MAAS AND INTEGRATED MOBILITY: RESEARCH FINDINGS FROM THE GLOBAL SOUTH

Dr. Marc Hasselwander, DLR-Institute of Transport Research

SUMP Türkiye – Webinar 29: Mobility as a Service (Part 1); Laying the Foundations for Seamless Integrated Urban Mobility Systems

Introduction

- Researcher at the DLR-Institute of Transport Research since 2021
- PhD at the University of Coimbra (2017-2023), MIT Portugal
- Research focus on consumer and mobility behavior, technology adoption, and platform economy
- Case studies in the global South: Cochabamba, Kigali, Dar es Salaam, Manila
- Topics: Mobility as a Service (MaaS), mobility platforms, (transport) super apps

Source: Marc Hasselwander

Source: Trufi Association

Agenda

- Study 1: Acceptance of MaaS in Metro Manila
- Study 2: MaaS barriers in the global South
- Study 3: MaaS impacts
- Study 4: Local Super Apps
- Discussion

Background

MOBILITY-AS-A-SERVICE

- Consolidation of different transport modes and services
- Accessible through a mobile app: plan, book, and pay
- Key features:
 - 1. Ticket and payment integration
 - 2. **ICT** integration
 - 3. (Mobility packages)

Source: Raymark Lapitan Sebastian

Case study: Metro Manila

METRO MANILA

- Capital: center of culture, economy, ...
- 17 cities/municipalities; 620 km²
- Population: 13 million + 2 million commuters
- One of the most crowded and dense urban areas in the world

Source: Marc Hasselwander

Case study: Metro Manila (cont'd)

METRO MANILA - transportation

- 90% of households do **not own a car**
- Rapid pace of motorization
- Fragmented rail network, subway to be opened in 2029(?)
- Some pop-up bike lanes and BRT corridor after COVID-19

Source: Jack Schmidt

Source: Hans Cecilio Bosshard

Research questions

- RQ1. How strong is the willingness to use MaaS? Who are the potential adopters and what are their motives to use MaaS?
- RQ2. Does MaaS have the potential to promote a shift towards public transport and sustainable mobility?

Methods and Data

- Online survey (N=238)
 - Transport & Mobility: nr. cars/motorcycles, modal choice factors; previous day travel, ...
 - Socio-demographic: age, education, household size, ...
 - MaaS questions
- Econometric models (utility theory, discrete choice)
 - 1. Willingness to use MaaS (whole sample)
 - **2. Likelihood** of increasing the use of **public transport** (among MaaS adopters)

Results and discussion

Model 1: Willingness to use MaaS (whole sample)

- "I would probably use MaaS" = 84%
- Potential adopters:

price-sensitive (compare and choose best option), females, ride-hailing users (short, social, and leisure trips), Metro Manila residents, multimodal travel behavior.

Results and discussion (cont'd)

Model 2: Likelihood of increasing use of PT (among MaaS adopters)

- "I would probably use MaaS and use PT more often" = **73%** (of adopters)
- Potential adopters:

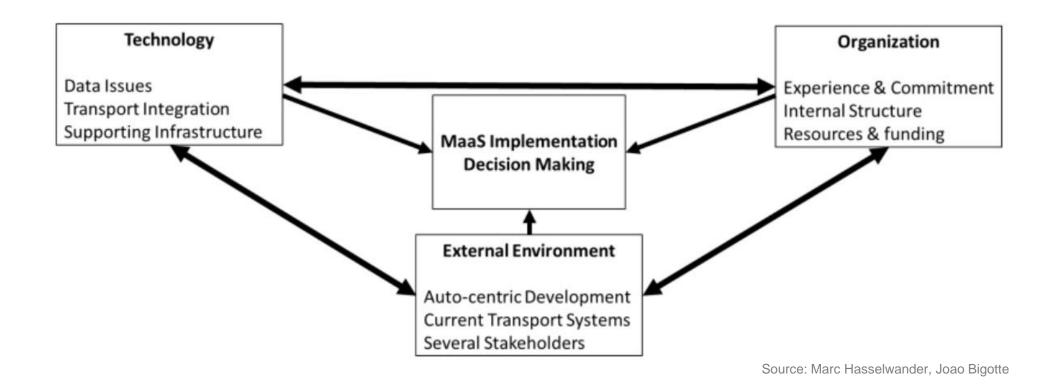
living in **adjoining provinces, price-sensitive, females**, already using **transport apps**.

