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• Motivation: Compensating for InSAR elevation 
biases caused by penetration over ice sheets.

• Location: Greenland, from summit to east cost.

• Dataset: TanDEM-X SAR scenes (Jan–Mar 2017) and 
NASA IceBridge ATM LiDAR (Mar 2017).

Study Area and Dataset
Penetration Bias TanDEM-X - ATM LiDAR TanDEM-X InSAR DEM
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Physical Modeling1:
• Utilize a vertical scattering distribution
𝑓(𝑧) (e.g., Exponential, Weibull) to model InSAR
volume decorrelation and coherence.

• Invert the InSAR Phase Center Depth ∠𝛾 to
estimate penetration depth.
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• Applies statistical linear regression models to
adjust measured values and minimize bias.

• Implements correction functions across all
scenes to correct elevation estimates.

Estimation of Penetration Bias
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Hybrid Method (Physics-informed Neural Networks):
• Combines ML with physical modeling for enhanced bias correction.

• Input features include interferometric coherence and other SAR-derived
metrics.

• Learn a scattering distribution (e.g., Exponential, Weibull) to compensate for
the underlying assumptions of the physical model.

Methodology: Hybrid Method (Physics-informed Neural Networks) Input Features
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Conclusion
• Enhanced DEM Accuracy:
• Corrected DEMs exhibit higher precision and reliability.

• Penetration Bias Reduction:
• Achieved MAE of approximately 0.5 meters across different elevation ranges.

Results
Hybrid Model (Exp.) Hybrid Model (Weibull)PM Model (Exp.)

• Pros: Easy to understand and provides consistent results across
different InSAR geometries.

• Cons: Uses only the direct relationship between InSAR
coherence y and penetration bias, based on simplified
assumptions of 𝑓 𝑧 .

• Pros: Combines strengths from PM and ML approaches for
robustness/accuracy with limited labeled data.

• Cons: Complex to develop and implement.

• Pros: More flexible with two parameters to learn.

• Cons: Requires additional work to tune it.
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Benefit of Terrabyte

• High-Performance Computing for PhD Research:
• It allows running multiple simulations for the hybrid 

modeling approach in parallel with changing 
optimization parameters. This significantly reduces 
computational time:
• From one week using local institute infrastructure.
• To only a few hours on Terrabyte's HPC capabilities.

• GPU Usage for Hybrid Modeling Development:
• It accelerates the training process for a hybrid 

modeling approach by:
• Leveraging GPU power for faster neural 

network computation.
• Effectively handling large datasets, 

reducing bottlenecks during training.
• To only a few hours on Terrabyte's HPC 

capabilities.

• Impact on PhD Workflow:
• Enables quicker experimentation—an essential 

component for promptly achieving research 
milestones. 

• Effectiveness of Physics-Informed ML:
• Successfully corrects biases even with an unbalanced training dataset.
• Delivers superior overall performance with limited training data.
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