengths and weaknesses. Landsat 8 data are
rimarily utilized due to their longer temporal coverage, while data
rom Sentinel 2 and Pleiades satellites serve as supplementary sources.
verall, the methodology used in this study has successfully identified

urface hydrothermal deposit information and could be applied to
imilar environments.

2. Study area and methodology

2.1. Study area

Lastarria Volcano (25.168◦S, 68.507◦W) is located on the border
between Chile and Argentina in the Central Andean Volcanic Zone
(see Fig. 1A). The discovery of a > 1000 k m2 uplift in the Lazufre
volcanic area has brought intense scientific and public attention to
Lastarria Volcano, which lies on the northern margin of the Lazufre
uplift region (Pritchard and Simons, 2002). Although no historical erup-
tion has been recorded, Lastarria Volcano is characterized by strong
degassing and ground displacements attributed to a shallow source less
than 1 km deep (Froger et al., 2007; Ruch et al., 2009), as well as
nderlying hydrothermal reservoirs reported in previous studies (Spica

et al., 2015). Notably, a large area of intense gas emissions, abundant
umaroles, and hydrothermal deposits characterized by pale yellow
ulphur and sulphate deposits have been found within the summit
rater, along the NW flank, and on the eastern and western edges of the
ummit rim (Fig. 1B and 1C). The hydrothermal minerals belong mainly

to seven families, including sulphate, hydrated sulphate, sulphides,
halides, carbonates, silicates, and native element sulphur (Aguilera
t al., 2016). Although recent studies have shown deceleration in

uplift at the Lastarria volcanic centre (Henderson et al., 2017), the
iscovery of new sulphur flows in 2019 is likely related to the possible
eactivation of magma or hydrothermal systems (Inostroza et al., 2023).
urthermore, the aridity and acidity of the environment mean that
egetation is scarce, making the land surface very homogeneous and
deal for remote sensing studies.

2.2. Data

GEE has been widely used for accessing and processing Earth Obser-
vation (EO) data (Gorelick et al., 2017). This platform provides online
ccess to archived surface reflectance products, including Landsat and

Sentinel 2 satellite data. The atmospherically corrected Landsat 8 Level
, Collection 2, Tier 1 surface reflectance products from 2014 to 2023,
pecifically, Path 233 and Row 077, were primarily used in the analysis,
s we found it best covered the study area. For the ∼10-year interval
onsidered, images from May to September were excluded due to

snow accumulation effects, as the elevation of the Lastarria reaches
approximately 5700 m above sea level (a.s.l.). Harmonized Sentinel
2 Level 2 surface reflectance products, covering the period October
to April each year from 2018 to 2023, were used for validation. Two
georeferenced Pleiades satellite images, one from 2016 and the other
from 2022, were used for visual analysis, both images have a resolution
of 0.5 m in the panchromatic band and 2 m in the multispectral bands.
Detailed information on the satellite images used can be found in
Table 1.

2.3. Methodology

The schematic framework, illustrated in Fig. 2, offers an overview
of the methodology employed in this study. First, we define the input
dataset, which includes Landsat 8 and Sentinel 2 satellite data accessed
through the GEE platform. We then outline the data processing steps
employed to study hydrothermal deposits across the study area. Finally,
we integrate Pleiades data and field observations into the analysis.
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Fig. 1. (A) Satellite view of Lastarria Volcano from the Pleiades image acquired in 2022. White patches indicate snow, while dark textures represent lava flows, and brownish-grey
areas correspond to pyroclastic and redeposited materials. Red rectangles mark the locations of alteration near the summit crater and middle flank, which are the main focus
areas of this study; (B) Photograph showing the NW flank of Lastarria and locations of the fumaroles on the middle flank and summit; (C) Photograph showing the sulphur-rich
hydrothermal deposits on the NW flank of Lastarria. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Data sources and band information: Landsat 8, Sentinel-2 (GEE), and Pleiades.

Satellite Band name Description Wavelength centre Resolution

Landsat 8
SR_B1 Ultra Blue 443 nm 30 m
SR_B4 Red 655 nm 30 m
SR_B6 SWIR 1 1609 nm 30 m
SR_B7 SWIR 2 2201 nm 30 m

Sentinel 2
B1 Ultra Blue 443.9 nm (S2A)/442.3 nm (S2B) 60 m
B4 Red 664.5 nm (S2A)/665 nm (S2B) 10 m
B11 SWIR 1 1613.7 nm (S2A)/1610.4 nm (S2B) 20 m
B12 SWIR 2 2202.4 nm (S2A)/2185.7 nm (S2B) 20 m

Pleiades – Panchromatic 480-800 nm 0.5 m
B0, B1, B2 Multispectral 450-700 nm 2 m
Fig. 2. Conceptual scheme of the surface hydrothermal deposit monitoring in this study.
2.3.1. HDI construction theory
Multispectral satellite data offers a robust tool for analysing specific

surface features and compositional variations through techniques like
band ratios and colour composites. These techniques enhance the in-
formation content that may not be apparent in individual bands and
3

help reduce artefacts and environmental factors such as clouds, snow,
and shadows, thereby improving analysis accuracy and reliability (Di
Tommaso and Rubinstein, 2007; Mia et al., 2019). For example, the
band ratio (6/7) of Landsat 7 has been used to detect clay minerals,
whereas the ratio (4/2) can be employed to assess iron oxide minerals,
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they are key minerals of hydrothermally altered minerals and replace-
ment products in the volcano (Aguilera et al., 2016; Abass Saley et al.,
2021; Shebl et al., 2023). In addition to band ratios, statistical methods
ave demonstrated effectiveness, notably the Crosta method, which

employs Principal Component Analysis (PCA) to emphasize spectral
variations associated with specific minerals (Crósta and Moore, 1989;
Mia et al., 2019). For example, the Crosta method has successfully
dentified alteration zones on the Lastarria Volcano by combining the