Main (new) findings

- Consolidation of different services (aka transport integration)
- Users expect cost-savings
- Users expect more reliable services (integration of services and travel info*, comparison of different travel alternatives)

Research questions

- RQ1. What are the most critical implementation barriers for MaaS in the Global South?
- RQ2. What are the interconnections between these implementation barriers?


Methods and Data

- Theoretical background
 - Technology, organization, and environment (**TOE**) framework
- Literature review
 - MaaS, transport policies, public sector innovations
 - 34 implementation barriers identified
- Two-round expert survey (N=29; 21)

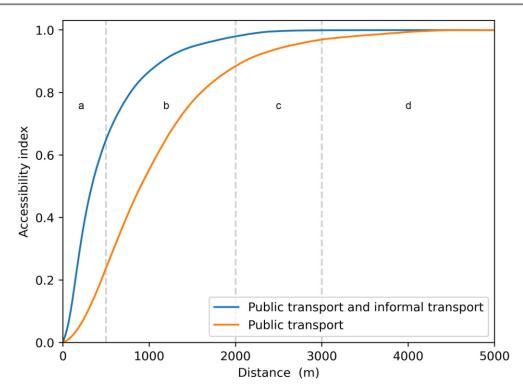
Results and discussion

Research questions

- RQ1. Does transport integration under MaaS contribute to better access to transport services?
- RQ2. Which areas can benefit the most from an integrated MaaS system?

Methods and Data

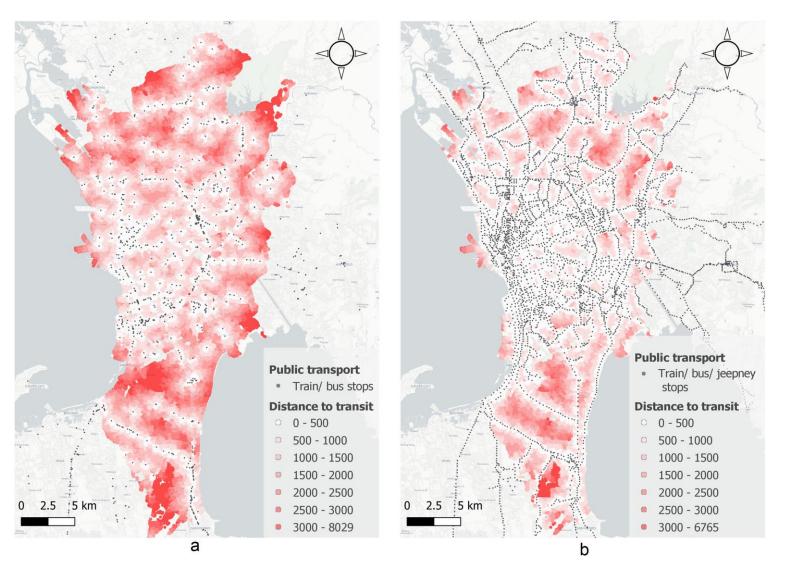
- Case study: Metro Manila
- Three (open) data sources
 - Population data → satellite imagery (World Settlement Footprint 2019)
 - Street network → OpenStreetMap
 - Transit stops → GTFS
- Accessibility calculation based on SDG 11.2.1
 - proportion of the population with convenient access to public transport within walking distance
- Simulation using PtAC


	Scenario 1	Scenario 2	Scenario 3	Scenario 4	
Integrated	None	Public	Public transport	Public transport	
transport		transport	Micro-Mobility	Paratransit	
modes		Paratransit		Micro-Mobility	
Transit stops'	500 m (walking)	500 m	500 m (walking)	500 m (walking)	
catchment		(walking)	2,000 m (e-	2,000 m (e-scooter)	
area			scooter)	3,000 m (bicycle)	
			3,000 m		
			(bicycle)		
Description	The status quo: no	Intermodal	Intermodal	Implementation of a full MaaS schemes that covers all public modes and	
	integration,	integration but	integration but		
	disaggregated	without	without		
	networks of different	first/last mile	informal modes	micro-mobility for the	
	transport services	•	of transport	first/last mile	

Results

Overview of model results.