Blue, Red, SWIR 1, and SWIR 2 bands of Landsat 7 (Aguilera et al.,
2016). However, despite their practical utility, these approaches still
face challenges from environmental conditions, and band ratios can
occasionally yield extreme values (Thomas et al., 1987; AghaKouchak
t al., 2015). Importantly, these methods are inadequate for con-

ducting comprehensive time series analyses. The index, such as the
Normalized Difference Vegetation Index (NDVI) has been successfully
used to indicate vegetation greenness, with values ranging from −1
to 1, reflecting the degree of disturbance to densely vegetated areas
(Defries and Townshend, 1994; Carlson and Ripley, 1997; Martínez
and Gilabert, 2009; Li et al., 2021). This also provides a means of
racking the growth and health of vegetation, allowing for temporal
nd spatial comparisons (Myneni et al., 1997). Inspired by the success

of the NDVI, here we extend upon these studies to introduce a novel
semi-quantitative measure known as the Hydrothermal Deposit Index
(HDI). We note that there have been previous attempts to develop a
eochemical hydrothermal index, including the Alteration Index (AI)
Ishikawa et al., 1976), Chemical Index of Alteration (CIA) (Nesbitt

and Young, 1982), Weathering Index of Parkar (WIP) (Parker, 1970),
Loss on Ignition (LOI) (Lechler and Desilets, 1987), and Sulphur Index
(Mathieu, 2018; García-Soto et al., 2024), each offering unique insights
but also limitations. These are all based on in situ and laboratory
analysis, meaning that there is as yet no widely applicable remotely
sensed index.

Fieldwork and previous studies have shown that hydrothermal
eposits in Lastarria Volcano are primarily composed of hydroxyl-
earing minerals such as hydrothermal clays, sulphates, and iron oxides
Aguilera et al., 2016). Fig. 3 shows the spectral reflectance curves
f primary indicators for these hydrothermally altered rocks, derived
rom laboratory analyses. Native sulphur is abundant throughout the
olcanic region, while alunite and kaolinite serve as key indicators
or hydroxyl-bearing minerals, and goethite and jarosite are essential

markers for iron oxides. These key indicators exhibit higher reflectance
in the Red and SWIR 1 bands of Landsat 8 (Fig. 3A), with distinct
bsorption occurring in the SWIR 2 band (Fig. 3B). For this reason,

these three bands have been widely utilized for mineral classification
(Sun et al., 2017; Sengar et al., 2020). In contrast, background elements
such as cinders, clouds, water, and snow have a lower reflectance in
the two SWIR bands or a slightly higher reflectance in SWIR 1 than in
SWIR 2, as shown in Fig. 3A. In addition, we performed a pixel-by-pixel
xamination of the spectral reflectance characteristics in the alteration
ones, which largely align with our analysis as mentioned above based
n the spectral library. Therefore, we first used the ratio (SWIR 1 - SWIR
)/(SIWR 1 + SWIR 2) to identify the hydrothermal alteration zone.

Based on this, the larger positive values could be related to altered
materials, whereas negative values could indicate interferences. How-
ever, the differences in reflectance and absorption features between
hydrothermal deposits and background materials are less distinct in
he SWIR 1 and SWIR 2 bands compared to the NIR and Red bands
ypically used for NDVI analysis, as shown in Fig. 3. This implies

that distinguishing between minerals and background materials may be
challenging due to the smaller spectral differences, as discussed further
n the following chapter. Moreover, interferences such as vegetation
lso tend to have a higher reflectance in SWIR 1 and a lower reflectance
n SWIR 2, potentially complicating the identification of hydrothermal
lteration. To address this, we introduce an Hydrothermal Deposit
ndex (HDI) incorporating a coefficient specifically tailored for the time
4

series analysis of hydrothermal deposits, as detailed below:

𝐻 𝐷 𝐼 =
(

Red
Ultra Blue

)

×
(

SWIR 1 − SWIR 2
SWIR 1 + SWIR 2

)

(1)

where Red, Ultra Blue, SWIR 1, and SWIR 2 are multispectral bands.
This adjustment is because the atmospherically corrected Ultra Blue
band is often employed to track phytoplankton in coastal and inland
waters (Olmanson et al., 2016; Hafeez et al., 2022). Under clear and dry
atmospheric conditions, the reflectance of the Ultra Blue band remains
consistently low and stable, as elaborated in the Discussion section. For
the Red band, altered materials typically have a higher reflectance,
while interferences such as vegetation, which have historically con-
fused mineral classification, generally show a lower reflectance (see
Fig. 3A). In particular, the differences in reflectance of interference
between the Red and Ultra Blue bands can be minimal or even contra-
ictory. In the past, although the Red/Ultra Blue band ratio has been
ess utilized in mineral detection due to the limited availability of satel-

lites equipped with the Ultra Blue band, the Red/Blue ratio has been
widely employed in minerals monitoring like iron oxides (Frutuoso
et al., 2021; Shebl et al., 2023). Therefore, after multiplication, the HDI
values of altered materials are largely greater than the interferences,
and the proposed HDI is useful in identifying hydrothermal deposits
related to both hydroxyl-bearing minerals and iron oxides.

2.3.2. Data processing and analysis workflow
In order to determine the extent of hydrothermally altered materials

and perform a time series analysis, data processing involves three steps,
primarily executed within the GEE platform, as shown in Fig. 2.

Step 1: Data pre-processing involves filtering and masking of Land-
at 8 and Sentinel 2 imagery. For the Lastarria case study, a 30%
loud cover threshold was applied during the selection of satellite

imagery, and only images captured between October and April were
elected to minimize snow cover effects. Then, the CFMask algorithm

(Zhu and Woodcock, 2014), integrated into the Landsat ‘‘QA_PIXEL’’
band in GEE, was further used to mask residual clouds, cloud shadows,
cirrus clouds, and snow in Landsat 8 imagery. Sentinel 2 imagery was
masked using the QA60 bitmask band in GEE. Previous studies have
demonstrated the effectiveness of these masking bands in cloud-related
studies (Carrasco et al., 2019; Bian et al., 2020), and this study even
confirmed their capability to reduce the impact of steam plumes. Fol-
owing these procedures, a total of 278 images were processed for the
eriod 2014–2023, consisting of 11 to 14 Landsat 8 and 2 to 41 Sentinel
 images per year, respectively (Table 2). It should be noted, Sentinel

2 images, fulfilling the aforementioned cloud threshold condition, are
not available between 2014 and 2017. The two high-resolution Pleiades
images were georeferenced and registered for comparison.

Step 2: Generating annual composite images and calculating HDI.
Environmental factors have always been a challenge for remote sensing
pplications, especially in volcanic environments where frequent and

dense steam plumes are prevalent. Although we applied the masking
calculation in the first step, it is still challenging to ensure that all
elevant interferences, particularly thin clouds, steam plumes, and

snow, are fully removed. In this study, we addressed this by creat-
ing annual composite images, including RGB and HDI composites. In
GEE, the EE.Reducer algorithm provides minimum, mean, median, and
maximum filters, allowing for easy compositing of data across time,
space, bands, arrays, and various other data structures (Gorelick et al.,
2017). Compared with other filters, the median filter is more robust
in hydrothermal alteration studies. This is because environmental in-
fluences, such as seasonal variations in vegetation and changes in the
presence and direction of steam plumes across images, are variable.
In contrast, rock alteration even in volcanic regions, progresses slowly
and is characterized by stable absorption and emission characteristics.
This means that persistent and consistent changes in HDI values over
the long-term may suggest anomalies in magmatic or hydrothermal
systems, whereas temporary and abrupt fluctuations are likely to be
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Fig. 3. Selected spectral reflectance curves for background interferences (A) and hydrothermally altered minerals (B), visualized from the USGS spectral library in ENVI software
(NV5 Geospatial Solutions). The four vertical bars of Ultra Blue, Red, SWIR 1, and SWIR 2 bands correspond to Landsat 8 channels (cf. Table 1). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
The number of images included in this study from 2014 to 2023.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Landsat 8 13 12 11 13 13 13 13 13 11 14
Sentinel 2 – – – – 2 20 25 19 41 38
Pleiades – – 1 – – – – – 1 –
due to disturbances. Therefore, median compositing with a substantial
number of high-quality images could effectively reduce the variability
related to interference, thereby enhancing visualization and denoising
non-stationary signals. The results will demonstrate in Section 3 that
annual composites are less affected by environmental factors.

Step 3: Post-processing and data analysis. This step primarily in-
volves integrating multi-source remote sensing data to interpret and
analyse hydrothermal deposits, including Landsat 8, Sentinel 2, and
Pleiades satellite data. First, we evaluated the quality of the annual
composites by performing a visual analysis to assess the removal of
clouds, snow, cloud shadows, and steam plumes. Then, we assessed the
accuracy of the HDI in the surface hydrothermal deposit mapping and
compared it with field observations and previous studies. Subsequently,
the study area was divided into several smaller subregions for detailed
time series analysis. Within these subregions, the mean, median, and
maximum HDI values were all calculated, ensuring the correctness of
the acquired time series analysis.

3. Results

3.1. The identification of hydrothermal deposits

The effectiveness of the masking bands and the annual median
compositing approach in reducing disturbances and emphasizing tar-
gets are demonstrated first. Using the Landsat 8 image acquired on 17
March 2021 as an example (Fig. S1A), we compared the performance
of the unmasked (Fig. S1B) and masked (Fig. S1C) images. The masking
band effectively eliminate poor-quality pixels and highlight regions of
interest. The improvement is particularly noticeable at fumarole sites,
where persistent steam plumes indicated by the blue ellipse are masked
(Fig. S1B). Furthermore, Figs. S1C and S1D offer a clearer compar-
ison between the 2021 intra-year median composite image and the
individual masked image, demonstrating that the composite image has
higher pixel quality, fewer gap areas, and reduced residual noise. Other
Landsat 8 annual composites from 2014 to 2023 are shown in Fig. S2,
with similar positive outcomes (the analysed GeoTIFF raster files can be
downloaded from https://doi.org/10.5281/zenodo.10893855). These
5

findings underscore the significant potential of reducing background
noise and utilizing annual composite images in the subsequent analysis.