	Accessibility index			Distance to closes	Distance to closest transit stop (in m)	
	walking	E-Scooter	Bicycle	mean	max.	
Public Transport	.239	.884	.969	1088.96	8029.34	
Integration of paratransit	.650	.979	.999	563.92	6764.56	

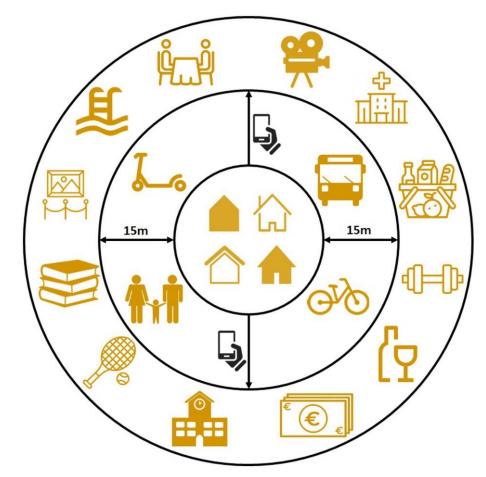


Source: Marc Hasselwander et al.

a: accessible on foot; b: accessible via shared e-scooter; c: accessible via shared bicycle; d: not accessible

Results (cont'd)

Source: Marc Hasselwander et al.


Hasselwander, DLR-Institute for Transport Research,

A think piece

LOCAL SUPER APP (more than MaaS)

- driven by public authorities, tailored to local needs
- integrating the concepts of the 15mC and MaaF
- essential daily necessities and services accessible within a 15-minute radius
- seamlessly order, book, and pay for daily necessities, services, and leisure, all seamlessly integrated within a single app

Source: Marc Hasselwander, Daniel Weiss, Stefan Werland

References

- Hasselwander, M. (2019). MaaS in Deutschland. Internationales Verkehrswesen, 71(2), 59.
- Hasselwander, M., Tamagusko, T., Bigotte, J. F., Ferreira, A., Mejia, A., & Ferranti, E. J. S. (2021). Building back better: The COVID-19 pandemic and transport policy implications for a developing megacity. Sustainable Cities and Society, 69. https://doi.org/10.1016/j.scs.2021.102864
- Hasselwander, M., Bigotte, J. F., & Fonseca, M. (2022). Understanding platform internationalisation to predict the diffusion of new mobility services. *Research in Transportation Business and Management*, 43. https://doi.org/10.1016/j.rtbm.2021.100765
- Hasselwander, M., Bigotte, J. F., Antunes, A. P., & Sigua, R. G. (2022). Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila. *Transportation Research Part A: Policy and Practice*, 155, 501–518. https://doi.org/10.1016/j.tra.2021.11.024
- Hasselwander, M., & Bigotte, J. F. (2022). Transport authorities and innovation: understanding barriers for MaaS implementation in the global south. *Transportation Research Procedia*, 62, 475-482. https://doi.org/10.1016/j.trpro.2022.02.059
- Hasselwander, M., & Bigotte, J. F. (2023). Mobility as a Service (MaaS) in the Global South: research findings, gaps, and directions. *European Transport Research Review*, 15(1), 27. https://doi.org/10.1186/s12544-023-00604-2
- Hasselwander, M., Kiko, M., & Johnson, T. (2022). Digital civic engagement, open data, and the informal sector: a think piece. *Transportation Research Interdisciplinary Perspectives*, 16, 100700. https://doi.org/10.1016/j.trip.2022.100700
- Hasselwander, M. (2024). Digital platforms' growth strategies and the rise of super apps. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e25856
- Hasselwander, M., & Weiss, D. (2024). Key Factors Influencing Consumer Adoption Intentions of Super Apps in Germany. *IEEE Access*, 12, 101985-101998. http://dx.doi.org/10.1109/ACCESS.2024.3431950
- Hasselwander, M., Weiss, D., & Werland, S. (2024). Local super apps in the 15-minute city: a new model for sustainable communities? *Frontiers in Sustainable Cities*, 6, 1404105. https://doi.org/10.3389/frsc.2024.1404105
- Weiss, D., & Hasselwander, M. (2025). Super Apps and the Mobility Transition. *Environmental Innovation and Societal Transitions*, 55, 100955. https://doi.org/10.1016/j.eist.2024.100955

Get in touch!

marc.hasselwander@dlr.de