Using Landsat 8 annual composite imagery, we generated
hydrothermal deposit images from 2014 to 2023, with HDI values
ranging from 0.6 (warmer colours, highly altered) to 0 (colder colour,
unaltered), as shown in Fig. S3. Based on our field observations, the
HDI value of 0.17 can be used as a threshold to effectively discriminate
between unaltered and altered materials. Using the 2017 Landsat 8
HDI scenario as an example (Fig. 4), the hydrothermal deposit zones
at Lastarria Volcano can be identified in three main parts: (i) The
NW slope of the volcano (Fig. 4B), where the map view reveals an
elongated NW-SE trending area that expands on its NW side to form
a ‘‘T’’-shape zone of hydrothermal deposits. The HDI values tend to
be higher (above 0.5) in the two extension zones of this ‘‘T’’-shape,
but lower along the slope (mostly below 0.2); (ii) Summit crater area
(Fig. 4C): Higher HDI values are concentrated around the four active
fumaroles, with most values above 0.3. The maximum HDI values are
consistently found on the western rim (above 0.6). In addition, the
area (red ellipse in Fig. 4C) has relatively higher values despite having
few active fumaroles. Another region to the north of the main summit
crater (white ellipse in Fig. 4A) shows a linear distribution of median
HDI values; (iii) The southern zone hosts hydrothermal deposits that
display moderate HDI values, with no significant active fumarole. Its
distribution has shown minimal change in both the time and space
domains, suggesting the absence of new vent formation or fumarole
activity. Overall, the identified hydrothermal deposit extent by HDI
on Lastarria is consistent with our field observation, with an area
of approximately 600,000 m2. Visual analysis based on annual HDI
images indicates the minor spatial variation in the period from 2014
to 2023 (Fig. S3).

3.2. Application of HDI for long-term monitoring of hydrothermal deposits

Although visual analysis have indicated that the spatial extent of
hydrothermal deposits remain relatively stable from 2014 to 2023 (Fig.
S3), long-term monitoring of pixel-level HDI values can provide insight
into local hydrothermal activity. Thus, we selected the summit crater

https://doi.org/10.5281/zenodo.10893855
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Fig. 4. (A) 2017 Landsat 8 HDI results, manually cropped to focus on key areas, show HDI values ranging from low (colder colour) to high-intensity hydrothermal deposits
(warmer colour). Panels B, C, and D show enlarged views of the rectangles B (flank), C (summit crater), and D (slopes in the south) in Panel A, respectively, using the same
colour bar as in Panel A and set to 50% transparency. The red and white ellipses indicate HDI anomaly areas, see text for details. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
area and the middle flank as new study area subsets (see Fig. 1). Two
sulphur flows have been reported on the middle flank (Inostroza et al.,
2023), while significant changes in alteration areas in the summit crater
can be observed from the high-resolution data (Fig. S4). Due to limited
resolution and minimal change, other zones have not been included. In
this chapter, the time series analysis was mainly based on Landsat 8
HDI imagery, with Pleiades and Sentinel 2 used as auxiliary data for
validation. In most subareas, the mean, median, and maximum HDI
values were all calculated to ensure the accuracy and reliability of the
time series results. In addition, different reference areas were also se-
lected within each subregion to evaluate the influence of environmental
factors.

3.2.1. The summit crater area
The summit crater was further divided into three hydrothermal

deposit subareas: A1, A2, and A3, with A0 serving as the reference area
(Fig. 5A). The time series results for A0 exhibit a stable condition with-
out much variation (Fig. 5D), with HDI values (mean, median, and max)
varying only between 0.12 and 0.15 (below the threshold of 0.17),
indicating successful filtering of environmental influences in long-term
analysis and the absence of hydrothermal deposits. Nevertheless, slight
fluctuations in HDI values in 2018 may still be environmentally influ-
enced, potentially affecting A1, A2, and A3 as well. A1 mainly consists
of two active fumaroles and has exhibited long-term degassing, as
observed in our fieldwork. The time series analysis indicates stability in
the mean, median, and max HDI values from 2014 to 2016, followed
by a notable decline in 2017 (Fig. 5E). Subsequently, the HDI values
stabilize once again from 2018 to 2023 but remain lower than in
the previous period (Fig. 5E). A2 presents similar trendline variations,
especially HDI variation in 2017 (Fig. 5F). In these two subareas, the
HDI values are between 0.25 and 0.5 (above the defined threshold),
indicating the presence of highly altered materials. The decline in HDI
6

observed in 2017 suggests a decrease in the area of surface hydrother-
mal deposits. As shwon in Fig. 5B-C and S4, there is a slight colour shift
at the junction of A1 and A2. In A3, evident growth of deposit zones
can be observed from satellite images (Fig. 5A-C and S4). Although
the precise onset remains uncertain, historical imagery suggests the
expansion likely started after 2011 and ended before 2019, as shown
in Fig. S4. While our HDI time series results show an uptrend from
2014 to 2017, peaking at around 0.7 on the maximum trend line in
2018 (Fig. 5G). If the HDI values from 2018 are recognized as outliers
following the results of the time series analysis conducted on A0, this
implies that the period from 2018 to 2023 exhibits a stable trend. These
findings align with historical imagery, showing little change after 2019,
but growth observed after 2014. (Fig. S4).

3.2.2. The middle flank area
In the middle flank, we focus mainly on the two newly developed

sulphur flows, which we refer to as the upper and lower sulphur flows
respectively, along with their surrounding regions (Fig. 6B). Although
the exact start and end times of these two sulphur flows remain
unknown, it has been suggested that they were initiated or at least
active around 2019 (Inostroza et al., 2023). As the sulphur flows (B1
and B3 in Fig. 6B) are covered by only one Landsat 8 pixel, the median
HDI values are equal to the mean and maximum values. Meanwhile, we
also calculated only the median HDI value for B4 to avoid confusion.
As shown in Fig. 6E, the trend line for the reference area (B0) exhibits
instability from 2014 to 2023, with HDI values generally between 0.08
and 0.09, aside from an outlier in 2018. This outlier aligns with what
has been observed in the summit crater. For the lower sulphur flow,
B1 is used to indicate its location, while B2 shows its point of origin
(Fig. 6B). Before 2019, the HDI values in B1 remain stable and below
the defined threshold, indicating that there were limited hydrothermal
deposits or only slight alteration. Following about three years of HDI
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Fig. 5. Landsat 8 HDI results in the Lastarria summit area. The map views show the summit area in different years, from the Vivid imagery in 2011 (A), and the Pleiades imagery
in 2016 (B) and 2022 (C), respectively. The four HDI time series plots (D)–(G) correspond to four subregions (A0 to A3), which are indicated by red squares in (A). These squares
illustrate the specific pixel locations used for Landsat 8 HDI analysis within subareas. Subregions A1, A2, and A3 correspond to zones of hydrothermal deposition, while A0 serves
as a reference area. The mean, median, and maximum values represent the HDI measurements across the subareas. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
increase, a decline is observed after 2021. The HDI values in B2 are
consistently higher than those in B1, remaining above the threshold
from 2014 to 2023, and B2 exhibits a greater rate of increase from
2018 to 2020. Additionally, the increase in B2 occurs earlier than in
B1, which begins in 2018. The upper sulphur flow (B3) exhibits stable
variations in HDI values from 2014 to 2017 and is consistently above
the defined threshold (Fig. 6D). Following an increase starting in 2018
and peaking at 0.25 in 2020, HDI values in B3 then decline from 2021
to 2023. Similarly, the HDI variations within B3 are smaller compared
to those observed in its source area, B4. In addition, the HDI values
in the flank area are overall lower than those observed in the summit
crater, both in reference areas and targets.

3.3. Comparisons of Landsat 8 and Sentinel 2 HDI results

Our study represents a pioneering effort in long-term monitoring of
surface hydrothermal deposits, where establishing reliability is essen-
tial. To address this, we investigated several satellite sources. Landsat 7
was excluded due to SLC-off artefacts and changes in revisit times from
2019 to 2023 (Zeng et al., 2013), while Landsat 9 was limited by its nar-
rower temporal coverage (Masek et al., 2020). Consequently, Sentinel 2
emerged as the preferred option for validation, despite the differences
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in band resolution. The improved resolution of the Red, SWIR 1, and
SWIR 2 bands in Sentinel 2 provides more reliable detection of fine-
scale hydrothermal deposits, but the lower resolution of the Ultral Blue
band (60 m) and the limited number of Sentinel 2 images available
in 2018 should be noted. Considering the significant variability and
high confidence levels, we focus on HDI results in (i) the new sulphur
flows on the middle flank and (ii) the summit crater area (Fig. 7A, 7C,
and 7E), and only median values have been calculated for each new
subarea. In 2018, the Sentinel 2 HDI value in the lower sulphur flow
area (P1) is close to the reference, followed by a significant increase
from 2019 to 2020 and a subsequent decrease from 2021 to 2023
(Fig. 7B). Comparatively, HDI variations in P2 follow similar patterns
to those in P1, consistently showing significantly higher values and
larger magnitudes across both the Landsat 8 and Sentinel 2 datasets
(Fig. 7B). While the stable variation at the reference point demonstrates
the effectiveness of the time series analysis for both P1 and P2. For the
reference (P4) in the upper sulphur flow area (Fig. 7D), a notably higher
HDI value is evident in 2018, similar to Landsat 8 (Fig. 6E). However,
the upward trend observed in P3 and P4 from 2018 to 2020, followed
by a decline from 2021 to 2023, seems reasonable (Fig. 7D). Fur-
thermore, the HDI values around the main fumaroles surrounding the
sulphur flow are consistently higher than those within the sulphur flow
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Fig. 6. Landsat 8 HDI monitoring results in the Lastarria middle flank area, divided into four subareas: B0 serves as the reference area; B1 and B3 are sulphur flow areas, while
B2 and B4 are origins of these two sulphur flows. The HDI time series plots (C)–(E) correspond to five subregions (B0 to B4), which are indicated by squares in (B). These squares
illustrate the specific pixel locations used for Landsat 8 HDI analysis within these subareas. The background images are from the Pleiades satellite in 2016 and 2022, respectively;
the red double-headed arrows indicate the locations of sulphur flows. Photograph of the sulphur flow from January 2019 showing its dimensions (see also Inostroza et al., 2023).
The mean, median, and maximum values represent the HDI measurements in the reference area. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
itself, consistent with the patterns observed in the lower sulphur flow.
However, the presence of a larger area of surrounding hydrothermal
deposits prevents the precise separation of the upper sulphur flow. In
addition, the HDI results from Sentinel 2 reveal a significant increase in
P3 and P4 in 2020. This discrepancy can be attributed to the pixel range
difference between B4 in Fig. 6C and P4 in Fig. 7B. This observation
may indicate an expansion of the hydrothermal deposit zone following
the occurrence of the sulphur flow, as the observed dimensions (see
Fig. 6) exceed those associated with the sulphur flow itself. In the
summit crater area, Sentinel 2 HDI results exhibit a subtle upward
trend from 2018 to 2023, but the outliers in 2021 and 2022 disrupt a
clear and consistent trajectory over the entire period (Fig. 7F). Despite
these challenges, our analysis provides robust validation, the observed
HDI trends are consistent across the Landsat 8 and Sentinel 2 datasets,
reinforcing the reliability of our findings.

3.4. Analysis and validation

The results were geospatially analysed using QGIS and ENVI, which
are powerful tools for spatial data processing and visualization. First
of all, we validated our HDI findings with field observations, including
temperature measurements, gas emissions, and geochemical and miner-
alogical assessments. This empirical validation is essential to verify the
performance and accuracy of remote sensing analysis. Subsequently,
we compared our findings with band ratio results, which have been
widely employed for the qualitative detection of hydrothermally altered
mineral assemblies (Sabins, 1999; Ranjbar et al., 2004; Carrino et al.,
2015). As illustrated in Fig. 8, the band ratio results were derived from
8

a cloud-free Landsat 8 OLI image acquired on 13 February 2021, using
band ratios of 6/7 for hydrothermal clay and 4/2 for iron oxides, which
are prominent components at Lastarria (Aguilera et al., 2016). The
extent identified by this traditional method, particularly band ratios
6/7, corresponds well with our HDI results (Fig. 8C). However, a more
detailed analysis in the NW flank region reveals different higher-value
pixel distributions (see areas 1, 2, and 3 in Fig. 8D, 8E, and 8F). This
discrepancy arises because band ratios, such as 6/7, fail to adequately
capture the extensive presence of natural sulphur and iron oxides
throughout the Lastarria region. In addition, the hydrothermal clay
area determined by the band ratio (6/7) exceeds the total alteration
area identified in the field, while the iron oxide alteration area from
the band ratio (4/2) is smaller than that observed in the field. On the
contrary, our HDI results not only represent a combination of both
minerals but also yield areas more consistent with field observations,
as shown in Fig. 8F. Furthermore, the band ratio (6/7) shows a small
difference between hydrothermal clay and the background, while the
4/2 ratio results in a background value exceeding that of the altered
areas, posing a challenge for those without prior experience. Compared
to traditional methods, our HDI results show a fivefold difference
between the minimum and maximum values, offering a clearer dis-
tinction between altered and unaltered materials. This underscores the
effectiveness of our approach for accurately mapping hydrothermally
altered or deposited products, providing valuable insights into the
spatial variability.

Furthermore, we also conducted a comparison between the results
obtained without and with the inclusion of the coefficient in (Eq. (1)),
where the coefficient refers to the calculation of Red/Ultra Blue. As
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Fig. 7. Comparison of HDI monitoring results between Landsat 8 and Sentinel 2, with the background from Pleiades data acquired in 2022. The map views show the lower sulphur
flow (A), upper sulphur flow (C), and summit crater (E), with squares highlighting the specific pixel locations used for Sentinel 2. (A) Pixel locations P1 and P2 represent the lower
sulphur flow and the surrounding hydrothermal deposit zones, respectively; (C) Pixel locations P3 and P4 represent the upper sulphur flow and the surrounding hydrothermal
deposit zones, respectively; (E) Pixel locations P5, P6, and P7 denote three hydrothermal deposit zones within the summit crater. Two references in panels A and C were selected
from outside of fumaroles. Panels B, D, and F display the HDI time series results for both Landsat 8 and Sentinel 2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
shown in Fig. 9, highly altered materials are visualized by the prox-
imity of colours to red, while pixels closer to blue generally indicate
unaltered materials or interferences. Small gap areas correspond to the
removed bad pixels, where a continuous gas plume has obscured the
information at these pixels. The processing is based on the 2021 Landsat
8 median composite image covering the NW flank area. According to
our experience, the values of 0.07 and 0.17 were set as the thresholds in
scenarios without and with coefficient assignments, respectively. While
both approaches demonstrate the capability to identify hydrothermal
deposit zones, there are subtle differences that should be noted: (i)
The scenario with the applied coefficient exhibits clearer distinctions
and internal heterogeneities with surrounding feature types, especially
in the middle area. This variability is also reflected in the mean,
minimum, and maximum values in Table 3, where the two minimum
HDI values are similar (around 0.02), but the maximum values differ
significantly, with one being twice as high as the other at 0.231 and
0.512. (ii) Similar to band ratios, relying solely on two SWIR bands
is insufficient for clearly separating altered materials from the back-
ground, particularly in the central part of Fig. 9A. While the differences
between altered and unaltered are significant in Fig. 9B. (iii) Fig. 9B
indicates a narrower range of hydrothermal deposit zones, as evidenced
by the reduction in the proportion of above-threshold values from 46%
to 32% (Table 3). This shift is related to different mineral assemblages
and the influence of background has been reduced.
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Table 3
Summary of statistics: Without vs. With inclusion of coefficient.

Without coefficient With coefficient

Below 0.07 Above 0.07 Below 0.17 Above 0.17

Mean 0.053 0.019 0.093 0.276
Proportion 54% 46% 68% 32%
Min 0.012 0.024
Max 0.231 0.512

4. Discussion

4.1. The performances and limits of individual bands

In this study, we have extracted information about surface hy-
drothermal deposit zones on Lastarria by combining multispectral
bands, specifically Ultra Blue, Red, SWIR 1, and SWIR 2. To compre-
hensively assess our approach, we here evaluate the performances of
these four distinct bands individually and compare them with HDI
results based on the 2019 Landsat 8 intra-year median composite
image. The surface reflectance of the Ultra Blue band, which has lower
overall values compared to the other bands, is shown in Fig. 10A.
Although relatively higher values were found at active fumaroles, Fig.
S5 indicates that the reflectance of the Ultra Blue band remains stable
in hydrothermal deposit zones over time. This means that utilizing
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Fig. 8. The comparison between band ratios and HDI, with red tones indicating highly altered materials. (A) and (B) were derived from Landsat 8 OLI data captured on 13
February 2021, with (A) using the 6/7 band ratio for hydrothermal clay and (B) using the 4/2 band ratio for iron oxides. (C) shows the HDI results from the 2021 Landsat 8
annual composite image. Panels (D), (E), and (F) are enlarged views of the flank (cf. Fig. 4B), set to 50% transparency. The labels 1, 2, and 3 indicate the anomaly areas; see the
text for details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Comparisons of the performance between without (A) and with (B) coefficient; the transparency was set to 50%. The red dashed lines represent the boundary between
altered and unaltered materials, while the white dashed lines indicate the borders of the region of interest. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
the Ultra Blue band as the denominator in our HDI computation
could potentially enhance the sensitivity of other bands, while its own
contribution and impact would be relatively small. However, two Ultra
Blue peaks in 2019 and 2022 should be noted in Fig. S5. The 2019 Ultra
Blue peak value is likely related to increased hydrothermal activity,
leading to higher concentrations of water vapour, steam, or dust in the
air. This finding is consistent with previous studies showing that the
rate and concentration of gas emissions were indeed higher in 2019
(Lopez et al., 2018; Layana et al., 2023). Similarly, we consider that the
2022 Ultra Blue peak value is also associated with increased hydrother-
mal activity, although independent validation is lacking. For the Red
band, higher reflectance is notable around the main fumarole sites and
their surroundings, covering a larger area than the other three bands.
However, both Ultra Blue and Red band could be significantly affected
by snow, as indicated by the red ellipse in Fig. 10B and 10C. In contrast,
SWIR 1 and SWIR 2 can effectively delineate hydrothermal deposits
without being affected by snow, but they lack sensitivity to highlight
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highly altered materials in the summit area, as indicated by the black
ellipse in Fig. 10H and 10I. Our HDI result not only ensures accurate
delineation of hydrothermal deposits but also minimizes interference
from factors like snow compared to individual bands (Fig. 10E). This is
because the sign of the result is determined by the expression of (SWIR
1 - SWIR 2)/(SWIR 1 + SWIR 2) in the HDI computation (Eq. (1)),
while the coefficient is used to highlight the presence of these altered
products. The HDI values generally decrease as they extend outward
from the central fumarole area, consistent with established patterns
of hydrothermal deposits. Furthermore, our results are visually more
significant in distinguishing between altered and unaltered materials
compared to traditional methods such as Crosta PCA, LS-Fit, and band
ratios in the previous study (Aguilera et al., 2016).

4.2. Hydrothermal deposits time series implications

Through HDI time series analysis, we have investigated the dy-
namics of hydrothermal deposits in both the summit crater and the
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Fig. 10. Panels (A) to (E) show the surface reflectance for the Ultra Blue, Red, SWIR 1, and SWIR 2 bands, as well as the HDI result, respectively. All of these are derived from
the 2019 Landsat 8 intra-year median composite image. The red, white, and black ellipses are areas of interest discussed in the main text. The second row shows zoomed-in views
of the areas highlighted by red rectangles in the first row. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
middle flank of the Lastarria. In the summit crater area, HDI values
are consistently higher than those in the flank area, even when taking
reference areas into account. This indicates that the primary mineral
components in these two areas differ, as the HDI values in the summit
crater are nearly twice those in the flank, as shown in Figs. 5 and
6. In the summit crater area, the hydrothermal deposit zones A1 and
A2 are separate and not directly connected at the surface (Fig. 5A).
However, we observed similar trends in HDI variation, which suggests
that some fumarole zones are related and changes are concurring. In
addition, A1 and A2 show a significant decrease that occurs almost
simultaneously in 2017. Typically, this notable change is unlikely to
be environmentally driven but rather triggered by specific events like
land surface collapse or uplift. Meanwhile, the end time of the increase
in the A3 and the sudden decrease in A1 and A2 occurred almost
simultaneously (Fig. 5). We infer that geological structure changes may
potentially influence local gas emission dynamics and hydrothermal
activity, thereby preventing the escape of volcanic gases from A3.
Therefore, our study reveals the potential of using this surface-based
HDI to infer subsurface activity. Furthermore, contrasting observations
in the flank area reveal heightened activity from 2018 to 2020, lagging
behind those in the summit crater. Meanwhile, the magnitudes of HDI
increase in the flank area are consistently lower than those in the
summit crater. This could be explained by hydrothermal convection
cells that are first feeding the volcano summit, and then diverging
outwards to feed the flanks, as proposed by Aguilera and summarized
in our conceptual model sketch (Fig. 11). According to previous studies,
the permeability structure beneath Lastarria has a major effect on the
pathways of fluids and surface expression (Aguilera et al., 2012; Layana
et al., 2023). An area of high permeability is hypothesized beneath the
summit craters and connects to the magmatic source at depth (Layana
et al., 2023). This then diverges near the surface, and interacts with the
groundwater and aquifer, to feed the flank fumarole fields (Aguilera
et al., 2012). We conjecture that a higher permeability to the summit
may explain the first onset of increased HDI there, which is followed
by increases on the flanks where the permeability is lower and/or
the fluid pathway is more complex (Fig. 11). This may be related
to subsurface structural changes in 2017, which changed fluid flow
pathways, potentially reflecting movements of subsurface magma or
the migration of hydrothermal fluids from the summit crater to the
flank area. The formation of sulphur flows could be related to the
residual energy consumption resulting from fumarole expansion within
the crater area. This assumption aligns with previous studies suggesting
that increased inputs of hot magmatic fluids lead to the consumption of
the hydrothermal system during this period (Lopez et al., 2018; Layana
et al., 2023).

Based on HDI time series analysis, we also categorize the hydrother-
mal deposits at Lastarria Volcano into two types: (i) those associated
with the dissolution and remineralization of the original rock mass,
11
leading to hydrothermal deposit growth at the summit, and (ii) those
linked to sulphuric deposits, which either precipitate from fumarole
plumes or flow out at vents, forming sulphur flows on the flank. For
the growth of surface hydrothermal deposits, HDI values increased for
more than three years, followed by slight decreases. The behaviour
contrasts sharply with surrounding areas, suggesting that it may signal
initial anomalies in the magma or hydrothermal systems. Additionally,
this interpretation can be further validated in the lower flank in the
future, where a new fumarole emerged around 2005. Changes related
to sulphur flows are challenging to observe accurately due to resolution
limitations. However, there is promising evidence that the 2019 sulphur
flows coincided with an increase in HDI, suggesting the potential for
monitoring sulphur flows using satellite technologies in the future.
Furthermore, significant HDI increases associated with sulphur flows
typically last only one to two years, followed by a return to initial
levels. This pattern is likely caused by the erosion and exposure of
fresh deposits due to environmental factors such as rainfall, snowmelt,
and wind. During the period of sulphur flow movements or before
their emergence, significant increases in HDI were observed in the
surrounding area, as shown in Figs. 6 and 7. Meanwhile, the HDI
values and variations in the sulphur flow areas are similar to those
in the surrounding fumarolic deposits, but of smaller magnitude. This
could indicate that the liquid sulphur flows are controlled by its source
region, as suggested in previous studies at Lastarria Volcano (Naranjo,
1985).

5. Conclusion

In this study, we introduced, tested and applied a remote sensing
index called the Hydrothermal Deposit Index (HDI) using the Ultra
Blue, Red, SWIR 1, and SWIR 2 bands of multispectral satellite data to
facilitate long-term monitoring of hydrothermal deposits. The primary
processing tasks were conducted using Google Earth Engine (GEE), a
powerful cloud computing platform that provides access to archived
historical Landsat 8 and Sentinel 2 multispectral data. Considering
the influence of steam plumes and other environmental interferences
on volcanic remote sensing, we implemented a median compositing
technique to integrate all images captured within each year. This
process yielded annual composite images spanning from 2014 to 2023,
which were subsequently employed to delineate the distribution of
hydrothermal deposits and perform spatiotemporal analysis. Incorpo-
rating these composite images, the proposed HDI has been proven
effective in accurately delineating hydrothermal deposit zones and visu-
ally distinguishing between altered and unaltered materials, surpassing
traditional methods.

In the case study of Lastarria Volcano, we identified three dis-
tinct hydrothermal deposit zones spanning approximately 600,000 m2,
which closely align with independent data gathered from field surveys
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Fig. 11. Conceptual model sketch. The hydrothermal alteration deposit index (HDI) allows monitoring of the surface expressions of activity at Lastarria Volcano (perspective view
from SW, vertically 5x exaggerated). Activity at the summit crater fumarole area is compared with that at the flank fumarole area, revealing a time shift in the increase and
decrease of activity, which may be linked to the underground pathways of ascending fluids. Conceptual sketch on the ascent path and aquifer contains information from Layana
et al. (2023) and Aguilera et al. (2012).
and previous studies. Through time series analysis, we determined
periods of both growth and reduction of hydrothermal deposits within
the summit crater, alongside the occurrence of sulphur flows in the
flank. HDI variations were initially observed within the summit crater
and subsequently in the flank. Therefore, we proposed that changes
at depth in 2017 drove the migration of hydrothermal fluid from the
summit crater to the flank area, and the growth of hydrothermal deposit
zones could serve as an early indicator of anomalies in deeper magmatic
or hydrothermal systems. In addition, we indicated the emergence of
sulphur flows is related to the activity of surrounding fumaroles. In con-
clusion, this research introduces a robust methodology for extracting
hydrothermal deposit information and offers significant insights into
the spatiotemporal dynamics and potential hazards associated with hy-
drothermal activity within volcanic areas. Future research should focus
on refining these methodologies to further enhance our understanding
of volcanic processes and improve hazard assessments.
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